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Abstract Climate change has exacerbated the occurrence of large-scale sea surface temperature
anomalies, or marine heatwaves (MHWs)—extreme phenomena often associated with mass mortality
events of marine organisms. Using a combination of citizen science and federal data sets, we investigated the
causal mechanisms of the 2014/2015 die-off of Cassin’s Auklets (Ptychoramphus aleuticus), a small
zooplanktivorous seabird, during the NE Pacific MHW of 2013–2015. Carcass deposition followed an effective
reduction in the energy content of mesozooplankton, coincident with the loss of cold-water foraging habitat
caused by the intrusion of the NE Pacific MHW into the nearshore environment. Models examining
interannual variability in effort-controlled carcass abundance (2001–2014) identified the biomass of
lipid-poor zooplankton as the dominant predictor of increased carcass abundance. In 2014, Cassin’s Auklets
dispersing from colonies in British Columbia likely congregated into a nearshore band of cooler upwelled
water and ultimately died from starvation following the shift in zooplankton composition associated with
onshore transport of the NE Pacific MHW. For Cassin’s Auklets, already in decline due to ocean warming,
large-scale and persistent MHWs might represent a global population precipice.

Plain Language Summary During the winter of 2014/2015, thousands of Cassin’s Auklets, a small
seabird that breeds in the NE Pacific, were found dead on beaches from California to British Columbia,
Canada. We show that wide-scale starvation was due to a change in food quality associated with warmer
ocean temperatures preceding and during the die-off. This research highlights that more frequent and
intense ocean warming events may have complex impacts on food webs with population consequences for
marine predators, particularly seabirds such as Cassin’s Auklets.

1. Introduction

Climate warming has been associated with an increase in extreme events, including several large-scale and
persistent sea surface temperature (SST) anomalies, or marine heatwaves (MHW) (Bond et al., 2015; Chen
et al., 2015; Hobday et al., 2016; Pearce & Feng, 2013; Scannell et al., 2016). The NE Pacific MHW became
prominent in the Gulf of Alaska during the winter of 2013–2014 as a consequence of weak upper-ocean cool-
ing (Bond et al., 2015; Di Lorenzo & Mantua, 2016). Positive SST anomalies persisted through 2014, becoming
especially large by early 2015 along the west coast of North Americawith peak SST anomalies >3.5 °C above
the 1981–2010 climatology (Bond et al., 2015). Collectively, this ranks the NE Pacific MHW as the largest on
record (Di Lorenzo &Mantua, 2016). Documented ecological impacts include a northward shift in distribution
of several marine species (Goddard et al., 2016), harmful algal blooms extending from California to Alaska
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(McCabe et al., 2016), reduced ocean productivity (Whitney, 2015), and unusual mortality events of marine
mammals (Di Lorenzo & Mantua, 2016).

From October 2014 through to March 2015, Cassin’s Auklet (Ptychoramphus aleuticus) carcasses were
observed in abnormally high numbers on beaches from central California through to British Columbia (BC)
(Bond et al., 2015). Cassin’s Auklets are small (mass: 150–200 g) zooplanktivorous seabirds that forage for
copepods, euphausiids, and larval fish (Hipfner, 2009). Breeding in dense colonies from Mexico to Alaska,
60% of the global population (~3.3 × 106 breeding individuals) nest on the Scott Islands off the northwest
tip of Vancouver Island, Canada, including the largest colony in the world (~1,095,000) on Triangle Island
(50.86°N, 129.08°W) (Ainley et al., 2011). Postbreeding, the majority of birds from this population disperse
south into the California Current LargeMarine Ecosystem (Ainley et al., 2009). Cassin’s Auklets have previously
been identified as an indicator species of the effects of ocean warming on marine ecosystems (Wolf et al.,
2009, 2010), and in recent decades breeding populations have declined due to changes in prey availability
and phenology associated with climate variability (Lee et al., 2007; Morrison et al., 2011).

