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The relationship between phenotypic variation arising through individual
development and phenotypic variation arising through diversification of
species has long been a central question in evolutionary biology. Among
humans, reduced placental invasion into endometrial tissues is associated
with diseases of pregnancy, especially pre-eclampsia, and reduced placental
invasiveness has also evolved, convergently, in at least 10 lineages of eutherian
mammals. We tested the hypothesis that a common genetic basis underlies
both reduced placental invasion arising through a developmental process in
human placental disease and reduced placental invasion found as a derived
trait in the diversification of Euarchontoglires (rodents, lagomorphs, tree
shrews, colugos and primates). Based on whole-genome analyses across 18
taxa, we identified 1254 genes as having evolved adaptively across all three
lineages exhibiting independent evolutionary transitions towards reduced
placental invasion. These genes showed strong evidence of enrichment for
associations with pre-eclampsia, based on genetic-association studies, gene-
expression analyses and gene ontology. We further used in silico prediction
to identify a subset of 199 genes that are likely targets of natural selec-
tion during transitions in placental invasiveness and which are predicted to
also underlie human placental disorders. Our results indicate that abnormal
ontogenies can recapitulate major phylogenetic shifts in mammalian evol-
ution, identify new candidate genes for involvement in pre-eclampsia, imply
that study of species with less-invasive placentation will provide useful
insights into the regulation of placental invasion and pre-eclampsia, and rec-
ommend a novel comparative functional-evolutionary approach to the study
of genetically based human disease and mammalian diversification.

1. Background
Phenotypic diversification between taxa may arise from the evolution of develop-
mental programmes such that the genetic systems underlying homologous traits
differ across taxa [1]. Alternatively, variation in the regulation and ontological
organizationof a developmental systemmaygive rise todivergentphenotypic out-
comes that have a shared underlying genetic basis. Within species, this situation is
best exemplified by polyphenism [2,3], but ontogenetic shifts in complex genetic
systems are also likely to be important in generating interspecific phenotypic vari-
ation [4,5]. A number of recent studies indicate that evolutionary variation of a
stable underlying genetic system can give rise to repeated convergent evolution
in complex traits such as Drosophila wing pigmentation patterns, bee eusociality
and stickleback bodyarmour [6–8]. Establishing a commongenetic basis to pheno-
typically divergent outcomes in human and non-human species is especially
important in medical research that makes use of animal models. Here, we show
that three independent convergent evolutionary transitions towards reduced
placental invasiveness—in rodents, primates and tree shrews—share a common
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genetic basis with human diseases of placental invasion,
suggesting that the ontogeny of human diseases can be recapi-
tulated in large-scale mammalian morphological evolution.

The notable diversity found inmammalian placental devel-
opment provides outstanding opportunities to analyse the
relationship between phylogeny and ontogeny in this context.
Phylogenetic reconstruction indicates that the earliest mem-
bers of the superorder Euarchontoglires (comprising rodents,
lagomorphs, tree shrews, colugos and primates) bore an
invasive hemochorial placenta in which the fetal trophoblast is
bathed directly in maternal blood, a situation found in a
majority of extant Euarchontogliran mammals including
humans [9]. The phylogeny of this group includes three
independent evolutionary transitions towards less-invasive
endotheliochorial or epitheliochorial placentation—in tree
shrews, strepsirhine primates and heteromyid rodents—in
which maternal blood is physically separated from fetal tissues
during gestation (figure 1). Reduced invasion of maternal
vessels by fetal trophoblast tissue is characteristic not just of
these derived forms of placentation but is also a central
feature ofpre-eclampsia inhumans. Thepre-eclamptic placenta,
while remaining hemochorial, is characterized by markedly
reduced invasion of the placental bed and reduced remodel-
ling of the maternal vasculature by fetal tissues, which in
healthy placentation supports nutrient supply to the fetus
during pregnancy [10–14]. Although the precise causes of
pre-eclampsia remain uncertain, symptoms accompanying
reduced placental invasion include inappropriate expression
of an immunologically pro-inflammatory and anti-angiogenic
cytokine profile, misregulation of cell adhesion and apoptotic
processes at the fetal–maternal interface, kidney damage and

proteinuria, and maternal hypertension resulting in vascular
damage, convulsions and sometimes death [15]. Hyperten-
sive disorders of pregnancy are a leading cause of maternal
and fetal morbidity and mortality, accounting for 9.1% of
maternal deaths in Africa and Asia, 25.7% in Latin America
and 16.1% in developed countries [16]. Pre-eclampsia is
often regarded as a condition unique to humans (and per-
haps great apes: [17,18]), and the apparent absence of
naturally occurring analogues in non-human model species
has hampered the study of its aetiology and the development
of effective treatments [19].

Previous studies on the genetic basis of interspecific placen-
tal variation have attempted to identify lineage-specific genes
or transcript variants that may underlie the development of pla-
cental structures unique to taxa including elephants [20],
carnivores [21], cattle [21,22] and haplorhine primates [23,24].
Based on similarities in the changes to physiological systems
that underlie reduced invasiveness of non-hemochorial placen-
tation in Euarchontoglires and also reduced placental invasion
in pathological, human hemochorial placentation—especially
modifications to uterine vascular patterning, reduced motility
of fetally derived trophoblast in the endometrium and altered
immunological relations between mother and fetus—we here
address the hypothesis that variation across and within species
in placental invasiveness depends notmerely on lineage-specific
adaptationbut also onvariationwithin a core, overlapping set of
genetic systems that regulate placental invasion.

