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SUBSPECIFIC STATUS AND POPULATION GENETIC STRUCTURE OF LEAST 

TERNS (STERNULA ANTILLARUM) INFERRED BY MITOCHONDRIAL DNA 

CONTROL-REGION SEQUENCES AND MICROSATELLITE DNA

Resumen.—Por mucho tiempo se ha debatido la identidad taxonómica de las poblaciones en peligro de Sternula antillarum.

Su estatus de conservación actual genera un incentivo aún mayor para examinar la distinción taxonómica de estos grupos. Usamos 

secuencias de ADN mitocondrial de la región control de rápida evolución ( pares de bases; n  ) y datos de ADN microsatelital 

( loci; n  ) para examinar la estructura genética dentro y entre tres subespecies que se encuentran en Estados Unidos: S. a. browni,

S. a. athalassos y S. a. antillarum. A pesar de que se observó estructura genética entre poblaciones reproductivas dentro del área de 

distribución de la especie, nuestros datos indicaron poca evidencia de estructura genética entre grupos subespecíficos tradicionales. Los 

análisis de aislamiento por distancia revelaron patrones que podrían reflejar diferencias sexuales en el comportamiento de dispersión. 

Nuestros análisis también mostraron poca subdivisión poblacional entre grupos subespecíficos, lo que pone en duda el estatus 

taxonómico de las subespecies definidas tradicionalmente. Nuestros resultados pueden ser usados para considerar una revaluación de las 

subespecies de S. antillarum por el comité de taxonomía y nomenclatura de la American Ornithologists’ Union. Además, enfatizamos la 

necesidad de estudios sobre la fidelidad de sitio reproductivo y filopatría natal en toda el área de distribución de la especie para entender 

mejor los movimientos de individuos entre poblaciones a lo largo de todo el ciclo anual.
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Estatus Subespecífico y Estructura Genética Poblacional de Sternula antillarum Inferidos Mediante Secuencias 
de la Región Control del ADN Mitocondrial y ADN Microsatelital
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Abstract.—The taxonomic identity of endangered populations of the Least Tern (Sternula antillarum) has long been debated. 

Their current conservation status provides even more impetus to examine the taxonomic distinctness of these groups. We used rapidly 

evolving mitochondrial DNA control-region sequences ( base pairs; n  ) and microsatellite DNA data ( loci; n  ) to examine 

genetic structure within and among three subspecies that occur within the United States: California Least Tern (S. a. browni), Interior 

Least Tern (S. a. athalassos), and Eastern Least Tern (S. a. antillarum). Although significant genetic structure was observed among 

breeding populations from across the species’ range, our data indicated little evidence of genetic structure within traditional subspecific 

groups. Isolation-by-distance analyses, however, identified subtle patterns that may reflect sex-specific differences in dispersal behavior. 

Our analyses likewise demonstrated little population subdivision among subspecific groups, which raises questions regarding the 

taxonomic status of traditionally defined subspecies. Our findings can therefore be used to consider a reevaluation of Least Tern 

subspecies by the American Ornithologists’ Union’s Committee on Taxonomy and Nomenclature. We further emphasize the need 

for studies of range-wide breeding-site fidelity and natal philopatry to better understand interpopulation movements of individuals 

throughout the annual cycle. Received  November , accepted  March .
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The subspecies concept has been extensively applied within 

avian taxa since Linnaeus first introduced intraspecific classifica-

tions in  (American Ornithologists’ Union [AOU] ). Indeed, 

ornithologists have spent considerable time and effort refining the 

concept and debating its utility (Mayr , Amadon , Wilson 

and Brown , Phillimore and Owens , Winker and Haig 

). Definitions have varied, from inclusion of geographically 

distinct natural populations that are not sufficiently different to 

be considered separate species (Mayr ) to more quantitative 

definitions such as the “% rule,” which states that a population 
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can be described as a separate subspecies only if % of its indi-

viduals differ from a previously described subspecies (Amadon 

).

Today, the debate over taxonomic definitions has widened 

with the passage of conservation legislation that mandates or al-

lows protection of groups below the species level (e.g., subspecies, 

evolutionarily significant units, distinct population segments, and 

more; Haig et al. , Haig and D’Elia ). Thus, there can be 

legal ramifications, depending on how these units are defined. 

These issues come to the forefront with endangered species such 

as the Least Tern (Sternula antillarum), various populations of 

which are listed under the U.S. Endangered Species Act (U.S. Fish 

and Wildlife Service [USFWS] and National Marine Fisheries Ser-

vice ).

At least five Least Tern subspecies have been described on 

the basis of morphological characteristics (Thompson et al. ). 

Three U.S. subspecies are recognized by the AOU that correspond 

to the eastern United States (S. a. antillarum; Lesson ), inte-

rior United States (S. a. athalassos; Burleigh and Lowery ), 

and California (S. a. browni; Mearns ) (AOU ; Fig. ). The 

taxonomic status of the two subspecies described from Mexico, 

S. a. mexicana (van Rossem and Hachisuka ) and S. a. staebleri

(Brodkorb ), is uncertain (García and Ceballos , Patten 

and Erickson ).