In this study we describe the extent, duration, and magnitude of carcass deposition during the 2014/2015 mass
mortality event (MME) of Cassin’s Auklets and test four nonexclusive hypotheses regarding the causal mechan-
ism of this event: Food quality/quantity—higher abundance of energy-dense prey increases survival and/or
higher abundance of low-energy prey increases mortality (Keister et al., 2011). Habitat compression—smaller
areal extent of cold water on the continental shelf equates to foraging habitat compression, potentially increas-
ing mortality due to intraspecific competition. Storminess—storm exposure leads to increased physiological
stress and/or decreased foraging ability, elevatingmortality (Fort et al., 2009). Colony production—higher produc-
tion of hatch-year birds absolutely increases carcass numbers via postbreeding juvenile mortality (Ydenberg,
1989). Separately, we also hypothesize that altered spatial distribution, specifically nearshore aggregation of
birds, may have exaggeratedmortality-event magnitude through an increase in proportional carcass deposition.
Our results suggest that large-scale shifts in shelf ecosystem composition associated with the NE Pacific MHW
provoked both behavioral and nutritional responses in these birds that ultimately resulted in mass mortality.

2. Methods
2.1. Beached Bird Surveys

We used beached bird survey data collected by participants in three citizen science programs: COASST
(39.19–48.34°N), BeachWatch (37.11–38.96°N), and BeachCOMBERS (35.32–37.19°N). All programs employed
effort-standardized (beach length) monthly or more frequent surveys. Each carcass encountered was marked
to avoid double counting and identified to species by morphology, morphometric measurements, and
plumage characteristics.

The extent and duration of the mortality event were determined by calculating the month-averaged encoun-
ter rate (ER—birds per kilometer of beach surveyed) of Cassin’s Auklet carcasses for all surveys performed
between September 2014 and March 2015 within 1° latitudinal bands (N = 14, 34.4°N to 48.4°N) of coastline.
Expected carcass ER (month-specific baseline or “climatology”) was calculated by applying the same proce-
dure to each prior year of data (2001–2013, except southern Oregon: 2004–2013 and northern California:
2006–2013), and then averaging across years.

2.2. Temperature Anomalies

Given that Cassin’s Auklets forage predominantly in cold water (Wolf et al., 2010), we obtained daily SST
anomaly (SSTa—anomalies relative to the 1971–2000 climatological mean; Reynolds et al., 2007) maps from
the National Oceanic and Atmospheric Administration OI V2 high-resolution data repository (latitude:
36–60°N, longitude: coast to 147°W, resolution: 0.25°) to examine the spatial distribution of cold-water habi-
tat. To identify the temporal availability of cold-water habitat, we calculated the proportional ocean area from
the coast to 100 km offshore with SSTa within 1 °C bands from �4 °C to 4 °C for each day from May 2014 to
May 2015. This was performed for the coastline from Cape Blanco (42.837°N, 124.566°W) to Cape Flattery
(48.382°N, 124.732°W), the range of coastline within which ~85% of carcass-fall was recorded.

2.3. Zooplankton Composition

Monthly time series of mesozooplankton composition were used to proxy the quality and availability of prey in
the northern California Current Large Marine Ecosystem: copepod biomass anomalies measured at Newport
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(44.625°N, 124.125°W; Hooff & Peterson, 2006), and the mean size of adult Euphausiids (Euphausia pacifica and
Thysanoessa spinifera) measured at Trinidad Head (41.125°N, 124.125°W; Bjorkstedt & Peterson, 2015). Copepod
samples were processed to measure the biomass of northern and southern assemblage copepods, here
expressed as the anomaly relative to the month-specific average (Hooff & Peterson, 2006; Keister et al., 2011).
The northern copepod assemblage consists of cold-water species that are larger and richer in lipids, and there-
fore represent higher quality prey than copepods comprising the southern assemblage (Peterson et al., 2014).

2.4. At-Sea Spatial Distribution

To examine the spatial distribution of Cassin’s Auklets in 2014, we used at-sea survey data of seabird density
in October–December (the observed MME time window) collected by the National Oceanic and Atmospheric
Administration. Strip-transect-based seabird surveys were performed off the coast of California to
Washington in 2001, 2005, 2008, and 2014 (Figure S1) (for more details see Ballance, 2007). Generalized addi-
tive models (counts modeled according to a negative binomial distribution; Wood, 2011) were fitted to these
data to estimate the density of Cassin’s Auklets as a nonlinear function of distance from shore. Due to tem-
poral constraints, this analysis excluded sampling north of 39.4°N, which in 2014 was conducted from
August to September (Figure S1). Models included an offset for transect area to account for differential survey
effort, and a fixed term of year to account for differences in overall density among years. Alternate models
were trialed to test whether fitted relationships were the same or different among years, and then ranked
according to small-sample-size corrected Akaike information criterion (AICc).

