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CROSS-CONTINENTAL PATTERNS IN THE TIMING OF SOUTHWARD
PEREGRINE FALCON MIGRATION IN NORTH AMERICA
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ABSTRACT.—We analyzed the timing of southward migration of Peregrine Falcons (Falco peregrinus) across
North America, based on passage data compiled by the Hawk Migration Association of North America,
supplemented with two other similar datasets collected by individual observers at sites in western Canada.
The results show two distinct continental-scale patterns. First, the north to south progression of peak
peregrine passage down the continent is readily apparent, occurring primarily during September and
October. Second, the movement of Peregrine Falcons is earlier by 4-6 wk on the west coast than on the
eastern seaboard, and is intermediate at inland sites. The wavefront of Peregrine Falcons advancing south-
ward is oriented from southwest to northeast across the North American continent. We hypothesize that
these patterns have implications for the southward migrations of potential prey species, which may select
routes or times to avoid places of high risk due to Peregrine Falcons.
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PATRONES TRANSCONTINENTALES EN EL. MOMENTO EN QUE TIENE LUGAR LA MIGRACION
HACIA EL SUR DE FALCO PEREGRINUS EN NORTE AMERICA

RESUMEN.—Analizamos el momento en que tiene lugar la migracion de Falco peregrinus hacia el sur a través
de Norte América con base en datos del paso de individuos recopilados por la Hawk Migration Association
de Norte América. Ademas complementamos estos datos con otros dos conjuntos de datos similares que
fueron recolectados por observadores individuales en el oeste de Canada. Los resultados muestran dos
patrones distintos a escala continental. Primero, existe un patréon claro de progresion de norte a sur en el
pico de pasada de individuos migratorios, que ocurre principalmente en septiembre y octubre. Segundo, el
movimiento de F. peregrinus tiene lugar 4-6 semanas mas temprano en la costa oeste que en la este, y es
intermedio en sitios ubicados tierra adentro. El frente de la ola de individuos migratorios que se dirigen
hacia el sur esta orientado del suroeste al noreste a través del continente norteamericano. Proponemos la
hipotesis de que estos patrones tienen implicaciones para la migraciéon hacia el sur de especies de presas
potenciales, las cuales pueden seleccionar rutas o momentos de migracion para evitar lugares de alto riesgo
debidos a la presencia de F. peregrinus.

[Traduccion del equipo editorial]
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Migration routes and migration timing of preda-
tors may possibly have co-evolved with those of prey
species, but this idea has been little studied (Aler-
stam et al. 2003). One of the first researchers to
investigate this idea compared the migration timing
of Peregrine Falcons (Falco peregrinus) and sandpip-
ers (Calidris mauri, C. alpina pacifica.) in southwest-
ern British Columbia, demonstrating that sandpiper
migrations avoided times and places of highest ex-
posure to peregrines (Lank et al. 2003). The broad-
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er geographical applicability of these findings is still
unknown, but investigating the continental-scale mi-
gratory passage pattern of peregrines and other rap-
tors is an essential first step for addressing the co-
evolution hypothesis. The purposes of our study
were: (1) to analyze the timing of Peregrine Falcon
southward migration in North America; and (2) to
determine whether easily-collected data on migrato-
ry passage are adequate to describe migration tim-
ing.

A variety of studies of migratory peregrines have
been undertaken (Dekker 1980, Hunt et al. 1975,
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Muller et al. 2000). Peregrines often soar during
migration, but they also employ a significant
amount of powered flight, and appear to hunt ac-
tively every day (Cochran 1975). Telemetry studies
have followed the movements of individual birds
and estimated the speed of migration (Chavez et
al. 1994, Fuller et al. 1998, McGrady et al. 2002).
Previous researchers (Beebe 1960, Enderson 1965,
Heintzelman 1975, Dekker 1984, Ward et al. 1988)
have reported passage dates for migrant peregrines,
but these data have not been synthesized. Here we
compare measures of Peregrine Falcon migration
timing at 16 sites across North America.

