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Introduction

Abstract

Sex differences in skews of vertebrate lifetime reproductive success are difficult
to measure directly. Evolutionary histories of differential skew should be detect-
able in the genome. For example, male-biased skew should reduce variation in
the biparentally inherited genome relative to the maternally inherited genome.
We tested this approach in lek-breeding ruff (Class Aves, Philomachus pugnax)
by comparing genetic variation of nuclear microsatellites (0,; biparental) versus
mitochondrial D-loop sequences (0,,; maternal), and conversion to comparable
nuclear (N,) and female (N, effective population size using published ranges
of mutation rates for each marker (u). We provide a Bayesian method to calcu-
late N, (0, = 4N.u,,) and N (0,, = 2N,,) using 95% credible intervals (CI)
of 0, and 0,, as informative priors, and accounting for uncertainty in . In 96
male ruffs from one population, N, was 97% (79-100%) lower than expected
under random mating in an ideal population, where NN, = 2. This substan-
tially lower autosomal variation represents the first genomic support of strong
male reproductive skew in a lekking species.

produce a comparable skew in lifetime reproductive
success (LRS) (Mackenzie et al. 1995; Kokko et al. 1998,

In a lek system, a small number of males obtain most of
the copulations, and therefore the distribution of mating
success is strongly positively skewed with a mode near
zero (Hoglund and Alatalo 1995). An issue of interest
in studies of lek mating systems is the extent to which
seasonal or apparent skews in mating success ultimately
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1999). Variance in LRS may be smaller than expected
because mating skews at leks are not necessarily mirrored
by a skew in paternity because of off-lek copulations. This
is the case in the lekking Houbara bustard (Chlamydotis
undulata undulate) (Lesobre et al. 2010). In addition,
mating skews can be highly age dependent (e.g., Gibson
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and Guinness 1980; McDonald 1989), multiple paternity
of offspring can reduce the mating variance in polygynous
species (Webster et al. 1995), and trade-offs against survi-
vorship may occur.

Directly measuring the skew in LRS requires comprehen-
sive paternity analyses for at least one generation, which is
difficult or impossible in many study systems (but see e.g.,
DuVal 2012). However, an evolutionary history of sex dif-
ferences in skew in LRS should be visible in the genome.
Strong sexual selection should result in a strongly reduced
effective population size for the selected sex; for male-lek-
king species, reduced neutral genetic diversity should occur
in paternally only inherited genes (Chesser and Baker
1996). In a recent paper, approximately a 10% reduction in
neutral genetic variation on the Z chromosome was found
in two polygynous shorebird species (Corl and Ellegren
2012). Because lekking is generally associated with extreme
polygyny, an even stronger reduction in variation is
expected in lekking species. In the lekking Gunnison sage-
grouse (Centrocercus minimus), the simulated reduction in
effective population size due to male mating skew was at
least 23%, while accounting for the variance in seasonal
reproductive success in females, which was almost as high
as in males due to a high rate of nest failure (Stiver et al.
2008). In the lek-breeding European treefrog (Hyla arbo-
rea), no sex differences in effective population size were
found; in this species, a negative effect of the mating system
was obscured by the much stronger effect of delayed matu-
rity in both sexes (Broquet et al. 2009).

Here, we revisit the empirical support for the predicted
reduction in paternally transmitted genetic variation in a
lekking species (for predictions see: Chesser and Baker
1996; Charlesworth 2009; Corl and Ellegren 2012). The
test case is the ruff (Philomachus pugnax), which has a
well-described lek mating system. The species has (1)
highly ornamented males that are much larger than the
nonornamented females, (2) three genetically based alter-
native male morphs, and (3) strong annual reproductive
skews in males (Hogan-Warburg 1966; van Rhijn 1991;
Lank et al. 1995, 2013; Widemo 1998; Jukema and Piers-
ma 2006), all of which points toward strong sexual selec-
tion on males (Shuster and Wade 2003). However, in
studies of direct paternity of ruffs, many offspring could
not be assigned to fathers (Lank et al. 2002; Thuman and
Griffith 2005), indicating that copulations took place with
nonsampled males at other leks or off-lek (Lank and
Smith 1987; van Rhijn 1991), potentially reducing the
extent of variance in mating success relative to that
assumed from counting copulations at leks (see Widemo
and Owens 1995). Potential negative trade-offs between
mating success and longevity are undocumented. There-
fore, the magnitude of skew in the lifetime reproductive
success of males remains unknown.

© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Genetic Consequences of Reproductive Skew

We developed a method that can be generally applied to
detect sex differences in skews in lifetime reproductive suc-
cess in birds, when, or assuming that ecological knowledge
is available to cautiously explore other deviations from
equilibrium conditions, such as sex differences in dispersal,
recruitment, survival, and selection. Our Bayesian approach
compares genetic variation of biparentally inherited auto-
somal genes with genetic variation of a maternally only
inherited mitochondrial gene and estimates the likelihood
to reject the random mating hypothesis under which auto-
somal variation is larger than mitochondrial variation. The
Bayesian framework accounts for variation and uncertainty
in mutation rates using a range of published mutation rates
for each of the genetic markers.

Materials and Methods

Sampling

Ruffs have slight population structure across a breeding
range that extends from Western Europe to eastern Siberia
(Verkuil et al. 2012). To avoid potential effects of popula-
tion substructure, we confined the present analysis to
samples collected at one breeding site, in Sweden. Blood
samples were taken from the brachial vein of 96 territorial
male ruffs captured with cannon nets between 1990 and
2001 on Gotland, Sweden (57°10’N, 18°20'E) (Widemo
1997; Thuman 2003). Blood samples were stored in 95%
ethanol, and DNA was isolated by standard phenol—chloro-
form or Chelex extractions and stored at —20°C.

Choice of genetic markers

For this study, highly variable markers were used that are
generally applied in population genetic studies: microsatel-
lites or simple sequence repeats (SSRs), and sequences of
the mitochondrial D-loop or control region. These mutate
fast and are therefore adequate archives of recent genetic
evolution (Avise 2004). Importantly, data on genetic varia-
tion collected with these markers are available for many
study organisms. The disadvantage is that marker-specific
mutation rates (u) have to be used to convert genetic varia-
tion to comparable units, and estimates of u often have
large uncertainties. Our method explores the use of these
markers while accounting for the uncertainty in p.

Biparental loci

The biparentally transmitted genes used to genotype the
96 males were seven polymorphic autosomal microsatel-
lites loci (nDNA): ruffl, ruff6, ruffl0, ruffl2, and ruff50
are published loci cloned from ruffs (Thuman et al.
2002), and SNIPE B2 (Sezther et al. 2007) and M2 (L.
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Wennerberg, pers. comm.). PCR profiles and details on
fragment analysis, and the assignment of alleles can be
found in Thuman et al. (2002) and Sather et al. (2007).
Standard diversity indices were obtained with the pro-
gram Migrate (Beerli 2006).

Maternal locus

The maternally inherited locus used in this study is the con-
trol region (CR) of the mitochondrial genome (mtDNA). A
512 nt segment of domain I and II of the CR was amplified
and sequenced with forward primer L141 (5-TCCATT
AATCTACAACCGGGCT) and reverse primer PropR (5'-A
ATACCAGCTTTGGGAGTTGG). Ruffs have a duplicated
CR with high sequence similarity between copies (Verkuil
et al. 2010). By anchoring the primer PropR in the
tRNA"™, only CR1 was targeted. The amplification profile
used was 2 min denaturation at 95°C, followed by 36 cycles
of 94°C for 45 s, 53-57°C for 45 s, 72°C for 1.30 min, fol-
lowed by a final 7 min elongation at 72°C. PCR products
were gel-purified and prepared for sequencing using Big-
Dye Terminal Cycle Sequencing reagents according to the
manufacturer’s instructions (Applied Biosystems, Foster
City, CA, USA) and sequenced on an ABI 3100 automated
sequencer. Sequences were edited and aligned in MEGA 3.1
(Kumar et al. 2004), and standard diversity indices were
obtained with ARLEQUIN, version 3.11 (Excoffier and
Schneider 2005).

