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COVID-19 pandemic interventions reshaped
the global dispersal of seasonal influenza viruses
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INTRODUCTION:Despite the availability of up-
dated seasonal influenza vaccines and treat-
ments, annual influenza epidemics continue
to cause millions of hospitalizations and sub-
stantial burden on health care systems. The
global circulation of seasonal influenza line-
ages depends on continued virus antigenic
evolution and patterns of human travel from
regions with year-round transmission to tem-
perate regions. A clearer understanding of how
human influenza and other respiratory patho-
gens were affected by COVID-19–related restric-
tions will help predict how future pandemics
might influence infectious diseases and help
inform more effective interventions.

RATIONALE: During the COVID-19 pandemic,
nonpharmaceutical interventions were intro-
duced worldwide, which led to human behavioral
changes on an unprecedented scale. This led to
a decline in the global prevalence of endemic
respiratory pathogens, including seasonal in-
fluenza subtypes H1N1pdm09 and H3N2 and
lineages B/Victoria and B/Yamagata. The im-

pact of changes in air travel connectivity among
regions meant that the global circulation of sea-
sonal influenza was perturbed. In this work,
we assembled globally representative datasets
to jointly analyze molecular, epidemiological,
and international travel data to characterize
how the global circulation of seasonal influenza
was reshaped and when it returned to a pre-
pandemic equilibrium.

RESULTS: Test positivity rates for influenza vi-
ruses dropped by >95%during the acute phase
of the pandemic (April 2020 to March 2021)
compared with the pre-pandemic period. We
inferred that the locationswhere circulation of
H1N1, H3N2, and B/Victoria influenza virus
lineageswasmaintainedduring the acute phase
were all in Asia. However, we also revealed that
circulation continued in Africa, but with less
influence on global circulation patterns, per-
haps because of less frequent international
travel. As pandemic-related restrictions weak-
ened (albeit heterogeneously across the world),
among-region virus lineage movements were

detectable, and our statistical model showed
strong support for association of international
air travel with between-region influenza virus
movements. In the post-pandemic period (after
theWorldHealthOrganization’s International
Health Regulations Emergency Committee de-
clared the end of the global emergency in May
2023), the global circulation of seasonal influ-
enza returned to pre-pandemic patterns char-
acterized by continued viral movements and
accumulation of genetic diversity—both impor-
tant for maintaining transmission of seasonal
influenza. The global lineage dynamics of sea-
sonal influenza betweenMay 2023 andMarch
2024 appears similar to that before the pan-
demic, albeit smaller in magnitude.

CONCLUSION: Our study revealed how seasonal
influenza viruses are maintained during and
reestablished after pandemic-related behav-
ioral changes. The longer-term impact of the
COVID-19 pandemic on influenza evolution and
antigenicity will need continued monitoring
through coordinated genomic surveillance and
evaluation of the global transmission patterns.
This is especially relevant as more regions be-
come suitable for year-round circulation of in-
fluenza, including in Africa.▪
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Global circulation of seasonal influenza before, during, and after COVID-19 pandemic–related restrictions. (Top) Timeline of monthly total air
passenger flows (blue) and stringency of government responses averaged across all countries (red). (Bottom) Influenza lineage movement dynamics
(H1N1pdm09 shown as an example) between regions during the pre-pandemic, acute pandemic, transition pandemic, and post-pandemic periods. The
black box is outside the range shown in the legend.
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COVID-19 pandemic interventions reshaped
the global dispersal of seasonal influenza viruses
Zhiyuan Chen1, Joseph L.-H. Tsui2, Bernardo Gutierrez2,3, Simon Busch Moreno2, Louis du Plessis4,5,
Xiaowei Deng1,6, Jun Cai1, Sumali Bajaj2, Marc A. Suchard7, Oliver G. Pybus2,8,9*†,
Philippe Lemey10*†, Moritz U. G. Kraemer2,9*†, Hongjie Yu1,11,12*†

The global dynamics of seasonal influenza viruses inform the design of surveillance, intervention, and
vaccination strategies. The COVID-19 pandemic provided a singular opportunity to evaluate how
influenza circulation worldwide was perturbed by human behavioral changes. We combine molecular,
epidemiological, and international travel data and find that the pandemic’s onset led to a shift in
the intensity and structure of international influenza lineage movement. During the pandemic, South Asia
played an important role as a phylogenetic trunk location of influenza A viruses, whereas West Asia
maintained the circulation of influenza B/Victoria. We explore drivers of influenza lineage dynamics
across the pandemic period and reasons for the possible extinction of the B/Yamagata lineage. After a
period of 3 years, the intensity of among-region influenza lineage movements returned to pre-pandemic
levels, with the exception of B/Yamagata, after the recovery of global air traffic, highlighting the
robustness of global lineage dispersal patterns to substantial perturbation.

S
easonal influenza epidemics impose a sub-
stantial burden on health care systems
and cause >5 million hospitalizations of
adults each year (1). The global dissem-
ination dynamics of seasonal influenza

are strongly associatedwith both global air travel
(2–5) and the periodic evolution of antigenically
distinct viruses that escape from vaccine- and/or
infection-induced immune responses (6).
Changes in human behavior driven by the

implementation in 2020 of nonpharmaceutical
interventions (NPIs) in response to the COVID-19
pandemic (7) affected the evolution and circu-
lation of seasonal influenza viruses (8) and
other respiratory pathogens (9, 10). In the wake
of these NPI-associated changes in behavior
and mobility, a rapid decline in influenza inci-
dence was observed in many countries, leading

to changes in the accumulation of population
immunity and substantial genetic bottlenecks
constraining virus diversity (6, 11). Influenza
transmission and dispersal resurged in late
2021 after the gradual relaxation of NPIs; how-
ever, one influenza B virus lineage, B/Yamagata,
has been reported only rarely since March 2020
(12). This led the World Health Organization
(WHO) to recommend using trivalent vaccines
that exclude the B/Yamagata strain in the 2024
Southern Hemisphere and 2024–2025 North-
ern Hemisphere influenza seasons (13, 14).
The current paradigm for influenza vaccine

development emphasizes timely surveillance
and evaluation of the antigenic and genetic
characteristics of circulating strains (15), espe-
cially those sampled frompreviously identified
source populations (including, for A/H3N2,
subtropical and tropical East Asia, Southeast
Asia, and occasionally India) (16, 17). We sought
to understand how changes in human behavior
and internationalmobility during the COVID-19
pandemic perturbed the spatial dissemination
and evolutionary dynamics of seasonal influ-
enza lineages in a geographically heteroge-
neous manner.
We combined epidemiological, genetic, and

international travel data in a phylodynamic
framework to estimate the spatiotemporal pop-
ulation structure, dwell times (inferred dura-
tions between virus lineage movement events),
and evolutionary diversity of seasonal influenza
viruses before, during, and after the COVID-19
pandemic.