To identify a set of genes undergoing adaptive evolution
during the losses of hemochorial placentation in Euarchonto-
glires, we conducted genome-wide phylogenetic tests for
statistical signals of positive selection specifically within the
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Figure 1. Left: phylogeny of species used in this study (H, hemochorial; En, endotheliochorial; Ep, epitheliochorial). Three lineages exhibiting independent tran-
sitions from hemochorial to less-invasive forms of placenta are displayed in bold. Right: schematic of hemochorial, endotheliochorial and epitheliochorial forms of
placentation found in Euarchontoglires; fetal tissues are white and maternal tissues are shaded. In epitheliochorial placentation, fetal trophoblast is separated from
maternal blood by maternal epithelium, connective tissue and the endothelium of maternal blood vessels. In endotheliochorial placentation, fetal tissues are
separated from maternal blood only by maternal endothelium. In hemochorial placentation, maternal vascular endothelium is invaded by trophoblast such
that maternal vessels are dilated and fetal tissues are bathed directly in maternal blood.
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three lineages associatedwith the origin of endotheliochorial or
epitheliochorial placentation.We then tested for involvement of
these genes in the ontogeny of placental invasiveness, by deter-
mining whether they show genetic or gene-expression
associations with pre-eclampsia.

2. Material and methods
(a) Sequence alignments
The Ensembl Perl application programming interface [25] was
used to generate, for each human gene identifier, a file containing
collected unaligned one-to-one orthologous protein-coding
sequences from the 18 Euarchontogliran taxa available: pika (Ocho-
tona princeps), rabbit (Oryctolagus cuniculus), ground squirrel
(Spermophilus tridecemlineatus), guinea pig (Cavia porcellus), kan-
garoo rat (Dipodomys ordii), mouse (Mus musculus), rat (Rattus
norvegicus), tree shrew (Tupaia belangeri), lemur (Microcebus muri-
nus), galago (Otolemur garnettii), tarsier (Tarsius syrichta),
marmoset (Callithrix jacchus), macaque (Macaca mulatta), gibbon
(Nomascus leucogenys), orangutan (Pongo abelii), gorilla (Gorilla gor-
illa), human (Homo sapiens) and chimpanzee (Pan troglodytes). Each
file was scanned for the presence of non-hemochorial species (kan-
garoo rat, tree shrew, lemur and galago), and files were discarded
from further analysis if they contained no sequence data for these
species. The remaining files were each aligned using a codon
model in the probabilistic alignment application PRANK [26].
Tests for positive selection are sensitive to alignment quality. A
recent review [27] found PRANK’s codon model (which aligns
codons rather than nucleotides or amino acids, thus making use
of information from both the primary nucleotide sequence and
also the translation) to yield the most consistently high-quality
alignments, with respect to success in inference of sitewise positive
selection, of a number of methods assessed. Resultant alignments
were manually checked for quality, and low-quality regions for
which 50% or more species exhibited gaps were excised from the
alignments prior to further analysis.

(b) Detection of selection
For each gene, a base phylogenetic tree (figure 1) was pruned
according to the sequence data available. Focal branches upon
which transitions from hemochorial to non-hemochorial placen-
tation occurred (the branch leading to kangaroo rat, the branch
leading to tree shrew and the branch leading to strepsirhine pri-
mates) were labelled as foreground branches for analysis in
PAML (phylogenetic analysis by maximum likelihood) [28].
Owing to the genomic data and/or inference of one-to-one otho-
logues by Ensembl being incomplete, the resultant phylogeny
varied across genes in the number and identity of terminal
taxa. For 2093 genes, a phylogeny bearing one transition from
hemochorial to non-hemochorial placentation was available, for
4293 genes a phylogeny bearing two such transitions was avail-
able and for 10 192 genes a phylogeny bearing all three possible
transitions was available.

PAMLwasused to fit a branch-sites positive selectionmodel (in
PAML, model ¼ 2 and NSsites ¼ 2). The sites component of the
model allows gamma-distributed variation in evolutionary rate
across sites of a gene, modelling the fact that diversifying selection
is likely to be rare and arising only within portions of the entire
coding sequence. The branch component of the model allows
the ratio of non-synonymous to synonymous substitutions (v) to
increase above unity—signifying positive, diversifying selection—
only on branches of the phylogeny exhibiting transitions from inva-
sive hemochorial placentation to less-invasive non-hemochorial
forms. A likelihood ratio test was used to identify genes for
which the likelihood of the branch-sites positive selection model
is significantly higher than the likelihood of its neutral counterpart

in which focal branches are restricted such that v ! 1 (in PAML,
fix–omega ¼ 1). It is expected that some genes, for example those
involved in antagonistic coevolutionwith genes expressed by para-
sites or disease vectors, may be under positive selection on all
branches of the phylogeny. These genes may fit the branch-sites
model better than the neutral model even though selection is not
specifically restricted to the branches of interest that bear evolution-
ary transitions in placental invasiveness. In order to exclude such
genes from our list of positively selected genes, we also fitted a
thirdmodel in PAML inwhich a single evolutionary regime of posi-
tive selection was applied to all branches of the phylogeny (in
PAML, model ¼ 0 and NSsites ¼ 2). Genes for which this global
selection model fitted better than the branch-sites model were
excluded from the list. As this model is not nested within the
branch-sites model as a special case, Akaike’s information criterion
[29]was used to assessmodel fit rather than the likelihood ratio test.
Finally, we excluded any genes for which the branch-sites model
appeared to be the best fit but which exhibited signs of failure of
convergence (i.e. genes for which the inferred positively selected
v ¼ 1 or for which the proportion of sites assigned to the positive
selection class ¼ 0). All models were fitted to the data multiple
times and the maximum-likelihood inferred over the course of
these multiple trials was used in the likelihood tests.

