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Data collected in ten years (2003-2012) on Triangle Island, British Columbia, Canada were used to test the hy-
pothesis that the annual breeding effort of black oystercatchers (Haematopus bachmani) declines with increasing
spring sea-surface temperature. In all ten years, between nine and 15 oystercatcher pairs laid eggs in May and
June, and as predicted, the number of active nests was negatively correlated with the mean sea-surface temper-
ature in April. However, contrary to prediction, neither mean clutch size nor mean egg size declined with tem-
perature. Clutches composed of just a single egg, probably indicative of recruitment by inexperienced females,
appeared only in the five years with sea-surface temperatures below 9 °C. A reduction in the breeding propensity
of individual females, rather than increased rates of mortality or emigration, better explained why fewer oyster-
catcher pairs bred in warm-water years. We infer that the breeding propensity of oystercatchers is indirectly
affected by sea-surface temperature, mediated by effects of temperature on the behavior and physiology of
the birds' invertebrate prey. Our results suggest a novel mechanism by which ocean warming might affect
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predator-prey interactions in intertidal ecosystems.
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1. Introduction

The integrity of coastal ecosystems is being compromised by a wide
variety of environmental stressors (Harley et al., 2006). These stressors
include sea-level rise (Chu-Agor et al., 2011), increases in the frequency
and severity of extreme storm events (Wethey et al,, 2011), warming
(Richardson, 2008) and acidification of the ocean (Gaylord et al,
2011), the discharging of oil (Lance et al., 2001) and industrial develop-
ment (Bullerio and Chapman, 2010). In order to predict and mitigate
the future impacts of these and other stressors on coastal ecosystems,
there is need to better understand how these systems function under
current levels of environmental variation.

The oystercatchers (Family Haematopodidae), a group of ten extant
species of large shoreline birds (Thomas et al., 2004), have proven reli-
able indicators of the state of coastal ecosystems (Carlson-Bremer et al.,
2010). As top predators, oystercatchers often play important roles in
structuring the intertidal communities in which they feed (Coleman et
al., 1999; Frank, 1982; Marsh, 1986). However, with the exception of
the Eurasian oystercatcher (H. ostralegus), which has been comprehen-
sively studied (Goss-Custard, 1996; Van de Pol et al., 2010), there is little
information on the role of environmental factors in driving variation in
the demography of this avian family. Further, the biology of oyster-
catchers has been studied mainly in altered or degraded habitats, and fo-
cused on the effects of anthropogenic factors: habitat loss (Duriez et al.,
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2012), the oiling of nesting and feeding beaches (Andres, 1999), shellfish
fisheries (Verhulst et al., 2004), eutrophication (Garcia et al., 2010), the
introductions of non-native predators (Dowding and Murphy, 2001)
and prey (Caldow et al., 2007), and human disturbance (Leseberg et al.,
2000). Importantly, while there is a rich literature on the effects of
large-scale oceanographic variation on the demography of oceanic
birds such as northern fulmars (Fulmaris glacialis) (Thompson and
Ollason, 2001) and black-legged kittiwakes (Rissa tridactyla)(Aebischer
et al, 1990), understanding is poor for shoreline birds such as
oystercatchers.

The demography of oystercatchers is likely to be strongly influenced
by marine environmental conditions, because parameters such as
sea-surface temperature affect the behavior, physiology and demogra-
phy of many types of invertebrates eaten by these birds (Dahlhoff and
Menge, 1996; Grenon and Walker, 1981; Menge et al., 2008). Further,
stable isotope analysis indicated that the trophic ecology of one species,
the African black oystercatcher (Haematopus moquini), accurately
gauged both the large-scale influence of oligotrophic vs. eutrophic
water masses and the small-scale influence of the community composi-
tion of prey species (Kohler et al., 2011).

