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ABSTRACT: Eudyptes penguins (six species) are uniquely character-
ized by a two-egg clutch with extreme intraclutch egg-size dimor-
phism (ESD): the first-laid A-egg is 17.5%—56.9% smaller than the
B-egg. Although A-eggs are viable, they almost never produce fledged
chicks (genus average <1%). Using classical life-history theory and
phylogenetic comparative methods, we demonstrate a marked slow-
down in the life history of Eudyptes: age of first reproduction is 52%
later and annual fecundity 48% lower compared with other two-egg
clutch penguin species. All six Eudyptes species have retained a two-
egg clutch, despite this pronounced life-history slowdown; this sug-
gests evolutionary mismatch between clutch size and chicks fledged
per clutch. Consistent with this, we show that Eudyptes fledge 43%
fewer chicks per clutch than other two-egg clutch penguin species.
Extreme intraclutch ESD in Eudyptes is associated primarily with a
uniform (5%) increase in relative B-egg size, and B-egg size has
evolved in accord with life history. We further show that intraclutch
ESD is positively correlated with age of first reproduction in Eudyptes
but not in other two-egg clutch penguin species. We argue that
Eudyptes’ persistent failure to evolve a one-egg clutch constitutes a
unique genus-wide evolutionary maladaptation and that extreme in-
traclutch ESD evolved as a correlated response to selection favoring
a slower life history imposed by their extreme pelagic overwintering
and migration ecology.

Keywords: Eudyptes, intraclutch egg-size dimorphism, life-history
evolution, maladaptation, selective constraint, Spheniscidae.

Introduction

Life histories encompass the major demographic traits as-
sociated with fitness and describe variation in schedules
for growth, survival, and reproduction (Stearns 1992).
Life-history trajectories evolve in response to age-specific
mortality schedules but are constrained by trade-offs and
evolutionary history (Stearns 1992; Charlesworth 1994;
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Roff 2002). Classical life-history theory assumes that traits
with clear, direct links to fitness, such as clutch size, are
optimized by natural selection (Charlesworth 1994; Roff
2002). However, a lack of standing phenotypic variation
(e.g., most pelagic seabird species have small, invariant
clutch sizes of one or two eggs; Hamer et al. 2002) could
impede trait optimization (Crespi 2000). Evolutionary sta-
sis, including clutch-size invariance in pelagic seabirds, has
been explained by persistent stabilizing selection leading
to constraints mediated by selection (Stearns 1986). Se-
lective constraints are considered weak forms of evolu-
tionary constraint because constraint is enforced by se-
lection, not by the nonrandom production of variants
(Schwenk 1995). Constraints maintained by relatively
weak stabilizing selection relax when selection pressures
shift; however, strong and persistent selection can lead to
trait canalization (Charlesworth et al. 1982; Stearns 1986).
If the clutch-size invariance typical of pelagic seabirds re-
sulted from canalization, then this could constrain clutch-
size evolution and lead to maladaptation (Crespi 2000).
Pelagic seabirds have slow life histories (small invariant
clutch sizes, low annual fecundity, and deferred repro-
duction) that are shaped, in part, by the large incremental
costs associated with provisioning chicks (Weimerskirch
2002). This cost of reproduction can limit annual fecundity
by negatively impacting adult survival and by exerting
strong, persistent stabilizing selection on clutch size (Wei-
merskirch 2002). Penguins (Spheniscidae) have the slow
life histories typical of pelagic seabirds, even though most
penguin species are inshore forgers (Williams 1995). Part
of the reason for this is that penguins are flightless, and
flipper-propelled swimming is an expensive means of
transport. Despite these higher relative transportation
costs, Eudyptes penguins (six species) evolved novel pelagic
overwintering behavior that involves a temporally and en-
ergetically demanding prebreeding migration (Bost et al.
2009; Green et al. 2009). Eudyptes penguins are further
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characterized by a form of intraclutch egg-size dimor-
phism (ESD) that is unique (first-laid A-egg is smaller)
and extreme (range, 17.5%-56.9%) among birds (Slags-
vold et al. 1984; Williams 1995). In Eudyptes, extreme
intraclutch ESD is coupled with systematic loss of the A-
egg, which is viable (Williams 1990; Davis and Renner
2003; Poisbleau et al. 2008) but almost always fails to
produce a fledged chick (genus average <1%; Williams
1995). Early, systematic loss of A-eggs or A-chicks is as-
sured by obligate clutch and brood reduction tactics that
favor B-eggs (St. Clair 1992, 1996; St. Clair et al. 1995).
In Eudyptes schlegeli (royal penguin), A-eggs are lost at or
before the time B-eggs are laid; this systematic, early loss
of A-eggs has been attributed to maternal egg ejection and
interpreted as maternal infanticide (St. Clair et al. 1995).
Eudyptes penguins appear to sacrifice the time and energy
invested in A-egg production, and this suggests that their
two-egg clutch is maladaptive.

