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M Check for updates

Recentanalyses have reported catastrophic global declines in vertebrate populations'*.
However, the distillation of many trends into a global mean index obscures the
variation that caninform conservation measures and can be sensitive to analytical

decisions. For example, previous analyses have estimated a mean vertebrate decline
of more than 50% since 1970 (Living Planet Index?). Here we show, however, that this
estimate is driven by less than 3% of vertebrate populations; if these extremely
declining populations are excluded, the global trend switches to anincrease. The
sensitivity of global mean trends to outliers suggests that more informative indices
are needed. We propose an alternative approach, which identifies clusters of extreme
decline (or increase) that differ statistically from the majority of population trends. We
show that, of taxonomic-geographic systems in the Living Planet Index, 16 systems
contain clusters of extreme decline (comprising around 1% of populations; these
extreme declines occur disproportionately in larger animals) and 7 contain extreme
increases (around 0.4% of populations). The remaining 98.6% of populations across
all systems showed no mean global trend. However, when analysed separately, three
systems were declining strongly with high certainty (all in the Indo-Pacific region) and
seven were declining strongly but with less certainty (mostly reptile and amphibian
groups). Accounting for extreme clusters fundamentally alters the interpretation of
global vertebrate trends and should be used to help to prioritize conservation efforts.

Rapid global change is threatening species across the globe'. The quan-
tification of biodiversity trends isimportant to assess whether current
investment is slowing or reversing declines, and to identify regions
and taxa of concern. Although distilling disparate population trends
into asingle globalindex can focus attention on biodiversity trends®*,
simple metrics can distort the full picture.

Estimates of global biodiversity trends vary depending on their
data and mathematical model. The most apocalyptic models gather
extensive press coverage, even when based on controversial data (for
example, ‘biological annihilation®, which described trend estimates
based largely onexpertopinion; or ‘insect Armageddon’, whichis based
ondatadisputed by the original collectors®). However, even analyses of
the best available data reach conflicting conclusions. An analysis of a
global dataset of abundance time series of vertebrates estimated that,
on average, vertebrate populations have declined by more than 50%
since 1970 (Living Planet Index? (LPI)); however, other global analyses
found that the mean population size”® and species richness®!° have
remained stable over similar timeframes. Explanations for the discrep-
ancies have been proposed®" 3, but not resolved.

One crucial consideration is that summary indices may be easily
misinterpreted. Calculating the geometric mean across populations
is the most common and straightforward approach, but is strongly
influenced by extremes. To illustrate, imagine an ecosystem in which

one populationdeclined by 99%. Evenif asecond populationincreased
50-fold or 393 populationsincreased by 1% (that is, alarge netincrease),
ageometric mean would show a catastrophic 50% decline. Thus, a
geometric mean decline of 50% could arise from substantial, wide-
spread loss thatis occurring across many populations (we term this the
‘catastrophic declines’ hypothesis) or from a few extremely declining
populations (we term this the ‘clustered declines’ hypothesis). Both
scenarios involve important conservation issues, but suggest vastly
different underlying problems and require different mitigation strate-
gies™, thus distinguishing between them is of real-world importance.

We derive a Bayesian hierarchical mixture (BHM) model to distin-
guishbetween the catastrophic and clustered declines hypotheses. The
model statistically separates population trends into extreme declines,
typical trends and extreme increases (Fig. 1), while accounting for
time-series size, within-population fluctuations, number of popula-
tions and among-population variance. We test declines in abundance
formore than14,000 vertebrate populations (from the LPI)"*. We chose
LPI data because of its large scope, because the data and analytical
details were publicly available, and because previous analyses of these
data suggested widespread, global declines?.