2.5. Mechanistic Models

To explore the factors that may influence Cassin’s Auklet mortality and/or carcass deposition, we created
annual indices (2001–2014) of the winter (November to February; ~95% of Cassin’s Auklet deposition in
2014/2015) abundance of Cassin’s Auklet carcasses, standardized for survey effort. Annual indices were cal-
culated as the average across beach-specific ER (November to February surveys for beaches from 42 to
48.4°N) for each year. To test our hypotheses, we created annual indices representative of each forcing factor.

Annual indices of food quantity and quality were created from 4 month (the time window of our response
variable) averages of southern and northern copepod biomass anomalies (section 2.3). As food supply effects
precede mortality, alternate indices were calculated for four temporal lags: three months’ prior (e.g., August–
November), two months’ (September–December), one month (October–January), and no lag (November–
February).

Annual habitat compression indices were calculated as the average proportional area from the coast to
200 km offshore where SSTa>1 °C (from daily SSTamaps; section 2.2). Alternate indices were created by aver-
aging across different spatiotemporal windows corresponding to the approximate distribution of Cassin’s
Auklets breeding in BC during three life-history stages: (1) breeding (March–June) birds foraging close to colo-
nies (48 to 52 °N), (2) postbreeding (August–October) southward dispersal (42–52°N), and (3) overwintering
(November–February) birds foraging at lower latitudes (42–48°N).

Storm indiceswere calculated from significant wave height (Hsig) recorded at three National Data Buoy Center
stations (46041: 47.353°N, 124.731°W; 46029: 46.159°N, 124.514°W; and 46050: 44.656°N, 124.526°W) for the
months of November to February. Three indices were created: (1) average Hsig, (2) proportion of time that
Hsig ≥ 4 m, and (3) number of “storm events,” where an event was defined as Hsig ≥ 4m for ≥6 consecutive
hours. Station-specific indices were calculated and then averaged to create a regional measure.

Because direct measures of overall colony output were not available, colony production was proxied by the
25 day chick-mass anomaly on Triangle Island, BC. Chick mass at 25 days provides a good measure of the
conditions during the provisioning period (Hedd et al., 2002), and therefore proxies overall colony production
(Hipfner et al., 2010).

We used generalized linear models on log-transformed annual ER to identify which factors best described
relative Cassin’s Auklet carcass abundance. Because we calculated multiple indices for each forcing factor
(e.g., alternate copepod lags), we trialed predictors within forcing factor groups against each other.
Northern and southern copepod biomass indices were allowed in the same model as these represent two
different hypotheses: the influence of high-quality food (northern copepods) versus the influence of poor-
quality food (southern copepods). Candidate predictor sets (n = 36) were generated by selecting a single
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index for each forcing factor, and for each set, all possible combinations of predictors and two-way

interactions were fitted. The best predictor set was defined as the one with the lowest Akaike weight, w

¼ e�ΔAICc=2 , summed across the top-20 models, as well as containing the model with the overall lowest
AICc. This procedure was carried out with data from all years, and also with 2014 excluded to examine
whether relationships persisted upon the removal of this influential data point. Model Akaike weight and
coefficient of determination, R2, are presented as measures of model confidence and explanatory power,
respectively. Predictor importance was represented as the summed Akaike weight of models in which that

predictor appeared (
P

w), with model-averaged regression coefficients β ¼
X

i
wi
bβi=

X
i
wi (bβi = model-

specific coefficient estimate) included to represent relationship strength and direction. All analyses were
performed in R version 3.4.0 (R Core Team, 2017), and a more detailed discussion of all methods can be
found in the supporting information (Barth et al., 2007; Pinheiro et al., 2017; Pyle, 2009; Rose, 1981;
Schwing et al., 2006; Spear et al., 1992; Speich & Manuwal, 1974; Tasker et al., 1984).