Recent population counts estimate the breeding population 

of Least Terns in the United States to be ~, birds (California, 

,; Interior, ,; Eastern, ,) (Marschalek , Lott 

, and data from the Mid-Atlantic/New England/Maritimes 

Regional Working Group and Southeast Regional Working Group 

[see Acknowledgments]). Although actual numbers are unknown, 

it is thought that Least Terns were historically abundant through-

out their range. During the th century, however, the species ex-

perienced large population declines as a result of anthropogenic 

pressures (USFWS , ; Burger ; Kruse et al. ). As 

a result, the California subspecies is listed as endangered under 

the U.S. Endangered Species Act (USFWS ). The Interior sub-

species was not listed as a subspecies because of taxonomic uncer-

tainty at the time of listing; however, the USFWS designated “the 

populations of Least Terns occurring in the interior of the United 

States” as endangered (USFWS ). The Eastern subspecies is 

state-listed as threatened or endangered in most states in which it 

occurs (USFWS , ).

The need to clarify appropriate taxonomic units for Least 

Terns led to two studies that revealed little genetic differentiation 

among traditional Least Tern subspecies. Using  polymorphic 

allozyme loci, Thompson et al. () found no genetic differen-

tiation between the Interior (n  ) and Eastern subspecies (n

). Subsequently, Whittier et al. () used single-strand con-

formation polymorphism analyses to examine variation in the mi-

tochondrial DNA (mtDNA) cytochrome-b region and two nuclear 

introns among the U.S. subspecies (Eastern, n  ; Interior, n

; California, n  ). All genetic markers revealed low variabil-

ity (three mtDNA haplotypes; three alleles at one nuclear intron, 

one allele at the second). The variable intron indicated some ge-

netic differentiation between the California and Interior breed-

ing areas (F
ST

 .), but the pattern was not corroborated by the 

FIG. 1. Map showing the breeding areas of Least Terns included in our study. Breeding areas are listed in Table 1. Breeding distributions of currently 
recognized subspecies are highlighted. Sampling locations corresponding to the California, Interior, and Eastern subspecies are indicted by circles, 
triangles, and squares, respectively.
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mtDNA data (F
ST

 ). Sample sizes were small in both studies, but 

each concluded that traditional subspecific distinctions were un-

resolved. Thus, we conducted rigorous sampling and applied rap-

idly evolving loci (mtDNA control region and microsatellites) to 

more definitively assess genetic variability and population genetic 

structure in Least Terns across their North American range. Our 

primary objectives were to () characterize range-wide breeding-

site genetic structure and diversity patterns and () provide a com-

prehensive evaluation of Least Tern subspecies designations.

METHODS

Sampling.—We obtained  Least Tern samples from several tis-

sue sources: blood from live specimens, salvaged carcasses, and 

embryos from collected eggs. To ensure that tissues were repre-

sentative of local breeding areas, sampling was limited to breed-

ing adults and young-of-year fledglings collected at the breeding 

area before individuals moved to migration staging areas. Eight to 

 samples were collected from each of  breeding areas through-

out the Least Tern’s breeding range (Fig.  and Table ). Coastal 

breeding areas were defined as groups of individual samples col-

lected within a breeding colony or collected from multiple adja-

cent colonies. Breeding areas along interior rivers were defined 

as a group of individual samples collected within  river miles. 

Additionally, breeding areas that occurred within the described 

geographic ranges of the traditional subspecies were grouped ac-

cordingly (Table ).

DNA extraction, marker isolation, and amplification.—DNA 

was obtained from samples using standard phenol–chloroform 

TABLE 1. Sample sizes and genetic diversity parameters a for mtDNA control region (840 bp) and seven microsatellite loci in Least Terns (Sternula 
antillarum). Significant values for R2 and FS statistics (P  0.05) are followed by asterisks.

MtDNA Microsatellites

Subspecies Breeding area County and state n
Number of 
haplotypes (h) ( ) FS R2 n A HE HO

California (S. a. browni) 20 7 0.76 0.0021 −1.584 0.118 50 3.57 (3.57) 0.464 0.474
NCA Alameda, California 10 6 0.89 0.0029 −1.363 0.174 26 3.29 (2.77) 0.457 0.472
SCA San Diego, California 10 4 0.53 0.0010 −1.345* 0.166 24 3.29 (2.80) 0.472 0.477

Interior (S. a. athalassos) 85 28 0.95 0.0046 −12.811* 0.080 185 5.43 (4.38) 0.500 0.495
NDMOR McLean, North Dakota 8 6 0.89 0.0026 −2.444* 0.141* 20 3.86 (3.25) 0.508 0.442
SDMOR Yankton, South Dakota 9 7 0.94 0.0054 −1.453 0.178 30 3.57 (3.08) 0.508 0.538
KSKSR Pottawatomie, Kansas 10 7 0.91 0.0048 −1.244 0.138 18 3.29 (3.02) 0.516 0.549
MOMSR New Madrid, Missouri 9 8 0.97 0.0034 −4.550* 0.111* 14 3.71 (3.26) 0.512 0.510
OKCR Woods, Oklahoma 10 9 0.98 0.0058 −3.696* 0.139 14 3.57 (3.23) 0.498 0.422
OKAR Tulsa, Oklahoma 9 7 0.94 0.0054 −1.453 0.175 35 4.14 (3.2) 0.497 0.473
OKRR McCurtain, Oklahoma 10 9 0.98 0.0067 −3.220* 0.145 18 3.71 (3.10) 0.458 0.521
TXINT Dallas, Texas 10 6 0.89 0.0028 −1.459 0.153 17 3.43 (2.97) 0.474 0.487
MSMSR Bolivar, Mississippi 10 7 0.87 0.0028 −2.815* 0.098* 19 3.86 (3.18) 0.506 0.506