(c) Gene set enrichment
Enrichment analysis was used to test the set of positively selected
genes for functional signatures associatedwithplacentationandpla-
cental disease. Enrichment analysis of gene ontology biological
processes and Reactome canonical pathways was accomplished
using ClueGo [30] (see the electronic supplementary material,
tables, for parameters). Disease associations of positively selected
genes were identified by extracting gene sets associated with
disease MeSH terms from the Genetic Association Database [31]
(which includes pre-eclampsia and other reproductive disorders
within a comprehensive list of human diseases) and testing for
enrichment using Fisher’s exact test. Enrichment of human and
mouse tissue types was tested using Enrichr [32]. All multiple tests
were subject to Benjamini–Hochberg false discovery rate correction.

(d) Detection of selected substitutions of large
phenotypic effect

Genes bearing positively selected amino acid substitutions of
large phenotypic effect may constitute novel candidate genes
for involvement in the evolution of placental invasiveness and,
potentially, in the pathogenesis of pre-eclampsia and other dis-
eases of human placental invasion. PAML can be made to
output, for each site of an alignment, a Bayes Empirical Bayes
probability that the given site is subject to diversifying selection.
Based on the alignments, it is possible to calculate, for each site
with Bayes Empirical Bayes p. 0.95, the amino acid(s) present
in non-hemochorial species that are non-synonymous with the
amino acid present in human beings. The software application
PROVEAN [33] was used to predict, computationally, which of
these apparently positively selected amino acid substitutions
would be associated with a major phenotypic effect, were they
to arise in human beings.

3. Results
(a) Identification of positively selected genes
Based on alignments of 16 578 protein-coding genes across 18
taxa (four of which have non-hemochorial placentas, figure 1),
we identified a subset of 1254 genes which are inferred
to have evolved adaptively in the three independent focal
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lineages undergoing evolutionary transitions towards reduced
placental invasion, but neutrally in the remaining lineages
undergoing no such evolutionary transition. These genes are
presumed to be involved, potentially, in the macroevolution of
less-invasive placentation.

(b) Significant overlap of positively selected genes
with genes known to be involved in human
reproductive disorders

Functional overlap between genes subject to adaptive evol-
ution during independent losses of hemochorial placentation
in tree shrews, strepsirhine primates and kangaroo rats, and
genes associated with human disorders of placental invasion,
was assessed using tests for enrichment of disease-association
gene sets. Fishers exact tests based on the Genetic Association
Database [31], comprising 167 130 gene–disease associations
derived from human studies, indicate that the adaptively evol-
ving gene set is significantly enriched with genes that underlie
pregnancy-related disorders (including premature birth, chor-
ioamnionitis, pre-eclampsia and cardiovascular complications
of pregnancy) and circulatory disorders involving blood
clotting and atherosclerosis (table 1). Pre-eclampsia is both a
placental and a vascular disorder, giving rise to maternal
vascular lesions that are highly similar to those found in
atherosclerosis [34] and predisposing towards hypertension,
ischaemic heart disease, cerebrovascular disease and throm-
boembolism [35]. The enrichment results are thus consistent
with positive selection on genes involved in pathology of the
placenta and uterine vascular system, especially pre-eclampsia.

(c) Significant overlap between positively selected
genes and genes involved in pre-eclampsia

Studies on the genetic basis of pre-eclampsia are dominated by
two broad classes of approach. First, candidate gene and
genome-wide association studies have been used to iden-
tify single nucleotide polymorphisms (SNPs) associated with
pre-eclampsia. A comprehensive database of pre-eclampsia-
associated SNPs [36] identifies within the set of 16 578 studied
genes, 149bearingputatively pre-eclampsia-associatedSNPs in
their coding sequence, introns or enhancer regions. These genes
were significantly enriched within the set of adaptively evol-
ving genes (22 genes, p ¼ 0.002). Of the 149 SNP-bearing
genes, 92 are significantly associated with pre-eclampsia with
p, 0.05 in at least one study, and this more restricted set of
loci is also enriched within the set of adaptively evolving
genes (14 genes, p ¼ 0.009).

Second, studies of differential gene expression in pre-
eclamptic versus normal placenta and endometrium have
been used to identify genes significantly upregulated or down-
regulated in the disease condition. A recent review of such
studies [37] identifies, within the set of 16 578 studied genes,
84 genes that are found to be differentially expressed in at
least one placental or endometrial tissue during pre-eclamptic
pregnancies. Of these genes, 12 exhibit the statistical signal
of adaptive evolution, constituting significant enrichment
( p ¼ 0.024). It has been noted that there is only a modest con-
sensus in results from gene association and differential
expression studies [37]. Nevertheless, of the pre-eclampsia-
associated genes present in our set of 16 578 tested for adaptive
evolution, 12 bear pre-eclampsia-associated SNPs and are also

differentially expressed in pre-eclampsia. To account for poss-
ible non-independence of results from genetic-association and
gene-expression studies, we also calculated enrichment stat-
istics for the set of unique pre-eclampsia-associated genes
combined from both approaches. Of 221 such genes, 33 exhibit
the statistical signal of adaptive evolution (p, 0.001).

(d) Functional enrichment
Genes subject to adaptive evolution were also significantly
enriched with biological processes involved in placental
function (the electronic supplementary material, table S2).
A cluster of genes involved in angiogenesis and blood vessel
development was the most strongly enriched (especially invol-
ving interleukin 6, an angiogenic cytokine possibly involved in
trophoblast invasion into the endometrium [38,39]), consistent
with selection on vascular patterning during the evolution of
placental invasiveness and also consistent with the centrality
of misregulated angiogenesis to the pathogenesis of pre-
eclampsia [40,41]. Significant enrichment was also identified
in a cluster of genes involving cytokine and chemokine regu-
lation of the immune system and inflammatory response,
and in clusters of genes related to cell migration and apoptosis,
all central to fetal–maternal interactions in utero [42–44].