Decline in global influenza transmission

Using the key pandemic milestones (i.e., when
the WHO declared the beginning and end of

the COVID-19 pandemic), the COVID-19 strin-
gency index (18), and air passenger volumes
over time (fig. S1A), we defined three “periods”
with distinct patterns of global humanmobility
andNPIs. Period 1 is the “pre-pandemic period,”
before large-scale population-level behavioral
changes in response to the COVID-19 pandemic
(January 2017 to March 2020). Period 2 is the
“pandemic period,” characterized by varying
degrees of interventions that sought to limit
population mixing between April 2020 and
April 2023. Given the regional heterogeneities
inNPIs,wedivided the pandemic period into an
acute phase (April 2020 to March 2021), when
most countries had announced stringent restric-
tions on international travel, and a transition
phase (April 2021 to April 2023), when interna-
tional mobility recovered partially. Period 3 cov-
ers the “post-pandemic period” that startedwhen
the WHO declared the end of the COVID-19
emergency (May 2023 to March 2024).
We obtained influenza virological surveillance

data from the Global Influenza Surveillance and
Response System (GISRS) and supplemented
themwith data from national surveillance data-
bases. GISRS collates data from specimens ob-
tained mainly from patients with influenza-like
illness and that have been tested for influenza
viruses at WHO-recognized National Influenza
Centres, national influenza reference labora-
tories, and other nonsentinel systems (19) (fig.
S2). The antigenic and genetic characteriza-
tion of influenza viruses collected through
this network forms the basis of WHO annual
recommendations for the composition of in-
fluenza vaccines. The number of specimens
processed for influenza testing remained sta-
ble during the acute phase of the pandemic pe-
riod and doubled during the transition phase
(Fig. 1A). This rise is possibly due to an increase
in the global capacity for virus surveillance es-
tablished during the pandemic and a refocus on
influenza sentinel surveillance as COVID-19 cases
subsided (20). The proportion of laboratory-
confirmed influenza cases that were subse-
quently sequenced during the acute phase of
the pandemic was typically >10% owing to
low absolute numbers of reported influenza
cases; this proportion later decreased to pre-
pandemic levels (Fig. 1B). Even though sur-
veillance intensity for seasonal influenza was
maintained during the pandemic, we cannot
rule out possible biases in virological and ge-
nomic surveillance in the influenza databases
(19, 21).
The fraction of specimens that tested influenza-

positive dropped significantly during the acute
pandemic phase; test positivity rates (the frac-
tion of specimens testing positive in each pe-
riod) decreased by 99.2% forH1N1pdm09, 99.2%
for H3N2, 96.9% for B/Victoria, and ~100% for
B/Yamagata compared with the average rates
during the pre-pandemic period (Fig. 1, C, E, G,
and I). To account for variation among years
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Fig. 1. Virological and genomic surveillance intensity and positivity
rates of seasonal influenza viruses from January 2017 to March 2024.
(A) Intensity of virological surveillance of influenza indicated by rolling numbers
of specimens processed globally for influenza virus testing. (B) Intensity of
genomic surveillance of influenza, as indicated by rolling percentages of reported
influenza cases sequenced at high quality. (C to I) The weekly count of high-
quality HA genetic sequences (stratified by continent) and global positivity
(pos.) rates among tested specimens, for H1N1pdm09 (C), H3N2 (E), B/Victoria
(G), and B/Yamagata (I). The positivity rates of H1N1pdm09 (D), H3N2 (F),

and B/Victoria (H) are also presented separately for regions that experienced
influenza waves during the acute phase of the pandemic period (Africa,
Southeast Asia, and South Asia; see text). The color scheme is illustrated in
(J). Positivity rates are presented as central-aligned rolling averages (5-week
window), and the 95% intervals indicate uncertainty in inferring the specific
subtypes or lineages using a Bayesian framework. The light-orange and light-blue
shaded areas represent the acute and transition phases of the COVID-19
pandemic period, defined as April 2020 to March 2021 and April 2021 to
April 2023, respectively.
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in the number of specimens, we further calcu-
lated the ratio of positive tests to the total num-
ber of specimens processed each year (22),
which also indicated low levels of influenza
transmission after the pandemic’s onset (fig.
S3). Counter to these trends, several small-scale
influenza outbreaks occurred during the acute
pandemic phase, in Asia (mainly South and
Southeast Asia) and Africa (Fig. 1, D, F, H, and
J). Both areas have tropical climates that can
support year-round virus circulation (23, 24),
and additionally, transmission could have been
affected by differential responses to COVID-19
(fig. S4). After the acute pandemic phase, an
H3N2 epidemic occurred during the 2021–2022
NorthernHemispherewinterwith a double peak
before and after the seasonal holidays, coincid-
ing with large waves of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) Omicron
BA.1 and BA.2 infection (25). Subsequently,
there were outbreaks of H1N1pdm09, H3N2,
and B/Victoria infection during the 2022–2023
Northern Hemisphere winter (Fig. 1, C, E, and
G). Substantial transmission of H1N1pdm09,
H3N2, and B/Victoria resumed or continued
in the post-pandemic period, but transmission
of B/Yamagata did not. Only a handful of B/
Yamagata cases (~20) have been reported since
the onset of the pandemic, however, thesemight
have originated from live attenuated influenza
vaccines or potential data errors (12, 26).