Wefirst examined whether the previous estimate? of amean decline
of more than 50% was sensitive to extreme populations: robust declines
would support the catastrophic declines hypothesis, whereas high

'Department of Biology, McGill University, Montreal, Quebec, Canada. 2Bieler School of Environment, McGill University, Montreal, Quebec, Canada. *Department of Biological Sciences, Simon
Fraser University, Burnaby, British Columbia, Canada. “School of Biology and Ecology, University of Maine, Orono, ME, USA. *Mitchell Center for Sustainability Solutions, University of Maine,
Orono, ME, USA. °Centre for Biological Diversity, University of St Andrews, St Andrews, UK. “Indicators and Assessments Unit, Institute of Zoology, Zoological Society of London, London, UK.

®e-mail: brian.leung2@mcgill.ca

Nature | www.nature.com | 1


https://doi.org/10.1038/s41586-020-2920-6
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-020-2920-6&domain=pdf
mailto:brian.leung2@mcgill.ca

Article

a 1
[}
1
1

-0.1 0 0.1
1
b [}
1
|
1
e ]

-0.1 0 0.1
[ 1
|
|
|

. ] :

-0.1 0 0.1
d 1
[}
1
|
1

. 1 : i,

-0.1 0 0.1
e I
1
|/

-0.1 0 0.1

log(mean growth rate)

Fig.1|Stylized patterns of system-wide growth rates. a-e, Similar geometric
mean population growth rates (log(N,.,/N,)) canreflect contrasting systems.
c,Asanullmodel, systems can be stable (log-transformed growth rates centred
around zero). Deviations can occur in multiple ways. a, b, Most populationsina
system can beinsubstantial decline (catastrophic declines hypothesis) (a) or
the system can have multiple clusters, inwhich the majority of populations
showadistribution of growth rates centred around zero but withasmall cluster
of populations experiencing extreme declines (clustered declines hypothesis)
(b).Each hasthe same metric of meandecline (vertical red lineindicates a1l.5%
annual decline, corresponding toa50% loss over 50 years), even though most
populationsinbarestable. The converse canalso happen; systemsinwhicha
small cluster of populations shows an extreme increase, but that show an
otherwise stabledistribution (d) or systemsin which most populations
increase (e) canalso occur (vertical bluelineindicatesal.5% annual increase,
corresponding toadoubling over 50 years).

sensitivity to a few populations would support the clustered declines
hypothesis (Fig. 1). We then applied our BHM model to assess the evi-
dencefor catastrophic or clustered declines globally and by region and
taxonomy. Finally, we explore two additional conservationissues. First,
we test whether declines occur disproportionately in larger animals
(large animals tend to have lower reproductive rates), which might
release small animals from predation’®. Second, previous analyses
often excluded time series with few data points'®>", but small time
series make up most of the available data. We test the effects of their
exclusion®,

Sensitivity of geometric mean to extreme populations

Thegeometric meanindex that underlies the LPIanalysis was highly sen-
sitive to extreme populations. Excluding only the 2.4% most-strongly
declining populations (354 out of 14,700 populations) reversed the
estimate of global vertebrate trends from a loss of more than 50%
to aslightly positive growth (Fig. 2). Similarly, excluding 2.4% of the
most-strongly increasing populations strengthened the mean decline
to 71%. High sensitivity suggests that extreme populations are dispro-
portionately affecting global trend estimates, such that clusters of
extreme population decline should be considered explicitly.
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Fig.2|Effect of extreme populations on the globalgrowthindex. Removing
asmallfraction of extreme populations strongly influences the geometric
growthindex, using the LPIdataset. Eachline represents a different number of
removed populations, ranging from no removals (red line; all 14,700
populations, which show a>50% mean decline) to removing 356 populations
(yellow line, the removal of <2.4% of populations switches the global trend from
negative to positive). Ageometric growthindex of lindicates no change
(dashed horizontal blackline).