Table 1. Diseases exhibiting significant genetic overlap with the set of
1254 genes subject to adaptive evolution during evolutionary transitions
towards less-invasive forms of placentation in kangaroo rats, strepsirhine
primates and tree shrews; significance reported as Benjamini–Hochberg
adjusted q-value.

disease MeSH term
proportion
of genes q

obstetric labour, premature 33/184 0.004

premature birth 40/250 0.004

infection of amniotic sac and

membranes

31/174 0.004

chorioamnionitis 31/176 0.005

fetal membranes, premature

rupture

31/179 0.005

multiple sclerosis 64/503 0.010

venous thrombosis 15/61 0.011

pre-eclampsia 35/229 0.014

thrombosis, deep-vein 8/20 0.015

fetal diseases 23/129 0.019

gastrointestinal diseases 8/23 0.029

patent ductus arteriosus 21/119 0.032

heart defects, congenital 13/58 0.039

bronchial hyperreactivity 20/114 0.039

infection 21/123 0.039

myocardial infarct 19/107 0.042

angina pectoris 9/32 0.043

myocardial ischaemia 12/53 0.044

musculoskeletal diseases 20/118 0.045

atherosclerosis, coronary 22/136 0.046
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Analysis of enriched canonical pathways (electronic sup-
plementary material, table S3) indicates especially strong
selection on G-protein-coupled receptors, integrin and
NOTCH receptors as well as some of their downstream intra-
cellular signalling cascades PI3K and AKT, all known for
involvement in promoting trophoblast motility [45], as well
as numerous other signalling pathways associatedwith placen-
tation and placental disease including fibroblast growth factor
and interferon gamma [46,47]. Statistical identification of gene
clusters enriched in common between adaptively evolving
genes and combined pre-eclampsia-associated genes yielded
similar results (electronic supplementary material, tables S6
and S8) confirming the pre-eclampsia associations of these
processes and pathways.

(e) Identification of novel evolutionarily informed
candidate genes for involvement in pre-eclampsia

One implication of the enrichment of genes associated with
placental pathology within the set of adaptively evolving
genes is that the latter may contain novel candidate genes
and pathways involved in human placental disorders. To for-
mally prioritize the set of genes subject to adaptive evolution
for possible involvement in pre-eclampsia and related con-
ditions, we used PROVEAN, a software tool for predicting
the phenotypic impact of nucleotide substitutions in humans
based on evolutionary conservation of amino acid sites [33].
We identified 289 genes that evolved adaptively during loss
of hemochorial placentation in Euarchontoglires, for which
positive selection can be ascribed to specific amino acid sites
with high probability (Bayes Empirical Bayes p. 0.95) and
which also exhibit, in non-hemochorial Euarchontoglirans,
substitutions at those sites that are predicted to be of major
phenotypic effect relative to the normal human allele (PRO-
VEAN score , 22.5). These genes are significantly enriched
with putatively pre-eclampsia-associated SNPs (eight genes,
p ¼ 0.005, table 2; electronic supplementary material, tables
S4 and S5) though not with transcripts differentially expressed
in pre-eclampsia. Genes already known to be associated with
pre-eclampsia were excluded and, through comparison with
the combined set of pre-eclampsia-associated genes, those
remaining were categorized into three subsets. First, we ident-
ified members of pathways and biological processes enriched
in common between pre-eclampsia-associated and adaptively
evolving genes (58 genes with robust functional support
for involvement in pre-eclampsia; electronic supplementary
material, tables S10 and S12). Second, we identified members
of pathways and biological processes enriched uniquely in the
adaptively evolving gene set (48 genes that may be involved
in pre-eclampsia or may be involved in adaptations allowing
low levels of placental invasion to be compatible with healthy
mothers and offspring in kangaroo rats, tree shrews and strep-
sirhine primates; electronic supplementary material, tables S11
and S13). Finally, we identified a subset of 111 adaptively evol-
ving genes with large predicted phenotypic effects involved
in direct physical or genetic interactions with known pre-
eclampsia-associated genes [48]. The combination of these
subsets constitutes a list of 199 novel, evolutionarily informed
candidate genes for involvement in the evolution of placental
invasiveness and in the pathogenesis of pre-eclampsia and
other diseases of placental invasion, listed in full in the elec-
tronic supplementary material, table S14; those genes with
known placental functions are described in table 3.

Gene Ontology biological processes, Reactome pathways,
KEGG pathways and Wikipathways enriched among the 199
candidate genes are illustrated in figure 2. Overlapping gene
sets are clustered and identified using ClueGo [30] under
default parameters. A number of disease-associated modules
are identified—including tuberculosis, leishmaniasis, cholera
infection and amyotrophic lateral sclerosis. We suspect that
the enrichment of such categories is a consequence of high
levels of research effort into identification of disease-associated
genes and arises from enrichment of genes generally involved
in immunityandpathological processes. Thisview is supported
by the fact that highly specific disease-associated gene sets are
tightly clustered with more generic immune and cytokine pro-
cesses. Hence, the enriched tuberculosis and amyotrophic
lateral sclerosis (ALS) gene sets are tightly clustered with a
numberofpathways andprocesses involved in tumournecrosis
factor signalling and inflammation. Tumour necrosis factor
plays a major role in the response of the human body to tuber-
culosis infection [49] but additionally regulates trophoblast
migration, invasion and apoptosis in early pregnancy [50–
52], and proteins associated with the tumour necrosis factor
pathway are specifically involved in remodelling of spiral
arteries [53]. Similarly, the leishmaniasis gene set is tightly clus-
tered with biological functions and processes involved in
angiogenesis and endothelial cellmigration. Progressive angio-
genesis and tissue remodelling in the spleen is characteristic of
visceral leishmaniasis in mammals [54] and angiogenesis
inhibitors are a potential treatment for the parasite [55]. As
noted above, pathological angiogenesis is a fundamental out-
come in pre-eclampsia [40,41]. Several other enriched clusters
broadly overlap with aspects of pre-eclampsia, including
genes involved in NOTCH signalling, known to be involved
in early angiogenesis [56–58] and the nitric oxide pathway,
involved in the control of vasoconstriction and misregulated
in pre-eclampsia [59–61].