Eastern (S. a. antillarum) 83 44 0.96 0.0057 −25.590* 0.058 182 6.14 (4.94) 0.494 0.480
ME Knox, Maine 7 4 0.81 0.0048 −1.247 0.294 21 3.71 (2.82) 0.453 0.478
MA Barnstable, Massachusetts 11 8 0.93 0.0054 −1.724 0.167 61 4.43 (3.00) 0.477 0.457
NJ Cape May, New Jersey 10 8 0.96 0.0065 −1.760 0.158 12 3.57 (3.24) 0.500 0.500
VA Accomack, Virginia 9 9 1.00 0.0048 −5.661* 0.144 10 3.29 (3.07) 0.467 0.500
GA Glenn, Georgia 8 8 1.00 0.0069 −3.497* 0.124 8 3.57 (3.57) 0.564 0.554
USVI St. Croix, Virginia 10 7 0.91 0.0060 −0.716 0.145 24 4.00 (3.32) 0.532 0.537
FLGC Bay, Florida 8 8 1.00 0.0061 −3.381* 0.160 15 3.29 (2.93) 0.464 0.411
MSGC Harrison, Mississippi 10 8 0.93 0.0052 −2.377 0.150 16 3.57 (3.10) 0.503 0.527
TXGC Brazoria, Texas 10 8 0.96 0.0058 −2.063 0.112* 15 3.71 (3.32) 0.503 0.440

a Number of individuals sampled (n), haplotype diversity (h), number of haplotypes, nucleotide diversity ( ), mean number of alleles per locus (A; rarefied estimate 
accounting for different sample sizes provided in parentheses), expected heterozygosity (HE), and observed heterozygosity (HO).

extractions as previously described (Haig et al. ). Initially, a 

~,-base-pair (bp) segment containing the NADH dehydrogenase 

subunit  gene (ND) and control region of the mtDNA genome was 

amplified and sequenced in  specimens by long polymerase chain 

reaction (PCR; GeneAmp XL PCR Kit; Roche Molecular Systems, 

Branchburg, New Jersey) using conserved mtDNA primers L 

( -TGGTCTTGTAARCCAAARANYGAAG-; Desjardins and 

Morais ) and H ( -CATCTTCAGTGCCATGCTTT- ;

Tarr ). Sequences were aligned with known NADH dehydro-

genase subunit  gene (ND) and control-region sequences of a va-

riety of tern and gull (i.e., Charadriiformes) species from GenBank 

to confirm that the sequence was mitochondrial and not a nuclear 

homolog. Likewise, the transition:transversion ratio of the se-

quence was :, which suggests a strong transition bias as expected 

in mtDNA (Wakeley ). Our alignment was used to design new 

internal primers LETE  L ( -ATACGCTCACATGCACCT- )

and LETE  H ( -ACTGTCGTTGACGTATAACAA- ) that 

amplified  bp of the Least Tern mtDNA control region. Prim-

ers annealed ~ bp downstream from the   end of control region 

domain I and ~ bp upstream of the AC repeat at the   end of 

domain III. For subsequent PCR reactions, a total reaction volume 

of  L was used with the following concentrations:  mM Tris-

HCl at pH .,  mM KCl, .% gelatin, . mM MgCl

,  m

of each dNTP, . m of each primer, – ng of template, and 

. U AmpliTaq Gold Polymerase (Perkin Elmer, Waltham, Mas-

sachusetts). The following parameters were used for amplifica-

tions:  min denaturation at  C, followed by  cycles of  s at 

 C, annealing at  C for  s, and elongation at  C for  min. 

A final -min period of elongation at  C followed the last cycle. 
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The PCR amplicons were visualized on % agarose gels and subse-

quently cleaned and concentrated by centrifugation dialysis us-

ing Microcon , MW cutoff filters (Amicon Bioseparations, 

Bedford, Massachusetts). Complete bidirectional sequences were 

obtained using primers LETE  L, LETE  H, LETE  H ( -

CATAACTTGATTAATCCTTTCAAC- ), and LETE  L ( -

CTCGAATACCTCAATGAGAC- ). Sequences were generated 

using ABI Prism Big Dye Terminator Cycle Sequencing chemistry 

on an ABI  DNA sequencer located in the Central Services 

Laboratory at Oregon State University. Sequences were aligned 

using BIOEDIT, version .. (Hall ), and archived in GenBank 

(accession nos. EU–EU). In total,  specimens were 

used in mtDNA analyses (Table ).