Here, we used data collected over ten years (2003-2012) to test the
hypothesis that interannual variation in sea-surface temperature
influences the breeding effort of black oystercatchers (Haematopus
bachmani) at a remote site on Triangle Island, British Columbia, Canada.
Sea-surface temperatures in the northeast Pacific Ocean have been var-
iable but frequently well above long-term averages through much of
the last three decades, often to the detriment of marine predators
(Mackas et al., 2007). For example, several species of oceanic birds
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breeding on Triangle Island, including secondary and tertiary con-
sumers, have experienced reduced productivity in warm-water years
due to effects of elevated temperatures on the food webs that support
them (Gjerdrum et al., 2003; Hipfner, 2008). In addition, long-term
studies in the Dutch Wadden Sea have shown that intertidal inverte-
brates have lower body mass following winters with higher sea temper-
atures (Zwarts, 1991), potentially creating nutritional stress for avian
predators (Beukema, 1992). Therefore, we predicted that breeding den-
sity, clutch size, and egg size of black oystercatchers would decline with
increasing spring sea-surface temperatures.

2. Materials and methods
2.1. Study species

The black oystercatcher is a rocky shore specialist, widely distributed
along the Pacific coast of North America (Andres and Falxa, 1995), feed-
ing mainly on Mytilus mussels and limpets of several genera (Frank,
1982; Hartwick, 1976; Lindbergh et al., 1987). The birds lay a clutch of
one to three eggs (rarely four) in a shallow depression in beach gravel.
Physical characteristics of a territory influence a pair's productivity, so
the territories are defended aggressively and reused from one year to
the next (Hartwick, 1974; Hazlitt and Butler, 2001). Black oystercatchers
can be resident or migratory; we suspect that the group on Triangle
Island is resident, like others in British Columbia (Johnson et al.,
2010), because individuals that we banded as adults and pre-
fledglings in August of 2003 to 2008 were present when we arrived
on the island in March of the following year (Hipfner et al,, 2012). For
more northerly, migratory populations, spring migration begins in
early April (Johnson et al., 2010).

2.2. Field methods

Field work on Triangle Island (50°52’N, 129°05'W) was conducted
during the egg-laying period of black oystercatchers, mid-May through
late June (Hipfner et al., 2012), in each year from 2003 to 2012. The
uninhabited island is located 40 km seaward of Cape Scott at the north-
western tip of Vancouver Island, and remains in a relatively pristine
state, supporting neither commercial activities nor introduced preda-
tors or prey.

Accessible shoreline areas on Triangle Island totaling approximately
4,0 km in length were systematically searched at ~1-3 d intervals by
crews of 2-3 people (Fig. 1). The rest of the island was inaccessible
due to the ruggedness of the shoreline and the presence of Steller's
sea-lion (Eumetobius jubatus) rookeries. When an egg was first found
in an oystercatcher nest, the egg was marked with a felt tipped pen,
and a marker such as a colored fishing float was placed at the top of
the beach above the nest so that the nest could be found quickly, but
otherwise avoided so as to minimize disturbance. After ~5 d, crews
returned to obtain a GPS reading at the nest, record the final clutch
size, and measure all of the eggs (length and maximum breadth, to
within 0.1 mm with dial calipers). There was only one instance, in
2011, when an egg disappeared between the time the nest was first
found and when it was later rechecked.

2.3. Statistical analyses

We estimated the volume of each egg using the formula: Volume =
0.51xlengthx breadth? (Nol et al., 1984). The total volume of each
clutch was calculated by summing volumes of its individual eggs. In
the statistical analyses, three response variables: (1) number of active
nests found in each of the ten years, (2) annual mean clutch size, and
(3) annual mean total clutch volume, were regressed against the
mean April sea-surface temperature measured at the Kains Island
lightstation, ~90 km southeast of Triangle Island. We considered both
linear and quadratic forms for all regressions, and used o= 0.05 to

define statistical significance. We used mean temperature in April as
the independent variable because locally, the transition from winter
to spring oceanographic conditions occurs as early as the start of that
month (Borstad et al., 2011).

3. Results

Between nine and 15 black oystercatcher pairs laid eggs annually
in the 4.0 km of shoreline searched by field crews on Triangle Island
in 2003-2012 (Fig. 1). This equates to breeding densities of 2.2 to
3.7 pairs km ™! of shoreline. Mean April sea-surface temperatures
ranged from 7.8 to 9.6 °C, and as predicted, the number of active
nests declined with increasing temperature (for the quadratic rela-
tionship, r?=0.94, F,7=61.37, P<0.0001). There were 14 or 15
nests in all five years with temperatures<9 °C, but only nine to 11
nests in the five warmer years (Fig. 2). There was also an underlying
temporal trend, with generally fewer nests in the earlier years, but
more in the later years. However, the study spanned transitions
from warm to cold states (in 2006-2007 and 2010-2011), and from
cold to warm states (in 2009-2010), and across all three transitions
the number of nests closely tracked spring water temperatures.

