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Rates of human-induced environmental change continue increasing with human population size, potentially altering animal
physiology and negatively affecting wildlife. Researchers often use glucocorticoid concentrations (hormones that can be
associated with stressors) to gauge the impact of anthropogenic factors (e.g. urbanization, noise and light pollution). Yet, no
general relationships between human-induced environmental change and glucocorticoids have emerged. Given the number
of recent studies reporting baseline and stress-induced corticosterone (the primary glucocorticoid in birds and reptiles)
concentrations worldwide, it is now possible to conduct large-scale comparative analyses to test for general associations
between disturbance and baseline and stress-induced corticosterone across species. Additionally, we can control for factors
that may influence context, such as life history stage, environmental conditions and urban adaptability of a species. Here,
we take a phylogenetically informed approach and use data from HormoneBase to test if baseline and stress-induced
corticosterone are valid indicators of exposure to human footprint index, human population density, anthropogenic noise and
artificial light at nightin birds and reptiles. Our results show a negative relationship between anthropogenic noise and baseline
corticosterone for birds characterized as urban avoiders. While our results potentially indicate that urban avoiders are more
sensitive to noise than other species, overall our study suggests that the relationship between human-induced environmental
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change and corticosterone varies across species and contexts; we found no general relationship between human impacts and
baseline and stress-induced corticosterone in birds, nor baseline corticosterone in reptiles. Therefore, it should not be assumed
that high or low levels of exposure to human-induced environmental change are associated with high or low corticosterone
levels, respectively, or that closely related species, or even individuals, will respond similarly. Moving forward, measuring
alternative physiological traits alongside reproductive success, health and survival may provide context to better understand

the potential negative effects of human-induced environmental change.
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Introduction

Over the past decade, much research has focused on human
impacts on wildlife due to rates of human population growth
and increased infrastructure (Benitez-Lopez et al., 2010).
Human impacts are not restricted to urban areas; animals
living in otherwise undisturbed habitats may be exposed to
artificial light at night (hereafter ‘ALAN’) and anthropogenic
noise. Indeed, 88% of the land area in Europe and almost
half of the land area in the US experience ALAN (Falchi
et al., 2016a), with even rural areas exposed to lights from
agricultural and industrial buildings (Bennie ez al., 2014).
Furthermore, 83% of the USA is within 1 km of a road
(Riitters and Wickham, 2003), and anthropogenic noise
sources have doubled ambient sound levels even in the
most protected habitats in the USA (Buxton et al., 2017).
Fields such as conservation physiology can help predict
animals’ responses to human-induced environmental change
and increase the effectiveness of conservation management
(Madliger et al., 2018).

Researchers often use glucocorticoids (hormones that
can be associated with stressors) to gauge the impact of
disturbance in free-living organisms. Baseline glucocorticoid
levels reflect concentrations prior to the disturbance of
sampling; whereas stress-induced glucocorticoid levels reflect
the response to an acute stressor, such as standardized
capture and restraint protocols. Both baseline and stress-
induced glucocorticoid levels can be taken with relative
ease in the field and have enabled conservation practition-
ers to take preventative action in certain cases (Tarlow
and Blumstein, 2007; Busch and Hayward, 2009). For
example, the impact of reduced habitat availability for
common toads (Bufo bufo) is evident through measures
of glucocorticoid concentrations at small spatial scales,
whereas measures such as toad abundance can only detect
impacts at larger spatial scales (Janin eral, 2011). Yet,
using glucocorticoids to diagnose populations that are
negatively affected by human-induced environmental change

remains generally challenging for two main reasons: (i)
studies within and between species have found varying
results with regards to the effects of human-induced
environmental change on glucocorticoid levels (Table 1)
and (ii) interpretations of increased baseline and/or stress-
induced glucocorticoid levels differ throughout the literature
(Wingfield and Kitaysky, 2002; MacDougall-Shackleton
et al.,2019).