4. Discussion
The enrichment among the set of genes targeted by natural
selection of distinct but overlapping humanplacental disorders
ranging from premature membrane rupture to pre-eclampsia
(table 1), along with significant overlap with the set of genes
known to be differentially expressed in pre-eclampsia or
bearing pre-eclampsia-asssociated SNPs (table 2), constitute
robust support from multiple, independent approaches for
the existence of a core set of genes underlying both pre-eclamp-
sia in humans and the adaptive evolution of reduced placental
invasion in Euarchontogliran mammals, and evidence against
the notion that the pathogenesis of pre-eclampsia involves pla-
cental processes unique to humans. We have used a novel
evolutionary computational approach to identify 199 genes
(table 3), not currently known to underlie the pathogenesis of
pre-eclampsia, as candidates for involvementwith pre-eclamp-
sia and other diseases of human pregnancy.

Evolutionary analyses have the potential to shed light on
outstanding controversies in the study of placental disease. In
particular, we find selection on genes involved in hypertension
and blood pressure regulation as well as placental tissue remo-
delling and angiogenesis, supporting the controversial view
that gestational hypertension and pre-eclampsia may actually
overlap to some extent in their pathogenesis beyond mere
superimposition in at-risk pregnancies [62]. More generally,
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the overlap between the set of genes targeted by natural selec-
tion and genes involved in multiple placental pathologies
supports the view that placental disorders are highly multifac-
torial and that there may exist different genetic routes to
common symptomatic states [63]. Controversy has also been
raised over the relative contribution to pre-eclampsia of the
maternal and fetal components of the placenta, especially the
role of the maternal immune system in the disease [64]. This is
especially pertinent given the apparent association of disease
risk with maternal exposure to partner-specific paternal

alloantigens, with nulliparous women more than twice as
likely to develop pre-eclampsia as multiparous women [65],
and the risk of pre-eclampsia and/or pregnancy-induced
hypertension inversely correlated with the duration of sexual
cohabitation prior to conception [66–69] presumably as a
result of tolerance arising from maternal exposure to paternal
seminal antigens [70–72]. Mapping of the 199 genes bearing
positively selected amino acid substitutionsof largephenotypic
effect to tissue-specific expression data [73] using Enrichr [32]
indicates weak enrichment of proteins localized to CD14 þ

Table 2. Genes associated with pre-eclampsia in human beings and also exhibiting the statistical signal of adaptive evolution during loss of invasive
hemochorial placentation in kangaroo rat, strepsirhine primates and tree shrew. PV, PROVEAN score: in genes for which positive selection can be ascribed to
specific amino acid sites (BEB . 0.95) lower scores indicate stronger predicted phenotypic effects of observed substitutions. v: dN/dS ratio reported by PAML,
with values greater than one indicating positive selection, and ‘high’ indicating an estimate of v reaching an upper limit in PAML, caused for example by an
absence of synonymous substitutions; p(v). 1: significance of the likelihood ratio test supporting positive selection; genetic-association codes: DE, differentially
expressed in pre-eclampsia; SNP, gene bearing putatively pre-eclampsia-associated SNP; SNP*, gene bearing SNP associated with pre-eclampsia with p , 0.05
in at least one genetic-association study.

gene association PV v p(v > 1) biological process

S100A8 DE high ,0.001 cytokine production, inflammation, apoptosis, wound healing

F5 SNP* high ,0.001 cell adhesion, blood coagulation

DRD4 SNP* 216.00 92.75 ,0.001 MAPK activation, dopamine signalling

C1QTNF6 SNP* 27.39 high ,0.001 protein oligomerization

EGLN3 DE 32.41 ,0.001 response to hypoxia, apoptosis, cell proliferation

CD97 DE high ,0.001 inflammation, cell adhesion, cell– cell signalling

SLC30A8 SNP* high 0.002 insulin secretion, regulation of vesicle-mediated transport

CYBA SNP 213.00 42.01 0.003 endothelial cell proliferation, regulation of blood pressure

IL6 SNP 26.42 2.63 0.004 apoptosis, cell proliferation, immune response, cytokine signalling

IL12RB1 SNP* 9.2 0.005 immune response, cytokine signalling

EDN2 DE 1.05 0.005 vasoconstriction, chemotaxis, prostaglandin synthesis

APOE SNP 27.02 5.07 0.005 endothelial cell migration, lipid transport, vasodilation

ACE SNP* 23.02 8.76 0.006 vessel remodelling, regulation of blood pressure, vasoconstriction

ACVR1 SNP 216.54 5.65 0.006 patterning of blood vessels, embryonic development

F2 SNP* 11.66 0.007 blood coagulation

CYP4V2 SNP* 3.6 0.007 fatty acid omega-oxidization

CBS SNP 23.16 4.35 0.009 regulation of blood pressure, process in pregnancy, hypoxia

VGLL1 DE 7.51 0.011 regulation of transcription, DNA-dependent

SOD3 SNP high 0.012 response to hypoxia

COL4A2 SNP* 22.22 0.012 response to TGF-b stimulus

BDKRB1 DE high 0.013 inflammation, cell migration, regulation of blood pressure

APOH SNP* 29.71 0.016 endothelial cell proliferation, blood coagulation, angiogenesis