METHODS

Data on Peregrine Falcon passage timing were ob-
tained from Hawk Migration Studies Flyway Reports
published biannually by the Hawk Migration Associ-
ation of North America (Byland 1998, Hoffman
2000, Hoffman 2001; www.hmana.org). The
HMANA is a nonprofit volunteer organization that
monitors raptor migrations across North America.
Using standard reporting forms and procedures, mi-
gration data are collected by experienced observers
from established strategic lookout points spread
across the continent. Inzunza (2005) provides an
overview, and discusses the use of these data to esti-
mate population trends and status of North Ameri-
can raptors in the Raptor Population Index Project.
We followed policies governing HMANA data use
described at http://hmana.org/data policies/.

For the following analysis we selected data from
1998, 2000, and 2001, because these years had the
greatest number of hawkwatch sites that reported in
all 3 yr. Sites were included in our analysis if 19
peregrine sightings were recorded there in each
year and if the site was monitored ul wk of near-
consecutive days during the peak southward passage
period (as we estimated it, based on comparison
with nearby sites). Most sites were continuously
monitored for much longer periods.

‘Peak migration date’ was defined as the day with
the greatest number of observed Peregrine Falcons,
and the ‘50% passage date’ was defined as the date
by which half the total number of birds recorded at
that site over the observation period had been ob-
served. We also recorded for each year and site the
number of peregrine sightings, the number of ob-
servation days, and the number of missed observa-
tion days between the first and last reported day
(Table 1).
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To test how missed observation days affected the
estimation of the 50% passage date, we built a com-
puter simulation of the passage of peregrines (N =
394) past an observation site over 50 d, with the
cumulative number of migrants following a logistic
curve. In our simulation, the true date of 50% pas-
sage was reached on day 25. We varied the proba-
bility that each observation day was missed from 0.1
to 0.9 in increments of 0.1, simulated the number of
migrants that would have been counted, and calcu-
lated the resultant 50% passage date. We repeated
the exercise 20 times at each probability level, and
calculated the error about the mean 50% passage
estimate.

HMANA sites are concentrated in the eastern por-
tion of the continental U.S.A. We were able to sup-
plement passage date estimates for the western part
of the continent with two additional data sets. Lank
etal. (2003) described data collected on the George
C. Reifel Migratory Bird Sanctuary, located on the
Fraser River estuary, adjacent to Vancouver, British
Columbia. These data differed somewhat from the
HMANA data, in that they were based on the aver-
age daily number of peregrines sighted during near-
daily 1 h surveys made since 1986 by the refuge
manger (John Ireland; see Ydenberg et al. 2004).
A graphical summary of the seasonal pattern was
provided by Lank et al. 2003 (see their Fig. 3). Al-
though the methodology differed from that used in
the HMANA studies, these data were suitable to per-
mit an estimate of peregrine migration timing (see
Niehaus and Ydenberg 2006). Passage timing varies
widely between years on the west coast, and we used
the 2001 data in our basic analysis as representative
of an average year. However, we fully describe and
discuss the interannual variation and its effects.

A second dataset was collected at Beaverhills
Lake, near Edmonton, Alberta by Dick Dekker,
who has since 1969 spent hundreds of field days at
this site between late August and October. Pere-
grine sightings made between 1969 and 1983 were
reported by Dekker (1984). The data used herein
are previously unpublished data of 45 sightings
made over 52 d in 2000-2005, spanning the period
1 September to 15 October in each year. Peregrines
are rarely seen here prior to 1 September (Dekker
1984; D. Dekker, unpubl. data).

REsuLTS

Migration data from some hawkwatch sites in
close proximity that recorded low numbers of per-
egrines were grouped to meet the minimum criteria
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Figure 1. Cumulative percent frequency of Peregrine Falcons passing the 16 hawkwatch sites in North America (Ta-

ble 1), pooled across years for each site.

for inclusion in our analyses (Holiday Beach and
Hawk Cliff, ON, Canada, were grouped; and Mon-
tclair, NJ, Little Gap, PA and Hawk Mountain, PA,
were grouped). The absolute difference in 50% pas-
sage dates for these sites was always small, averaging
3.5 d, and never more than 9 d. Including these
grouped sites, we obtained sufficient HMANA data
for a total of 14 sites (Table 1).