Clutch size varied from one to three eggs, with modal values of
two and more commonly three (Fig. 3). The annual mean clutch
size ranged from 2.1 to 2.8 eggs nest™ !, but contrary to prediction,
did not decline with April sea-surface temperature; rather the linear
relationship was non-significantly positive (r?=0.29, F;g=3.20,
P=0.11)(Fig. 2). This reflects, at least in part, that clutches composed
of just a single egg were laid only in the five years in which the mean
April sea-surface temperature was <9 °C (Fig. 3).

Total clutch volumes ranged from 106.6 to 140.8 cm? in three-egg
clutches, and from 78.3 to 94.2 cm® in two-egg clutches. The yearly
mean total clutch volume of three-egg clutches varied from 124.3 to
130.1 cm?, and was not related linearly to sea-surface temperature
(r?=0.02, F;5=0.16, P=0.70). For two-egg clutches, the yearly
mean total clutch volume varied from 84.3 to 89.3 cm?, and it too
was unrelated to temperature (r?=0.01, F; g =0.04, P=0.85).

4. Discussion

As predicted, the number of black oystercatcher pairs that laid
eggs on Triangle Island in May and June in each of ten years declined
with increasing mean April sea-surface temperature. One or more of
four processes operating within the population could account for
that pattern: a lack of recruitment by inexperienced females and/or
skipped breeding by experienced females in warm years — both in-
dicative of reduced breeding propensity; and increased mortality
and/or emigration of adult birds in warm years.

Features of black oystercatcher biology, observations on a small
number of birds banded on Triangle Island, and comparison with
close relatives indicate that a reduction in breeding propensity offers
the more parsimonious explanation. In other Charadriiform birds, in-
experienced females lay later than experienced females, and they lay
smaller clutches (Coulson and White, 1958; Nisbet et al., 1984). In
this study, single-egg clutches appeared only in the five years in
which ocean temperature was <9 °C; seven of the total of nine
single-egg clutches were laid later in the year than any two- or
three-egg clutches; and at four of the five sites where single-egg
clutches were laid in 2011 (three) and 2012 (one), one member of
the pair had been banded as a juvenile and not bred previously
(Hipfner et al.,, 2012; J.M.H. unpubl. data). Thus, females appeared
more likely to recruit in cold, putatively food-rich years - a phenom-
enon also seen in red-billed gulls (Larus novaehollandiae) (Mills et al.,
2008). As for skipped breeding by experienced females, we note that
one individual banded as an adult bred at the same site from 2003 to
2009, occupied that site but did not breed in the warm year of 2010,
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Fig. 1. Map of Triangle Island showing locations of black oystercatcher nests found in shoreline areas searched by field crews in 2003-2012 (these areas are shaded in gray). Contour
intervals are 20 m. Nests were numbered in the order they were found over the ten years; numbers in brackets are the number of years of the study in which the nest was active.
Nests 11-15 and 22 were located outside the area searched in all years, and are not indicated on the map.

then bred again in the cold years of 2011 and 2012 (Hipfner et al.,
2012; J.M.H. unpubl. data).

Conversely, there is little to suggest that mortality or emigration rates
were higher in warm-water years. First, there were large flocks of 25 or
more non-breeding oystercatchers on Triangle Island in all years. Second,
oystercatchers appear to reside year-round on Triangle Island, are
strongly territorial (Hartwick, 1974) and exhibit strong fidelity to breed-
ing sites (Hazlitt and Butler, 2001). Finally, resighting rates for six adults
banded on Triangle Island in 2007 suggested a survival rate in excess of

~90% per annum (Hipfner et al., 2012), while the survival rate of Eurasian
oystercatchers was not strongly impacted by winter food shortages
(Camphuysen et al., 1996).