A recent study assessing a broad variety of stressors
(natural and anthropogenic) found no consensus endocrine
profile for chronic stress in wild animals (Dickens and
Romero, 2013), thus challenging the validity of the com-
mon assumption that higher baseline or stress-induced
corticosterone levels (the primary glucocorticoid in birds
and reptiles, hereafter ‘cort’) indicate greater levels of
disturbance and stress. Yet, stressors associated with human-
induced environmental change may be functionally different
than natural stressors (e.g. food availability, temperature)
given their novelty on an evolutionary timescale. To date,
no large-scale pattern of human-induced environmental
change (e.g. urbanization, anthropogenic noise, ALAN) on
glucocorticoid profiles across birds and reptiles has been
identified; studies have found baseline and stress-induced
cort to increase, decrease or remain the same given various
exposure regimes (Table 1). It remains unknown if this lack of
a pattern stems from context dependency in how disturbance
affects cort (e.g. geographic locations, life history stages)
or if, in fact, there is no general pattern in how animals
respond physiologically to human-induced environmental
change.

Further, increased baseline and stress-induced cort levels
have been alternatively interpreted as an animal appropriately
coping with, or being negatively affected by, a stressor
(Wingfield and Kitaysky, 2002; MacDougall-Shackleton
et al., 2019). Differing interpretations of increased baseline
and stress-induced cort are perhaps, in part, due to the fact
that stressors vary in their constancy; some stressors are
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more acute (e.g. capture), while others are more chronic
(e.g. noise exposure; Dickens and Romero, 2013). Increased
stress-induced cort may be adaptive in the context of acute
stressors by increasing one’s likelihood of escape. Indeed, male
tree lizards (Urosaurus ornatus) with experimentally elevated
cort concentrations showed enhanced anti-predator responses
during predator encounters (Thaker ez al., 2009). However,
chronic stressors that result in continuously elevated baseline
and stress-induced cort (i.e. no acclimation or habituation)
can be associated with adverse effects, such as reduced
immune and reproductive function, suppressed growth
and neuronal cell death across taxa (Rich and Romero,
2005; Kvamme ez al. 2013). Additionally, physiological
responses to a given stressor will likely depend on individuals’
past exposure to stressors (Monaghan and Haussmann,
2015).

Given the large number of studies that have reported
cort concentrations worldwide over the last few decades,
large-scale comparative analyses are now possible. Large-
scale comparative analyses can test for general relationships
between human-induced environmental change and cort
levels across species, while controlling for life history,
environmental factors and urban adaptability of a species
(Blair 2001; Madliger and Love, 2015). Identifying the
presence or absence of a general pattern may also help
identify the contexts in which increased baseline and/or stress-
induced cort levels warrant preventative conservation action.
This technique was recently used to explore relationships
between International Union for the Conservation of Nature
listing status, location within a geographic range and
cort concentrations in birds and reptiles (Martin et al.,
2018).

Here, we use an established database of baseline and
stress-induced cort levels across free-living vertebrates
(HormoneBase.org; Vitousek et al., 2018) to test multiple
hypotheses regarding the relationship between baseline or
stress-induced cort and large-scale patterns of human-induced
environmental change, such as urbanization (as measured
by human footprint index and human population density),
anthropogenic noise and ALAN in birds and reptiles (Fig. 1;
Bonier, 2012; Swaddle et al., 2015; French et al., 2018). We
also test for relationships between baseline and stress-induced
cort levels and exposure to human-induced environmental
change for bird species with different levels of urban
adaptability (e.g. urban exploiter, avoider or adapter). We
account for variation in glucocorticoids due to environment
(temperature and precipitation), life history stage (breeding
v. non-breeding season), sex, mass and maximum number of
lifetime breeding events by including these parameters in our
analyses. While some of our data are relatively coarse in scale
(resolution of geographic locations range from 0.5 m to 1 km,
see below for details), general patterns, such as variation in
average cort levels across populations should be identifiable
and greater than within population variation (Addis et al.,
2011; Krause et al., 2014; Vitousek et al., 2019).

