
Temporal Analysis of mtDNA Variation Reveals Decreased Genetic Diversity in Least Terns

Author(s) :Hope M. Draheim, Patricia Baird and Susan M. Haig

Source: The Condor, 114(1):145-154. 2012.

Published By: Cooper Ornithological Society

URL: <http://www.bioone.org/doi/full/10.1525/cond.2012.110007>

BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/page/terms_of_use.

Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

TEMPORAL ANALYSIS OF MTDNA VARIATION REVEALS DECREASED GENETIC DIVERSITY IN LEAST TERNS

HOPE M. DRAHEIM^{1,3}, PATRICIA BAIRD², AND SUSAN M. HAIG¹

¹U.S. Geological Survey Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97331

²Centre for Wildlife Ecology, Simon Fraser University, Burnaby, BC, Canada V5A 1S6

Abstract. The Least Tern (*Sternula antillarum*) has undergone large population declines over the last century as a result of direct and indirect anthropogenic factors. The genetic implications of these declines are unknown. We used historical museum specimens (pre-1960) and contemporary (2001–2005) samples to examine range-wide phylogeographic patterns and investigate potential loss in the species' genetic variation. We obtained sequences (522 bp) of the mitochondrial gene for NADH dehydrogenase subunit 6 (ND6) from 268 individuals from across the species' range. Phylogeographic analysis revealed no association with geography or traditional subspecies designations. However, we detected potential reductions in genetic diversity in contemporary samples from California and the Atlantic coast Least Tern from that in historical samples, suggesting that current genetic diversity in Least Tern populations is lower than in their pre-1960 counterparts. Our results offer unique insights into changes in the Least Tern's genetic diversity over the past century and highlight the importance and utility of museum specimens in studies of conservation genetics.

Key words: Least Tern, mitochondrial ND6 gene, genetic variation, museum specimens, temporal analysis, ancient DNA.

El Análisis Temporal de la Variación de ADNmt Revela una Menor Diversidad Genética en *Sternula antillarum*

Resumen. *Sternula antillarum* ha sufrido grandes disminuciones poblacionales a lo largo del último siglo como resultado de factores antrópicos directos e indirectos. Las implicancias genéticas de estas disminuciones son desconocidas. Usamos muestras de especímenes de museo históricas (antes de 1960) y contemporáneas (2001–2005) para examinar los patrones filogenéticos en todo el rango e investigar pérdidas potenciales en la variación genética de la especie. Obtuvimos secuencias (522 pares de bases) del gen mitocondrial para la subunidad 6 de la deshidrogenasa NADH (ND6) de 268 individuos provenientes de todo el rango de la especie. Los análisis filogenéticos revelaron que no existen asociaciones con las designaciones de subespecies geográficas o tradicionales. Sin embargo, detectamos reducciones potenciales en la diversidad genética en muestras contemporáneas de *S. antillarum* de California y la costa atlántica en comparación con muestras históricas, sugiriendo que la diversidad genética actual en las poblaciones de *S. antillarum* es menor que la de sus congéneres de antes de 1960. Nuestros resultados brindan evidencias únicas de los cambios en la diversidad genética de *S. antillarum* a lo largo del último siglo y destacan la importancia y la utilidad de los especímenes de museo en los estudios de genética de la conservación.

INTRODUCTION

Comprehensive genetic studies of wide-ranging species, such as the Least Tern (*Sternula antillarum*), are often constrained by our ability to sample on adequate spatial and temporal scales. In the case of the Least Tern, investigations can be complicated further by its status as endangered, which makes it difficult to obtain sufficient samples (USFWS 1980, 1985). The advent of enhanced molecular techniques to extract high-quality and high-yield DNA from degraded tissues, coupled with easy online access to most major museum collections worldwide (<http://www.gbif.org/>), permits

biologists to fill gaps in sampling with museum specimens. In addition, comparing historical museum specimens with contemporary samples provides a temporal perspective on current genetic diversity. Many threatened and endangered species have experienced large reductions in population size, which can have a negative effect on genetic diversity (Frankham et al. 2002, Spielman et al. 2004). Indeed, when Spielman et al. (2004) compared threatened taxa to nonthreatened sister taxa, they found the heterozygosity of 77% of threatened taxa to be on average 35% lower than that of their nonthreatened counterparts. As loss of genetic diversity can diminish population viability and limit long-term adaptability (Lacy 1997, Reed

Manuscript received 31 January 2011; accepted 2 October 2011.

³Current address: Department of Zoology, 203 Natural Science Building, Michigan State University, East Lansing, MI 48824.

E-mail: draheimh@msu.edu

and Frankham 2003, Spielman et al. 2004), assessments of genetic-diversity changes and trajectories over time provide critical information for endangered-species management.

Although actual numbers are unknown, it is thought that the Least Tern was historically abundant throughout its range (Thompson et al. 1997). However, during the 20th century it underwent large anthropogenically induced population declines (USFWS 1980, 1985, 1990, Burger 1984, Thompson et al. 1997, Kruse et al. 2001). During the late 1800s and early 1900s, Least Tern populations underwent large declines from egg collection and demand for feathers for the millinery trade (Nisbet 1973, Thompson et al. 1997). Population numbers started to rebound following passage of the Migratory Bird Treaty Act in 1918 (Thompson et al. 1997). However, populations declined again during the mid 1900s via habitat loss (USFWS 1980, 1990, Burger 1984, Kruse et al. 2001). As a result, the California subspecies (*S. a. browni*) is listed as endangered under the U.S. Endangered Species Act (USFWS 1980). The interior subspecies (*S. a. athalassos*) was not listed as a subspecies because of taxonomic uncertainty at the time of listing; however, the U.S. Fish and Wildlife Service designated “the populations of Least Terns occurring in the interior of the United States” as endangered (USFWS 1985). The east coast subspecies (*S. a. antillarum*) is state-listed as threatened or endangered in most states where it occurs (USFWS 1980, 1990).