Air passenger traffic as a predictor
of influenza spread

The global spatial dissemination of influenza
viruswas shownpreviously to be associatedwith
human mobility (2). Disruptions to air travel,
as seen in September 2001 in the United States,
can affect the timing of subsequent influenza
seasons (27). To incorporate time-specific pre-
dictors and to account for potential variation
in virus dispersal rates across study periods,
we constructed a four-epoch (pre-pandemic,
acute pandemic, transition pandemic, and post-
pandemic) Bayesian phylogeographic gener-
alized linear model (GLM) and applied it to
influenza viruses circulating from January 2017
to March 2024 (see Materials and methods).
To account for potential biases in genetic sam-
pling, we adopted three subsampling strat-
egies for hemagglutinin (HA) gene sequences
(fig. S5): (i) even subsampling, (ii) subsampling
while accounting for temporal variation, and
(iii) subsampling while accounting for both
temporal and spatial variation (Materials and
methods). These subsampling schemes were
used to generate sets of ~2500 sequences for
each influenza subtype or lineage, with col-
lection dates up to the end of March 2024
(fig. S6) and sampled from 12 geographic re-
gions (Africa, North America, South America,
Europe,Russia, northernChina, southernChina,
Japan/Korea, South Asia, West Asia, Southeast
Asia, and Oceania; fig. S1B and table S1). Region

definitions were based on extensive previous
work on global lineage dynamics of seasonal
influenza (16, 17); we were able to extend pre-
vious definitions by including Africa andWest
Asia owing to recent increases in the availabil-
ity of sequences from those locations. Covariates
that describe demographic, epidemiological
(i.e., influenza activity), virological, air passen-
ger traffic, geographic, and sampling factors
were included in the GLM to explore their
epoch-specific associations with virus lineage
movements (Materials and methods; tables
S2 and S3).
As expected, during the acute pandemic phase,

we observed large reductions in air passen-
ger traffic between each pair of regions and in
outbound and inbound air passenger volumes
to and from each region (Fig. 2, A to D). Multi-
dimensional scaling (MDS) analysis of among-
region origin-destination (O/D) air passenger
volumes (Fig. 2E) and O/D annual travel fre-
quencies (Fig. 2F) shows that patterns of air
travel during the acute pandemic phase and
the first year of the transition phase diverged
from pre-pandemic mobility. Among-region air
travel frequencies during the second year of the
transition phase were similar to pre-pandemic
levels (Fig. 2F), albeit with lower absolute pas-
senger volumes (Fig. 2E). Absolute air traffic
volumes and frequency patterns recovered to
pre-pandemic levels in the post-pandemic pe-
riod (Fig. 2, E and F).
Although we observed changes in travel vol-

umes and among-region frequencies, air pas-
senger traffic remained a significant predictor
of global influenza dissemination across all
periods, with positive log effect sizes of 0.82 for
H1N1pdm09 [95% highest posterior density
(HPD) intervals = 0.71 to 0.94], 0.78 for H3N2
(95%HPD=0.67 to 0.90), 1.06 forB/Victoria (95%
HPD = 0.95 to 1.20), and 0.92 for B/Yamagata
(95%HPD = 0.78 to 1.05; pre-pandemic period
only) (Fig. 2G; robust to subsampling schemes:
fig. S7). The activity level of influenza viruses
at origin locations and antigenic distance also
contributed to influenza dispersal, albeit to a
smaller extent (Fig. 2G and fig. S7). The global
scale of our study necessitated large-scale ge-
ographical aggregation and therefore limited
our ability to include other geographically het-
erogeneous predictor variables. However, most
of the other factors known to influence influ-
enza transmission locally, such as humidity and
demographics, are likely correlated with local
influenza activity (28), which is included in our
model. As sample size had a lower predictive
power under the “even subsampling” scheme
(Fig. 2G and fig. S7), we chose that sampling
scheme for the main analysis, similar to pre-
vious analyses (17) andmethodological studies
that showed its robustness to sampling biases
(29). Our results are largely robust to the spa-
tial scale used (e.g., region versus country level),
with the exception of origin population size

and geographical distance (table S4). These
predictors indicate that overland cross-border
travel might play an additional role in the dis-
persal of influenza at finer spatial scales.

Reshaping global influenza circulation dynamics

We hypothesized that changes in human be-
havior and mobility during the pandemic per-
turbed the circulation dynamics of seasonal
influenza lineages. To investigate this at a global
scale, we used time-variable air traffic volumes
as a sole predictor of among-location transi-
tion rates for each lineage and extended the
phylogeographic model to include air traffic
as a predictor of overall transition rates (Ma-
terials andmethods). First,we estimated changes
in the number of lineage movement events
among regions through time (Fig. 3A) (and
estimated overall lineage-specific transition
rates; table S5). Second, we investigated how
the among-location lineage migration network
changed through time (Fig. 3, B to E, and figs. S8
and S9) and computed changes in net lineage
export events (number of export events minus
import events) per region per period (fig. S10).
Third, we inferred the time-varying location of
the trunk phylogenetic branch (fig. S11). As in
previous studies, this branch can be interpreted
as the lineage or lineages that successfully per-
sist from one epidemic season to the next (2),
under the defined sampling scheme.
The H1N1pdm09 and H3N2 lineages both