3. Results
3.1. Event Description

Starting in October 2014, Cassin’s Auklet carcasses were observed at higher than average numbers from cen-
tral California through northern Washington, in two distinct spatial clusters. In central California, carcass ER

Figure 1. (a) Carcass encounter rate (ER; carcasses km�1) averaged into month by 1° latitudinal bands, with years prior to
2014 (6–13 years, location dependent) defined as baseline. Survey coverage in 2014/2015 is indicated by median (across
months) number of beaches (N) and cumulative beach-length (km) surveyed. (b) Mean magnitude of 2014/2015 obser-
vations (2014/15 ER divided by baseline ER) across latitudinal bands. (c) Cassin’s Auklet, courtesy of Duncan Wright.
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peaked in November with a spatial maximum (per 1° band) of 5.6 birds km�1 at the Gulf of the Farallones
(1,000 × baseline rate), with anomalously high rates through to January (Figure 1). Central California carcasses
were dominated by hatch-year birds (76%; Table S1). Given the timing and proximity to the Farallon Islands
breeding colonies, it is likely that this event was primarily fledglings from California populations.

Carcass counts in Oregon and Washington began to increase in October. In mid-December, thousands of car-
casses were deposited over a short period of time throughout this region, with ER peaking at>20 birds km�1

for the areas adjacent to the Columbia River (200–400 × baseline; Figure 1). Carcasses were observed in high
numbers throughout Oregon and Washington through January (ER > 10 birds km�1, 100–200 × baseline),
with ER decreasing to <5 × baseline rates by March (Figure 1). December carcasses collected in BC were
dominated by adults (70%), with relatively fewer hatch-year birds (13%; Table S1). Given the magnitude, spa-
tiotemporal profile, and age composition, it is likely that this event was predominantly birds dispersing south-
ward from breeding colonies in BC. By April 2015, 9,148 carcasses had been recorded across 407 km of
surveyed beaches, with deposition in Oregon and Washington accounting for 86% of the total (Table S2).

3.2. Temperature Anomalies and Zooplankton Composition

Despite the predominance of anomalously warm surface water throughout the northeast Pacific in 2014, the
nearshore environment was anomalously cool from mid-May to mid-September (Figures 2a–2d). Averaged
over the July–September period, 80% of this cold-water band (SSTa ≤ 0 °C) was <100 km offshore
(Figure 2a). After the fall transition in mid-September, nearshore surface waters from Vancouver Island to
northern California became anomalously warm indicating the introgression of the NE Pacific MHW
(Figures 2b–2d and S3). By contrast, in central California (38.00°N to 36.28°N), the cold-water refuge was less
prominent and persisted only until mid-July (Figure S4).

Prior to the fall transition, waters off Newport featured higher than normal biomass of northern assemblage
copepods (Figure 2b). Favorable prey conditions were also evidenced by higher than normal chick weights
on Triangle Island (Figure S5). After the transition, biomass of southern copepods increased dramatically
off of Newport, concurrent with a decrease in biomass of northern assemblage copepods (Figure 2b) and
reductions in the average size of adult euphausiids (Figures 2c and S6) recorded off Trinidad Head (see also
McClatchie et al., 2016). These observations suggest that the introgression of the NE Pacific MHWwater mass

Figure 2. (a) Spatial distribution of sea surface temperature anomaly (SSTa) averaged from July through to the end of September. The dashed polygon shows the
area surveyed during NOAA seabird surveys. CF: Cape Flattery, NP: Newport, CB: Cape Blanco, TH: Trinidad Head. Time series of SSTa andmeasures of prey availability:
(b) Copepod biomass anomalies (log10 scale) measured at Newport and (c) Euphausia pacifica mean size measured at Trinidad Head. (d) Proportional temperature
anomaly extent by area (≤100 kmoffshore, Cape Flattery, to Cape Blanco) through time. (e) Fitted densities (generalized additivemodel) of Cassin’s Auklets as a function
of distance from shore based on NOAA at-sea surveys performed in October–December of 2001, 2005, 2008, and 2014.
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effectively reduced the energy content of mesozooplankton in the nearshore environment, prey conditions
which then persisted over several months (Figures 2b and 2c).