We used museum specimens (pre-1960) and contemporary (2001–2005) samples to examine genetic diversity among Least Terns during three time periods: pre- and post 1900 to examine the influence of anthropogenically induced population declines at the turn of the century and before and after the population decline of the 1960s and 1970s (USFWS 1980, 1990, Burger 1984, Thompson et al. 1997, Kruse et al. 2001). Despite access to museum collections, our ability to obtain historical samples comparable to contemporary sampling is problematic because of the opportunistic nature of museum collecting. One way researchers might avoid this drawback is to pool samples if genetic analyses reveal genetic homogeneity among locales. Such is the case in the Least Tern. Using seven microsatellite loci and mtDNA control region sequences, Draheim et al. (2010) investigated population structure within and among traditional Least Tern subspecies and found a general lack of genetic structure. This finding suggests that older Least Tern museum specimens can be compared to contemporary samples, despite being collected at different geographical locations within a region. We confirm these results in this study via further phylogeographic analysis using mitochondrial (mtDNA) ND 6 data to justify our geographic pooling of historical samples.

MATERIALS AND METHODS

We obtained 268 Least Tern samples (contemporary = 219, museum specimens = 49) from throughout the species' range by using several techniques: blood from live specimens,

salvaged carcasses, embryos from collected eggs, and toe pads from museum specimens. We obtained dried toe-pad tissue from the American Museum of Natural History, New York; Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts; Museum of Vertebrate Zoology, University of California, Berkeley; and Florida Museum of Natural History, University of Florida, Gainesville. We collected one to 12 samples from 33 areas throughout the Least Tern's breeding range (Fig. 1, Tables 1 and 2). Along the coasts, we defined a sampling area as a group of samples collected within a breeding colony or from multiple adjacent colonies within 80 km. Inland, we defined a sampling area as a group of samples collected within 80 km along a river.

We obtained DNA from samples by using standard phenol/chloroform extractions as previously described (Haig et al. 2004). For contemporary samples, we used primers LT16130 L and LT16700 H to yield 522 bp of the mtDNA ND6 sequence (Table 3). The degraded DNA obtained from museum specimens required design of internal primers to amplify shorter overlapping sequences (150–200 bp; Table 3). To ensure our internal primers amplified the same sequence as contemporary samples we first screened internal primers with nondegraded contemporary samples. A total reaction volume of 50 µL was used with the following concentrations: 10 mM Tris-HCl at pH 8.3, 50 mM KCl, 0.001% gelatin, 3.5 mM MgCl₂, 100 µM for each of the dNTPs, 0.2 µM of each primer, 100 ng of template, and 1.5 U AmpliTaq Gold Polymerase (Perkin Elmer). The following parameters were used for amplifications: 12 min denaturation at 93 °C, followed by 45 cycles of 30 sec at 93 °C and annealing at 50 °C for 45 sec. To analyze DNA sequences we used ABI Prism Big Dye DNA-sequencing chemistry on an ABI 3730 capillary DNA analyzer located in the Central Services Laboratory at Oregon State University. We used BIOEDIT (version 7.0.5) alignment software (Hall 1999) to align sequences by eye. All sequences have been archived in GenBank (accession numbers AN654131–AN654156).

STATISTICAL ANALYSIS

Sample design was originally intended to represent the Least Tern's genetic variation throughout its breeding distribution. Museum specimens, obtained to fill gaps in this distribution, also provided us a unique opportunity to investigate the genetic implications of the population declines over the last century. However, heterogeneity in the dispersion of samples among the contemporary and historical sets led us to pool samples into the California, interior, and eastern subspecific groupings. We evaluated the appropriateness of pooling samples that encompassed broad geographic distributions with ND6 phylogeographic and population-structure analyses. We further generated a statistical haplotype tree network with 95% parsimonious connections for all contemporary and historical sequences by using the program TCS 1.13 (Clement et al. 2000). We quantified geographic differentiation within and among the three regional subspecies with Weir and

FIGURE 1. Distribution of the Least Tern included in this study and sites sampled for genetic analysis. Ranges of the California, interior, and east coast subspecies are shown in light gray, dark gray, and black, respectively. Slashed rings, museum specimens; open rings, contemporary samples. Breeding areas are identified in Table 1.

Cockerham's (1984) θ_{ST} and tested significance with 10 000 replications in program Arlequin (Schneider et al. 2000).

We evaluated genetic diversity in three ways. First, we used DNAsP version 4.0 (Rozas et al. 2003) to calculate haplotype (h) and nucleotide (π) diversity for all areas of contemporary and historical breeding. Next, we tested for differences in genetic diversity between subspecies in contemporary samples. To eliminate bias as a result of unequal sample size, we first implemented bootstrap resampling to account for discrepancies in sample size among the subspecies. We created 100 simulated populations of 26 individuals (corresponding to the number of individuals in the contemporary California sample) for the California, interior, and east coast subspecies by random resampling with replacement as performed by POPTOOLS (Hood 2005). We calculated haplotype and nucleotide diversity for each simulated bootstrapped population in Arlequin (Schneider et al. 2000), and we compared mean haplotype and nucleotide diversity among subspecies with a parametric two-sample t -test in the STATS package in R 2.9.2 (<http://www.r-project.org>; mean \pm SD).