exhibited seasonal fluctuations in the num-
ber of among-location movements, whereas
the B/Victoria lineage showed less change
through time. The number of B/Yamagata lin-
eage movement events was low and declining
in the pre-pandemic period (Fig. 3A). During
the pre-pandemic period, we identified a high
relative number of H1N1pdm09 lineage move-
ments from West Asia to Africa and Europe
and H3N2 and B/Victoria transitions between
northern and southern China (Fig. 3, B to D).
Conversely, most B/Yamagata movements at
that time originated from Europe rather than
Asia (Fig. 3E). Only for B/Victoria did we ob-
serve variable patterns of among-region move-
ment intensities between seasons (fig. S8E).
During the pandemic period, some B/Victoria
lineage movements between northern and
southern China were observed (Fig. 3D), which
could be related to B/Victoria’s greater ability
to persist locally between seasons (17) and
acquisition of adaptive amino acid changes
observed in China during the pandemic (30). We
applied MDS to the among-region influenza
movement intensity and frequency data and
found that patterns differed markedly from the
pre-pandemic period (fig. S8). By 2023–2024, we
inferred that among-region influenza move-
ment intensity and frequency had largely re-
verted to pre-pandemic patterns (fig. S8).
Within Asia, we detected a shift in lineage net

exports to SouthAsia forH1N1pdm09 andH3N2
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subtypes and to West Asia for the B/Victoria
lineage during the pandemic period (including
both acute and transition phases) (fig. S10). As
air traffic inflows and outflows in West Asia
recovered earlier than in Southeast Asia, we
observed higher net exports of H3N2 from
West Asia during the post-pandemic period
(figs. S4 and S10B).

In the pre-pandemic phase, a range of plau-
sible locationswere inferred for theH1N1pdm09
trunk lineage. However, during the acute and
transition pandemic phases, the H1N1pdm09
trunk locationwith the highest posterior prob-
ability was South Asia (fig. S11A). For H3N2, the
most likely trunk location in the pre-pandemic
phasewas estimated to be Asia (Southeast Asia,

South Asia, and West Asia) and in the acute
pandemic phase was estimated to be South
Asia (with a lower posterior probability for
Southeast Asia; fig. S11B). South Asia, West Asia,
and Africa together contributed >60% of the
posterior probability for the B/Victoria trunk
location during the pre-pandemic and pan-
demic periods, with West Asia being the most
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Fig. 2. Predictors of global movements of seasonal influenza virus using a
four-epoch phylogeographic GLM model. (A to C) Average monthly air
passenger traffic network between 12 geographic regions across the three
periods. Here, only those routes with >100,000 average monthly air traffic
passengers are presented, for clarity. (D) Relative air traffic from and to each
region over time, calculated by dividing the numbers by the maximum value of
each region. Air traffic between southern China and northern China was not
included because we only considered between-country mobility. Colors
correspond to those used in the maps in (A) to (C). (E) MDS visualization of the
similarity of among-region origin-destination absolute air passenger volumes
for different time windows. Here, each time window refers to the range from
1 April of each year to 31 March of the following year, except for 2022/2023
(April 2022 to April 2023) and 2023/2024 (May 2023 to March 2024), where the

time window is aligned to the WHO’s declaration of the end of the pandemic.
The arc is used to show the sequence of the air passenger network. (F) MDS
visualization of the similarity of among-region origin-destination air passenger
travel frequencies for different time windows. Frequency refers to the fraction of
air volume of a specific O/D journey during each time window. (G) Posterior
summaries of the product (reported as log effect size) of the log constant-
through-time predictor coefficient and the predictor inclusion probability (pooled
across the time periods), for H1N1pdm09, H3N2, and B/Victoria lineages.
B/Yamagata analyses were performed under a time-homogeneous (one-epoch)
GLM owing to the lack of post–March 2020 gene sequences. Points and ranges
represent the posterior mean and 95% HPD intervals, respectively. Location-
specific predictors were included as both origin (O) and destination (D)
predictors of the pairwise transition rates.
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likely trunk location during the acute phase of
the pandemic (fig. S11C).

Heterogeneous dwell time patterns
and potential correlates

Estimates of the length of time an influenza vi-
rus lineage spends in each location (dwell time)
can help predict the global distribution of circu-
lating strains and inform vaccine composition
(16). We calculated trends in lineage-associated

dwell times, which represent, for each branch
present at time x, the amount of time that a
lineage spends in the location inferred at time
x, whenmoving backward through the tree (see
supplementary text) (31).
We limited our analyses to H3N2 subtypes

circulating in areas from which enough data
could be obtained to estimate lineage-associated
dwell times (Africa, South Asia, and Southeast
Asia). We estimated that dwell times before the

pandemic were generally <6 months, except
for Africa in late 2019 (fig. S12A). The relatively
longer dwell time of H3N2 in Africa might be
attributable to the persistent circulation of the
3C.2a1b.1a clade there (fig. S13). In the acute
pandemic phase, lineage-associated dwell times
increased in all three regions studied, likely as a
result of reduction in long-distance travel and
therefore lineagemovement (Fig. 3C) and strain
replacement. Long dwell timesweremaintained

Fig. 3. Global migration
dynamics of seasonal
influenza virus lineages
through time. (A) Rolling
weekly Markov jump
counts (location transition
events) over time for the
four influenza lineages.
(B to E) Estimates
of the number of location
transition events per year
between each pair of
geographic regions during
the pre-pandemic, acute
pandemic, transition pan-
demic, and post-pandemic
periods. Analyses are
based on the posterior
summaries of the Markov
jumps under a time-
inhomogeneous (four-
epoch) GLM with only
air traffic data as the pre-
dictor of overall and relative
transition rates, except
for B/Yamagata, which
was analyzed with a time-
homogeneous GLM-diffusion
phylogeographic model.
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in SouthAsia untilmid-2022, possibly as a result
of its continued role as a trunk location (fig.
S11B). As population mixing increased during
the transition phase, international virus lineage
movement and global circulation were reestab-
lished, resulting in a drop in dwell times (fig.
S12A). These results are consistent across other
(tip-associated)measures of dwell time (fig. S14).
Using aBayesianhierarchical regressionmod-

el (see Materials and methods), we found that
air traffic reduction (a proxy of long-distance
human movement) and antigenic drift (mea-
suredusing amino acid–based epitopedistances
over 3-, 6-, or 9-month intervals) (32) (fig. S15)
were associated with lineage-associated dwell
times of H3N2 in Africa, South Asia, and South-
east Asia (fig. S12, B and C). As reported in a
pre-COVID-19 study (17), we found that faster
antigenic drift was correlatedwith shorter dwell
times in regions with weak seasonal forcing of
influenza (fig. S12C). We also observed the con-
verse result during the acute pandemic period
in Africa: a positive association between faster
antigenic drift and longer lineage-associated
dwell times [z-score: 0.58, 90% highest density
interval (HDI): 0.32 to 0.84] (fig. S12C). This
could be a consequence of geographically struc-
tured evolution combined with limited among-
location viral movement.