We used seven variable microsatellite loci in our analyses: 

Hbau (PCR annealing temperature TA   C; J. R. Gust et al. 

unpubl. data); K, K (TA   C; Tirard et al. ); RBG 

(TA   C); RBG, RBG (TA   C; Given et al. ); and 

SDAAT  (TA   C; Szczys et al. ). DNA was amplified 

using a PCR profile with the following steps: initial denaturation 

for  min at  C, followed by  cycles of  s at  C,  s at the 

specified annealing temperature,  s at  C, then an additional 

-min extension step at  C. Ten-microliter reactions were pre-

pared using – ng of DNA in  mM Tris-HCl;  mM KCl; 

. mM MgCl

; . mM of each dNTP;  m of each primer; and 

. units of Taq polymerase (Promega, Madison, Wisconsin). Am-

plified products were sized on an ABI  automated DNA se-

quencer at Oregon State University’s Central Services Laboratory. 

Genotype analysis was performed using the software applications 

GENESCAN ANALYSIS, version ., and GENOTYPER, version 

. (Applied Biosystems, Carlsbad, California). A total of  indi-

viduals were used for microsatellite analyses (Table ).

Range-wide genetic structure and diversity.—We used ARLE-

QUIN, version . (Excoffier et al. ), to calculate haplotype 

diversity (h), the probability that two randomly chosen individuals 

have different haplotypes; and nucleotide diversity ( ), the average 

pairwise nucleotide differences for control-region haplotypes at 

each breeding area of the traditional subspecies. Fu’s F
S
 (Fu ) 

and the R

 statistic of Ramos-Onsins and Rozas () were also 

used to identify the signal of historical population expansions. F
S

and R

 have been identified as having the greatest power for iden-

tifying these patterns (Ramos-Onsins and Rozas ). ARLE-

QUIN was used for F
S
 calculations, whereas DNASP, version . 

(Rozas et al. ), was used to calculate R

. In both cases, the sig-

nificance of observed values was inferred through the use of , 

coalescent-based simulations.

The program GDA, version . (Lewis and Zaykin ), was 

used to quantify microsatellite genetic diversity in each breeding 

area and within each traditional subspecies grouping using mean 

number of alleles (A), observed heterozygosity (H
O

), and expected 

heterozygosity (H
E
) for each locus and over all loci. The program 

HP-RARE (Kalinowski ) was used to obtain rarefied esti-

mates of allelic diversity within these units to better account for 

sample-size variation. GDA was also used to identify deviations 

from Hardy-Weinberg proportions and to test for linkage disequi-

librium between pairs of loci within each breeding area. In Hardy-

Weinberg tests, P values over loci were combined and evaluated 

using the Z-transform test (Whitlock ) to obtain a composite 

result for each breeding area. The program BOTTLENECK was 

used to detect recent population bottlenecks within each breed-

ing area (Cornuet and Luikart ). Analyses were run under 

the two-phase model (TPM) assuming a TPM variance of  and 

with % of mutations corresponding to a pure stepwise muta-

tional model. Given the number of loci examined and sample sizes 

within breeding areas, we note that these analyses may have lim-

ited power for our data set (Cornuet and Luikart ). However, 

given the lack of power, we may possibly expect to hold more confi-

dence in any significant result that is identified, especially if other 

analyses can possibly corroborate inferences made in these analy-

ses. Therefore, we used BOTTLENECK to perform an indepen-

dent test that screened for skewed allele-frequency distributions 

in each breeding area, which also provides heuristic evidence of 

the effects of prior bottleneck events (Luikart et al. ).

We quantified and tested for genetic structure and differ-

entiation among breeding areas using the maximum-likelihood 

estimator of D described in Jost (). Most conventional F-

statistics variants have upper bounds that are constrained by un-

derlying levels of genetic diversity (Hedrick ). These issues may 

make comparisons across marker types or study systems problem-

atic, because higher-diversity loci will generate lower overall F
ST

values—even in cases where populations are completely differen-

tiated. D does not suffer from these issues (Jost ) and consis-

tently represents differentiation of samples as values that fall along 

the continuous interval from zero to unity. Thus, global and pair-

wise estimates of D among all  breeding areas were obtained 

separately for microsatellite (D
mic

) and mtDNA data (D
mit

). Com-

parable global differentiation measures were likewise obtained for 

breeding areas within each traditional subspecies. For the micro-

satellite data, multilocus estimates of D
mic

 were constructed using 

an approximation to the harmonic mean of locus-specific values, 

calculated as

D D DDmic A A1 1 12 3/[( / ) ( / ) ]

where D
A
 and 

D
 are the arithmetic mean and variance, respec-

tively, of the locus-specific D values (A. Chao pers. comm.). P val-

ues for single-locus and multilocus D values were obtained through 

a randomization procedure based on , randomization repli-

cates. In each replicate, individuals (and their respective genotypes 

or mtDNA haplotypes) were randomly allocated to breeding areas 

while keeping the sample sizes of breeding areas coincident with 

the original data. P values were ultimately obtained as the propor-

tion of randomized data sets producing values of D as large as or 

larger than the original D values. Comparable global estimates of D

were also obtained for each traditional subspecies. All calculations 

for D were performed using a short computer program written by 

M.P.M. Mantel tests (Mantel ) based on , randomization 

replicates were used to quantify correlations between pairwise 

D
mic

 and D
mit

 values of breeding areas using the program NT-SYS, 

version . (Exeter, Setauket, New York).