Evidence for clustered declines

Among the 57 domain-realm-taxon systems of the LPI, 16 systems con-
tained clusters of extreme decline and 8 contained clusters of extreme
growth (of those, 3 systems are repeated, as they had both clusters of
extreme declineand growth) (Fig.3and Supplementary Table 2). Together,
clusters of extreme decline accounted for only 1% of populations across
systems (2% of populations in the 16 systems in which they occurred).
Themean population trend for extremely declining clusters across the 16
systemswas 6,=-3.94, or approximately 98% loss per year, and deviated
substantially from the meantrend of the primary cluster in those systems.
Clusters of extreme growth accounted for 0.4% of populations across
systems (2.4%inthe 8 systemsinwhichtheyoccurred), with 6,=3.51, that
is, an explosive 33x growth per year (Fig. 3 and Supplementary Table 2).

Extreme clusters showed some taxonomic and geographic patterns.
Thelargest cluster of extreme declines was in Arctic marine mammals,
accounting for 7.6% of populations in that system. However, mam-
malian systems generally had the fewest clusters of extreme decline
(19% of 16 systems), followed by reptile-amphibian systems (21% of 14
systems), whereas bird and fish systems had more clusters of extreme
declines (31% of 16 and 45% of 11 systems, respectively) (Fig. 3). Clus-
ters of extreme decline occurred throughout the world, half of which
occurred inmarine realms, whereas extreme increases occurred more
intemperate regions or terrestrial realms (Fig. 3).

Extreme population trends occurred predominantly in small time
series. Excluding time series with fewer than10 points not only removed
all but two extreme clusters, but also removed 52% of the data (Sup-
plementary Table 3). The higher frequency of extreme trends among
small time series was also apparent in the raw data (Fig. 4). Thus the
decision of whether toinclude small time series will have large effects
onthe resulting estimates of global trends.

Body size wasrelated to population trends. Larger species had three
times more extreme declines thanincreases (15 compared with 5 clusters
of extreme declines compared with extreme increases). Comparatively,
smaller species had half as many (8) extremely declining and dispro-
portionately more (7) extremely increasing clusters (Supplementary
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Fig.3|Population trends by taxonomic groups and realms. a, The terrestrial
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indicate the occurrence of extremely declining clusters (16 systems) and
increasing clusters (8 systems), respectively. Distributions show the primary
clusterineachsystem. Red, significant declines; blue, significantincreases;

Table 4). Although size-specific models included fewer populations,
especially for smaller species, the number of clusters was not uniformly
lower (as might be expected givenareductionin power); therefore, the
differential occurrence of extremely declining versus increasing clusters
suggests that large animals are more vulnerable to extreme declines.

Evidence for catastrophic declines

Incontrast to the extreme clusters, the primary clusters accounted for
the vast majority (98.6%) of populations across the 57 LPIsystems. The
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orange, strong non-significant declines; green, strong non-significant
increases; yellow, weak changes). Maps were created using ArcGIS software by
Esri(ArcGISand ArcMap are theintellectual property of Esriand are used
hereinunderlicence. Copyright © Esri. All rights reserved. For more
information about Esrisoftware, please visit https://www.esri.com).

overallgrowthrate of primary clusters was close to zero: 6,=-0.00035,
corresponding to around 1.7% loss over 50 years, given a constant
rate across populations and time (Fig. 5). In addition, in contrast to
extreme clusters, primary cluster trends were robust to time-series
size, asexcluding series with fewer than 10 data points yielded a similar
overall global trend (6, = 0.0043) (Extended Data Fig. 3).

Although the global BHM model reveals considerably more nuance
than a geometric mean index, analysing across systems still masked
important patterns. When systems were analysed separately (Supple-
mentary Table 2), primary population clusters were strongly declining
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Fig. 4 |Effect of the size of the time series. The number of data pointsinthe
time series versus the meanlog-transformed value of the geometric mean
growthrate.

(6,<-0.015) with high certainty (95% credible intervals not overlapping
zero) inthree systems, all of which occurred in the Indo-Pacific realm
(freshwater mammals, freshwater birds and terrestrial birds) (Fig. 3).
This suggests that this region has the highest risk of system-wide
declines and should be a conservation priority. By contrast, the pri-
mary cluster was increasing with high certainty in seven systems, six
of which wereintemperate regions. In addition, seven additional sys-
tems had strongly declining primary population clusters but with less
certainty (95% credible intervals overlapped zero), four of which were
amphibian or reptile groups. Finally, 14 systems showed strong but
low-certainty increases, with no obvious taxonomic nor geographic
patterns (Fig. 3).