Third, we evaluated potential loss of genetic diversity as a result of population declines with temporal comparisons of genetic diversity among historical and contemporary samples

in the California and east coast subspecies. Genetic analysis of Least Tern's population structure revealed high genetic homogeneity within the California and east coast subspecies (see Results). In the absence of geographic structure, we pooled California and east coast samples into two groups for temporal analyses: (1) pre-1960 museum specimens (historical) and (2) samples taken 2001–2005 (contemporary). Lack of historical samples from the interior breeding areas precluded our including this area in the temporal analyses. The sample size for the historical temporal groups was significantly smaller, so we implemented the previously described bootstrap procedure to account for discrepancies in sample size between contemporary and historical groupings with simulated populations corresponding to the number of individuals in the historical samples (California = 13; east coast = 33). We eliminated three museum specimens collected after 1960 from temporal analyses. We calculated haplotype and nucleotide diversity for each simulated bootstrapped population in Arlequin (Schneider et al. 2000), and we compared the temporal groups' mean haplotype and nucleotide diversity by a parametric two-sample t -test with STATS package in R 2.9.2 (mean \pm SD).

Collection over long periods could inflate diversity measures, so we performed time-series analyses and divided

TABLE 1. Breeding area information and genetic variation for mtDNA ND6 gene of Least Terns. Number of individuals sampled (n), number of haplotypes, haplotype diversity (h), and nucleotide diversity (π) for each breeding area are provided.

Region	Sample code	County, state/region, country	n	No. haplotypes	h	π
Pacific coast						
	NCA	Alameda, CA	10	3	0.644	0.0014
	MCA	Monterey, CA	4	3	0.833	0.0029
	SCA	San Diego, CA	16	2	0.525	0.0010
	HSCA	San Diego, CA (pre-1960)	4	2	0.500	0.0019
	BCS	Baja California Sur, Mexico	5	2	0.400	0.0008
Interior						
	NDMOR	McLean, ND	10	1	0.000	0.0000
	SDMOR	Yankton, SD	10	2	0.556	0.0032
	KSKSR	Pottawatomie, KS	10	3	0.378	0.0015
	MOMOR	New Madrid, MO	10	3	0.600	0.0024
	OKCR	Woods, OK	10	4	0.644	0.0024
	OKAR	Tulsa, OK	10	4	0.778	0.0033
	OKRR	McCurtain, OK	10	2	0.356	0.0021
	TXPH	Hemphill, TX	7	3	0.667	0.0031
	TXINT	Dallas, TX	10	1	0.000	0.0000
	MSMSR	Bolivar, MS	10	2	0.200	0.0004
	IN	Gibson, IN	4	1	0.000	0.0000
	CO	Kiowa, CO	3	3	1.000	0.0038
East coast						
	ME	Knox, ME	10	4	0.778	0.0029
	MA	Barnstable, MA	12	4	0.712	0.0023
	HMA	Barnstable, MA (pre-1960)	4	3	0.833	0.0029
	NY	Suffolk, NY	2	1	0.000	0.0000
	NJ	Cape May, NJ	10	4	0.711	0.0028
	VA	Accomack, VA	10	3	0.378	0.0012
	HVA	Virginia Beach, VA (pre-1960)	4	4	1.000	0.0042
	SC	Charleston, SC	4	4	0.100	0.0029
	GA	Glenn, GA	8	4	0.750	0.0035
	HGA	McIntosh, GA (pre-1960)	8	6	0.929	0.0037
	FL	Charlotte, Monroe, Collier, FL	2	2	1.000	0.0040
	USVI	St. Croix, Virgin Islands	10	3	0.622	0.0021
	FLGC	Bay, FL	9	4	0.694	0.0020
	MSGC	Harrison, MS	10	4	0.644	0.0018
	TXGC	Brazoria, TX	10	5	0.756	0.0025
	STXGC	Nueces, TX	5	3	0.700	0.0015
	VERA	Veracruz, Mexico	1	1	N/A	N/A
	NANT	Curaçao, Bonaire, Netherlands Antilles	4	4	1.000	0.0035
	VEN	Cumana, Venezuela	1	1	N/A	N/A
	LRVEN	Los Roques, Venezuela	1	1	N/A	N/A

the museum specimens of the east coast subspecies into two groups representing comparable intervals, (1) pre-1900 ($n = 9$; 17 years), and (2) 1900–1960 ($n = 24$; 26 years), to see if timing of collection has an effect on diversity measures. By separating museum specimens into two historical temporal groups we can compare measures of genetic diversity with contemporary samples to evaluate the subsequent effect of population declines at the turn of the century and during the mid 1900s. Lack of 1900–1960 samples prevented similar analyses of the California subspecies. Sizes of samples of the historical temporal

groups differed significantly different, so we implemented the previously described bootstrap procedure to account for discrepancies in sample size between contemporary and two historical groupings with simulated populations corresponding to the number of individuals in the 1900–1960 samples ($n = 9$). We calculated haplotype and nucleotide diversity for each simulated bootstrapped population in Arlequin (Schneider et al. 2000), and we compared the temporal groups' mean haplotype and nucleotide diversity with a parametric two-sample t -test in STATS package in R 2.9.2 (mean \pm SD).

TABLE 2. Catalog numbers, location, and year of museum specimens of the Least Tern sampled for genetic variation. Prefixes represent the institutions from which the samples were taken. AMNH = American Museum of Natural History; FLMNH = Florida Museum of Natural History, University of Florida; MCZ = Museum of Comparative Zoology, Harvard University; MVZ = Museum of Vertebrate Zoology, University of California, Berkeley.