Extreme intraclutch ESD in Eudyptes has defied expla-
nation, despite more than 50 years of research (Lack 1968;
Johnson et al. 1987; Williams 1990; St. Clair 1992, 1998;
St. Clair et al. 1995). The many hypotheses advanced in
explanation have focused on adaptive functions for the
smaller A-egg; however, the primary candidate hypothe-
ses—brood reduction (Lack 1954) and insurance against
B-egg loss (Dorward 1962)—have not received empirical
support (Slagsvold et al. 1984; St. Clair et al. 1995). These
hypotheses emphasize intraclutch ESD, not clutch size.
Alternatively, we propose that extreme intraclutch ESD
evolved as a correlated response to selection favoring a
slower life history imposed by Eudyptes unique pelagic
overwintering and migration ecology. If life history has
slowed down in Eudyptes, then we would expect clutch
size to decrease from two eggs to one egg, as seen in
Aptenodytes penguins (Williams 1995). However, all six
species in Eudyptes have retained a two-egg clutch. Here,
we use classical life-history theory and phylogenetic com-
parative methods to demonstrate that life history has
slowed down in Eudyptes and their two-egg clutch is mal-
adaptive. Retention of a two-egg clutch despite a slowdown
in life history suggests that there might be an evolutionary
mismatch between clutch size and realized fecundity
(number of chicks fledged per two-egg clutch) in Eudyptes.
If clutch size has become stuck at two eggs in Eudyptes,
this raises a question: how should egg size evolve when
clutch size is fixed and life history slows down? We use
allometry to determine whether extreme ESD in Eudyptes
is the result of a relative decrease in A-egg size, a relative
increase in B-egg size, or a combination of the two. Se-
lection favoring a slower life history in combination with
a fixed two-egg clutch raises the possibility that extreme
intraclutch ESD in Eudyptes resulted from an interaction
between these processes; consistent with this, we show that
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intraclutch ESD is correlated with deferred onset of re-
production (mean age of first reproduction) in Eudyptes
but not in other two-egg clutch penguin species.

Our analysis provides support for the interpretation that
Eudyptes two-egg clutch is maladaptive (sensu Crespi
2000). This raises a second question: what might be pre-
cluding clutch-size optimization? Constraint-based expla-
nations are subject to criticism because it is always possible
to postulate a rare selective regime where a putatively mal-
adaptive trait could be adaptive (Schwenk 1995). For ex-
ample, it is plausible that an invariant two-egg clutch cou-
pled with extreme intraclutch ESD could be advantageous
during infrequent periods of superabundant resources as-
sociated with a long-term (decadal or greater) environ-
mental cycle. Acknowledging this possibility, we suggest
that constraint on clutch-size reduction might be related
to an interaction between the physiology of follicle (yolk)
development and Eudyptes unique pelagic nonbreeding
and migration ecology (see “Discussion”).

Material and Methods

The Spheniscidae includes the six genera and 18 species
of extant penguins (Baker et al. 2006; fig. 1), which exhibit
substantial variation in body mass and life-history char-
acteristics (1-24 kg; Williams 1995). The two largest spe-
cies (Aptenodytes; 10-24 kg) first reproduce at 5-6 years,
do so once a year or once every other year, and have a
one-egg clutch (Williams 1995). The two smallest species
(Eudyptula; 1 kg) first reproduce at 2-3 years, do so once
or twice a year, and have a two-egg clutch with nearly
equal-sized eggs (Williams 1995). The 14 species of in-
termediate-sized penguins (Pygoscelis, Spheniscus, Mega-
dyptes, and Eudyptes; 2—6 kg) first breed at 2-8 years, typ-
ically breed once a year, and have a two-egg clutch with
either nearly equal-sized eggs (all non-Eudyptes) or ex-
tremely size-dimorphic eggs (Eudyptes). In Pygoscelis,
Spheniscus, and Megadyptes, intraclutch ESD (mean =
2.1%, n = 8, calculated as 100 x (|JA— B|) x [(A+
B) x 0.5]7'; table 1) is typical of other nonpasserine birds
with altricial development (mean = 3.6%; Slagsvold et al.
1984). In Eudyptes, intraclutch ESD (mean = 36.8%,
n = 6) is 17.5 times larger, on average, than that of other
intermediate-sized penguins.