Mantel tests were also used to identify isolation-by-distance 

patterns by assessing the correlation between D values and the 

logarithm of geographic distances between breeding areas. These 

analyses were performed separately for the mtDNA and micro-

satellite data and were likewise also performed () across the full 

range of Least Terns in the United States and () separately within 

the Eastern and Interior subspecies groups. Mantel tests were not 
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possible within the California subspecies group because of the 

small number of breeding sites (n  ) examined.

Genetic differences among traditional subspecies.—We used 

three approaches to examine differentiation among the three 

traditionally defined Least Tern subspecies. First, relationships 

among Least Tern control-region haplotypes were inferred by 

estimating a statistical haplotype network with % parsimoni-

ous connections using the program TCS, version . (Clement 

et al. ). If traditional subspecies are valid, we expected to ob-

serve strong associations between haplotype lineages and sets of 

birds collected within the ranges of the three traditional subspe-

cies groups. Second, we used STRUCTURE, version . (Pritchard 

et al. ), in conjunction with our microsatellite data to infer 

the number of Least Tern genetic clusters (K). We performed  

independent runs for each value of K  – using * iterations 

after a burn-in period of * steps. Analyses were performed us-

ing the correlated-allele-frequencies model and admixture model 

implemented in the program. The most likely number of clusters 

was determined by identifying values of K that produced the high-

est average log likelihood values. If genetic structure was largely 

congruent with traditional subspecies definitions, then we ex-

pected to observe the highest likelihood values for the K   case 

and likewise expected to see the majority of individuals from each 

of the three subspecies assigned to cohesive genetic clusters. Fi-

nally, global and pairwise estimates of Jost’s D were calculated 

as described above using traditionally defined subspecies as the 

operational unit of interest. The significance of these values was 

determined using , randomization replicates. As with our 

other analyses, we expected our results to reflect levels of diver-

gence that were consistent with low gene flow among groups.

RESULTS

Genetic structure and diversity.—Sixty-seven haplotypes were 

observed among the  sampled individuals,  of which were 

shared among traditional subspecies (Table ). Thirty-six haplo-

types were observed only once, reflecting a high underlying level 

of mtDNA diversity. Control-region sequences ( bp) were 

characterized by  polymorphic sites, and no insertions or dele-

tions were present. Observed nucleotide composition (A, .%; 

C, .%; T, .%; G, .%) was similar to that of other char-

adriiform species (Wenink et al. , Buehler and Baker , 

Funk et al. ). Within-breeding-area haplotype diversity was 

high (mean  SD  .  .) and ranged from . (SCA) to . 

(FLGC, GA, and VA) (Table ).

Tests for population expansions revealed significant (at the 

 . level) negative values of F
S
 in  of the  breeding areas 

examined, whereas significant R

 statistics were observed at four 

breeding areas (Table ). In three of the four cases involving sig-

nificant R

 values, the corresponding values of F

S
 were also sig-

nificant. Across regions, the signal of population expansions was 

identified within the Interior and Eastern groups, but only from 

tests using F
S
 as an indicator (Table ).

The total number of microsatellite alleles per locus ranged 

from  (locus K) to  (locus K). Genetic diversity was simi-

lar among breeding areas (Table ), with the mean number of al-

leles per locus ranging from . (NCA, SCA, VA, and FLGC) to 

. (MA). Rarefied estimates of allelic richness were also similar 
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among breeding areas (range: .–.). Average observed and ex-

pected heterozygosity within breeding areas ranged from . 

and . to . and ., respectively (Table ). According to 

our combined analyses over loci, no significant deviations from 

Hardy-Weinberg genotypic proportions were observed within any 

breeding area (P  .). Fifteen significant tests for linkage dis-

equilibrium were observed at the  . level among the  

tests performed (.%;  locus combinations per breeding area 

 breeding areas   total tests), a result that could have been 

observed by chance alone. These significant tests were also evenly 

distributed among locus pairs and populations, which further 

indicated the absence of linkage disequilibrium. The program 

BOTTLENECK detected a significant excess of heterozygosity 

within the SDMOR and KSKSR breeding areas (P  . and 

P  ., respectively). However, these analysis results may be 

a chance outcome from multiple tests, given that samples from 

both locations (and all other breeding areas) also demonstrated 

normal L-shaped allele frequency distributions typical of non-

bottlenecked populations (Luikart et al ). Furthermore, 

P values from both of these tests were nonsignificant after se-

quential Bonferroni corrections.

Our analyses of population structure identified multiple 

trends. Numerical values of D
mit

 were generally an order of mag-

nitude larger (or more) than comparable values of D
mic

 (Table  

and Appendix), which reflects the overall high observed haplo-

type diversity and low degree of allele sharing between groups 

(Table ). Nonetheless, similar general patterns were observed be-

tween the microsatellite and mtDNA sequence data sets. For ex-

ample, the global matrices of D
mic

 and D
mit

 calculated between all 

pairwise combinations of breeding areas showed loose, but sig-

nificant, correlations with one another (r  ., P  .; Ap-

pendix). Likewise, with one exception, the significance of D
mit

and D
mic

 calculated for different partitions and hierarchical lev-

els in the data set were similar (Table ). Specifically, both data 

sets indicated significant genetic structure among the  breed-

ing areas investigated (D
mit

 ., P  .; D
mic

 ., P

.). However, analyses based solely on each traditional subspe-

cies provided slightly different results. No significant differentia-

tion was observed between the two breeding areas representing 

the California subspecies (D
mic

 ., P  .; D
mit

 ., 

TABLE 3. Indicators of genetic differentiation (D) and associated P values for different hierarchical levels 
and subsets of the genetic data set for Least Terns. The number of significant locus-specific values of D (out 
of 7 total) observed for the microsatellite data is also provided.