Temporal patterns of genetic diversity

To capture the comparative evolutionary dynam-
ics of influenza virus lineages, we assembled a
global dataset of influenza genetic sequences
dating back to 2011 (see Materials and meth-
ods). As expected, the relative genetic diver-
sity of influenza H1N1pdm09 viruses and the
B/Victoria lineage declined during the acute
pandemic phase and began to accumulate ge-
netic diversity again from the beginning of the
transition pandemic phase (Fig. 4B). The re-
duction in relative genetic diversity was slightly
weaker for H3N2 viruses (Fig. 4B), as multiple
clades continued to co-circulate during the pan-
demic period (fig. S16B).
It appears that B/Yamagata lineages stopped

circulating from early 2020 onward (Figs. 1I
and 4A). The relative genetic diversity of the
B/Yamagata lineage began to decline in 2019
after peaking in 2018 (Fig. 4B). During 2018–
2019, only one clade (Y3) of B/Yamagata lin-
eage remained,whichhadbeen circulating since
2016 (Fig. 4A). The dominance of genetically sim-
ilar Y3 viruses since 2016 is apparent as a reduc-
tion inmean pairwise diversity of B/Yamagata
sequences (Fig. 4C; also apparent in dates of
common ancestry, a proxy of lineage turnover;
fig. S17D). Note that the evolutionary history of
some influenza B virus segments is shared
across the B/Victoria and B/Yamagata line-
ages, therefore we focused on theHA segment,
which is one of three influenza B genome seg-
ments that has experienced distinct evolu-
tion (33).

Notably, in the HA segment of B/Yamagata,
we observed a low nonsynonymous to synon-
ymous substitution rate ratio [dN/dS: 0.11, 95%
confidence interval (CI): 0.10 to 0.12] and no
amino acid residues under positive selection,
between January 2011 and March 2020, which
indicates little or no detectable positive selec-
tion of the B/Yamagata HA gene (table S6) and
likely corresponds to slow antigenic drift (34).
In contrast, the B/Victoria HA segment exhib-
ited a slightly greater dN/dS ratio (0.15, 95%CI:
0.14 to 0.16) and several amino acid residues
under positive selection (n = 5; table S6) that are
potentially immune-evasive (30, 35). In contrast
to HA, there are observable selective sweeps in
theneuraminidase (NA) segment ofB/Yamagata
(table S6) (36), which could be linked to the
repeated reassortment of NA between the
B/Victoria and B/Yamagata lineages (com-
pared with a prolonged lack of reassortment
for the HA segment) (33). On the basis of these
findings, we hypothesize that the “extinction” of
B/Yamagatamight be explained by a combina-
tion of susceptible host depletion (due to a large
outbreak in 2017–2018), rapid human behavior
changes resulting in a decline of exports from
Europe at the beginning of the COVID-19 pan-
demic, andminimal antigenic evolution of HA
(34, 37). Modeling and empirical investigations
are needed to assess the relative contributions
of these factors to the possible disappearance of
B/Yamagata.

Discussion

We found that the perturbation caused by the
COVID-19 pandemic reshaped the global dissem-
ination of seasonal influenza for 3 years, after
which influenza lineage population structure
returned to that observed before the pandemic.
During the acute pandemic phase, influenza
transmission declined globally, and lineage
movements were observed in only a few re-
gions, which typically shared tropical climatic
conditions and fewer pandemic-related restric-
tions. Even though the intensity of global hu-
man mobility was greatly reduced during the
pandemic, international travel remained the
principal driver of the global dissemination of
influenza lineages during the period. It has
been hypothesized recently that international
travel also governs the spread and mixing of
other respiratory pathogens, including respi-
ratory syncytial virus (38).
Further, increased global virus genomic sur-

veillance has brought a more detailed under-
standing of the role of Africa andWest Asia in
the global circulation of influenza, which was
lacking inpreviousphylodynamic analyses owing
to data paucity (17). During the acute phase of the
pandemic, influenza lineages tended to dwell
longer in Africa than in other regions, andWest
Asia appeared to play an important role in the
circulation and maintenance of the B/Victoria
lineage. Other studies have documented the

transient alteration of global population struc-
ture of H3N2 after air traffic disruption, spe-
cifically in the Asia-Pacific region during the
SARS outbreak in 2003 (2, 17, 39, 40). During
that time, Southeast Asia temporarily replaced
China as the H3N2 lineage trunk location
(2, 17, 39). While it is possible that factors
other than air traffic, demography, and geo-
graphic distance determine influenza local
lineage dynamics (28, 41) and onward spread,
dissecting these factors at a spatiotemporal re-
solution higher than those presented here
remains challenging within a phylodynamic
framework because of the lower spatial reso-
lution of influenza genomic surveillance (42).
We acknowledge that other phylogeographic
approaches (e.g., structured coalescent and
birth-death models) may yield more mecha-
nistic insights in the future (43, 44), but such
analyses are currently limited to smaller data-
sets and fewer geographical locations than con-
sidered here.
We observed substantial virus genetic bot-