We assembled data for the 16 species of extant penguins
with two-egg clutches (table 1; data available from the Dryad
Digital Repository: http://dx.doi.org/10.5061/dryad.cd233
[Stein and Williams 2013]). Specifically, we compiled spe-
cies-specific mean values for adult female mass (n = 16),
A-egg mass (n = 12), B-egg mass (n = 12), age of first
reproduction (n = 14), chicks fledged per clutch (n =
14), and annual fecundity (n = 14). There is extensive
interspecific variation in the duration of prelaying and
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Million years before present Penguin species Intraclutch Chicks
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Eudyptes robustus

Figure 1: Time-calibrated molecular phylogeny of extant penguin species with Bayesian posterior support probabilities (from Baker et al.
2006). Extreme intraclutch egg-size dimorphism in Eudyptes is associated with evolutionary mismatch between clutch size and number of
chicks fledged per clutch. Aptenodytes patagonicus, Spheniscus mendiculus, and Eudyptes sclateri are not included in genera means for chicks

fledged per clutch.

incubation-related fasts, so adult female mass was taken
from the chick-rearing period when birds are lean. There
are no published data for fresh egg mass of Spheniscus
humboldti (Peruvian penguin), Spheniscus mendiculus
(Galapagos penguin), Eudyptula albosignata (white-flip-
pered penguin), Pygoscelis antarctica (chinstrap penguin),
and Eudyptes robustus (Snares penguin). Thus, we esti-
mated fresh egg mass for these species (app. A). Age of
first reproduction was averaged across males and females
(females begin reproducing 0.5-1 years earlier than males)
and was not adjusted for within-cohort mortality. Eudyp-
tula minor (little penguin) and S. humboldti can success-

fully reproduce twice a year, so we distinguish between
chicks fledged per clutch and chicks fledged annually. We
do not consider adult or juvenile survival because most
published survival estimates were generated with flipper
tags, which can induce mortality in penguins (Saraux et
al. 2011). We collected comparable data for Aptenodytes
forsteri (emperor penguin), the only penguin species with
a one-egg clutch and an annual reproductive cycle (Wil-
liams 1995); however, we restrict formal analyses to two-
egg clutch species.

We used phylogenetic generalized least squares (PGLS;
Pagel 1999; Freckleton et al. 2002) regression models to
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Table 1: Life-history characteristics of penguin species used in comparative analyses and qualitative comparisons
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Female A-egg B-egg Age of first Annual Chicks fledged
mass mass mass reproduction fecundity per clutch

Common name Scientific name (2) (2) (2) (year) (chicks year™")  (chicks clutch™)
Emperor Aptenodytes forsteri 24,000*  469.4* 5.3 63" 63"
Adélie Pygoscelis adeliae 3,890*  122.8* 115.3* 5.8 9912132343646 9912132343646
Gentoo Pygoscelis papua 5,860 1282 130.0" 3.5" 8302730414344 83027014344
Chinstrap Pygoscelis antarctica 3,893*  102.2* 102.5* 4.8% 8171 8121
Magellanic Spheniscus magellanicus ~ 3,708°  124.9° 124.7° 7.5° .52k VAN
Black-footed Spheniscus demersus 2,880**  106.8* 104.8* 5.2% 62" .62"
Peruvian Spheniscus humboldti 3,820  121.2'%*%*  125.1'% 2.5% 1.53% .92%
Galapagos Spheniscus mendiculus 1,768*  79.6* 80.9*
Little Eudyptula minor 1,048  53.7%° 53.5% 2.6 1.222% 767
White-flippered  Eudyptula albosignata 1,148° 60.0° 59.7° 2.6 1.16° 1.16°
Yellow-eyed Megadyptes antipodes 4,900*  139.4* 136.9 3.2 1.27'42% 1.27'42%
Erect-crested Eudyptes sclateri 3,617  81.6" 150.9"
Royal Eudyptes schlegeli 4,100  100.3* 159.3* 8.1 49" 49"
Macaroni Eudyptes chrysolophus 3,950  92.7% 149.4* 7.5 4973243 49742
Rockhopper Eudyptes moseleyi 2,290° 88.4'° 118.4'¢ 4.7" 72" 72"
Fiordland Eudyptes pachyrhynchus 2,645  99.4* 118.5* 5.5% .50 .50%
Snares Eudyptes robustus 2,700 103.3” 132.5” 6.3 T7 77

