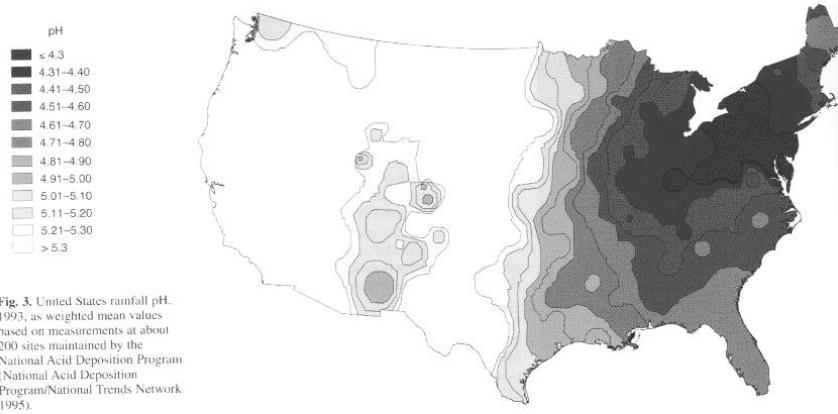


OVERVIEW OF CHEMISTRY, SOLUBILITY, pH, REDOX, SALINITY (read 32-37; 231-232 in Dodson)

INTRODUCTION TO CHEMISTRY

- Water is a good solvent of various polar chemicals
 - Examples of soluble chemicals include:
 - Acids, bases, salts, sugars, alcohols. . .
 - Freshwater studies generally focus on:
 - Carbon
 - Oxygen
 - Nitrogen
 - Phosphorus
- Remember that there is a strong relationship between water temperature and solubility of gases.
 - Higher temperatures → lower dissolved concentrations.
 - Lower temperature → higher dissolved concentrations.
- Chemicals can be quantified as:
 - Mass (gm)
 - Mass concentrations (gm/L)
 - Molar concentrations (M/L)
 - Molar equivalents
- Chemicals cycle between compartments within freshwaters. This cycling can occur very rapidly (phytoplankton nutrient uptake) or very slowly (rock erosion).
 - Compartments can be:
 - different forms of the chemical
 - different reservoirs:

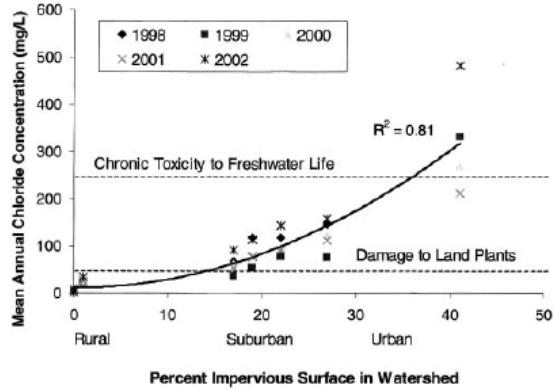


- *Biogeochemistry*—large-scale cycling of chemicals, including living organisms. Term developed by Hutchinson (1944)
- *Loading*—total amount of chemical added per unit time.
- Human activities have globally altered chemical cycling. For example, increased rates of erosion generally increase loading of nutrients from the lithosphere to freshwaters.

DISSOCIATION AND PH

- The water molecule often dissociates into two ions
$$\text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{OH}^-$$
 - Hydrogen ion (H^+)
 - Hydroxyl ion (OH^-)
 - Two ions are in chemical equilibrium
- pH
 - A quantification of the concentration of hydrogen ions
 - $\text{pH} = -\log[\text{H}^+]$
 - Acid ($\text{pH} < 7$)
 - Alkaline ($\text{pH} > 7$) – more “basic”
 - Neutral ($\text{pH} \sim 7$) – but this is temperature dependent
- *Buffering*—ability of water to absorb a lot of acid without changing pH
- Acid rain or acid deposition
 - Wet and dry deposition with excess H^+
 - H^+ generally associated with sulfate and nitrate ions
 - SO_x production—the most important source of acid for acid deposition
 - Sources
 - Fossil fuel burning (70 Tg per year)
 - Wildfires (2.8 Tg per year)
 - Volcanoes (7-8 Tg per year)
 - Worst in NE US (and also industrial Europe and China)
 - NO_x production—increasing importance as source of acid as regulation of sulfur emissions increase.
 - Sources
 - Auto exhaust (emissions increasingly regulated)
 - Coal plants
 - Lightening
- Factors controlling acidity of freshwaters
 - Hydrogen ion loading
 - Acid Neutralizing Capacity (ANC)—ability of water to absorb a lot of acid without pH. In other words, the water is well-buffered.
 - Calcium carbonate is the dominant source of ANC
 - Granitic soils—little/no buffering capacity
 - Limestone (lots o' calcium carbonate)—high buffering capacity.
 - Biological alkalinity generation
 - Alkalinity production can buffer lakes
- Acidity of water controls which organisms can thrive.
 - D.W. Schindler (1985) did a whole-lake experiment demonstrating the dramatic impacts of acidity on lake communities.

pH of Rainfall, 1993


REDOX POTENTIAL

- Different chemical reactions can take place in oxygenated water vs. anoxic water (water w/o oxygen).
- Redox—quantifies the potential for reduction-oxidation reactions
 - Oxidation reactions—increase positive charge; loss of electrons; few available free electrons
 - Occurs in the presence of oxygenated water.
e.g., Fe^{++} (ferrous iron—soluble) $\rightarrow \text{Fe}^{+++}$ (ferric iron—insoluble)
 - Reduction reactions—become more negatively charged

SALINITY AND OTHER DISSOLVED CHEMICALS IN WATER

- Salinity—total concentration (mg/L) of ions dissolved in water.
- Common ions (salt) include:
 - Calcium (Ca^{+})
 - Magnesium (Mg^{+})
 - Bicarbonate (HCO_3^{-})
 - Sodium (Na^{+})

- Potassium (K+)
- Chloride (Cl-)
- Salinity is quantified as water conductivity, given that ions concentration controls conductance of electricity.
- Ion concentrations depend on:
 - Water flow
 - Evaporation
 - Atmospheric input
 - Lithosphere (rocks)
 - Biological activity
 - Human activities—paper by Kauschal et al. 2005 (PNAS) showed that salt from roads in NE US is causing dramatic increases in concentrations of chloride. Graph above is from this paper.
- Total Dissolved Solids—concentration of all dissolved ions and non-ions in water, including organic compounds.
- Water hardness
 - Hard—high concentrations of dissolved calcium and magnesium carbonates.
 - Soft—low concentrations of dissolved calcium and magnesium carbonates.