Location and catalog number	Year
Curaçao	
AMNH 747034–37	1892
Cumana, Venezuela	
AMNH 188068	1925
Los Roques, Venezuela	
AMNH 816441	1976
Vera Cruz, Mexico	
AMNH 808740	1904
Pacific Beach, California	
AMNH 753162, –66, –67, –69	1912
Chatham, Massachusetts	
AMNH 26019, –20, –24, –26	1885
Corpus Christi, Texas	
AMNH 79343, –45–74	1886
AMNH 79346	1887
AMNH 79344	1888
AMNH 79340	1882
Virginia	
AMNH 747041	1885
Bone Island, Virginia	
AMNH 80194	1905
Cobbs Island, Virginia	
AMNH 747030	1885
Georgia	
AMNH 747031–32	1888
Cumberland, Georgia	
AMNH 48523	1915
Amelia Island, Florida	
AMNH 17082–83	1906
AMNH 359013–14	1905
New Smyrna, Florida	
AMNH 17560	1899
Monroe, Florida	
FLMNH 15840	1968
Collier, Florida	
FLMNH 2017	1902
Cape Henry, Florida	
MCZ 33030	1884
Sullivan's Island, South Carolina	
MCZ 210427, –428, –543, –544	1885
San Jose del Cabo, Baja California Sur, Mexico	
MVZ 54739–41, –43–44	1929
Monterey, California	
MVZ 91711, –13–15	1915
Suffolk, New York	
MVZ 145331	1926
MVZ 145333	1928

TABLE 3. Primers used in sequencing mitochondrial gene ND6 of the Least Tern.

Primer	Sequence (5'-3')	bp
Contemporary samples		
LTND6 L	CTTAAACCTCTATCTCCA ACT	522
LTND6 H	GAGTGTCA TGGATGGGTA	
Museum specimens		
LTND6 L	CTTAAACCTCTATCTCCA ACT	180
LTND6-1 H	TTTTGGTAGCAGGGTGGGG	
LTND6-2 L	CACCAACTCCAACACAACAAA	164
LTND6-2 H	TGGTTATGGGTGGAGTTG	
LTND6-3 L	TGTA ACTACTCCCAAATCC	150
LTND6-3 H	GTGTATTCTGTGTCCTTGG	
LTND6-4 L	TCCTCAAGCCTCTGGAAA	200
LTND6-4 H	AATCCTTCTCCGTATTATGG	
LTND6-5 L	TAACAATCACCCACACCC	165
LTND6 H	GAGTGTCA TGGATGGGTA	

RESULTS

We observed 25 unique ND6 haplotypes (522 bp) among the 268 individuals analyzed (Table 4). Sequence variants were characterized by 16 polymorphic sites (10 synonymous, five nonsynonymous base-pair substitutions): 15 sites were transitions, one site was a transversion, and there were no insertions or deletions. Haplotype 1 was identified in 53% of individuals and was observed in most breeding areas. All other haplotypes occurred in lower frequencies (0.3–8%). Thirteen of the 25 (52%) unique haplotypes were restricted to a single breeding area (Table 5). The 95% parsimony network generated by TCS revealed a starlike pattern of haplotypes on short branches radiating from a central haplotype (Fig. 2). We observed regional patterns of genetic structure comparable to those identified in previous reports (Draheim et al. 2010). While we observed some significant genetic structure among subspecies ($\theta_{ST} = 0.145$, $P < 0.001$), analyses within each traditional subspecies revealed either no structure (California: $\theta_{ST} = -0.021$, $P = 0.403$; east coast: $\theta_{ST} = -0.013$, $P = 0.619$) or extremely weak genetic structure (interior: $\theta_{ST} = 0.071$, $P = 0.045$).

Accounting for unequal sample size with the simulated bootstrap approach, we found that contemporary mean haplotype and nucleotide diversity varied by subspecies. Bootstrap mean estimates of haplotype diversity ranged from 0.457 to 0.673 (mean \pm SD; California = 0.530 ± 0.046 ; interior = 0.457 ± 0.100 ; east coast = 0.673 ± 0.080), and mean nucleotide diversity ranged from 0.0011 from 0.0015 (California = 0.0011 ± 0.0001 , interior = 0.0013 ± 0.0005 , east coast = 0.0015 ± 0.0004 ; Fig. 3). In all comparisons differences were statistically significant ($P < 0.001$).

Comparisons of the haplotype composition of historical and contemporary samples suggest higher haplotype diversity in the historical sample, despite a much smaller sample size

TABLE 4. Sites of variation of 25 haplotypes of mtDNA ND6 of the Least Tern.

Haplotype	Nucleotide site															
	68	93	177	199	218	234	246	354	381	409	435	436	438	447	507	515
H1	A	T	C	G	C	T	C	A	C	G	C	A	C	C	T	A
H2			T													
H3														T		
H4	G							G						C		
H5							T									
H6	G							G				G		C		
H7	G												G	C		
H8						C										
H9												T				
H10															T	
H11	G							G			T			C		
H12					T											
H13			T									A		T		
H14			T											C		
H15													C	C		
H16	G															
H17									T					C		
H18			T					G								
H19			T	C												
H20			T	C			T									
H21	G		T											C		
H22	G		T	C												
H23			T							T						
H24	G	C												C		
H25	G	C														

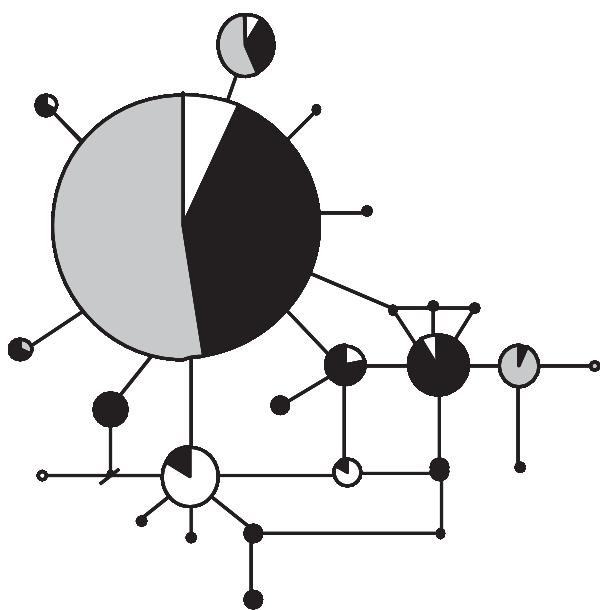


FIGURE 2. The 95% parsimony network generated by the program TCS from mtDNA ND6 haplotypes of the Least Tern. Circle sizes are proportional to the number of individuals sharing the haplotype. Shaded refer to the proportion of samples that came from a geographic region. California Least Terns are shown in white, interior Least Terns in gray, and east coast Least Terns in black. Black dashes are inferred haplotypes.