tlenecks during the pandemic period (6, 11).
The B/Yamagata lineage appears to have dis-
appeared after the start of the COVID-19 pan-
demic, and the potential reasons for this are
unclear (11, 12).Whether B/Yamagata has gone
entirely extinct, or whether it continues to per-
sist below detection levels, is not yet resolved
(45). Previous studies have highlighted the in-
terplay among population size, virus mutation,
and cross-immunity in predicting the circula-
tion of seasonal influenza, inwhich long-range
cross-immunity prevents speciation, while rapid
mutation and large population sizes prevent
lineage extinction (37). The evolutionary and
circulation dynamics of seasonal influenza vi-
ruses are determined by a balance between
steady decreases in population susceptibility
(due to accumulating immunity against circu-
lating strains) and the emergence of antigen-
ically novel strains. Before the pandemic, the
B/Yamagata lineage was characterized by a
lower effective reproduction number (Re) and
less antigenic adaptation in the HA segment
compared with B/Victoria, potentially limit-
ing its pool of susceptible hosts (34, 35). If the
B/Yamagata lineage has indeed disappeared,
monitoring its impact on changing infection
rates of B/Victoria is critical, as some level of
cross-immunity is conferred between influenza
B infections (46).
The dwell times of seasonal influenza lin-

eages reported in this study suggest a potential
change to the level or nature of antigenic com-
petition among existing influenza strains and
the probability of emergence of geographically
structured strains through regional diversifi-
cation. Generally, seasons with extremely high
incidence levels in the post-pandemic period
might be associated with the emergence of
novel clusters of influenza virus (47) with an
increased risk of vaccine mismatch, requiring
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enhanced surveillance. In addition to the in-
terruption of vaccine-induced immunity owing
to a drop in influenza vaccinations during the
pandemic (48, 49), lower accumulation of pop-
ulation immunity due to lack of natural in-
fectionmight also lead to larger future influenza
epidemics, as illustrated by the wave in Hong
Kong in 2023 (50).
We interpret our phylodynamic results in the

context of several limitations. First, as discussed
elsewhere (51), the inferred number of virus lin-
eage movements is not the same as the number
of infected individuals, because of uneven ge-

nomic sampling and the correlated structure of
phylogenetic data. To partially address potential
sampling biases, we used multiple subsampled
datasets, and our key conclusions are robust to
this subsampling (figs. S7 andS18). Furthermore,
the GISRS nonsentinel and sentinel data ex-
hibit similar patterns, and such data appear
robust when compared with wastewater moni-
toring data obtained from several high-income
countries (fig. S19). Unfortunately, limited sys-
tematic and large-scale wastewater sampling
and analysis for influenza prohibits further
comparisons at present. Second, the four epochs

used in our analysis are based onWHOkeymile-
stones, international air travel, and COVID-19
stringency data, and we subdivided the pan-
demic period into two phases (acute and tran-
sition). However, these data sources may not
account for all pandemic-related NPIs nor in-
clude all local variation in NPI intensity. Re-
assuringly, however, our results are robust to
changes in the number of epochs and their
timing (figs. S20 and S21). We also included in-
fluenza positivity rates across regions as a pre-
dictor in our statistical framework to account
for local intensity of influenza epidemics. Third,

Fig. 4. Dynamics of measures
of genetic diversity of seasonal
influenza virus lineages. (A) The
maximum clade credibility (MCC)
tree for the B/Yamagata lineage.
Tip colors represent the sampling
location of each sequence. The
inset shows the MCC tree with tips
annotated to show the main
B/Yamagata clades. (B) Relative
genetic diversity of influenza
viruses, as inferred by Bayesian
Skygrid population reconstruction.
(C) Mean pairwise diversity
of influenza virus, measured as
average branch length distance
(patristic distance) in units
of years between pairs of tips in
phylogeny at monthly intervals.
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the measures of lineage dwell times used here
are based on phylogenetic analyses and do not
equate directly to the epidemiological notion of
transmission persistence across seasons, owing
to the impact of phylogenetic sampling biases
and uncertainty in phylogeographic inferences
(29, 31). Models that integrate phylogenetic
analyses with detailed mathematical models
of transmission of influenza could help bridge
this gap in the future. Fourth, our phylodynamic
analyses were constrained by the geographical
resolution of available virus genome data and
influenza surveillance, requiring variables to be
aggregated across large geographical regions.
We chose to use previously defined spatial re-
gions to enable direct comparison with earlier
studies of the global population structure of
influenza (16, 17). However, our results are ro-
bust to some changes in the spatial scale of
analysis (e.g., country level; table S4). Future
studies may benefit from higher-resolution,
open, andglobally representative virus genomes,
combined with methodologies capable of ana-
lyzing tens of thousands of sequences.

Conclusions

The COVID-19 pandemic provided a singular
opportunity to evaluate how changes in inter-
national travel patterns might perturb global
influenza circulation. Our study provides an
empirical evaluation of pandemic mobility re-
strictions on recent seasonal influenza dynam-
ics, but the longer-term impact of the COVID-19
pandemic on influenza genetic and antigen-
ic evolution will need continued monitoring
(8, 52, 53).

Materials and methods
Data sources and preparation
Viral genetic sequence data

We downloaded all sequences of the HA seg-
ment of seasonal influenza viruses (H1N1pdm09,
H3N2, B/Victoria, and B/Yamagata) publicly
available in GISAID (21) and NCBI (GenBank)
(54) obtained from human samples on 11 April
2024 (fig. S5). Data quality assessment, dedu-
plication, aggregation, and cleaning steps are
detailed in the supplementary text in the sup-
plementary materials.