Each primary cluster also contained variation among populations.
In the 10 systems with significant or non-significant mean declines
where 6, <-0.015, 87% of the individual populations showed strong
declines (Fig.5). These 10 systems accounted for around 20% of the total
global vertebrate populations, but for around 61% of strong declines.
The multimodality observed in Fig. 5 was an outcome of aggregating
unimodal primary clusters across systems, and suggests that there are
heterogeneous stressor levelsamong systems (thatis, similar principles
to those that cause extreme clusters within systems). The remaining
approximately 11% of strongly declining populations were distributed
across 47 out of 57 systems; itisunclear whether they represent a devia-
tion from the natural dynamics that are expected to occurin any natu-
rally variable system.

Primary cluster trends were related to body size, but not as predicted.
Incomparisonto the overall patterns for larger animals, the same sys-
tems showed significant declines and increases, but two additional
temperate systems showed significantincreases (Extended Data Fig. 4
and Supplementary Table 4). Smaller species also appeared to decline
more than larger species; there were 27 systems in which smaller spe-
cies had more-negative growth rates than larger species, compared
with 18 systems in which the reverse was true. However, analyses of
the smaller species were based on substantially fewer populations,
and trends were generally not significant (Supplementary Table 4),
So patterns remain tentative.
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Fig.5|Populationsinthe primary clusters across all systems, after removal
ofextreme clusters. The primary cluster of each systemis unimodal, but
because systems are experiencing decline (or growth) heterogeneously,
plotting distributions across systems shows multimodality. Histograms show
significantly declining systems (red), strongly but not significantly declining
systems (orange) and weak changes or increases (yellow). Vertical lines show
thresholds for strongly declining (-0.015) and strongly increasing (+0.015)
growthrates, corresponding to an approximate 50% loss or adoubling (over 50
years), respectively. Distributions of primary clusters were calculated based on
themeanands.d.fromthe hierarchical model, and using the system-specific
weights to adjust for speciesrichness.

Discussion

Byre-analysing acomprehensive dataset of global wildlife population
trends, we show that previously estimated global declines are driven by
afew extremely declining populations. Removing only 2.4% of declining
populations reversed the estimated global trends from more than 50%
meandecline since 1970 to aslightly positive growth. Our BHM model
revealed that clusters of extreme decline are widespread and occur
disproportionately inlarger species, and that a few clusters of extreme
increase also exist and occur disproportionately in smaller species.
Thisis consistent with previous arguments of ‘trophic downgrading™®.

Clusters of extreme declines were largely due to small time-series
datasets. However, neither random sampling error nor ‘saw tooth’
population dynamics (in which ultimately stable populations experi-
ence sudden declines followed by gradual increases) can fully explain
this association (see Supplementary Information for a full discussion).
Additional explanations are needed. Extreme trends could reflect tran-
sient populations that naturally leave or enter a survey area'®, which
could represent natural dynamics. Alternatively, researchers may stop
sampling after populations become (close to) extirpated, although the
converse has also been suggested®. A third possibility is that some
regions experience both lower sampling effort and greater declines,
such that poorly sampled datasets correlate with factors linked to
vulnerability, such as lower national wealth or conservation invest-
ment. Understanding why small time series contain so many extreme
declines is particularly important given that studies that did not find
widespread declines often excluded short time series”*??, potentially
reconciling divergent findings among studies.

Once extreme clusters were statistically separated, no global trend
remained across typical populations (that is, primary clusters; 98.6%
of populations). However, aggregating systems into one global trend
hid important variation. Three systems, all of which occurred in the
Indo-Pacific realm, showed widespread vertebrate declines across
typical populations. Moreover, among typical populations smaller
species may be faring worse than larger ones. Although these results



were tentative given lower sample sizes and high uncertainty, this trend
is contrary to common conservation assumptions and so merits addi-
tional research.