CXCR6 DE 7.33 0.019 cell– cell signalling

SLC9A3 SNP* 19.75 0.02 ion transport, regulation of pH

SIAE DE 1.31 0.024 sialate O-acetylesterase activity

IL4R SNP* 22.72 0.025 inflammation, cytokine signaling, cell proliferation

SERPINI2 DE 14.97 0.029 cellular component movement, regulation of endopeptidase activity

ADRB3 SNP high 0.031 vasodilation, energy reserve metabolism, endocytosis

FLT1 DE/SNP* 10.87 0.034 sprouting angiogenesis, patterning of blood vessels

MTR SNP 4.06 0.04 xenobiotic metabolic process, nervous system development

IDO1 DE 3.23 0.042 inflammation, cytokine signalling, T cell proliferation

COL18A1 DE 1.86 0.047 angiogenesis, cell adhesion, cell proliferation, apoptosis

PLAUR SNP* 14.19 0.05 cellular component movement, chemotaxis, blood coagulation
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Table 3. Novel, evolutionarily informed candidate genes for involvement in pre-eclampsia. Associations: C, member of biological process or pathway enriched in
common between positively selected genes bearing substitutions of large predicted phenotypic effect and known pre-eclampsia-associated genes; U, member of
process or pathway uniquely enriched in adaptively evolving genes; I, member of physical or genetic interaction network with known pre-eclampsia-associated
genes. An expanded and fully referenced version of this table is available in the electronic supplementary material, table S14.

gene PV v p association possible reproductive role

TNFRSF1B 230 16.58 ,0.001 C,I inflammation and vascular cell migration

PKD1 227 4.93 0.003 C,U placental labyrinth formation

FLG2 222.02 55.61 ,0.001 I possible involvement in inhibition of trophoblast differentiation through

interaction with caspase-14

LOXL2 220.61 53.6 0.005 C,U cell matrix interactions in cytotrophoblast

ATP6AP1 220 489.32 ,0.001 U determinant of birthweight

SH2D2A 219 14.96 0.009 C,U,I pathological angiogenesis, endothelial cell migration

QRICH2 218.74 3.94 ,0.001 I physically interacts with SNAI1, a repressor of trophoblast giant cell

differentiation

MKI67IP 218.53 2.33 0.024 I a trophoblast stem-associated gene

PTGER1 218.19 6.1 0.026 I regulation of placental blood pressure, extravillous trophoblast migration,

parturition

IL20RA 217 16.95 ,0.001 I inhibition of tumour necrosis factor alpha in fetal membrane

NTRK3 216.03 3.27 0.045 C,U receptor for NT3, a placentally expressed growth factor

TCOF1 215 3.63 0.007 I a trophoblast stem-associated gene

CD74 215 12.41 0.009 C,U expressed at the fetal–maternal interface, also associated with

atherosclerotic plaques

MPP4 212.69 2.53 0.045 I a trophoblast stem-associated gene; in general, MMPs are involved in

breakdown of maternal ECM during placental invasion

ZNF214 212.28 17.22 ,0.001 I associated with fetal overgrowth

PRKCB 212 7.69 0.007 C,U,I regulates constriction of uterine arteries in sheep; a trophoblast

stem-associated gene

MAML3 211.75 3.67 0.045 C,U NOTCH signalling

S1PR5 211.4 82.81 ,0.001 I receptor for sphingosine 1-phosphate, a regulator of angiogenesis during

pregnancy in sheep

GPC1 211 670.08 0.013 C,U,I a trophoblast differentiation marker

TLL1 211 6.84 0.013 U fetal heart development, placental ECM interactions; potentiates BMP1

which is involved in placental angiogenesis

PTGS2 211 8.1 0.026 C,U,I parturition

MX1 210.74 13.09 0.003 I an interferon-induced antiviral protein upregulated in chorion

GATAD1 210.73 6.17 0.016 I possibly involved in transcriptional interference with a neighbouring

methylated retroviral element enriched in villous trophoblast

CREB3L1 210.47 19.64 0.008 I regulates the expression of GCM1, required for chorioallantoic branching

and syncytiotrophoblast formation

SP5 210.34 6.82 ,0.001 I regulator of embryogenesis

CCL16 210.27 5.74 0.001 I inflammatory chemokine associated with various placental disorders and

arteriogenesis

NANOS1 210 999 ,0.001 C,U embryogenesis

EIF2B2 29.78 4.32 0.048 C a trophoblast stem-associated gene

CRABP2 29.73 22.95 0.003 I involved in endometrium–trophoblast interaction during implantation

SOD1 29.41 2.99 0.024 C,U reaction to oxidative stress in pregnancy

F7 29 998.96 0.004 C coagulation at fetal–maternal interface

EPHA8 29 4.97 0.008 C ovulation, adhesion to fibronectin

(Continued.)
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Table 3. (Continued.)

gene PV v p association possible reproductive role

ZNF416 28.42 4.3 0.005 I suppresses MAPK signalling, a pathway involved in regulation of villous

trophoblast differentiation

BCS1L 28 10.86 0.048 U a trophoblast stem-associated gene also involved in fetal brain

development

SS18 27.46 7.04 0.049 I transcriptional regulation of genes involved in placental vascularization

and/or chorioallantoic fusion

HSPG2 27.45 4.85 ,0.001 C,U,I involved in cell adhesion, growth factor binding and modulation of

apoptosis in various placental tissues; a clinical biomarker for early

rupture of fetal membranes and gestational diabetes

TNFRSF1A 27 25.71 0.004 C,I inflammation and vascular cell migration

MYCBP2 26.99 6.09 0.001 U differentially expressed in resorbing versus healthy rat embryos