The general pattern of peregrine passage was
broadly similar at most sites (Fig. 1). The cumula-
tive number of birds passing rises slowly at first,
accelerates steeply, and then tapers off. The traces
do not rise equally steeply, but all are roughly sym-
metrical, indicating that the periods of observation
bracket the main migratory period. A plot of the
daily tallies rather than the cumulative passage
shows a waveform, with the height and sharpness
of the peak varying between sites.

Two lines of evidence suggest that these curves
allow for a reasonable assignment of a date to rep-
resent the timing of passage at a site. First, ‘Peak’
and ‘50% passage’ dates are nearly identical within
years, with the 50% date occurring on average only
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0.3 d earlier than and not differing significantly
from the peak passage date (paired #test, t = 0.79,
P> 0.05, N = 36).We judged that the 50% passage
date was less subject to random variation due to
occasional days with relatively many or few pere-
grine sightings (e.g., due to viewing conditions)
and we used this measure here. Second, our com-
puter simulation showed even when most observa-
tion days were missed, the estimate of the 50% pas-
sage date was close to the true value. The precision
of the estimate decreased (the 95% confidence in-
terval grew as the probability of missing an observa-
tion day increased), but there was no systematic bias
above or below the true value (Fig. 2).

The 50% passage dates for peregrines ranged
from 22 August to 5 October, with a strong and
distinct progression from west to east across the
continent. The latest dates occurred at the east
coast sites, all of which were between 4-6 October.
The earliest 50% passage date was 22 August, re-
corded on the Fraser estuary in British Columbia.
The 50% passage dates at inland sites were between
these two extremes. These data indicated that there
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Figure 2. Results of a computer simulation investigating

the influence of missed observation days on the accuracy
of the estimating the 50% passage date of 394 peregrines
passing an observation post over 50 d with a mean 50%
passage date on day 25. We calculated the mean and 95%
confidence intervals about the 50% passage date estimates
based on 20 replicates. There was no systematic relation-
ship between the frequency of missed observation days and
the bias in the estimate (correlation coefficientr = 0.41, N
=9, P> 0.05).

were both north-south and west-east components in
the aggregate progression of peregrine migration.

The southward progression of the 50% passage
date was used to estimate the speed of migration.
For example, the 50% passage dates in the data
presented here for Goshute Mountains, Nevada,
and Veracruz, Mexico differed by 12 d in 2000
and 17 d in 2001 (mean = 14 d). Using great circle
distance (the shortest distance between two points
on the surface of a sphere) we estimated the dis-
tance from Goshute Mountains, to Veracruz, Mex-
ico as 3017 km, and thus the calculated migration
speed as 3017 km/14 d = 215 km d~1.

To measure the west-east component of pere-
grine passage, we estimated the position of the 1
October isophene, which is defined as the position
of the migratory front on October 1st (see Byrkjedal
and Thompson 1998). We used Fuller et al.’s (1998)
estimate of 172 km d~! as representative of migra-
tion speed, and added or subtracted the expected
progression of the observed 50% passage date at
each site to 1 October. For example, the 50% pas-
sage point occurred in New Mexico (Goshute
Mountains) on 23 September, meaning that on 1
October (i.e., 8 d later) it should have progressed
southward by 1376 km (= 8 d X 172 km d~1). As
peregrines move on a broad front, we indicate these
calculated positions by arcs of 20° centered on the
main direction of migration, which was taken from
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Figure 3. The 1 October migration isophene (i.e., the
calculated positions of Peregrine Falcon migrants on 1
October, based on the 50% passage dates). Estimation
method described in the text. The arcs indicate positions
that peregrines are estimated to have reached on 1 Octo-
ber by traveling in the typical migration direction past the
hawkwatch sites studied (Table 1). The line segment on
each arc points to its corresponding hawkwatch site, which
is located to the north of the arc if October 1 is after the
50% passage date at that site, and to the south if October 1
precedes the 50% passage date. Peregrines at the west
coast Fraser estuary site were likely not all long distance
migrants, and hence no migration is indicated.

figure 5 of Schmutz et al. (1991). The resulting plot
showed that, on 1 October, the position of peak
peregrine passage was oriented across the conti-
nent, from southwest to northeast (Fig. 3).