(Table 5). Three of five historical California haplotypes and nine of 13 historical east coast haplotypes were not found in the contemporary samples. Eight contemporary haplotypes were absent from the historical samples, suggesting potential bias due to the smaller size of the historical sample or to nonoverlapping sampling. However, on closer inspection, we found that most of these contemporary haplotypes occur at low frequency; indeed, 84% of contemporary samples shared a haplotype with historical samples. Temporal analysis using bootstrap resampling to control for unequal sample size revealed haplotype diversity was significantly higher in the California and east coast historical samples (mean = 0.748 ± 0.088 ; mean = 0.871 ± 0.033 , respectively) than in the contemporary samples (mean = 0.539 ± 0.083 ; mean = 0.666 ± 0.073 ; $t' = -17.1$, $P < 0.001$; $t' = -25.5$, $P < 0.001$, respectively; Fig. 4). Similarly, nucleotide diversity was significantly higher in California and east coast historical samples (mean = 0.0024 ± 0.0005 ; mean = 0.0037 ± 0.0004 , respectively) than in the contemporary samples (mean = 0.0011 ± 0.0002 ; mean = 0.0023 ± 0.0004 ; $t' = -20.6$, $P < 0.001$; $t' = -26.5$, $P < 0.001$, respectively; Fig. 4).

In samples from the east coast, the number of haplotypes in pre-1900, 1900–1960, and contemporary samples was similar (Table 1). In the eastern subspecies, however, time-series analyses using bootstrap resampling to account for unequal sample size revealed significantly higher genetic diversity in museum specimens irrespective of temporal group (pre-1900: $h = 0.872 \pm 0.057$, $\pi = 0.0038 \pm 0.0007$; 1900–1960:

TABLE 5. Distribution of 25 mtDNA ND6 haplotypes among all areas of Least Tern breeding samples. Individuals are grouped according to geographic location (west to east) and temporal group. See Table 1 for codes for areas.

Haplotype	Contemporary samples												Museum specimens												California				East coast				Interior									
	NCA	NDMOR	SDMOR	KSKSR	OKCR	TXPH	CO	MSMR	TXINT	GA	VAA	MA	ME	FE	GO	HVA	NY	SC	STXGC	NANT	VERACRUZ	LRVNE	VEN	1900-1960	Historical	Contemporary	1900-1960	Historical	Contemporary	1900-1960	Historical	Contemporary	1900-1960									
H1	5	7	10	5	8	6	6	4	8	4	10	9	1	4	6	3	8	4	6	5	6	5	3	2	1	2	3	1	12	47	9	5	4	75								
H2	4	9																									13	3	3	2	1											
H3	1																										1	2														
H4		5	1	1	2	2	2																																			
H5		1	3	2	3	1	1	1	2	1																																
H6																																										
H7																																										
H8																																										
H9																																										
H10																																										
H11																																										
H12																																										
H13																																										
H14																																										
H15																																										
H16																																										
H17																																										
H18																																										
H19																																										
H20																																										
H21																																										
H22																																										
H23																																										
H24																																										
H25																																										
Total	10	16	10	10	10	10	10	7	10	10	3	4	10	12	10	10	8	10	9	10	10	219	4	5	4	4	2	4	8	2	5	4	1	1	49	26	13	83	33	24	9	104

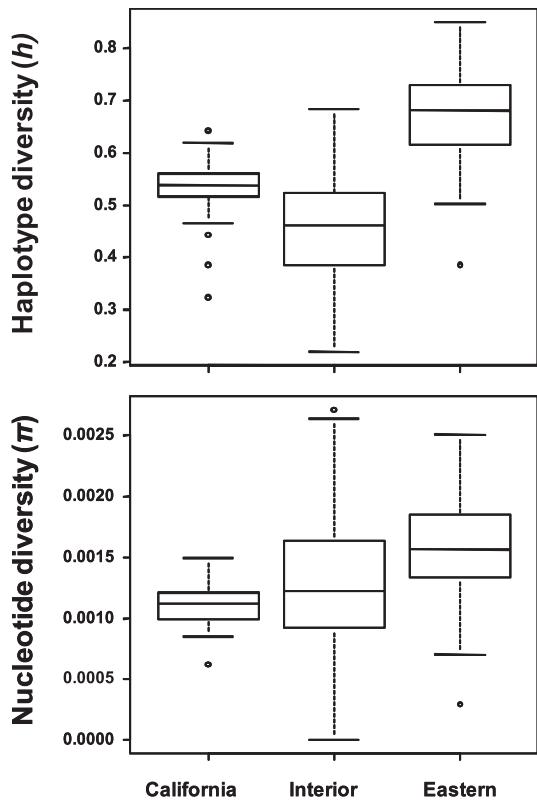


FIGURE 3. Comparisons of haplotype and nucleotide diversity of traditional Least Tern subspecies in which bootstrap resampling was used to control for differences in sample size (line within the box = median, box = 25–75% interquartile range, lines = ± 1.5 times the interquartile range, dots outside the box = outliers outside 1.5 times the interquartile range above the upper quartile and below the lower quartile).