FGF2 26.77 25.68 0.009 C,U,I regulates trophoblast differentiation

SLC25A17 26.22 8.88 0.027 U upregulated in the placenta during maternal food deprivation

SMTNL2 25.77 999 ,0.001 I a marker of highly differentiated contractile smooth muscle cells in

placental vasculature

IL2RB 25.57 8.15 0.009 C trophoblast-specific gene expression arising from endogenous

retroelement promoter, promoting apoptosis

KIF1B 25 7.72 0.026 U a trophoblast stem-associated gene

CCNI 24.95 10.9 0.021 I a trophoblast stem-associated gene

ADCYAP1 24.82 998.97 0.002 I regulation of placental hormone milieu

HDAC1 24.69 117.85 ,0.001 C,U,I regulates transcriptional profile of embryonic and trophoblast stem cells

PSTPIP1 24.62 39.74 0.049 I autoinflammatory gene

GALR1 24.51 999 0.029 I possible placental regulatory role

FIGLA 24.36 999 0.012 I oocyte-specific transcription factor essential for folliculogenesis and

regulating zona pellucida proteins

NUP35 24.3 9.4 0.028 I a trophoblast stem-associated gene

SCARB1 24 37.14 0.003 C,U trophoblast giant cell immune behaviour

TAOK2 23.99 2.91 0.006 C possible involvement in pig conceptus development

SELPLG 23.92 9.8 ,0.001 I hemostasis in the placental bed

PLAU 23.76 11.7 0.011 C,I regulates trophoblast invasion in response to hGH

NPM2 23.73 7.26 0.007 C a maternal-effect gene involved in implantation and early embryonic

development

PRND 23.7 32.41 0.029 C required for early placental development

BTNL2 23.68 998.9 0.037 I differentially regulated in implanted blastocysts obtained after co-culture

in human endometrial cells versus the sequential system

EMR2 23.58 14.15 ,0.001 I promotes cell– cell adhesion and pro-inflammatory cytokine response

NCAM2 23.44 154.06 0.01 I involved in a possible rescue mechanism against placental hyperplasia

associated with NCAM1 deficiency

TBCA 23.4 999 ,0.001 I a trophoblast stem-associated gene

UBR4 23.16 4.23 0.046 I gene knockouts in mice exhibit unusually dilated placental blood vessels

and thin labyrinth layer

VIM 23 4.13 0.034 I a characteristic factor of vascular trophoblast giant cells in the mouse

placenta

CD5 23 212.75 ,0.001 C maternal CD5-positive cells associated with fetal growth delay and

spontaneous abortion

(Continued.)
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monocytes (enrichment score ¼ 4.15; FMNL1, BID, MANBA,
TNFRSF1B, POU2F2, PSTPIP1 and JAK2). These immune
cells are characteristic of maternal uterine tissues during preg-
nancy [74] and are differentially expressed in the decidua in
pre-eclampsia [75]; in the context of maternal immunity, they
are known tobedifferentially regulated in the placenta depend-
ing onmaternal lifestyle and possibly allergen exposure [76]. A
similar analysis using mouse gene atlas data [73,77] indicates
enrichment for genes localized to IgE-boundmast cells (enrich-
ment score ¼ 4.42), which have a central role in allergy and
inflammation and which are also active in the maternal repro-
ductive tract throughout pregnancy [78] and are involved
in the defective vascular remodelling of pre-eclampsia [79].
Hence, components of thematernal immune response involved
in pregnancy and pre-eclampsia are targets of natural selection
during evolutionary transitions in placental invasiveness, sup-
porting a role for genetic modules underlying maternal
immunity, inflammation and allergy response in evolutionary
transitions between placental types and in the pathogenesis of
disorders of placental invasion.

The importance of Darwinian evolution of protein-coding
genes in generating phenotypic diversity remains much
debated, and it has long been argued that selection on transcrip-
tional regulation may be of equal or greater importance than
selection on protein-coding sequences [80,81]. Furthermore,
both protein sequence and regulatory evolution appear to be
dominated by neutral drift and purifying selection rather than

diversifying selection [82–84]. A strong associationwith placen-
tation and diseases of pregnancy in the gene lists described
above provides strong support for the role of natural selection
on protein-coding sequences in placental evolution. This is not
inconsistent, however,with amajor role for regulatory evolution
includingdrift. Tenof the74genes listed in table 3are themselves
placentally expressed transcription factors (PKD1, PRKCB,
GATAD1, CREB3L1, SP5, HDAC1, FIGLA, JAK2, NFYA and
LZTFL1). But, more pertinently, an ad hoc test using Enrichr
[32] indicates that 41—more than half—of the genes listed in
table 3 are collectively regulated by eight transcription factors
(SNAI1, SNAI2, TCF3, ZNF148, USF2, EGR1, E2F1 and JUN).
At least six of these eight transcription factors whose targets
are significantly enriched in table 3 (q, 0.005) have known
roles in regulating blastocyst implantation, vascular inflam-
mation or trophoblast differentiation and proliferation during
pregnancy [85–90].Hence,while it is possible that positive selec-
tion on the gene lists described above is directly involved in the
generation of phenotypic diversity in mammalian placentation,
it is also possible that the signal of adaptive evolution identified
in this study represents the accumulation of mutations in
protein-codingsequences that are compensatory todrift oradap-
tive evolution of the broader regulatory network in which
protein-coding genes are embedded.