Influenza epidemiological surveillance data

Weekly specimens to be processed for influ-
enza testing and notified cases of seasonal in-
fluenza at the country or territory level from
January 2017were downloaded from the FluNet
tool on 11 April 2024; these data were provided
by GISRS (19). We excluded records consid-
ered to be uninformative or nonsensible for
our analysis, including weeks when no speci-
mens were collected or when there were more
positive samples than tested samples, with a
total of >18,000 rows removed. Influenza epi-
demiological surveillance data in southern
and northern China were retrieved from the

weekly influenza report of theChineseNational
Influenza Center, which was of higher granu-
larity than GISRS data [see (22) for details]. We
imputed the unsubtyped or lineage-undetermined
samples into specific subtypes or lineages on
the basis of the available weekly- and country-
specific proportion of subtypes or lineages. To
do so, we used a Bayesian model with an un-
informative Beta (1, 1) prior to calculate the
posterior proportions and 95% uncertainty
levels, given that small tested size might cause
extreme scaling.
Subsequently, we summarized the number of

specimens to be processed for influenza test-
ing over time to reflect the intensity of virolog-
ical surveillance. To account for at least some
of the testing heterogeneity, we estimated the
positivity rates (rolling 5-weekwindow) of each
influenza subtype or lineage among all tested
specimens on a weekly basis (20), with interval
estimates determined by the 95% uncertainty
levels for inferring the specific subtype or lin-
eage. This pattern was further cross-checked
with wastewater monitoring data for influ-
enza viruses in multiple countries, including
Canada, Switzerland, and Hungary (fig. S19).
Intensity of genomic surveillance of influenza
was indicated by the rolling percentages of
reported lab-confirmed influenza cases being
sequenced. To minimize the impact of heter-
ogeneous surveillance intensity through time,
we also estimated the standardized influenza
activity level, calculating the ratio of positive
influenza cases to the total number of speci-
mens processed in each year (22).

Air traffic data

Monthly origin-destination air passenger book-
ing data from January 2017 to December 2023
were provided by Official Airline Guide (OAG)
Ltd. through a data sharing agreement (https://
www.oag.com/). The data are sourced from
global distribution systems (GDSs) and airlines
around theworld. Data harmonization and co-
referencing these data against other travel and
immigration datasets yield the approximate
total number of air passenger bookings be-
tween pairs of airports. We refer to these data
as air passenger volumes. Monthly air passen-
ger volumes between each pair of regionswere
aggregated for the relevant time periods de-
fined in fig. S1.We then usedMDS to assess the
network similarity using two measures (55):
(i) vectorized among-region origin-destination
(O/D) absolute air passenger volumes and
(ii) frequency of among-regionO/Ds in each time
window. Frequency refers to the fraction of air
volume of a specific O/D journey during each
1-year timewindow. Additionally, we computed
the number of air passengers traveling within
each geographic region and rescaled them (by
dividing the numbers by themaximumrecorded
in each region). Although air traffic is only one
component of overall human mobility, the tem-

poral dynamics of air traffic within regions may
still serve as a proxy for within-region long-
distance human movement.

Genetic sampling and selection

Given that the phylodynamic inference is sen-
sitive to sampling bias (29, 56, 57), we selected
and subsampled genetic sequences from Jan-
uary 2017 to March 2024 to make their dis-
tributions as representative and even as possible
while still retaining computational efficiency.
To mitigate the impact of sampling bias, we

used an even sampling strategy (29), similar to
that in (17). Briefly, we evenly subsampled the
sequences across 12 geographic regions and
years precisely defining the number of sequen-
ces to be randomly subsampled per region per
year (ensuring that the total subsampled num-
ber of genetic sequences is ~2500), which reflects
a relatively equitable distribution of samples
across years and geographic regions for each
influenza subtype or lineage (17).
We also adopted two additional subsam-

pling strategies: (i) a strategy accounting for
temporal variation in global influenza positiv-
ity rates and (ii) a sampling strategy account-
ing for spatiotemporal variation in terms of
influenza positivity rates and population size
across regions. In both schemes, we first de-
termined the weekly number of sequences to
be subsampled at the global level in direct
proportion to the global positivity rate of each
seasonal influenza virus. We then subsampled
sequences evenly across 12 geographic regions
for eachweek for the former scheme; sequences
were sampledwith aweight based on the product
of population size and subtype- or lineage-specific
influenza positivity rates per geographic region
per week in the latter scheme. We retained a
total of ~2500 genetic sequences for each sam-
pling scheme to enhance comparability of our
inferred transition rates. For weeks with par-
ticularly low influenza positivity rates, at least
three sequences were sampled, where available,
to maintain consistency in the temporal scale.
To capture evolutionary dynamics going back

to 2011, we additionally adopted the even sub-
sampling strategy (15 sequences per region per
year here) to assemble a global genetic dataset
of HA segments collected from January 2011
to March 2024. On the basis of that dataset,
we further assembled a corresponding genetic
dataset of neuraminidase (NA) segments where
available.

Phylogenetic inference

Phylogenetic trees were inferred for H1N1pdm09,
H3N2, B/Victoria, and B/Yamagata in a Bayesian
framework using BEAST v1.10 (58) with the
BEAGLE library v4 (59), in which we incorpo-
rated a starting tree (as described in the sup-
plementary text), an HKY nucleotide substitution
model with gamma-distributed among-site rate
heterogeneity, a Bayesian Skygrid coalescent
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prior using a Hamiltonian Monte Carlo (HMC)
kernel on the population size (with grid points
equidistantly spaced in 6-month intervals) (60),
and a strict molecular clock model. Markov
chain Monte Carlo (MCMC) was run for two
or three independent chains, with a total of at
least 160 million steps sampled every 50,000
steps for each chain. Stepswere combined across
chains, with the first 10 to 20% discarded as
burn-in. MCMC convergence was checked in
Tracer v.1.7.1 (61), and effective sample sizes for
continuous parameters were >100. We resam-
pled states every 300,000 to 400,000 steps,
which yielded a total of ∼1000 empirical trees
for each influenza subtype or lineage under
each subsampling strategy.