Source: (1) Ainley and Demaster 1980; (2) Bertellotti et al. 2002; (3) P. D. Boersma, personal communication, 2011; (4) Boersma et al. 1990; (5) Boersma
et al. 2013; (6) Bost and Jouventin 1991; (7) Carrick and Ingham 1970; (8) C. N. Challies, personal communication, 2011; (9) Cherel et al. 1999; (10) R.
Corado and L. S. Hall, unpublished data; (11) Crawford et al. 2006; (12) Croxall and Davis 1999; (13) Daan and Cullen 1990; (14) Darby and Seddon 1990;
(15) Davis and Renner 2003; (16) Demongin et al. 2010; (17) Frere et al. 1998; (18) Guinard et al. 1998; (19) Jouventin and Weimerskirch 1981; (20) Kemp
and Dann 2001; (21) Lishman 1985; (22) M. Massaro, personal communication, 2010; (23) Massaro and Davis 2005; (24) Nagy et al. 1984; (25) Nisbet and
Dann 2009; (26) Paredes et al. 2002; (27) Putz et al. 2001; (28) Ratz et al. 2004; (29) Reilly and Balmford 1975; (30) Reilly and Kerle 1981; (31) Richdale
1957; (32) Spurr 1975; (33) Stahl 1985; (34) Taylor 1962; (35) Taylor et al. 2002; (36) Trivelpiece et al. 1990; (37) Warham 19744; (38) Warham 1974b; (39)
Warham 1971; (40) Whittington 2005; (41) Williams 19804; (42) Williams 1980b; (43) Williams 1991; (44) Williams 1995; (45) Williams and Croxall 1991;
(46) Yeates 1968; (47) Yorio 2001; (48) C. B. Zavalaga and R. Paredes, personal communication, 2009.

Note: Female mass: all single-study data points taken from the chick-rearing period, except for the following: (1) E. schlegeli, midpoint of range 3,200—
5,000 g; (2) E. minor; (3) Pygoscelis antarctica, mean of three studies. A- and B-egg mass: all single-study data points, except for the following: (1) E.
pachyrhynchus, mean of two studies; (2) E. chrysolophus, mean of 3 years, South Georgia Island; (3) P. adeliae, mean of two studies; (4) S. humboldti, unpublished
data; (5) A- and B-egg mass for P. antarctica, S. humboldti, S. mendiculus, E. albosignata, and E. robustus was estimated using an ordinary least squares
regression equation derived from fresh egg mass of 10 two-egg clutch penguins species (fresh egg mass = —1.28 + 1.08 x length x breadth®> x 7= x 67/,
F, s = 7,080, P <.0001, adjusted r* = 0.997; for details, see app. A). Age of first reproduction: average of male and female mean ages of first reproduction

uncorrected for within-cohort mortality. Annual fecundity: values for S. humboldti and E. minor account for successful second clutches.

test for a life-history slowdown, evolutionary mismatch,
and their interaction. PGLS is analogous to ordinary least
squares regression in that the error distribution is Gaus-
sian; however, in PGLS the independence assumption is
relaxed (Freckleton et al. 2002). The lack of independence
among taxa is accounted for in PGLS by incorporating
phylogenetic covariance directly; this sets the expected re-
sidual correlation structure (Freckleton et al. 2002). We
use a well-supported, dated molecular phylogeny to specify
phylogenetic covariance among penguins (fig. 1; Baker et
al. 2006). We modeled character evolution with Pagel’s
(1999) correlation structure, which assumes constant var-
iance through time. Pagel’s (1999) methodology provides
a maximum likelihood estimate of phylogenetic autocor-
relation, A, which specifies the optimal branch length
transformation for correlated characters (Freckleton et al.
2002). Character evolution is independent of phylogeny
when A = 0 and conforms exactly to Brownian motion
when A = 1. When 0 < \ < 1, the influence of phylogeny

is weaker than strict Brownian motion (Freckleton et al.
2002). When closely related species have inversely related
characters, A < 0.

We use adult female mass as a size covariate and trans-
form variables logarithmically (base e) where appropriate.
We characterize ESD as the mass difference between B-
and A-eggs. We use dummy variables, coded as 0 or 1, to
distinguish Eudyptes and non-Eudyptes penguins and to
assess variation in ESD within Eudyptes. Tests of predic-
tions are reported with one-tailed P values, and test sta-
tistics associated with covariates are reported with two-
tailed P values; « is set at 0.05, and parameter estimates
are reported with standard errors. All analyses were con-
ducted in APE (Paradis et al. 2004; R Development Core
Team 2011).

Results

Consistent with life-history theory, annual fecundity was
inversely correlated with age of first reproduction (fig. 2;
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Figure 2: Phylogenetic generalized least squares regression model
demonstrating a uniform, inverse relationship between annual fe-
cundity and age of first reproduction for two-egg clutch penguin
species. Gray circles represent Eudyptes, and black circles represent
Pygoscelis, Spheniscus, Eudyptula, and Megadyptes. White circle rep-
resents Aptenodytes fosteri, the only extant one-egg clutch penguin
species with a annual reproductive cycle. Aptenodytes forsteri was not
included in the analysis and is displayed only for comparison.