Estimation of ® with coalescent analysis

To obtain the effective population size from the genetic
data, the following equations need to be applied,

0, = 4N,p,,, for nDNA, (1)
Om = 2N, for mtDNA, (2)

where 0, and 0,, are the respective nuclear and mito-
chondrial genetic variance parameters (i.e., sequence
diversity that evolved under a species-specific effective
population size and mutation rate), N, and N, are bipa-
rental and female-transmitted only effective populations
sizes, and p, and p,, the marker-scaled mutation rates
(Hartl and Clark 1997: Pp. 121-127). The factor four in
equation 1 accounts for the ploidy difference with
mtDNA and the estimation over two branches. The factor
two in equation 2 accounts for the estimation of 0 over
two branches of the ancestral tree.

Estimates of the variance parameters 0, and 0,, were
obtained by coalescent analysis (Beerli and Felsenstein
1999), using the program Migrate-n version 3.5.1 (Beerli
2006). The genotypes and haplotypes were considered to
come from a genetically uniform population, because we
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used males from a single breeding population. For micro-
satellites, the Bayesian Brownian motion model was used,
which is a continuous modification of the discrete
stepwise mutation model (Kuhner 2006). After initial
runs (with various random seed numbers) to determine
likely priors for 0, leading to unimodal posterior distri-
butions, one final long run was executed with a uniform
prior distribution for 0 of [0;100]. After a burn-in of
20,000 steps, the parameter space was sampled by one
adaptively heated chain, sampling 200,000 trees, with an
increment of 100; a total of 300 replicates were run,
meaning that in total 6 billion parameter values were vis-
ited. Settings were adjusted to allow substitution rates to
vary among loci (P. Beerli, pers. comm.).

For mtDNA sequences, Bayesian interference was also
used. The substitution rate was assumed to be constant
between sites and the transition/transversion bias was set
to R =33 (R was 33 in a larger sample of all breeding
birds, see Verkuil et al. (2012)). After initial runs to test
for convergence under different priors, a uniform prior
distribution of [0.0;0.1] was set for theta. One final run
was performed with a burn-in of 10,000 and a static heat-
ing scheme of four temperatures, sampling 10 million
trees with an increment of 100; consequently, 1 billion
parameter values were visited.

Modeling N.:N.; under uncertainty in both
mutation rates and genetic variance
parameters

The quantity N.:N.is provided by equations 1 and 2,
Ne/Nep = [0n/ (412,)/ [0/ (24)] 3)

However, the uncertainty in the parameters 6 and u
can substantially affect the estimation of N, and N, from
genetic data. To estimate N,:N,; we used OpenBUGS, a
Bayesian analyses dedicated software that makes the
MCMC method easily accessible (Spiegelhalter et al.
2010). For calculation of N,, a generation time of 3 years
was assumed (Colwell 2010). In the computation of
Ng N we incorporated the uncertainty of published
mutation rates (u, and pu,,) and the genetic variance
parameters (0, and 0,,), estimated from the data. Instead
of using single fixed values, we defined two uniform prior
distributions, one for 0, and one for 0,. The uniform
distributions were defined over a range of values that
included 95% of their respective posterior distribution
obtained by coalescent analysis of the genetic data
(U[10.0516.5] and U[0.01;0.05], respectively, see Results).