Time-inhomogeneous phylogeographic
reconstruction

We used the empirical tree distributions to
perform the phylogeographic reconstruction
under the generalized linear model (GLM)
framework (2). The default model assumption
with constant-through-time rate of viral geo-
graphic dispersal along the phylogeny might
not fit the scenario where the human behav-
ior changes during the COVID-19 pandemic
may alter the transition rate of respiratory in-
fectious diseases. Therefore, we adopted a
time-inhomogeneous GLM phylogeographic
model (31) to allow for incorporating interval-
specific predictors and accounting for the po-
tential variation in rate of influenza dispersal
before, during, and after the COVID-19 pan-
demic. The cutoff points that defined three
periods (pre-pandemic, pandemic, and post-
pandemic period) were (i) 31 March 2020, after
which the global COVID-19 stringency index
reached a high level, global air traffic volume
drastically declined, and the WHO declared a
pandemic in this month; and (ii) 30 April 2023,
when global air traffic volume mostly resumed
and theWHO declared an end to the COVID-19
emergency in early May 2023 (fig. S1A). To ac-
count for the regional heterogeneity of NPI
implementations,we further defined twophases
in the pandemic period: the acute phase, from
April 2020 to March 2021, and the transition
phase, from April 2021 to April 2023. Two sen-
sitivity analyses changing the number and tim-
ing of epochs were performed: (i) three epochs
using January 2022 (when restrictions regarding
international travel to southern African coun-
tries were lifted) as the cutoff point to define the
post-pandemic period (January 2017 to March
2020, April 2020 to January 2022, and February
2022 to March 2024); (ii) five epochs further
dividing the transition phase into two epochs
(January 2017 to March 2020, April 2020 to
March2021, April 2021 toMarch2022, April 2022
to April 2023, and May 2023 to March 2024).
Specifically, we first adopted a four-epoch

(pre-pandemic period, acute phase of the pan-
demic period, transition phase of the pandemic

period, andpost-pandemicperiod)GLM-diffusion
phylogeographic model with interval-specific
indicator variables to represent the inclusion
or exclusion of predictors (31). Predictor inclu-
sion was further pooled across intervals using
a hierarchical model (62). Hierarchical and
interval-specific indicators were estimated un-
der the spike-and-slab procedure (62). The
product of the log coefficients and the inclu-
sion probabilities is reported as log effect sizes
in our results. Here, multiple categories of po-
tential predictors of spatial spread of influenza
(e.g., population size, influenza activity, air pas-
senger traffic, influenza vaccine coverage, anti-
genic distance, geographic distance, and sample
sizes) were included in the GLM (table S2). The
COVID-19 stringency index was not included
in our analysis because it was highly correlated
with within-region air traffic and only availa-
ble until the end of 2022 (fig. S22). Epoch- and
region-specific influenza activity was indicated
by the corresponding influenza positivity rates
(20). Owing to the limited availability of air
passenger data until December 2023, the air
traffic data used in the post-pandemic period
only ranged fromMay 2023 to December 2023.
Influenza vaccine coverage among elderly
people was collected from a variety of sources
(table S3). Antigenic distance between origin
and destination regions was calculated using
the Hamming distance of amino acid sequences
of the HA1 region of the HA segment circu-
lating between regions. Notably, we only adop-
ted a time-homogeneous (one-epoch)model for
B/Yamagata given the limited sequences avail-
able after the onset of the COVID-19 pandemic.
Given that air traffic between regions is able

to strongly predict the spatial spread of in-
fluenza indicated by the above analyses (Fig.
2G), we subsequently specified a four-epoch
GLM phylogeographic model with air traffic
data as sole predictor for the relative rates and
extended it to also include air traffic as a pre-
dictor for the overall transition rate scalar.
Specifically, we included the asymmetric air
traffic matrix between regions as the predictor
for relative transition rates between each pair
of regions. In addition, we incorporated the
log-transformed and standardized average
annual volume of air traffic in each epoch as a
predictor for the overall transition rate across
the four epochs. Therefore, both the relative
and overall transition rates are able to vary
across the four epochs, exactly rationalizing
the potential impact of behavior changes dur-
ing theCOVID-19pandemic on spatial transmis-
sion of influenza. To detect potential deviations
in the predictive power of air mobility for rela-
tive transition rates, time-homogeneous random
effects were added to the parameterization
of transition rates in themodel (31). For each
influenza subtype or lineage, <10% of the
transition rate random effects had a 95%HPD
that excluded zero, indicating a good predic-

tive ability. To assess the differences when only
using genetic and spatial data to infer the
overall transition rate, we additionally ran a
model without setting up air traffic data as
a predictor for the overall transition rate scalar
(table S5). Five million steps were run for at
least one chain and sampled every 5000 steps
in the phylogeographic models.
To test the impact of spatial aggregation on

the relationship between covariates and spatial
dissemination of influenza viruses, we con-
ducted a similar analysis for H3N2 at country-
level resolution. Briefly, we disaggregated the
12 geographic regions into countries and chose
those countries with enough genome sequences
available from January 2017 to March 2024,
after which a total of 106 countries (southern
China and northern China were still regarded
as two demes) were selected, resulting in 9857
genetic sequences subsampled using the even
subsampling scheme. Running such a big data-
set in a reasonable time was infeasible, and we
instead used the time-calibrated starting tree
as a fixed tree topology in the GLM phylogeo-
graphic analysis. Covariates in some countries
(n = 18 for air traffic within the country; n = 5
for influenza activity) are not available owing
to fine spatial resolution, which was alterna-
tively replaced by the corresponding region-
level value.

Bayesian hierarchical regression model

We explored the potential drivers of lineage-
associated dwell time that could be estimated
on a finer-grained temporal scale in the case
of H3N2 subtypes circulating in Africa, South
Asia, and Southeast Asia, in areas where enough
data could be obtained. This question was mo-
tivated by longer lineage-associated dwell times
for H3N2 in these three regions during the acute
phase of COVID-19 pandemic period (fig. S12A).
Previous work indicates that local dwell times

of influenza virus are associated with antigenic
drift and seasonality (17), from which we fur-
ther hypothesize that human behavior changes
during the pandemic, in particular the reduc-
tion of among-region humanmovement (indi-
cated by the inter-region air traffic arrivals),
might influence lineage-associated dwell time
as well. Here, we constructed a Bayesian hier-
archical regression model to model the asso-
ciation of antigenic drift (w) and air traffic
arrival reductions (x) with lineage-associated
dwell time (y) (here measured in the units of
years and changed everymonth) while account-
ing for regions and months (conceptual details
presented in fig. S12B), with additional details
in the supplementary materials.
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