= —0.20, Bln(age of first brecding = —0.91 = 0.13, n = 14,
t,, = —6.8, P<.0001), even while accounting simulta-
neously for adult female body mass (t,, = 1.14, P> .2).
This inverse relationship was homogeneous across Eudyp-

tes and non-Eudyptes taxa (interaction: N = —0.22, n =
14, t, = 0.26, P>.8; dummy variable: N = —0.22,
t,, = —1.29, P> .2). Consistent with a life-history slow-

down in Eudyptes, age of first reproduction was 52% later
(N = 0.02, n = 14; Eudyptes vs. non-Eudyptes: 64 *+ 0.8
vs. 4.2 *+ 0.6 years, t,, = 241, one-tailed P = .016) and
annual fecundity 48% lower (A = —047, n = 14,
0.50 * 0.09 vs. 0.96 = 0.02 chicks fledged year™', ¢, =
4.57, one-tailed P = .0003) than those of other two-egg
clutch penguin species. Consistent with an evolutionary
mismatch between clutch size and realized fecundity, Eu-
dyptes also fledged 43% fewer chicks per two-egg clutch
(N =10.52, n =14, 0.52 = 0.17 vs. 0.91 £ 0.11 chicks
fledged two-egg clutch™, t,, = 2.27, one-tailed P =
0211).

It is unclear whether extreme intraclutch ESD in Eu-
dyptes resulted from a decrease in relative A-egg size, an
increase in relative B-egg size, or a combination of the
two. Here we characterize A- and B-egg allometry for the
two-egg clutch Spheniscidae. A-egg allometry differs
markedly between Eudyptes and non-Eudyptes taxa (fig.

3A; N = 0.93, n = 16; interaction: t,, = 3.92, P < .0020;
dummy variable: ¢, = 3.77, P <.0027). A-egg allometry
is positive in non-Eudyptes taxa (B, ematemassy = 0-57 *
0.06, t,, = 8.81, P<.0001) but not in Eudyptes
(Bun(emate massy = 0.01 = 0.13, t,, = 0.09, P>.9). B-egg al-
lometry is positive and uniform across two-egg clutch
Spheniscidae (fig. 3B; N = 0.83, n = 16; interaction:
t, = —0.65 P>.5 Biemie msy = 0.57 £ 0.04, 1, =
13.83, P < .0001); however, relative B-egg size is uniformly
larger in Eudyptes (N = 0.83, n = 16; B qummy variabley =
0.27 + 0.05, t,; = 4.92, P<.0004). The striking differ-
ence between A- and B-egg allometry suggests that vari-
ation in ESD within Eudyptes may be attributable, in part,
to the A-egg interaction. To characterize the contribution
of the A-egg to variation in ESD, we divided the six Eu-
dyptes species into two groups on the basis of deviation
from A-egg allometry of non-Eudyptes taxa (fig. 3A): the
three larger species (Eudyptes sclateri, Eudyptes chrysolo-
phus, and Eudyptes schlegeli) have large negative deviations,
while the three smaller species (Eudyptes moseleyi, Eudyptes
pachyrhynchus, and Eudyptes robustus) have small positive
deviations (fig. 3A). Compared with non-Eudyptes taxa,
relative A-egg size is smaller in the three larger (A =
0.96, n = 16; dummy variable: f, = —3.79, P <.0026)
but not in the three smaller (dummy variable: ¢, =
0.24, P> .8) Eudyptes species. Variation in ESD within
Eudyptes is attributable to a 5.4% increase in relative B-
egg size across the genus (fig. 3B) and to a 5.6% decrease
in relative A-egg size in the three larger species (fig. 3A).
Finally, we test whether the evolution of intraclutch ESD
in two-egg clutch Spheniscidae can be explained by an in-
teraction between a life-history slowdown and evolutionary
mismatch. Intraclutch ESD was independent of female mass
(N=229, n =14, t, = —045, P>.7) and mean egg
mass (A = 2.24, n = 14, t,, = —0.39, P>.7), so these
potential size covariates were excluded from models ex-
plaining ESD. As expected, intraclutch ESD was positively
correlated with age of first reproduction in Eudyptes but
not in other two-egg clutch penguin species (fig. 4; N =
=047, n = 14; interaction: f3 g of firs reproduction: dummy variable) =
9.62 * 246, t,, = 3.91, one-tailed P = .0015; main effects:
—044 + 1.08, t,, = —04l, P> .6;
—1.67, P> .1).