Conservation Physiology - Volume 8 2020

We predict that ALAN is positively related to baseline
cort in birds and reptiles, given results from European
blackbirds (Turdus merula; Russ et al., 2015), zebra finches
(Taeniopygia guttata; Alaasam et al., 2018) and great tits
(Parus major; Ouyang et al., 2015). We also predict that
baseline and stress-induced cort are negatively related
to anthropogenic noise exposure in birds and reptiles,
as chronic noise exposure has been found to limit the
ability to respond to subsequent acute stressors in free-
living passerines (i.e. downregulation of stress-induced
corticosterone after handling; Injaian ef al., 2018; Kleist
et al., 2018). For both noise and light pollution, we also
predict an interaction effect between urban adaptability
and the disturbance parameter, such that urban avoiders
will show the greatest alteration in baseline and/or stress-
induced cort. It is difficult to predict whether human
footprint (a measure based on infrastructure, land cover
and human access to natural areas; Venter et al., 2016b) and
human population density will be positively or negatively
associated with baseline or stress-induced cort, given that
the relationship between urbanization and baseline or stress-
induced cort varies in birds and reptiles (Table 1). Similarly,
a lack of empirical evidence makes it difficult to form
hypotheses about the association between ALAN and stress-
induced cort. If our phylogenetic comparative analysis does
not show a general pattern across species with regards to
changes in baseline or stress-induced cort, our results would
suggest that glucocorticoid levels alone cannot be used by
researchers or conservation practitioners as general indicators
of anthropogenic impacts. Additionally, if our results show
that environmental and life history stage variables explain
much of the variation in baseline or stress-induced cort, this
study would support the consideration of context in studies of
anthropogenic disturbances on glucocorticoids in free-living
animals.

Materials and methods

We used HormoneBase (Vitousek et al., 2018) to obtain
data on baseline and stress-induced cort concentrations in
birds and reptiles. Baseline cort measures included here
were taken within 3 min of capture and stress-induced
cort levels represent peak measures that were generally
taken 15-60 min after capture (unless authors specifically
indicated that peak cort in that population or species occurred
>60 min after capture). All baseline and stress-induced
cort data represent the mean concentration for each sex.
Although HormoneBase includes data across vertebrate
species, relatively small sample sizes in some taxa and/or
the inapplicability of available disturbance metrics to aquatic
taxa limited our analysis to birds and reptiles. In reptiles
we included data for baseline cort only, as there were not
enough data for a formal analysis of stress-induced cort in
this group.
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Figure 1: Schematic of potential pathways by which urbanization, and s
stress-induced cort in birds and reptiles.

We used geographic location (latitude and longitude in
degrees decimal) to match each cort measure with metrics
of anthropogenic disturbance. Global data were available
for human population density, human footprint index and
ALAN, whereas data for anthropogenic noise levels were
only available in the USA. Human population density was
calculated by dividing population counts (acquired through
national censuses and population registers from the year
2000) by land area on a 1 km grid; thus, measurements
are persons/km?® (Center for International Earth Science
Information Network (CIESIN), Columbia University, 2016).
Human footprint indices were compiled using weighted
measures of direct and indirect human pressures on the
environment (e.g. extent of built environment, crop land,
pasture land, human population density, night-time lights,
railways, road and navigable waterways) at a high resolution
(median=0.5 m,) and measured on a scale from zero to
50, as described in Venter ez al. (2016a). Human footprint
indices were available from 1993 and 2009, whereas the data
included in this study ranged from 1969 to 2015. For each
measure, we used the human footprint index taken closest
in time; thus, the metric from 1993 was used for studies
that measured cort levels from 1969 to 2001, and the human
footprint index from 2009 was used for studies that measured
cort from 2002 to 2015. Although this method may cause
human footprint indices to be over- or underestimated in
geographic locations that experienced (de)urbanization in
the past few decades, only 10% of locations had changes
in human footprint indices >30% between 1993 and 2009.
ALAN data included here were measures of sky brightness