For the mutation rates p, and u,,, we defined, a priori,
the range of possible mutation rates according to the lit-
erature ([1 x 107%1 x 107°] and [1 x 10751 x 1077],
respectively). This means that the high variability of

© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
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mutation rates, as reported in the literature, is the starting
point of the Bayesian analysis. To determine the ranges of
mutation rates, we used the following information. In
vertebrates, the typical mutation rate for microsatellites is
1 x 10~* substitutions/locus/generation (Ellegren 2000;
Whittaker et al. 2003). Birds have fewer microsatellites
than mammals, but characteristics such as length, allele
dispersion, and range of allele sizes do not vary between
birds and mammals, indicating that mutation rates might
be comparable (Neff and Gross 2001). Recently, fast
microsatellite mutation rates have been reported in one
Falconiformes and three Passeriformes, ranging between
3.0 x 1072 and 1.3 x 1072 (Brohede et al. 2002; Beck
et al. 2003; Ortego et al. 2008; Masters et al. 2011); the
variation in mutation rates between these four studies
strongly correlated with median allele spans ([24—
140] bp). Our microsatellites had a median allele span of
36 bp (Verkuil et al. 2012). We therefore assumed an
upper boundary for p, of 1 x 107°. To stay conservative,
a lower boundary of 1 x 107> was assumed.

For mtDNA, a p,, of 2-15% per Ma was assumed,
which translates into [2 x 107% 1.5 x 107/] substitu-
tions/locus/year (using control region sequence of 512
nt). This range includes observed values for shorebirds
for domain I of the control region (Wenink and Baker
1996) and also the lower mutation rate in domain II
(Buehler and Baker 2005). In the results, the term “CI”
corresponds to the credible interval of estimates.

Results

Genotypic data

Ninety-six individuals were successfully genotyped at
seven microsatellite loci. None of the loci had null-alleles,
significant linkage disequilibrium, or significant deviations
from Hardy—Weinberg equilibrium (see Thuman et al.
2002). The number of alleles per locus was 9, 14, 10, 5,
12, 20, and 15, respectively. The expected heterozygosity
(Hexp) was 0.695 (0.419-0.845).

Eighteen individuals were successfully sequenced for
the 512-bp segment of the mitochondrial control region.
The segment had sixteen polymorphic sites (15 transitions
and 1 transversion), and across the samples 14 different
haplotypes were detected (GenBank under Accession Nos
HQI171099-HQ171161). The gene diversity (H,) was
0.954 £ 0.039, and the average nucleotide diversity was
0.007 £ 0.004.

Estimates of theta

The coalescent run to estimate theta from microsatellites
had an effective MCMC sample size of 609 million and

© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Genetic Consequences of Reproductive Skew

returned an unimodal posterior distribution with a global
estimate of 0,, of 13.23 (95% CI 10.2-16.6). For mtDNA,
the effective MCMC sample size was 5.5 million, with
resulted in a unimodal posterior distribution, and a most
probable estimate of 0,, of 0.0238 (95% CI 0.012-0.048).

Ratio of biparental to maternal effective
population size

Including the 95% Cls of the estimates of 0,, and 0,,, the
ratio NN, was 0.068 (SD = 0.168, 95% CI 0.004-0.425),
assuming prior uniform distributions for u,, and p, as
given in the Methods. This means that in ruffs, nuclear
genetic variation is 97% (range: 79-100%) lower than
expected under random mating in an ideal population,
where NN = 2.

Discussion

The 97% reduction in nuclear genetic variation is empiri-
cal support for the assumed stronger interindividual vari-
ance in lifetime reproductive success (LRS) of male ruffs
relative to females. This result confirms the intuition of
previous field researchers who observed the large invest-
ments by some males in dominating the lek (Hogan-War-
burg 1966; van Rhijn 1983, 1991). Males may display so
intensively that they refrain from eating and drinking,
and lose mass throughout the breeding season (Widemo
1998; Bachman and Widemo 1999). Our study suggests
that for the winners, male competition indeed does pay
off in a high LRS. Annual and lifetime reproductive skew
probably exists within all three male morphs (indepen-
dents, satellites and faeders, see Jukema and Piersma
2006; Lank et al. 2013), but the skew among indepen-
dents will drive the reduction of genetic variation, because
they comprise ca. 80-85% of the population (Lank et al.
1995; Widemo 1998). Strong skews are hypothesized to
facilitate invasion of alternative reproductive strategies
(Shuster and Wade 2003), as clearly has occurred in this
case. The results show that in ruffs sex-specific fitness var-
iation (sexual selection) has been strong and stable long
enough for the nuclear genetic variation to be much
lower than the mitochondrial genetic variation inherited
through the female line.