B(age of first reproduction) =

= —23.08 = 13.85, t,, =

(dummy variable)

Discussion

Lack (1968) suggested that extreme intraclutch ESD in
Eudyptes penguins might represent a rare, transitional stage
in the evolution of a one-egg clutch, and we provide life-
history context for this prescient observation. Consistent
with the evolution of a slower life history in Eudyptes, age
of first reproduction is 52% later and annual fecundity
48% lower compared with non-Eudyptes taxa. Despite this
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Figure 3: Phylogenetic generalized least squares regression models depicting A-egg (A) and B-egg (B) allometry for two-egg clutch penguin
species. Gray circles represent Eudyptes, and black circles represent Pygoscelis, Spheniscus, Eudyptula, and Megadyptes. For consistency, the
full regression model (interaction and main effects) is plotted in each panel.

marked life-history slowdown, clutch size has not de-
creased in Eudyptes as expected: all six species retain a
two-egg clutch. The apparent inconsistency between a
slowdown in some life-history traits (age of reproduction
and annual fecundity) but not in others (clutch size) is
reinforced by comparison with the emperor penguin Ap-
tenodytes forsteri, the only penguin species with a one-egg
clutch and an annual reproductive cycle (Williams 1995).
Although A. forsteri is 7.5-times larger on average than
Eudyptes taxa (table 1), relative egg size (calculated as
(log.(egg mass) x log.(female mass)™'; Eudyptes mean *+
SE vs. A. forsteri; B-egg: 0.611 + 0.002 vs. 0.610) and an-
nual fecundity (0.59 + 0.06 vs. 0.63 chicks year™") are
remarkably similar. However, age of first reproduction is
actually 18.5% later on average in Eudyptes (6.4 = 0.6 vs.
5.4 years). It is not possible to infer whether the Apten-
odyptes lineage evolved from a one- or two-egg clutch
ancestor because the sister group to Spheniscidae, Ciconi-
idae (storks), is too distantly related to be informative
(diverged ~67 million years before present; Pacheco et al.
2011). However, the current breeding distribution and
unique life-history characteristics of Aptenodytes (winter
breeding, foot incubation, extremely prolonged chick rear-
ing; Williams 1995) suggest that Aptenodytes evolved under
a different selective regime than Eudyptes.

The similarities in life history between A. forsteri and
Eudyptes taxa raise an important question: why have all
six species in Eudyptes failed to evolve a one-egg clutch?

The extant radiation of Eudyptes penguins diversified ~7
million years before present (Baker et al. 2006) and con-
tains >26 million years of evolutionary history (sum of
branch lengths within Eudyptes; fig. 1). Retention of a two-
egg clutch across a marked life history slowdown, five
speciation events, and >26 million years of evolutionary
history suggests that a two-egg clutch became canalized
before the diversification of the extant Eudyptes taxa (see
below). This raises a related question: how should egg size
evolve when clutch size is canalized and life history slows
down? Comparison with A. forsteri indicates that B-egg
size is exactly what one would predict if Eudyptes penguins
had a one-egg clutch; this corroborates Williams (1990)
suggestion that B-egg size might be optimized to enhance
survival in a one-chick brood. A-egg size has decreased in
the three Eudyptes species with the most extreme ESD, and
this may provide a means of reducing costs of A-egg pro-
duction in these species. Variation in intraclutch ESD is
positively correlated with age of first reproduction in Eu-
dyptes but not in other two-egg clutch penguin species;
this suggests that extreme intraclutch ESD arose in Eu-
dyptes as a consequence of an interaction between selection
favoring a slower life history and clutch size canalization.

Penguins have the slow life histories characteristic of
pelagic seabirds (Weimerskirch 2002), and intraspecific
clutch-size invariance is ubiquitous among pelagic seabirds
(Hamer et al. 2002; Procellariiformes [125 species; one egg],
Sphenisciformes [18 species; one or two eggs), Charadri-
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Figure 4: Phylogenetic generalized least squares regression model
explaining egg-size dimorphism (B-egg mass — A-egg mass) for two-
egg clutch penguin species. Egg-size dimorphism is positively cor-
related with age of first reproduction in Eudyptes but not in other
two-egg clutch penguin species. Gray circles represent Eudyptes, and
black circles represent Pygoscelis, Spheniscus, Eudyptula, and
Megadyptes.

iformes (Alcidae: 22 species; one or two eggs; Laridae: 55
species; one, two, or three eggs). So why is extreme in-
traclutch ESD restricted to Spheniscidae and specifically
to Eudyptest We suggest that the answer to this question
involves a combination of particularly high migration-
related costs in penguins and limited opportunities for the
evolution of extreme intraclutch ESD in pelagic seabirds.
Extreme intraclutch ESD requires clutch size >1. Clutches
of two and three eggs are relatively rare in pelagic seabirds
(Hamer et al. 2002), and this suggests that there have been
limited opportunities for extreme intraclutch ESD to
evolve. Penguins are flightless, and flipper-propelled swim-
ming is an expensive means of transport. Field metabolic
rate of penguins is intermediate among seabirds (doubly
labeled water estimates; Shaffer 2011); however, mean
swimming speed (2.1 m s™', n = 7; Croxall and Davis
1990) of penguins is 82% slower than mean ground speed
(11.8 m s™', n = 25; Spear and Ainley 1997) of other
pelagic seabirds. Intermediate energy expenditure coupled
with slow travel speed suggest that the energetic and tem-
poral costs of migration are exceptionally high in the
Spheniscidae, and this has been confirmed empirically for
Eudyptes (Bost et al. 2009; Green et al. 2009). We would
expect high temporal and energetic costs of migration in
Eudyptes to exert strong, persistent stabilizing selection on
the timing of life-history events.