3.3. At-Sea Spatial Distribution

The year-specific model of Cassin’s Auklet density resulted in a lower AICc (AICc = 2979.6) than the static dis-
tribution model (AICc = 3038.3), indicating variable distributions among years. The best model indicated that
more birds were adjacent to shore in 2014 (October to December) than any other surveyed year, with ~85%
of birds (by density) within 100 km (Figure 2e). Given at-sea survey coverage in 2014 (Figure S1), it is unknown
whether this pattern prevailed north of 39.4°N.

3.4. Mechanistic Models of Increased Carcass Abundance

The best models of effort-standardized carcass abundance (ER) included copepod indices lagged by two
months, habitat compression during winter, and average significant wave height (Table S3). The best model
for annual ER included positive relationships with habitat compression indices and southern copepod bio-
mass anomaly (Figures 3a and 3b) as well as the interaction between these factors (wAICc = 0.65, R2 = 0.93;
Table 1). Northern copepod biomass anomaly, significant wave height, and colony production were not
strong predictors, as indicated by low Akaike weights (Table 1). Excluding 2014, habitat compression dropped
from the best model, likely because this variable predominated only in 2014. However, southern copepod
biomass anomaly was retained as a strong positive predictor of ER (Figure 3c and Table S4). The best model
also included average significant wave height as a positive term (wAICc = 0.27, R2 = 0.80; Table S4) indicating
that storms play a role in regulating Cassin’s Auklet mortality and/or carcass deposition.

Figure 3. Annual average encounter rate (± 95% CI; November–February) plotted against bio-physical predictors contained
within the best model (based on AICc) of an ensemble of generalized linear models, (a and b) with and (c and d) without
2014. (a and c) Average southern copepod biomass anomaly measured along the Newport Line (44.6°N) and lagged two
months (i.e., September–December). (b) Habitat compression index: the logit-transformed proportion of ocean area with
SSTa >1 °C averaged over November–February within the nearshore wintering area of Cassin’s Auklets dispersing from
British Columbia (42–48°N, ≤200 km from shore). (d) Storminess: mean significant wave height from November–February.
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4. Discussion

Our results suggest that the Cassin’s Auklet MME of 2014/2015 occurred as a con-
sequence of changes in prey abundance and quality during the NE Pacific MHW.
Furthermore, coastward compression of cold-water habitat likely exaggerated
the perceived magnitude of the MME by driving birds closer to shore, increasing
the probability of carcass beaching,

4.1. Mortality Event Mechanism

Of the four hypotheses we examined, we found evidence for effects of food
quality, habitat compression, and storminess on annual measures of carcass
abundance. Northern copepod biomass anomaly, our proxy for positive prey
conditions, was not a strong predictor of beaching rates. By contrast, the south-
ern copepod biomass anomaly accounted for 70–77% of interannual variance in
carcass ER (Tables 1 and S4), suggesting that this index proxies a decrease in
Cassin’s Auklet prey quality and/or availability. Lower energy content and/or
smaller prey may have served as “junk food” (Österblom et al., 2008; Rosen &
Trites, 2000; Wanless et al., 2005), which for small-bodied pursuit divers, such
as Cassin’s Auklets, may be particularly detrimental given their energetically
expensive mode of feeding (Romano et al., 2006).

The change in zooplankton composition preceded the peak in mortality in
2014/2015 (mid-December off the coast of Washington and Oregon) by two
months, suggesting additional mechanisms responsible for increased mortality.
The interactive effects of diminished food supply and storms have been impli-
cated in previous seabird MMEs (Harris & Wanless, 1996; Ryan et al., 1989), and
our models excluding 2014 support that storms regulate Cassin’s Auklet
mortality. The ability to meet increased energetic demands brought on by winter
conditions and/or survive extended periods of diminished foraging success
during storm events (Camphuysen et al., 1999; Schreiber, 2001) point to early
winter (November–December) as a survival bottleneck for marine birds (Fort
et al., 2009). Our 2014 data are consistent with this scenario as the onset of
carcass deposition coincided with stronger winds in late October (Figure S8).
Furthermore, the mid-December peak in carcass deposition followed four conse-
cutive days (8–11 December) of north to north-northwest bearing winds in
excess of 35 km hr�1 (Figure S9). Storms of this magnitude or greater are a com-
mon feature of winters in the NE Pacific (Table S6), but only precipitated mass
mortality in 2014. This suggests that although diminished food quality asso-
ciated with the NE Pacific MHW was the ultimate cause of mortality, storms were
the proximal factor leading to both mortality and deposition.