Number of significant 
loci at  0.05 level

Microsatellite data Mitochondrial data

D P D P

All breeding areas 4 0.038 0.001 0.835 0.001
Interior breeding areas 0 0.026 0.090 0.730 0.038
Eastern breeding area 1 0.027 0.342 0.767 0.101
California breeding areas 0 0.008 0.581 0.472 0.063
All three subspecies 6 0.023 0.001 0.831 0.001
California vs. Interior 5 0.020 0.001 0.873 0.001
California vs. Eastern 5 0.018 0.001 0.859 0.001
Interior vs. Eastern 4 0.021 0.001 0.620 0.001

a Number of significant loci at  0.05 level.

P  .). The Eastern subspecies demonstrated similar trends 

(D
mic

 ., P  .; D
mit

 ., P  .). Within the Inte-

rior subspecies, the microsatellite data also revealed no significant 

structure (D
mic

 ., P  .). However, D
mit

 for the Interior 

subspecies, though numerically similar to that observed among 

Eastern breeding areas, was significant at the  . level (D
mit

., P  .).

Mantel tests designed to identify correlations of genetic and 

geographic distances between pairs of breeding sites indicated 

that significant spatial genetic structure exists within Least Terns 

(Table ). Across all  breeding areas investigated, significant 

correlations between genetic and geographic distances were ob-

served for microsatellite data and mtDNA sequence data (Table ). 

However, different results were obtained when we analyzed sub-

sets of breeding areas that encompassed the Interior and Eastern 

groups. In this case, microsatellite analyses identified isolation-

by-distance patterns within regions (Table ). However, mtDNA 

analyses identified no significant spatial structure (Table ).

Analyses of traditional subspecies.—Although  control-

region haplotypes were restricted to single traditional subspecies 

(Table ), the mtDNA haplotype network revealed no definitive 

associations between haplotype lineages, geography, or tradi-

tional subspecies definitions (Fig. ). Some phylogenetic clustering 

of haplotypes was observed within the California traditional sub-

species (Fig. ), but these haplotypes were also generally shared 

with the other two traditional subspecies groups.

According to STRUCTURE analyses of the microsatellite 

data, the highest average log-likelihood value (−,.) was 

TABLE 4. Results of Mantel tests that assessed the significance of correla-
tions between pairwise values of D and the logarithm of geographic dis-
tances between breeding areas of Least Terns.

Microsatellite Mitochondrial

r P r P

All breeding areas 0.385 0.001 0.394 0.002
Interior breeding areas only 0.517 0.011 −0.190 0.845
Eastern breeding area only 0.368 0.049 −0.007 0.471
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FIG. 2. The statistical 95% parsimony network generated by the program TCS, based on mtDNA control-region haplotypes of Least Terns. Circle sizes 
are proportional to the number of individuals that share the haplotype (frequencies of each haplotype are given in Table 2). Shading refers to the pro-
portion of samples that came from a traditional subspecies designation: California Least Tern haplotypes are shown in white, Interior Least Tern hap-
lotypes in gray, and Eastern Least Tern haplotypes in black. Dashes represent inferred haplotypes.

FIG. 3. Results of analyses of 417 Least Terns using the program STRUC-
TURE. Analyses suggested that a single cluster (K  1) was most likely, 
given data from the seven microsatellite loci examined.

observed for K   (Fig. ), which suggests that there was no strong 

clustering of individuals into traditionally defined subspecies 

groups. We further note that for the K   and K   cases, assign-

ment probabilities of individuals to clusters were generally on the 

order of . (for K  ) or . (for K  ) and also showed no as-

sociations with traditional subspecies groups. By contrast, how-

ever, global indicators of subspecies differentiation were highly 

significant (D
mit

 ., P  .; D
mic

 ., P  .) when 

traditional subspecies groups were used as the operational unit of 

interest (Table ). Comparable patterns were identified in pairwise 

comparisons between subspecies groups (Table ). However, the 

magnitude of differentiation observed at this level was largely 

comparable to that observed among breeding areas within each 

traditional subspecies group (Table ). Differences in P values as-

sociated with D
mit

 and D
mic

 at these two hierarchical levels may 

reflect the larger sample sizes (and associated power of tests) for 

subspecies-level comparisons in relation to comparisons of breed-

ing areas within traditional subspecies groups.