Eudyptes penguins are characterized by high primary

reproductive investment (two-egg clutch) but low realized
fecundity (0.59 = 0.06 chicks year™"). This aberrant trait
combination provides a rare example of evolutionary mis-
match and offers novel support to the interpretation that
Eudyptes two-egg clutch is maladaptive (sensu Crespi
2000). Failure to evolve a one-egg clutch in Eudyptes would
be less problematic if production costs of the extra egg
were negligible, and it has been argued that this is the case,
given that A-egg mass represents only 2%-5% of adult
female mass (table 1; Williams 1995). However, the as-
sessment of low production costs considers only the direct
energetic costs of the A-egg. In Eudyptes, egg formation
is associated with prolonged fasting (35-40 days) and ex-
treme mass loss (30% of arrival mass in female Eudyptes
chrysolophus; Williams 1995). A pair of E. chrysolophus
loses a minimum of 11.5 incubation-day equivalents
(14,000 KkJ) of body reserves to A-egg production, and this
represents 33% of the 35-day incubation period (app. B).
While we acknowledge that constraint-based arguments
are open to criticism, it is interesting, albeit anecdotal, that
when E. chrysolophus is maintained in captivity (abundant
food resources, low energetic demands, and no migration)
and allowed to incubate eggs and raise chicks systematic,
early loss of the A-egg persists (n = 7), and fledging suc-
cess remains low (043 = 0.20 chicks per two-egg clutch;
n = 7; R. W. Stein, unpublished data). If a two-egg clutch
coupled with extreme intraclutch ESD is part of an adap-
tive strategy evolved to exploit rare times of abundant
resources, then we would expect a highly flexible response
to exploit those opportunities, but this has not been ob-
served in captives. Taken together, these novel lines of
evidence provide support for the interpretation that the
persistence of a two-egg clutch might not be part of an
adaptive strategy.

We suggest that Eudyptes extreme intraclutch ESD
evolved in the context of clutch-size invariance (a cana-
lized two-egg clutch) stemming from a unique interaction
between the physiology of follicle (yolk) development and
selection favoring a slower life history that resulted in
temporal overlap between migration and reproduction
(Crossin et al. 2010). In birds, including penguins, the
number of recruited follicles exceeds clutch size, and pre-
ovulatory follicles are resorbed after clutch completion
(Haywood 1993; Crossin et al. 2011). Clutch size is typ-
ically determined by arresting follicle development at the
end of the follicle hierarchy (Haywood 1993), not by se-
lective abortion of earlier developing follicles within the
hierarchy (Goerlich et al. 2010). In penguins, development
of the A-follicle precedes that of the B-follicle by ~4 days
(Grau 1982; Astheimer and Grau 1985; Crossin et al.
2010); this suggests that development of the A-follicle will
be disproportionately affected by migration overlap, with
migration overlap potentially contributing to the extent of
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ESD (Crossin et al. 2010). Consistent with this, Eudyptes
pachyrhynchus exhibits the lowest ESD (17.5%) within Eu-
dyptes and little or no overlap between follicle development
and migration (Grau 1982; Williams 1995), while E. chry-
solophus exhibits among the highest ESD (46.8%) and ex-
tensive overlap between follicle development and migra-
tion (Williams 1990; Crossin et al. 2010). There is a
widespread fitness advantage associated with early onset
of egg laying in birds (Williams 2012). If this fitness ad-
vantage was large when Eudyptes made the transition to
a pelagic overwintering ecology and their life history
slowed down, then selection could have favored migration-
reproduction overlap, with the energetic cost of the A-egg
being offset by the increased survival probability of the B-
chick. Under such a selective regime, the physiology of
clutch-size determination could favor the B-egg and pre-
clude the subsequent elimination of the A-follicle.