At its peak, relative carcass abundance was more than 100 times baseline
(Figure 1b), implying that increased mortality alone could not have accounted
for the observed rate of carcass deposition. The likelihood of carcass deposi-
tion is dependent on the proximity to shore of moribund birds, and on-shore
flow (Wiese, 2003). We believe that the largest single factor influencing bea-
ched carcass abundance during the Cassin’s Auklet MME was altered spatial
distribution of live birds. Cassin’s Auklets forage predominantly in cold surface
waters (Wolf et al., 2010), a habitat that was constricted to a narrow nearshore
band during the postbreeding season of 2014 (Figure 2a). We posit that
auklets dispersing south from colonies in BC crowded into the nearshore
environment. When this cold-water refuge collapsed in mid-September
(Figures 2b–2d), birds were left with no suitable foraging habitat (Figures 2d
and S3), and likely did not disperse out of the nearshore, significantly increas-
ing the likelihood of carcass deposition following mortality-inducing condi-
tions (Wiese, 2003). This dynamic highlights the need for careful assessmentTa
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of seabird MMEs, as changes in distribution may be equally as important as increased mortality in explain-
ing elevated counts of beached seabirds.

Exclusion of colony production as an explanatory variable suggests that strong reproductive success does not
necessarily translate to increased carcass abundance even given absolutely higher juvenile mortality
(Ydenberg, 1989). To the south of our modeling region (e.g., central California), carcass deposition primarily
consisted of hatch-year birds (Table S1). The earlier reduction in cold-water habitat/prey quality in central
California (Figure S4) may have resulted in the earlier peak in carcass deposition and disproportionately
affected fledglings relative to the northern events where fewer fledglings were recorded (Table S1).

4.2. Global Warming, Extremes, and Ecological Impacts

Although many studies have focused on the long-term ecological implications of climate change (Bellard
et al., 2012; Garcia et al., 2014), our understanding of extreme temperature events and their impact on eco-
systems is less well understood (Wernberg et al., 2012). Several MHWs of unprecedented scale have been
observed in recent history (Hobday et al., 2016), including events in the Northern Mediterranean (2003;
Garrabou et al., 2009), offshore of Western Australia (2011; Pearce & Feng, 2013; Wernberg et al., 2013),
and in the NW Atlantic (2012; Scannell et al., 2016). In each case, there were significant and abrupt changes
to the marine ecosystem, from benthic primary producers to top predators (Di Lorenzo & Mantua, 2016;
Garrabou et al., 2009; Marba & Duarte, 2010). Our study adds marine birds to this list and provides a mechan-
istic explanation of increased mortality. Finally, this study highlights the importance of rigorous, broad-scale
citizen science data in documenting these ecosystem responses, as these data are otherwise unobtainable
across these temporal and spatial scales (Theobald et al., 2015).

As the world’s oceans continue to warm it is likely that large-scale temperature anomalies will increase in fre-
quency, magnitude, and duration (Di Lorenzo & Mantua, 2016; Hobday et al., 2016; Scannell et al., 2016), rais-
ing the likelihood of more frequent MMEs (e.g., Fey et al., 2015) and correspondingly rapid changes to marine
ecosystem structure and functionality (Wernberg et al., 2013). Breeding populations of Cassin’s Auklets have
declined significantly in recent decades (Lee et al., 2007; Morrison et al., 2011), with studies implicating lower
reproductive success and lower survival during warmwater years (Bertram et al., 2005; Wolf et al., 2009, 2010).
Furthermore, burrow occupancy rates on Triangle Island (a proxy for breeding population size; Rodway &
Lemon, 2011) declined by 15% between 2014 (78.4%) and 2015 (65.5%; Table S7), indicative of a
population-level effect of this MME and that population viability may be seriously impacted should the inci-
dence and intensity of warming events increase. Thus for Cassin’s Auklets, MHWs of the scale of the NE Pacific
event may well represent a global population precipice.
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