$h = 0.769 \pm 0.116$, $\pi = 0.0031 \pm 0.0005$; contemporary: $h = 0.654 \pm 0.121$, $\pi = 0.0016 \pm 0.0006$; Fig. 5). Thus sampling over large time periods did not overly bias historical genetic diversities. We observed a trend of genetic diversity decreasing with time when all temporal groups were compared. For example, haplotype diversity was significantly higher in the pre-1900 samples than in 1900–1960 and contemporary samples (h : $t' = -7.9$, $P < 0.001$; $t' = -16.3$, $P < 0.001$, respectively) and was significantly higher in 1900–1960 samples than in contemporary samples ($t' = -6.8$, $P < 0.001$; Fig. 5). Likewise, nucleotide diversity was significantly higher in pre-1900 samples than in 1900–1960 and contemporary samples (h : $t' = -7.5$, $P < 0.001$; $t' = -24.1$, $P < 0.001$, respectively) and significantly higher in the 1900–1960 samples than in the contemporary samples ($t' = -20.0$, $P < 0.001$; Fig. 5).

DISCUSSION

Traditional population-genetic analyses that report estimates of genetic diversity capture only a snapshot of the population in its current state. However, studies that compare historical

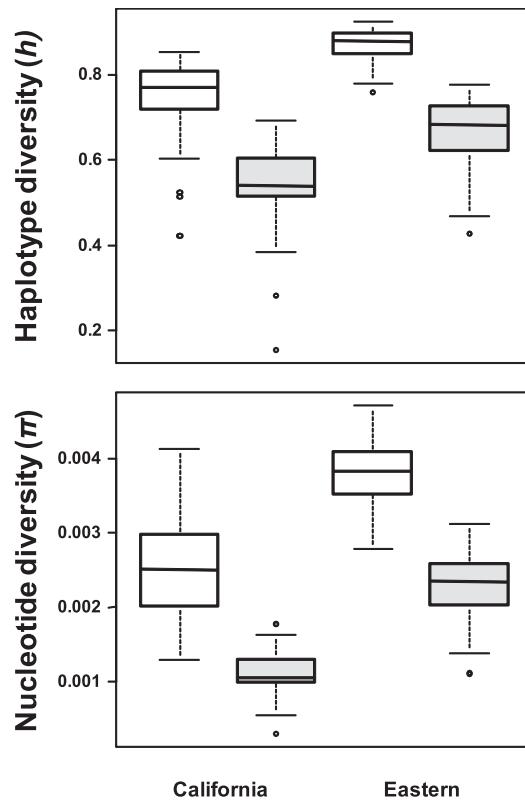


FIGURE 4. Comparisons of haplotype and nucleotide diversity in historical (pre-1960) and contemporary (2000–2005) samples of the Least Tern in which bootstrap resampling was used to control for sample size differences (line within the box = median, box = 25–75% interquartile range, lines = ± 1.5 times the interquartile range, dots outside the box = outliers outside 1.5 times the interquartile range above the upper quartile and below the lower quartile).

and contemporary samples permit evaluations of population changes and highlight trends over time. In this study, we demonstrated that contemporary California and east coast Least Tern populations have lower genetic diversity than pre-1960 populations. Despite much smaller sample sizes, historical samples contained more haplotypes than did samples of contemporary populations, and analyses of historical and contemporary genetic diversity identified significantly lower haplotype and nucleotide diversity in contemporary samples.

Time-series analyses within the east coast subspecies revealed genetic diversity in historical samples was not overly inflated by sampling over long periods. While in direct comparisons of haplotype number the sample groups were similar, bootstrap analyses accounting for unequal sample size revealed museum specimens have higher genetic diversity irrespective of temporal group. Furthermore, we observed a trend of decreasing genetic diversity over time. Thus loss of genetic diversity in east coast Least Terns correlates with bottlenecks caused by anthropogenically induced population declines around 1900 and during the mid 1900s (USFWS 1980, 1990, Burger 1984, Thompson et al. 1997, Kruse et al. 2001).

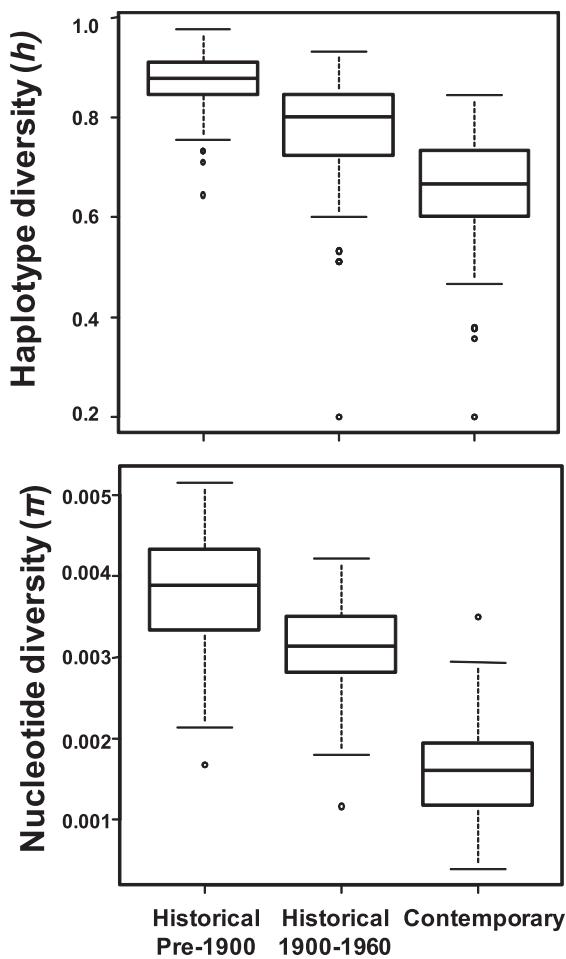


FIGURE 5. Comparisons of haplotype and nucleotide diversity between pre-1900 historical, 1900–1960 historical, and contemporary (2000–2005) samples of the Least Tern from the east coast in which bootstrap resampling was used to control for differences in sample size (line within the box = median, box = 25–75% interquartile range, lines = ± 1.5 times the interquartile range, dots outside the box = outliers outside 1.5 times the interquartile range above the upper quartile and below the lower quartile).