In conclusion, the six species of Eudyptes penguins have
an invariant two-egg clutch but attempt to raise only one
chick (Williams 1995); this bizarre combination of repro-
ductive traits constitutes a genus-wide evolutionary mis-
match between clutch size and realized fecundity. This
mismatch is associated with reversed hatching asynchrony
(St. Clair 1996) and maternal egg ejection (St. Clair et al.
1995), which appear to have coevolved with extreme in-
traclutch ESD in Eudyptes. Reversed hatching asynchrony
ensures systematic loss of the A-chick when the smaller
A-egg is retained until hatching (St. Clair 1992, 1996).
Maternal egg ejection typically occurs at or before the time
the B-egg is laid (St. Clair et al. 1995). While acknowl-
edging that our constraint-based explanation is contro-
versial, we argue that an invariant two-egg clutch coupled
with extreme intraclutch ESD, high production costs of
the A-egg, systematic loss of the A-egg or A-chick (in the
wild), and an apparent inability of abundant food re-
sources to rescue the A-egg or A-chick (in captivity) are
more consistent with maladaptation than they are with an
adaptive strategy. We suggest that the persistent failure to
evolve a one-egg clutch constitutes a genus-wide evolu-
tionary maladaptation unique to Eudyptes and that ex-
treme intraclutch ESD arose as a correlated response to
selection favoring a slower life history.
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APPENDIX A

Estimation of Fresh Egg Mass from Linear Dimensions

Because of a lack of published fresh egg mass data, we
estimated A- and B-egg mass for Spheniscus humboldti (Pe-
ruvian penguin), Spheniscus mendiculus (Galapagos pen-
guin), Eudyptula albosignata (white-flippered penguin), and
Eudyptes robustus (Snares penguin). To do this, we assem-
bled species-specific (n = 10) mean length, breadth, and
mass measurements taken from the same set of fresh eggs
(n > 20 for each species; table Al). Penguin eggs are roughly
ellipsoid, so we calculated egg volume = length x breadth’
x 7 x 6" and assumed that A-egg and B-egg volumes
provide independent estimates of egg mass. Visual inspec-
tion revealed a pair of points, A- and B-eggs of Pygoscelis
antarctica, that deviated strongly from an otherwise excep-
tionally tight linear relationship (data not shown); both eggs
were ~10 g larger than expected from their linear dimen-
sions (A-egg residual = 4.1, Bonferroni P = .0140; B-egg
residual = 6.4, Bonferroni P = .0001). After first confirm-
ing that the dimensions reported by Lishman (1985) were
likely correct (Belliure et al. 1999), we excluded P. antarctica
from the regression analysis and estimated A- and B-egg
mass for this species also.

The resulting ordinary least squares regression equation
was adequate for prediction (fresh egg mass = —1.28 =
1.32 + 1.08 £ 0.01 x calculated volume, n = 20,
E s = 7,080, P < .0001, adjusted r* = 0.997). Egg dimen-
sions for the five species requiring egg mass estimation were
within the range of the 10 species included in the regression.
We validated our egg mass estimation to assess bias. First,
we retained the species with the largest (Eudyptes schlegeli)
and smallest (Eudyptula minor) eggs and iteratively excluded
each of the eight remaining species. Second, we used the
ordinary least squares regression equation from each set of
nine species to estimate A- and B-egg mass for the one
excluded species. Finally, we compared estimated and fresh
egg mass for the one excluded species. The mean difference
between estimated and fresh mass was +0.26% for A-eggs
and —0.30% for B-eggs. Thus, we are confident that egg
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Table Al: Species and sample sizes of A- and B-eggs used to estimate fresh egg mass from linear

dimensions

Common name Scientific name A-egg (n) B-egg (n) Source
Adélie Pygoscelis adeliae 73 73 Lishman 1985
Gentoo Pygoscelis papua 20 20 Williams 1995
Chinstrap Pygoscelis antarctica 51 56 Lishman 1985
Black-footed Spheniscus demersus 70 70 Williams 1995
Little Eudyptula minor 94 94 Kemp and Dann 2001
Erect-crested Eudyptes sclateri 50 50 Williams 1995
Royal Eudyptes schlegeli 31 28 Williams 1995
Macaroni Eudyptes chrysolophus 52 70 Williams 1995
Northern rockhopper  Eudyptes moseleyi 122 119 Williams 1995
Eastern rockhopper Eudyptes filholi 37 37 Williams 1995
Fiordland Eudyptes pachyrhynchus 54 54 Williams 1995

Note: Published fresh mass for the A- and B-eggs of P. antarctica was almost exactly 10 g larger than expected from
linear dimensions. Thus, P. antarctica was excluded from the predictive analysis, and fresh egg mass was also estimated
for this species.

mass estimation did not strongly influence the results pre- alents are lost to A-egg production, and this represents
sented here. 33% of the 35-day incubation period. This estimate rep-
resents the minimum production costs because energetic,
temporal, and survival costs associated with foraging to

APPENDIX B . . .
attain the lost reserves are not included, nor is the temporal
Costs of A-Egg Production: Time and Energy cost of the laying interval.
Inferring that Eudyptes’ two-egg clutch constitutes a genus- Literature Cited

wide evolutionary maladaptation is contingent on high
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rect and mdirect energetic costs ob A-cgg production 107y 4 heimer, L. B., and C. R. Grau. 1985 The timing and energetic
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