pecifically ALAN and anthropogenic noise, can affect baseline and/or

(ped/m?), which were modelled using satellite measures
of upward radiance from artificial sources, with a spatial
resolution of 742 m (Falchi et al.,2016a; Falchi et al., 2016Db).
Data on anthropogenic noise (A-weighted L5 sound pressure
levels dB re 20 pPa) were available from the National Park
Service (NPS, 2014) and based on Random Forest models that
explain the relationship between long-term measurements of
ambient sound pressure level and geospatial features such as
topography, climate, hydrology and anthropogenic activity
(Breiman, 2001). Anthropogenic sources were isolated from
models of existing soundscapes (e.g. Buxton et al., 2017)
through logarithmic subtraction of the natural sound levels
from existing sound level estimates. Noise data had a
resolution of 270 m?. Due to differences in available data
sets, our sample sizes varied between models (see sample sizes
listed in Tables 2 and 3).

In an attempt to better understand the role that previous
adaptation to disturbance has in a species’ response to
urbanization, we created an ‘urban adaptability’ parameter
that characterized each species as an urban avoider, urban
adapter or urban exploiter. We conducted a literature review
to characterize the urban adaptability of each bird species
included in our analysis (Table S1). We did not classify rep-
tiles, as there were less published data regarding abundance of
reptile species included in HormoneBase along an urban:rural
gradient. We assigned bird species that primarily bred in
urban areas as exploiters (e.g. house sparrows, yellow-vented
bulbuls, 7 =32 samples from 2 species), birds that commonly
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Table 3: Model comparisons for the relationship between human-induced environmental change and reptilian baseline corticosterone, using global and US-based data sets

*All models include ‘population ID; ‘lab ID"and ‘species’ as random effects.
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bred along an urban:rural gradient as adapters (e.g. black-
capped chickadees, barn swallows, 7=222 samples from
38 species) and birds that were uncommon near urbanized
areas as avoiders (e.g. pine siskin, wood thrush, 7=233
samples from 61 species). Some bird species in HormoneBase
have been documented in urban areas during the migratory
period; however, their relative use of stopover sites along
an urban:rural gradient is unclear. Therefore, these species
were not assigned an urban adaptability and were not
included in the analyses (7 =6). Additionally, other species
did not have enough published data to confidently categorize
urban adaptability and these species were also removed from
the analyses (7=6). For many species that bred in remote
areas, there were no published data explicitly comparing
abundance along an urban:rural gradient. However, we
feel confident in our classification of these species as
‘avoiders’, given their non-existence near heavily human-
altered landscapes. It is important to note that one limitation
of this ‘urban adaptability’ parameter is that populations, and
even individuals, of a given species often vary in their previous
exposure to human-induced environmental change based on
differences in fine-scale habitat use and/or history of urban
colonization (Ouyang et al., 2018). Therefore, our species-
level ‘urban adaptability’ parameter may not be equally
accurate across individuals and populations included in our
analysis.

We included phylogenetic information in all models to
account for the expected similarity in baseline and stress-
induced cort of closely related species. Specifically, we began
with the ultrametric, fully resolved phylogeny published
in association with HormoneBase (Johnson et al., 2018).
This phylogeny was created using a time-dated backbone
phylogeny from the TimeTree of Life (Kumar et al., 2017),
which included one tip for each of the major animal lineages
included in HormoneBase, such that each row matched one
tip of a lineage-specific tree. We pruned the original tree used
in HormoneBase to include only the species used in our study.