DiscussioN

The data revealed clear patterns in the southward
migration of Peregrine Falcons. As viewed from a
single location, peregrine migration occurred as a
wave, with a distinct peak and timing that was re-
vealed even by simple census data. The north-to-
south sweep of this ‘predator tsunami’ (Butler et
al. 2003) down the continent was readily apparent,
and its speed (215 km d~!) was roughly similar to
that of individual migrant peregrines tracked via
satellite telemetry (172 km d~1, Fuller et al. 1998;
141 km d~!, McGrady et al. 2002 ). The arrival and
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advance of peregrines was much earlier on the west
coast than on the eastern seaboard, and was inter-
mediate at inland sites.

The total number of birds recorded during a
migration season varied between locales, and the
relation of these tallies to total numbers of pere-
grines can be complicated by a number of factors
(Inzunza 2005). However, measuring the timing of
migration from these data appeared to be less
prone to complications. Compilations of the timing
estimates from a number of different stations en-
abled us to assemble a coherent broad-scale pic-
ture. Previous studies (Beebe 1960 for coastal Brit-
ish Columbia; Enderson 1965 for Great Lakes;
Heintzelman 1975 for Hawk Mountain, Pennsylva-
nia; Dekker 1984 for Alberta; Ward et al. 1988 for
Maryland) were consistent with the timing esti-
mates made here, supporting our contention that
good timing measures could be readily derived
from these hawkwatch data.

The causes of the difference in timing between
the east and west likely involve several factors. The
study of satellite-tracked peregrines (Fuller et al.
1998) showed that the southbound routes of indi-
viduals from similar breeding locales spread out
widely over North America, and that individuals
traveling through or to the same nonbreeding lo-
cales may come from very different breeding sites
(McGrady et al. 2002). Peregrines traveling along
the eastern seaboard had flown from breeding areas
in the western and eastern Arctic, Greenland, and
Northern Canada.

On the Pacific coast, the measurement of migra-
tion timing is further complicated by the presence
of local resident peregrines, as well as wintering
birds, short-distance migrants, and long-distance mi-
grants. These birds together comprise a danger to
prey species that increases in early autumn along
the Pacific coast and remains relatively high almost
until spring.

A second factor affecting the west coast is signif-
icant annual variation in the timing of arrival. Nie-
haus and Ydenberg (2006) report that the arrival
(equivalent to the 50% passage statistic used here)
of peregrines in southwest British Columbia varied
by 54 d in the period 1986-2001, with the overall
mean arrival on Julian day 220 (8 August). Over the
same period, passage timing at Hawk Mountain in
Pennsylvania varied by only 7 d (mean arrival on
Julian day 276 [3 October]). In the 3 yr analysed
here (1998, 2000, 2001), 50% passage dates at the
14 HMANA sites had a median range of 6.5 d, while
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the range observed on the Fraser estuary over these
same 3 yr was 54 d. The larger variation observed in
the west may result from strong annual variation in
the timing of breeding of the birds along the north-
ern Pacific coast. This difference is unlikely to be
methodological because Niehaus and Ydenberg
(2006) showed that annual variation in the date of
peregrine arrival on the Fraser estuary was strongly
related to the date of snowmelt in Alaska, and sug-
gested that there may be an underlying climatic
cause.

Additional data on peregrine migration timing
would improve our understanding of migration pat-
terns and factors influencing annual variation in
migration movements. For example, there are rela-
tively few HMANA sites reporting data from the
central portions of the continent, whereas it is clear
from satellite telemetry studies that many pere-
grines travel through the continental interior. As
we have shown, simple repeated census data may
be sufficient to reveal the basic pattern, and many
such data already exist.

These continental-scale patterns in peregrine mi-
gration may have implications for the timing and
routing of migrations and molt of potential prey
species by making certain times and places more
dangerous than others (Ydenberg et al. in press).
Further evaluation of this idea will require more
detailed knowledge of the predator landscape than
is yet available.
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