Least Terns have experienced large-scale habitat destruction, disturbance from human recreation, harvest, and pollution, resulting in small effective population sizes, which reinforce the negative genetic effects. Reduced mtDNA genetic diversity suggests increased homozygosity at nuclear loci, which can disfavor endangered species' recovery (diminishing population viability and limiting long-term adaptability (Frankham et al. 2002, Lacy 1997, Spielman et al. 2004, Allendorf and Luikart 2007, Tollefsrud et al. 2009).

Previous microsatellite analyses of contemporary (2001–2005) populations indicated minimal evidence of past population bottlenecks in the form of heterozygote excess (Draheim et al. 2010). This discrepancy is expected given the disparate sensitivities of mtDNA and microsatellite analyses to demographic factors. For mtDNA the effective population size is one quarter that for nuclear loci, so mtDNA is more

sensitive to factors such as genetic drift (Shaw et al. 2004). In addition, in microsatellites the excess of heterozygotes after population bottlenecks is transient and detectable only over a few generations until the mutation–drift equilibrium is reestablished (Luikart and Cornuet 1998). Unfortunately, we were unable to amplify nuclear microsatellite loci from many of the museum specimens, which prevented direct temporal comparisons of historical and contemporary allelic diversity.

Our temporal analyses may have been influenced by limitations of the museum collections we used. For example, several areas of historical breeding were not represented in the contemporary sample and vice versa. We recognize this is a potential source of sample bias. However, in view of high genetic homogeneity within subspecies (California $\theta_{ST} = -0.021, P = 0.403$; east coast $\theta_{ST} = -0.013, P = 0.619$) we believe bias due to disparate sampling within subspecies is negligible. However, because museum specimens were not available from the interior region for comparison, further study is needed to investigate potential loss of genetic diversity in that area.

Museum collections are being used increasingly to facilitate studies of avian molecular systematics and phylogeography (Armenta et al. 2005, Brito 2005, Burg et al. 2005, Ruokonen et al. 2005, Ohlson et al. 2007, and others). However, relatively few studies have incorporated older museum specimens to assess changes in genetic diversity over time, despite their potential utility for informing conservation and management of threatened and endangered species (but see Godoy et al. 2004, Muñoz-Fuentes et al. 2005, Brown et al. 2007, Taylor et al. 2007, Haig et al. 2011). Our results highlight the importance and utility of incorporating museum specimens in conservation-genetic studies.

Museum collections as a source for augmenting samples and/or as historical samples for temporal comparisons are invaluable to our understanding of current patterns of genetic diversity (Haig et al. 2011). However, existing collections can function only as sources of past materials. Future anthropogenic effects such as changes in climate and land use will continue to affect wildlife populations as alteration and fragmentation of natural habitats cause patterns of gene flow and dispersal to be disrupted. In expectation of predicted trends, we encourage collection curators, in cooperation with researchers, to grow their collections of current specimens (with exemption of endangered species of which collection is restricted). Today's samples will serve as pivotal temporal resources in future conservation-genetic studies.

ACKNOWLEDGMENTS

We are grateful to the following for providing assistance in sample collection: Ruth Boettcher, Roger Boyd, Jeanette Boylan, John Castrale, Stephen Dinsmore, Phil Glass, Margo Haig, Rachel Hurt, Patty Kelly, Casey Kruse, Katy Kughen, Ken Jones, Casey Lott, Mark McCollough, Howard Nass, Greg Pavelka, Todd Pover, Rochelle Renken, Kevin Stubbs, Rosemary Vanderlee, Brad Winn, and Margo Zdravkovic. We thank the American Museum of Natural History; Museum of Comparative Zoology, Harvard University; Florida Museum of Natural History, University of Florida; and Museum of

Vertebrate Zoology, University of California, Berkeley, for their generous donation of museum specimens. We also thank Renee Bellinger, Katie Dugger, Chris Funk, Aaron Liston, Mark Miller, Tom Mullins, and Mike Schwartz for insightful discussion and helpful comments on the analysis and manuscript. Support for this project was generously provided by the U.S. Geological Survey's Forest and Rangeland Ecosystem Science Center and U.S. Fish and Wildlife Service. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. government

LITERATURE CITED

ALLENDORF, F. W., AND G. LUIKART. 2007. Conservation and the Genetics of Populations. Blackwell, Malden, MA.

ARMENTA, J. K., J. D. WECKSTEIN, AND D. F. LANE. 2005. Geographic variation in mitochondrial DNA sequences of an Amazonian nonpasserine: the Black-spotted Barbet complex. *Condor* 107:527–536.

BRITO, P. H. 2005. The influence of Pleistocene glacial refugia on Tawny Owl genetic diversity and phylogeography in western Europe. *Molecular Ecology* 14:3077–3094.

BROWN, J. W., P. J. VAN COEVERDEN DE GROOT, T. P. BIRT, G. SEUTIN, P. T. BOAG, AND V. L. FRIESEN. 2007. Appraisal of the consequences of the DDT-induced bottleneck on the level and geographic distribution of neutral genetic variation in Canadian Peregrine Falcons, *Falco peregrinus*. *Molecular Ecology* 16:327–343.

BURG, T. M., A. J. GASTON, K. WINKER, AND V. L. FRIESEN. 2005. Rapid divergence and postglacial colonization in western North American Steller's Jays (*Cyanocitta stelleri*). *Molecular Ecology* 14:3745–3755.

BURGER, J. 1984. Colony stability in Least Terns. *Condor* 86:61–67.

CLEMENT, M., D. POSADA, AND K. A. CRANDALL. 2000. TCS: A computer program to estimate gene genealogies. *Molecular Ecology* 9:1657–1659.

DRAHEIM, H. M., M. P. MILLER, P. BAIRD, AND S. M. HAIG. 2010. Subspecific status and population genetic structure of Least Terns (*Sternula antillarum*) inferred by mitochondrial DNA control region sequences and microsatellite DNA. *Auk* 127:807–819.