Our approach to evaluate the degree of difference in
genetic variation between the nuclear and mitochondrial
genome through estimating the effective population size
(N,) can be applied more generally. The degree of differ-
ence in N, between the two genomes will summarize
longer-term mating skews between the sexes in any species.
However, knowledge of the ecology of the species is a pre-
requisite, because sex differences in dispersal, recruitment,
survival, and selection may obscure the effect of the mating
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system (see Chesser and Baker 1996; Barton 2000; Waples
2010). We will use ruffs to illustrate the possible effects of
sex differences in ecology on the reduction in N,.

Stronger male than female dispersal will reduce N,. For
example in an extreme case, 90% of the dispersal could
take place through males, which would reduce N, by as
much as 65% (expected N.:N,s changes from 2 to 0.7, see
the mammal model of Chesser and Baker 1996). Theoret-
ically, lekking bird species are assumed to have female-
biased dispersal (Greenwood and Harvey 1982; Chesser
and Baker 1996), but empirical data are inconclusive on
this prediction (see Lebigre et al. 2008; Martin et al.
2008). In ruffs, female natal philopatry is extremely low
(Andersen 1948, 1951); adults of both sexes show large
geographic flexibility in migration routes (Rakhimberdiev
et al. 2011). At the same time, adult territorial males in
our study population show substantial lek site fidelity
between years (Widemo 1997) and were never observed
to shift to another breeding area once established (Lif
2002; F. Widemo, unpublished data). Therefore, it is
unlikely that ruffs have strongly male-biased dispersal.

Adult sex ratio can also influence N,. Ruffs have an
assumed skewed adult sex ratio of ca. 40% males to 60%
females (OAG Miunster 1996; Zwarts et al. 2009), which
may result from a sex bias in recruitment (Jaatinen et al.
2010), as found in other polygynous birds (Donald 2007;
see Kokko and Jennions 2008). This sex ratio bias would
lead to a reduction in N, of 35%, even under random
mating (expected NN, changes from 2 to 1.3).

In principle, NN can also be influenced by differen-
tial selection regimes in the two genomes and/or the Hill-
Robertson interference; mtDNA does generally not
recombine and is therefore susceptible to genetic sweeps
reducing variation (Marais 2007). This would lead to an
underestimate of N, Also, if genetic diversity was not at
mutation/drift equilibrium (e.g., the species is recovering
from a severe population bottleneck), microsatellites
would have higher diversity than mitochondrial genome
because mutation rate rather than N, would control the
speed of recovery. As we found relatively high variation
in mtDNA, in ruffs neither process can be likely responsi-
ble for the observed low N,:N,; ratio.

We conclude that in ruffs, the observed reduction in
N, of 97% (range: 79-100%) is stronger than can be
accounted for by ecological differences between males and
females, and primarily results from the larger variance in
LRS in males than in females, which is congruent with
the predicted NN, under the lek model of Chesser and
Baker (1996). This is not the first study assessing the
reduction of genetic variation in a lekking species (e.g.,
Stiver et al. 2008; Broquet et al. 2009; Corl and Ellegren
2012), but it is the first to detect a reduction. Ruffs were
included in a comparison of genetic diversity at autoso-
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mal and Z-linked introns of monogamous and polygy-
nous shorebird species (Corl and Ellegren 2012), but had
few variable sites compared with the other species, and
the authors of this earlier study considered the results
inconclusive for ruff. We showed that a long-term mating
skew can be genetically assessed in ruffs using microsatel-
lites and the mitochondrial control region, which have a
higher mutation rates than the nuclear introns used in
the earlier study. The uncertainty in mutation rate of
these markers should be accounted for with methodology
such as we presented. Using our approach, existing and
future genotyping datasets from other species may be
used to characterize their mating systems. The method
will be most useful if information on other potential bias-
ing ecological factors is available, but mating patterns
themselves cannot be directly assessed.
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