Given that we had multiple observations per species, we used
the MCMCglmm package in R (Hadfield, 2010) to conduct
phylogenetically informed analyses of the relationship
between human-induced environmental change and baseline
and stress-induced cort in birds, and baseline cort in reptiles.
In addition to the main effects of human footprint index,
human population density, ALAN and anthropogenic noise,
we included an interaction term between each anthropogenic
parameter and urban adaptability in avian models. We
also included parameters that were previously established
as important predictors of baseline and stress-induced
cort (Vitousek et al., 2019). Specifically, we included sex
(female =456, male = 666), mass (mean=2577.2 g+21814.6
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SD), maximum number of lifetime breeding attempts
(mean =24.8 attempts £21.5 SD), life history stage (breed-
ing =876 or non-breeding = 246) and an interaction between
maximum number of lifetime breeding attempts and life
history stage, as fixed effects in all models. Data for these
fixed effects were compiled from a variety of reputable
sources, such as primary scientific articles, Animal Diversity
Web (animaldiversity.org), Encyclopedia of Life (eol.org) and
Birds of North America (birdsna.org; see Johnson et al., 2018
for more details). We used Rphylopars to impute missing
data for the ‘maximum lifetime breeding attempt’ parameter
based on estimations of trait covariances across and within
species (~5% and 3% of data for ‘maximum lifetime
breeding attempts’ were imputed for analyses of baseline
and stress-induced cort in birds, respectively; ~37% of data
for ‘maximum lifetime breeding attempts’ were imputed for
analysis of baseline cort in reptiles; Goolsby ef al., 2016).
Urban adaptability, sex and life history stage were set as
factors in the model, with ‘urban adapter’, ‘female’ and
‘breeding’ levels set as the default levels, respectively. We
also included species (the matrix of phylogenetic relatedness),
population identity (based on geographic location of the
study included in HormoneBase) and hormone lab identity
as random effects in all models (Vitousek et al., 2019).
Additionally, in models of baseline cort, we used relevant
temperature (monthly average of daily mean temperature,
gathered on a 0.5 degree grid) and precipitation (cumulative
mm per month, gathered on a 0.5 degree grid) data from
the CRU-TS 4.0 Climate Database (Harris et al., 2014),
as described by Johnson et al. (2018). Finally, we included
baseline cort as a fixed effect in models of stress-induced cort.
We found no issues of collinearity between all parameters,
which we checked by creating a correlation matrix (ggcor
function in the arm package, r<0.7 for all pairwise
comparisons). We used weakly informative priors (V=1,
nu=0.002) to rule out unreasonable parameter values. We
ran each model with 1000 000 iterations, a burn in of 5000
and a thin of 200.

We natural-log transformed hormone data and other non-
normally distributed continuous variables before analyses.
Additionally, we added a constant to ALAN (+41), human
footprint index (+1), human population density (+1) and
temperature (+22) to ensure that all values were greater than
zero. All trace plots were visually inspected to check that the
chains had converged and autocorrelations were calculated
to ensure that each successive value in the output did not
strongly depend on the previous one (Hadfield, 2010). All
models were run four times to confirm the stability of the
results.

We evaluated our models using deviance information
criterion (DIC), which uses deviance as a measure of fit and
automatically estimates a penalty for model complexity in
Bayesian models (Bolker ez al., 2009). Our set of candidate
models was comprised of single-hypothesis models that
included all covariates described above, in addition to one,
all or none (null model) of our anthropogenic parameters,
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both with and without the urban adaptability interaction
term. We also compared these models to an intercept-only
model to ensure that the covariates that were previously
important predictors of baseline and stress-induced cort
maintained their relevance, despite using a subset of the
data (Vitousek et al., 2019; see Tables 2 and 3 for a full
model list). For the top-ranked models, we estimated the
B parameter estimates and 95% credible intervals (CI) of
each parameter (Table 4). We assessed the importance of
parameter estimates based on whether the 95% Cl overlapped
zero.

Results

In the restricted analysis of anthropogenic noise levels
(which only included samples from the USA), the model that
was ranked best fit included an interaction effect between
anthropogenic noise levels and urban adaptability (Fig. 2a).
However, other (non-intercept only) models were similarly
ranked (ADIC < 1; Table 2). There was a negative relation-
ship between baseline cort and anthropogenic noise levels
for urban avoiders (B,yoidersnoise = —0.36;5 95% CI=—-0.68,
—0.03; Table 4), and, to a lesser extent, urban exploiters
(Bexploitersnoise = —0-13; 95% CI=—0.83, 0.56; Table 4;
Fig. 2a). For our global analysis of avian baseline cort,
the model that included human population density, human
footprint index and ALAN was ranked best fit; however, it
had a ADIC < 1, compared to the other (non-intercept only)
models (Table 2; Fig. 2b—d). Within this model, the parameter
estimates of disturbance metrics were relatively small
(Bhuman population density = 0.08;  Bhuman footprint index = —0.05;
BarLaN = —0.24), and the 95% Cls overlapped zero for all
three predictors (Table 4). Avian baseline cort varied over life
history stage in both analyses, with baseline cort levels being
lower in the non-breeding season, compared to the breeding
season (global model; 8,on-breeding = —0.82, US model;
non-breeding = —0-87; Table 4). Additionally, temperature was
negatively related to avian baseline cort in the global analysis
(Bremperature = —0.285 95% CI=—0.49, —0.06; Table 4).