FRANKHAM, R., J. D. BALLOU, AND D. A. BRISCOE. 2002. Introduction to conservation genetics. Cambridge University Press, Cambridge, UK.

GODOY, J. A., J. J. NEGRO, F. HIRALDO, AND J. A. DONÁZAR. 2004. Phylogeography, genetic structure and diversity in the endangered Bearded Vulture (*Gypaetus barbatus*, L.) as revealed by mitochondrial DNA. *Molecular Ecology* 13:371–390.

HAIG, S. M., E. D. FORSMAN, AND T. D. MULLINS. 2004. Subspecies relationships and genetic structure in the Spotted Owl. *Conservation Genetics* 5:683–705.

HAIG, S. M., W. M. BRONAUGH, R. S. CROWHURST, J. D'ELIA, C. A. EAGLES-SMITH, C. W. EPPS, B. KNAUS, M. P. MILLER, M. L. MOSES, S. OYLER-MCCANCE, W. D. ROBINSON, AND B. SIDLAUSKAS. 2011. Genetic applications in avian conservation. *Auk* 128:205–229.

HALL, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series* 41:95–98.

HOOD, G. M. [ONLINE]. 2005. PopTools. <<http://www.cse.csiro.au/poptools>> (9 September 2009).

KRUSE C. D., K. F. HIGGINS, AND B. A. VANDERLEE. 2001. Influence of predation on Piping Plover, *Charadrius melanotos*, and Least Tern, *Sterna antillarum*, productivity along the Missouri River in South Dakota. *Canadian Field-Naturalist* 115:480–486.

LACY, R. C. 1997. Importance of genetic variation to the viability of mammalian populations. *Journal of Mammalogy* 78:320–355.

LUIKART, G., AND J. M. CORNUET. 1998. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. *Conservation Biology* 12:228–237.

MUÑOZ-FUENTES, V., A. J. GREEN, J. J. NEGRO, AND M. D. SORENSEN. 2005. Population structure and loss of genetic diversity in the endangered White-headed Duck, *Oxyura leucocephala*. *Conservation Genetics* 6:999–1015.

NISBET, I. C. T. 1973. Terns in Massachusetts: present numbers and historical changes. *Journal of Field Ornithology* 44:27–55.

OHLSON, J. I., R. O. PRUM, AND P. G. P. ERICSON. 2007. A molecular phylogeny of the cotingas (Aves: Cotingidae). *Molecular Phylogenetics and Evolution* 42:25–37.

REED, D. H., AND R. FRANKHAM. 2003. Correlation between population fitness and genetic diversity. *Conservation Biology* 17: 230–237.

RUOKONEN, M., T. AARVAK, AND J. MADSEN. 2005. Colonization history of the high-arctic Pink-footed Goose *Anser brachyrhynchus*. *Molecular Ecology* 14:171–178.

ROZAS, J., J. C. SANCHEZ-DELBARRO, X. MESSEGUE, AND R. ROZAS. 2003. DnaSP: DNA polymorphism analyses by the coalescent and other methods. *Bioinformatics* 19:2496–2497.

SCHNEIDER, S., J. M. ROESSLI, AND L. EXCOFFIER [ONLINE]. 2000. Arlequin: a software for population genetic analysis, version 2.0. University of Geneva, Geneva, Switzerland. <<http://anthropologie.unige.ch/arlequin>> (16 December 2004).

SHAW, P. W., A. I. ARKHIPKIN, AND H. AL-KHAIRULLA. 2004. Genetic structuring of Patagonian toothfish populations in the Southwest Atlantic Ocean: the effect of the Antarctic Polar Front and deep-water troughs as barriers to genetic exchange. *Molecular Ecology* 13:3293–3303.

SPEILMAN, D., B. W. BROOK, AND R. FRANKHAM. 2004. Most species are not driven to extinction before genetic factors impact them. *Proceedings of the National Academy of Sciences, U.S.A.* 101:15261–15264.

TAYLOR, S. S., I. G. JAMIESON, AND G. P. WALLIS. 2007. Historical and contemporary levels of genetic variation in two New Zealand passersines with different histories of decline. *Journal of Evolutionary Biology* 20:2035–2047.

THOMPSON, B. C., J. A. JACKSON, J. BURGER, L. A. HILL, E. M. KIRCH, AND J. L. ATWOOD. 1997. Least Tern (*Sterna antillarum*), no. 290. In A. Poole and F. Gill [EDS.], *The birds of North America*. Academy of Natural Sciences, Philadelphia.

TOLLEFSRUD, M. M., J. H. SØNSTEBO, C. BROCHMANN, O. JOHNSEN, T. SKROPPA AND G. G. VENDRAMIN. 2009. Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of north European *Picea abies*. *Heredity* 102:549–562.

UNITED STATES FISH AND WILDLIFE SERVICE [ONLINE]. 1980. California Least Tern recovery plan. U.S. Fish and Wildlife Service, Portland, OR. <http://www.fws.gov/ecos/ajax/docs/recovery_plan/850927.pdf> (26 September 2011).

UNITED STATES FISH AND WILDLIFE SERVICE. 1985. Endangered and threatened wildlife and plants; interior population of Least Tern determined to be endangered. *Federal Register* 50:21784–21792.

UNITED STATES FISH AND WILDLIFE SERVICE [ONLINE]. 1990. Recovery plan for the interior population of the Least Tern (*Sterna antillarum*). U.S. Fish and Wildlife Service, Twin Cities, MN. <http://www.fws.gov/montanafldoffice/Endangered_Species/Recovery_and_Mgmt_Plans/Least_Tern_Recovery_Plan.pdf> (26 September 2011).

WEIR, B. S., AND C. C. COCKERMAN. 1984. Estimating *F*-statistics for the analysis of population structure. *Evolution* 38:1358–1370.