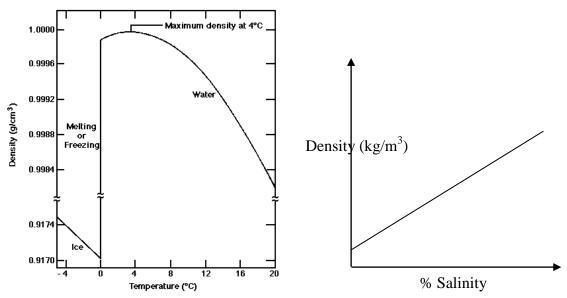

PHYSICAL: Properties of water (light, color, heat) (read: pp 29-33; 38-39; 46-47 in Dodson)

THE WATER MOLECULE

• H₂0. A water molecule consists of two hydrogen atoms and a oxygen atom, in a "Mickey Mouse" type of arrangement.


- Highly polar (positive pole and negative pole)
- Hydrogen bonds—weak bonds between water molecules due to charges of water molecule.
 - Hydrogen bonds of water have many consequences, including:
 - Viscous (stickiness between molecules)
 - Water is ~100 times more viscous than air
 - O Boundary layers—stickiness of water means that materials are surrounded by a microscopic layer of water that isn't moving.
 - o Surface tension—boundary between water and air
 - *Neuston*—habitat at the air-water boundary
 - o Solvent—water is a great solvent of other charged (polar) molecules
 - Solubility of gases
 - Temperature dependent

DENSITY

Density—mass per volume

- Water is extremely dense
- Water changes density as a function of temperature in an unusual way
 - >4 degrees C—When warmed, molecules get excited and take up more space (less dense)
 - 0-4 degrees C—When closer to 0 degrees C, water starts taking up slightly more space as the molecules start to stick (freeze) (less dense)
 - <0 degrees C—Freshwater freezes forms a crystalline structure and takes up more space (less dense)
 - Salinity increases water density
 - Water freezes at 0 degrees C (32 degrees F)
 - Water boils at 100 degree C (212 degrees F)

Source: Modified from GCSU

- This relationship between temperature and density controls many aspects of freshwater ecology, especially in high latitude areas.
- For example:
 - Vertical stratification
 - Ice on top of lake

HEAT in WATER

- Heat—a form of energy
- Temperature-sensation of cold or hot
- Specific heat—the number of calories it takes to raise temperature by 1 degree C.
 - Water has extremely high specific heat
 - Implications:
 - Lower fluctuations in temperature

- Buffers nearby climate
- Evaporation—when water changes from a liquid to gas
 - o Process removes heat from water

LIGHT in WATER

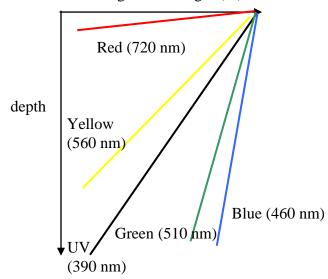
- Light is needed for photosynthesis, controlling primary production and vertical distribution of organisms.
 - Euphotic zone—area of lake where there is enough light for photosynthesis to exceed respiration
 - Compensation depth—where photosynthesis = respiration
 - Aphotic zone—deep (dark) area of lake where not enough light for photosynthesis.
 - o PAR –photosynthetically active radiation
- Too much light, especially UV wavelengths, can negatively impact biota.
- Measurement
 - Secchi disk—black and white disk lowered off of shaded side of boat until it disappears.
 - Ranges from <1 m to 40+ m
 - Generally depth where ~10% of surface light remaining
 - o Photometer—measures for a specified wavelength of light
- Light attenuation
 - o Total reduction in light energy as a function of depth
 - o Attenuation is the sum of absorbance and scattering
 - Extinction coefficient
 - Slope of relationship between depth and log light
- Absorbance
 - Water naturally absorbs light
 - o Different wavelengths are absorbed at different rates (see figure below)
 - Pigments such as dissolved organic compounds (DOC) strongly influence absorption rates.
 - By absorbing light, light energy is converted to heat energy, warming water.
- Scattering and reflection
 - o Change in direction of light during interactions with material
 - o Snow, ice scatter and reflect light
 - o Fine particles scatter light

What factors influences how much light is at a depth?

How much light hits the surface of the lake

Location

Aspect


Surrounding vegetation

Snow, ice

How rapidly light is attenuated

See above

Log Incident light (%)