DISCUSSION

Least Tern genetic diversity and structure.—An important con-

cern with regard to many endangered species is the loss of genetic 

diversity that results from population declines. Superficially, our 

analyses of Least Tern mtDNA and microsatellite data did not 

suggest that genetic diversity was low within the species. For ex-

ample, our analyses revealed the presence of a large complement 

of mtDNA haplotypes (Table ). Furthermore, though direct com-

parisons among studies can prove difficult when different loci are 

examined, measures of genetic diversity in Least Terns appear to 

exceed those observed in other tern species. Our microsatellite 

analyses (Table ) revealed average numbers of alleles per locus, 

observed heterozygosities, and expected heterozygosities that 

were on par with or exceeded those found in colonies of Common 

Terns (S. hirundo; Sruoga et al. ). Also, the nucleotide diver-

sity and total number of mtDNA control-region haplotypes in our 

analyses exceeded those previously noted in Sooty Terns (Ony-

choprion fuscatus Sterna fuscata; Peck and Congdon ).
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Our more formal analyses of microsatellite data provided no 

conclusive evidence of pervasive past bottleneck events. Instead, 

the mtDNA data more frequently identified the signal of popula-

tion expansions (Table ). Of the  separate bottleneck analyses 

performed within breeding areas, significant results were obtained 

in only two cases from South Dakota and Kansas (SDMOR and 

KSKSR). These results are difficult to discern from random expec-

tations and, moreover, contradict the allele frequency distributions 

at these sites that provided no evidence for prior bottlenecks. We 

note, however, that SDMOR and KSKSR are geographically proxi-

mate to one another (Fig. ). Thus, if this pattern is not coinciden-

tal, our results may actually indicate that population bottlenecks 

have occurred in a small part of the Least Tern’s geographic range. 

Recent population surveys have indicated moderate increases in 

population abundance since the mid-s and mid-s (for 

SDMOR and KSKSR, respectively; Lott ), which may reflect 

population increases following such bottleneck events. Additional 

detailed investigations within this region may be required to more 

conclusively establish this pattern. Because bottlenecks are gener-

ally detectable for only a few generations following the population-

reduction event (Cornuet and Luikart ), such analyses should 

be performed in the near future if they are deemed to be worth 

pursuing for conservation and management purposes.

Our analyses indentified significant genetic structure among 

breeding areas. However, this pattern was primarily observed when 

we examined global differentiation by treating all  breeding 

areas as operational units of interest (Table ). Significant isolation-

by-distance patterns were likewise noted across all breeding 

areas examined (Table ). As a general rule, the strength of genetic 

structure will increase as the degree of natal and breeding-site fi-

delity increases within a species (i.e., minimizing gene-flow rates). 

Empirical field observations, however, indicate that nesting-site 

fidelity is variable in Least Terns. Using estimates based on band-

ing and resight methods, natal philopatry ranges from % to %, 

whereas breeding-site fidelity ranges from % to % (Atwood 

and Massey , Massey and Fancher , Boyd , Renken 

and Smith ). These widely differing results among studies may 

depend on behavioral differences attributable to landscape type 

(i.e., coastal vs. interior rivers; Renken and Smith ) as well as 

the extent of banding and resight efforts. Traditionally, disper-

sal studies have focused on smaller scales (i.e., between colonies 

within traditional subspecies; Boyd , Johnson and Castrale 

, Lingle ). However, records exist of one juvenile banded 

at its natal site on the Gulf Coast of Texas (in the range of the East-

ern traditional subspecies) that was later found nesting in Kansas 

(Boyd and Thompson ). Long-distance movements of individ-

uals to new nesting locations (on the order of –, km) have 

also been reported (Renken and Smith ). Collectively, these 

types of findings may explain why little evidence of genetic struc-

ture was observed within each traditional subspecies (Table ). In-

deed, of the six analyses performed within a traditional subspecies, 

only one identified a significant pattern (the analysis of mtDNA 

data within the Interior breeding areas; Table ). We note, how-

ever, that this specific finding may actually be spurious, because 

only a single pairwise contrast involving mtDNA from Interior 

breeding areas was significant at the  . level (Appendix).

Within traditional subspecies, our analyses of isolation-by-

distance patterns produced different results when mtDNA and 

microsatellite data were examined (Table ). The microsatellites 

revealed slight but significant correlations between geographic 

distances and D
mic

 within traditional subspecies; however, no 

comparable patterns existed for the mtDNA data. Because of its 

smaller effective population size, analyses of the mitochondrial 

genome may produce different patterns than those observed with 

nuclear markers solely because of differences in the effects of ge-

netic drift. However, the different patterns may also indicate differ-

ences in dispersal tendencies between males and females (Chappel 

et al. , Miller et al. ). Because of their maternal inheri-

tance, genetic structure observed in mtDNA reflects female behav-

ior patterns. By contrast, because they are biparentally inherited, 

genetic structure at microsatellite loci reflects the joint behavior 

of both sexes. Thus, the contrasting isolation-by-distance patterns 

observed in our analyses of microsatellites and mtDNA may indi-

cate that male dispersal is limited compared with that of females. 