One such regulatory evolutionary process that has been
implicated in the evolution of reproductive mode in reptiles
[91] and at the time of the division between eutherian and

Table 3. (Continued.)

gene PV v p association possible reproductive role

JAK2 22.97 28.15 ,0.001 C,U,I JAK2 signalling regulates extravillous trophoblast invasiveness and is

involved in decidual response to IL11

SDHD 22.91 23.76 0.001 I a trophoblast stem-associated gene

SSTR3 22.88 60.34 0.015 C,I receptor for somatostatin, a regulator of first-trimester human

trophoblast function

KLRB1 22.81 9.25 ,0.001 I activates natural killer cell cytotoxicity, involved in regulating Th1/Th2

balance at the feto-maternal interface; increased expression in uterine

natural killer cells in pregnancies with implantation failures

VPS53 22.75 8.68 0.042 I abnormal expression associated with increased trophoblast giant cell

number and abnormal placental labyrinth architecture in mice

GSG1 22.72 2.77 0.027 I tissue-specific methylation in macrophages of the fetal–maternal barrier

FLG 22.71 41.88 ,0.001 I possible involvement in inhibition of trophoblast differentiation through

interaction with caspase-14

NFYA 22.69 3.96 0.035 U a transcription factor with enriched targets in the pre-eclamptic placenta

KLB 22.69 10.45 0.003 U,I an aging-suppressor gene, candidate factor for vascular disease, pre-

eclampsia; deficiency leads to impaired vasodilation and angiogenesis

LZTFL1 22.65 999 0.036 I a target of selection for low uterine capacity in rabbits

FOLR1 2.63 9.38 0.02 I a high-affinity isoform of the folate receptor selectively expressed

in syncytiotrophoblast and choriocarcinoma; a trophoblast

stem-associated gene

C14orf133 22.59 9.13 0.035 I transcriptional regulation of e-cadherin, which in turn is involved in

regulation of trophoblast differentiation

F2RL1 22.58 2.77 0.047 C,U,I mediates extravillous trophoblast invasion
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metatherian mammals [92–94] is heterochrony. Deep placental
invasion in specieswithhemochorial placentationnaturallypro-
gresses through a process of increased invasiveness throughout
gestation: at the moment prior to implantation, the uterus is of
course not invaded at all, and the first trimester of human preg-
nancy is supportedprimarilybymaternaluterine secretionsand
yolk sac placentation until at least the tenth week of pregnancy,
when the vascularization of the chorionic villi supports estab-
lishment of true hemochorial placentation with direct fetal
access to maternal blood [95]. It is notable that species with
derived, less-invasive forms of placentation exhibit prolonged
yolk sac placentation and histotrophic nutrition, a phenomenon
most pronounced in the epitheliochorial horses [96] but also
observed in strepsirhine primates [97]. In haplorhine primates,
early placental phenotypes appear to be more conserved than
phenotypes arising later in gestation [98], and in farm animals,
gene-expressionpatternsof earlypregnancyaremore conserved
than those in latepregnancy,which are characterizedbyspecies-
specific divergence [99]. These observations suggest a hetero-
chronic model of placental evolution in which early stages of
placentation are prolonged in order to accomplish reduced

placental invasion, along with taxon-specific terminal addition
of novel adaptations to support late pregnancy, such as the
unique hemophagic regions of carnivores [100] and the areaolae
or chorionic vesicles of strepsirhines [97]. King [96] has argued
that the degree of placental invasiveness is primarily dependent
uponmaternal endometrial reactions to trophoblast, aviewsup-
ported by the fact that placental tissue from species with
minimal invasiveness, such as pigs, expresses a highly invasive
phenotype when transplanted into an ectopic site [101,102].
A third possible interpretation of our findings, then, is that the
signal of adaptive evolution identified in this study reflects com-
pensatory mutations in proteins expressed by the fetus and/or
mother in response to maternal regulatory evolution, as part
of a process of parent–offspring conflict over the degree of pla-
cental invasion [103–106]. We anticipate that combining the
results presented above with future data on maternal and fetal
transcriptomic evolution during transitions in placental inva-
siveness will help to tease apart the role of adaptively
evolving proteins in generating phenotypic variation, adapting
to regulatoryevolution of the transcriptome andparticipating in
parent–offspring conflict.
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Figure 2. Enriched Gene Ontology biological processes, Reactome pathways, KEGG pathways and Wikipathways among 199 novel, evolutionarily informed candidate
genes for involvement in pre-eclampsia. Overlapping gene sets are clustered and identified using ClueGo [30] under default parameters. Large text is associated with
the most enriched gene set within each cluster. (Online version in colour.)
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These findings support the hypothesis that a core set of
genes and pathways underlying eutherian placental invasive-
ness are associated with both the pathogenesis of human pre-
eclampsia and the convergent evolution of less-invasive
(endotheliochorial and epitheliochorial) placentation. These
results, derived from the study of three independent phyloge-
netic replicates of evolutionary transitions towards reduced
placental invasion, support and complement previous work
that examines a less (taxonomically and placentally) diverse
set of taxa in which a single branch of the phylogenetic tree
is associated with increased invasiveness through the evol-
ution of spiral arteries [107]. Establishing that the raw
genetic basis of human placental disorders is of ancient line-
age provides a fundamental empirical grounding for
evolutionary theories of human placentation that are based
on notions of parent–offspring or intragenomic conflict in
mammals and viviparous vertebrates in general [103–106].
Furthermore, the view that endotheliochorial and epithelio-
chorial placentation represent extreme points along a
common underlying genetic axis of variation suggests that
studies of species bearing less-invasive forms of placentation,

such as kangaroo rats, tree shrews and some insectivores,
may provide useful models of the molecular control of
maternal–fetal interactions and could yield important
insights into the mechanisms underlying pre-eclampsia and
other human disorders of placentation. More generally,
these results suggest that disease-related ontogenetic changes
can genetically recapitulate large-scale phylogenetic shifts in
mammalian morphology, such that development and diversi-
fication share a common genetic basis.
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