We also did not find evidence for a general association
between human footprint index, ALAN, human population
density or anthropogenic noise and avian stress-induced cort,
as these parameters were not in the best-fit models (Table 2).
The urban adaptability parameter was in both best-fit models
of stress-induced cort (global and US-only data); however,
the 95% ClIs overlapped zero in both models (Table 4). Our
intercept-only models received <0.1% of the model weight in
each analysis (Table 2).

For our analyses of baseline cort in reptiles, null models
were the best fit; anthropogenic parameters did not improve
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model estimates (Table 3). Models that included human
footprint index, human population density and ALAN
received a similar amount of model weight as the null
(14-26%; Table 3). The model that included anthropogenic
noise, however, received considerably less weight than the
null model (null model: 71%, noise model: 20%; Table 3).
The 95% ClIs overlapped zero for all contextual variables
(temperature, precipitation, life history stage) in the top
models of reptilian baseline cort (Table 4). However, the
95% CI for the interaction between life history stage and
the maximum lifetime breeding attempts did not overlap zero
(Table 4).

Discussion

We found no general patterns in the association between
human-induced environmental change and baseline or stress-
induced cort in birds or baseline cort in reptiles. Our results
only showed one context-specific pattern with regards to
human-induced environmental change; for birds character-
ized as urban avoiders, baseline cort was negatively related to
anthropogenic noise exposure (Fig. 2a). Therefore, our results
partially supported our prediction that anthropogenic noise
is negatively related to cort levels, but we found no gen-
eral relationship between noise disturbance and cort across
taxa in other contexts (Table 2). It is difficult to determine
the reason why baseline cort was positively associated with
anthropogenic noise for urban avoiders because of the correl-
ative nature of this study. For example, exposure to chronic
anthropogenic noise may cause urban avoiders to have lower
baseline cort and indicate increased sensitivity to disturbance
(as is found in some passerines experimentally exposed to
anthropogenic noise; Table 1), or these species may be coping
well with the stressor, indicating they are less sensitive to
disturbance compared to urban adapter or exploiters. Inter-
preting increased or decreased baseline and stress-induced
cort is also difficult due to context dependency (i.e. an indi-
vidual or population’s previous exposure to disturbance), and
interpretations tend to vary between physiologists, ecologists
and conservationists.

Although the top-ranked model for avian baseline cort
included ALAN (in addition to human footprint index and
human population density), the negative relationship was
relatively weak and opposite our hypothesis of a positive rela-
tionship between avian baseline cort and ALAN (Fig. 2b—d).
We found no support for general associations between ALAN
and stress-induced cort across birds and baseline cort across
reptiles (Table 2). It is important to note that our results do
not suggest that human-induced environmental change is not
associated with changes in baseline and stress-induced cort
within given bird and reptile populations, but rather that there
is no general relationship between disturbance and cort across
the collective data analyzed here.

This lack of a general pattern matches previous studies
in these taxa (Table 1), as well as other recent comparative
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Table 4: B estimates £95% Cls, calculated using £-1.96 standard error (SE) for each parameter (intercept and fixed effects only) included in the
top-ranked model from each analysis