Distinguishing between these scenarios is difficult given our cur-

rent data. Quantitative estimates of differentiation within each 

traditional subspecies were higher for mtDNA than for microsatel-

lites, but significance levels were not appreciably different between 

marker types (Table  and Appendix). Sample-size limitations 

associated with mtDNA analyses prevented us from determin-

ing whether this was an artifact associated with limited sampling 

from a highly diverse, nondifferentiated group of populations, or 

whether the limited sampling provided insufficient power to detect 

true population differentiation. We note, however, that the mini-

mal structure observed with mtDNA may, in this case, highlight 

female dispersal. Although sample sizes were also limited, previ-

ous genetic analyses of Least Terns have arrived at similar conclu-

sions (Whittier et al. ). Because breeding pairs form on the 

nesting grounds (Thompson et al. ), the isolation-by-distance 

pattern observed only at microsatellite loci may therefore point to 

increased natal nesting-site fidelity of males in relation to females 

and corroborate previously documented patterns among the Lari-

dae in general (Greenwood and Harvey ).

Least Tern subspecies.—Our analyses of mtDNA and micro-

satellite data did not provide conclusive support for the three tra-

ditional subspecies of Least Terns and reiterated results from two 

previous studies of the species (Thompson et al. , Whittier et 

al. ). Although the number of haplotypes restricted to tradi-

tional subspecies was high (), it is important to recognize that  

of the  total detected haplotypes were observed only once and 

are therefore uninformative with respect to determining the de-

gree of allele sharing between or among groups. Nonetheless, we 

note that –% of individuals within each traditional subspecies 

shared haplotypes with individuals originating from another sub-

species (Table ). Consequently, mtDNA control-region sequences 

do not appear to provide support for traditional Least Tern subspe-

cies designations (Amadon , Patten and Unitt ).

Our STRUCTURE analyses also indicated little support for 

the existence of different subspecies, in that our results illustrated 

that the K   solution was most likely for the Least Tern microsat-

ellite data set (Fig. ). Superficially, this pattern conflicts with re-

sults of analyses based on D
mic

, which detected low (but significant) 

differentiation among traditionally defined subspecies units (Table 

). This discrepancy may be attributable to STRUCTURE’s inabil-

ity to detect weak genetic structure or isolation-by-distance pat-

terns (see sections . and . of STRUCTURE’s documentation; 
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Latch et al. , Schwartz and McKelvey ). In our analyses, 

both of these factors may be relevant. In all comparisons between 

or among subspecies, values of D
mic

 among subspecies were ex-

tremely low and on par with values observed within traditional 

subspecies units (Table ). The significance of values associated 

with subspecies comparisons is most likely due to the larger sample 

sizes of operational units at this level than in analyses of breeding 

areas within each traditional subspecies. Furthermore, our Mantel 

tests suggested that the overarching structural pattern may reflect 

isolation-by-distance patterns of breeding areas across the Least 

Tern’s range (Table ). Thus, the observed significant differences 

among traditional subspecies may merely reflect the relatively large 

geographic distances between breeding areas found within the dif-

ferent traditionally defined subspecies (Fig. ).

In addition to molecular data, morphological, behavioral, 

and geographic range information can also be used to determine 

whether a subspecies is “diagnosably distinct” (Mayr and Ashlock 

, Winker and Haig ). However, previous studies that ex-

amined factors such as vocalizations, behavior, and morphological 

characteristics in Least Terns found little support for differences 

between traditional subspecies and concluded that any distinc-

tions were arbitrary or clinal (Burleigh and Lowery , Massey 

, Thompson et al. ). One morphological study based on 

spectrophotometric analysis of feathers nominally provided vali-

dation for the three traditional subspecies (Johnson et al. ). 

If we assume that plumage differences are genetically associated, 

then spectrophotometric analysis may be used as genetic sup-

port of traditional Least Tern subspecies. However, Whittier et al. 

() suggested that plumage differences may be related to other 

factors because the eumelanin that forms gray hues in Least Tern 

feathers can be influenced by environment or food sources (Welty 

and Baptista ).

Conservation implications.—Vignieri et al. () argued that 

no single approach should be used as a “taxonomic litmus test” for 

taxa of concern. However, we would predict that “subspecies” that 

represent unique evolutionary entities should demonstrate con-

gruent evidence of evolutionary distinctiveness. On the basis of 

our analyses, we cannot conclusively validate the traditional sub-

species designations within Least Terns using our neutral mtDNA 

control-region or microsatellite data. Our findings can be used to 

consider a reevaluation of Least Tern subspecies by the AOU Com-

mittee on Taxonomy and Nomenclature. California, Interior, and 

Eastern Least Terns appear to exhibit high genetic connectivity 

among groups. However, genetic connectivity and demographic 

connectivity are not necessarily synonymous, because only a few 

migrants in each generation are needed to genetically homogenize 

disparate breeding populations, whereas the same level of move-

ment cannot maintain demographically stable populations or per-

mit recolonization of an extinct population (Wright , ; 

Mills and Allendorf ).

Molecular tools have a demonstrated ability to identify evo-

lutionarily divergent lineages. However, most studies, includ-

ing ours, sample only a small part of the genome. Thus, neutral 

mtDNA control-region and microsatellite loci are not likely to 

reflect adaptive variation that may be relevant in different envi-

ronments or for different life histories (McKay and Latta ). 

Although California, Interior, and Eastern Least Terns may con-

tinue to function as demographically independent populations, 

our findings emphasize the need for range-wide information on 

breeding-site fidelity and natal philopatry as well as an under-

standing of population-specific movements throughout the an-

nual cycle in order to best plan for their future success.
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