What mechanism(s) could link high ocean temperatures to reduced
breeding propensity in black oystercatchers? The effects of temperature
are likely to operate through the food web, rather than directly on the
birds themselves. Under this scenario, warm spring sea temperatures
create poor feeding conditions, causing the birds to start their breeding
season in poor body condition. Poor body condition has been linked to
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Fig. 2. The number of active black oystercatcher nests on Triangle Island in a year declined
with increasing mean April sea-surface temperature measured at Kains Island, in
2003-2012 (top). The mean clutch size for black oystercatchers at Triangle Island was
not significantly related to the mean sea-surface temperature measured at Kains Island
in 2003-2012 (bottom).

recruitment failure (Atkinson et al., 2005) and low breeding success
(Durell et al., 2001) in Eurasian oystercatchers, as in other shorebirds
(Hegyi and Sasvari, 1998). That breeding density closely tracked tem-
perature earlier in the same spring suggests that temperature affected
behavioral and/or physiological attributes of prey that determined
their availability and/or nutritional value to oystercatchers. If effects
on the demography of prey were involved, e.g., reduced recruitment
into mussel populations in warm years (Beukema et al., 2010), then a
lagged relationship between temperature and breeding density would
have been expected (Beukema, 1992).

Along British Columbia's outer coast, black oystercatchers feed
mainly on the thick-shelled California mussel (Mytilus californianus)
by stabbing their bills between gaping valves and severing the adductor
muscle (Hartwick, 1976). They feed secondarily on limpets by deliver-
ing a sharp jab that dislodges the prey from the substrate (Hartwick,
1976). Consequently, feeding conditions for oystercatchers could vary
with factors such as the amount of time that mussels spend gaping,
the speed with which mussels contract their adductor muscle to close
the valves, and by the tenacity with which limpets grip the substrate.
Experiments indicate that these traits can be temperature dependent
in these taxa. For example, in warm water, limpets (Patella vulgata)
contracted their foot muscles more powerfully, thus maintaining a
stronger grip on the substrate (Grenon and Walker, 1981); and
Mediterranean mussels (M. galloprovincialis) spent more time with
their valves closed (Anestis et al., 2007). In terms of nutritional quality,
blue mussels (Mytilus edulis) lost more mass over the course of warm
winters than cold winters in the Wadden Sea, indicative of a greater en-
ergetic deficit (Zwarts, 1991).

Our prediction that clutch size and egg size of black oystercatchers
would decline with ocean temperature was not fulfilled. Nonetheless,
an analysis of geographic variation across the species range does sug-
gest a role for food in limiting clutch size. In general, clutch size varied
little among years and sites, with means consistently between 2.3 and
2.8 eggs nest~! (Andres, 1999; Drent et al., 1964; Gill et al., 2004;
Hazlitt and Butler, 2001; Morse et al.,, 2006; Vermeer et al., 1992a;
Webster, 1941; but see Kenyon, 1949). On Triangle Island, the mean
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Fig. 3. Frequency distributions for clutch size in black oystercatchers at Triangle Island,
2003-2012. Note that single-egg clutches were laid only in the five years in which the
mean April sea-surface temperature was <9 °C (those indicated with a star).

clutch size fell outside this range (2.1 eggs nest™!) only in 2011,
when many single-egg clutches were laid. In contrast, the mean clutch
size in nine years on Cleland Island, British Columbia, where breeding
density exceeded that at any other site by at least an order of magnitude
(~40 pairs km~'; Hipfner et al, 2012), ranged only from 1.9 to
2.2 eggs nest™ !, with a mode of two in all years (Groves, 1984;
Hartwick, 1974; L'Hyver and Miller, 1991; Vermeer et al., 1992b). The
link between unusually high breeding density and unusually small
clutch size is suggestive of a density-dependent ceiling on egg
production.

To summarize, we found that the density at which black oyster-
catchers bred on Triangle Island declined as spring sea-surface temper-
atures increased, and that no single-egg clutches, indicative of
recruitment, were laid in warm-water years. Those results imply that
egg-production capacity in oystercatchers can be affected by oceano-
graphic conditions, probably operating via the effects of temperature
on the behavior and physiology of prey. We suggest that further
research on this simple predator-prey system might reveal new mech-
anisms by which climate change can affect trophic relations in intertidal
communities (Menge et al., 2011; Moore et al.,, 2011).
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