Parameter

B estimate

Effective
sample size

(Continued)
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Parameter

*Italicized text indicates that 95% Cl did not overlap zero

work on the effects of chronic stressors (both anthropogenic
and non-anthropogenic) on animal physiology (Dickens
and Romero, 2013; Tablado and Jenni, 2017), and may
be explained by several non-mutually exclusive pathways.
First, the physiological effects of chronic stress can differ
among taxa (Dickens and Romero, 2013). For example,
ALAN may extend foraging time for species that use
visual, as opposed to acoustic, foraging cues, thus altering
baseline and stress-induced cort through differences in
nutritional state (Longcore and Rich, 2004). Second, the
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Effective

presence of other (non-anthropogenic) stressors, such as
internal condition (Bonier et al., 2009; Angelier et al., 2010),
high predation risk (Clinchy ez al., 2011) or parasite load
(Raouf et al., 2006), may simultaneously impose varying
selection pressures on cort and differ between taxa, and
even individuals. These concurrent effects could mask our
ability to detect general relationships between baseline
and stress-induced cort and an individual, anthropogenic
factor. This idea is supported by the fact that context,
as determined by life history stage, was an important
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Figure 2: Relationships between (a) anthropogenic noise (data split by urban adaptability, US-only data), (b) ALAN (global data), (c) human
footprint index (global data) and (d) human population density (global data) and avian baseline cort. Circles represent raw data points, whereas
lines represent model outputs with 95% Cl (shaded region). Figures were created by allowing the dependent variable to vary, while all other

predictors were held constant.

predictor in our models of avian baseline cort (Table 4).
Third, the direction of change in baseline and/or stress-
induced cort may differ based on an individual’s previous
exposure (Grace and Anderson, 2018) and/or the length of
exposure to a given stressor (i.e. habituation). Like many
observational field studies, one limitation of our study is
that we do not have information on a given individual’s
previous exposure levels to anthropogenic disturbance
(within a single breeding season or over one’s lifetime;
French et al., 2008; Fokidis et al., 2009; Foltz et al., 2015).
Therefore, the degree to which our results may be influenced
by previous habituation or adaptation to human-induced
environmental change at the individual or population levels

remains unknown. It is also important to acknowledge
that our sample sizes may have been insufficient to detect
any patterns of anthropogenic disturbance on baseline or
stress-induced cort, due to the complexity of sampling
free-living populations across different life history stages,
environments etc. However, HormoneBase provides the most
comprehensive database of cort levels currently available.
Additionally, if sensitive species have already been lost in
areas exposed to relatively high levels of human-induced
environmental change, we may expect to find no such
patterns between human induced environmental change
and cort within the remaining species (i.e. those analyzed

here).
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Circulating baseline and stress-induced cort levels are often
used to gauge the effect of human-induced environmental
change on birds and reptiles (Lennox and Cooke, 2014);
~45% of publications in ‘Conservation Physiology’ over the
past 5 years have focused on stress physiology (Madliger
et al., 2018). However, outside of our modest finding of
a negative relationship between anthropogenic noise and
baseline cort in birds characterized as urban avoiders, our
results suggest that there is no general relationship between
human-induced environmental change and baseline and
stress-induced cort levels, as measured through plasma, in
birds and reptiles. Therefore, directional predictions, such as
predicting that bird and/or reptile populations exposed to
high levels of human population density, human footprint
index, anthropogenic noise or ALAN will have increased
baseline or decreased stress-induced cort, should be made
with caution; our data suggest that it is not possible to
generalize the effects of human-induced environmental
change on cort across species.

Research in the field of conservation physiology is highly
valuable given increasing human-induced environmental
change and our need to understand impacts on wildlife
(Wikelski and Cooke, 20065 Madliger et al., 2016). However,
it is unlikely that any single physiological metric will
accurately diagnose disturbed populations across species
and contexts, as has been addressed in other reviews (Bonier
et al., 2009; Dickens and Romero, 2013; Sepp et al., 2018;
MacDougall-Shackleton ez al., 2019). Moving forward,
measures of alternative physiological measures (e.g. changes
in body mass, heart rate, oxidative stress, telomere length), or
changes in glucocorticoid concentrations, alongside measures
of behaviour (e.g. activity patterns, parental behaviour),
population health (e.g. population size, birth rate, death rate)
and survival may provide useful context to better understand
potential negative relationships between human-induced
environmental change and individual and population health.

Supplementary material

Supplementary material is available at Conservation Physiol-
ogy online.
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