Ourresults emphasize animportant point: biodiversity trends within
and acrossregions and taxaare highly disparate. This probably reflects
differences in both susceptibility and exposure to anthropogenic
environmental change? 2, Unravelling this variation is imperative to
understand in which regions biodiversity is threatened the most* and
which conservation actions promote stability or recovery. A productive
global conversation about conservation requires that both scientists
and media pay more attention to variation and resist the temptation
of simple summary indices.

Shifting the message from ubiquitous catastrophetofociof concern,
alsotouches on human psychology. Continual negative and guilt-ridden
messaging can cause despair, denial and inaction®?*. If everything is
declining everywhere, despite the expansion of conservation measures
inrecent decades, it would be easy to lose hope. Our results identify
not only regions that need urgent action to ameliorate widespread
biodiversity declines, but also many systems that appear to be gener-
ally stable or improving, and thus provide a reason to hope that our
actions can make a difference.
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Methods

Dataset

The publically available LPI dataset includes 15,241 vertebrate
populations from 3,510 species”. When a species contained both
finer-resolution estimates within a country (2,593 entries) and a
country-wide aggregate, we excluded the country-wide aggregate
(537 entries), yielding 14,700 populations. LPI groups species into 57
systems defined by acombination of habitat domain (terrestrial, fresh-
water or marine), biogeographical realm (terrestrial/freshwater realms,
Afrotropical, Nearctic, Neotropical, Palearctic, Indo-Pacific; marine,
Arctic, Atlantic north temperate, Atlantic tropical/sub-tropical, Pacific
north temperate, Indo-Pacific tropical/sub-tropical, South-temperate/
Antarctic) and taxonomic grouping (fish, Actinopterygii, Elasmo-
branchii, Holocephali, Myxini, Chondrichthyes, Sarcopterygii, Ceph-
alaspidomorphi; birds, Aves; mammals, Mammalia; herps, Amphibia,
Reptilia) (Extended Data Figs. 5-8).

Toanalyse the effect of body size, we obtained information oneach
taxonomic group. Given the diversity of vertebrate groups in this
dataset and the different conventions across groups, we used differ-
ent measures of body size for each taxonomic class on the basis of
data availability. For birds (n =1,397), mammals (n = 534) and reptiles
(Squamata, n=132; Testudines, n=44; and Crocodylia, n=16) we used
estimates of the mass of the species (in grams) collated in an extensive
comparative dataset”. When mass data were missing for a species (n=14
birds; n=1mammal; n=25reptiles), we estimated body mass as the geo-
metric mean of available mass estimates for species in that genus. For
fishes (Chondrichthyes, Osteichthyes and Agnatha; n=1,211), estimates
of mass were scarce for most species, so we instead used estimates of
total length or standard length (in centimetres), both of which were
extracted from FishBase? using the rfishbase R package®. These length
estimates are an imperfect proxy for size (in terms of mass) given the
variability in body plans across groups, but given the large amount of
variation across these groupsit suffices as away to broadly categorize
species into distinct size classes. For amphibians, we used estimates
of snout-vent length (in millimetres) as our proxy for body size, as
this is the most widely available metric of size across species. Data on
snout-ventlength foramphibian species (n=175) were extracted from
acomprehensive ecological trait dataset: AmphiBio®°.

Sensitivity of the geometricindices to extreme population
trends

The LPlanalysis was based on ageometric mean approach, calculated
by summing across log-transformed growth rates®. We recreated the
geometric-mean-based analyses (see Supplementary Information 1a
for full details and model formulation) and examined the sensitivity of
the global estimate to extreme populations. We ordered populations
and sequentially removed the largest observed decline, determin-
ing the effect of each removal on the global estimate of biodiversity
loss. Low sensitivity would indicate that many or most populations
are declining, supporting the catastrophic declines hypothesis. High
sensitivity—that s, if removal of relatively few populations switched
the strongly negative global trend to neutral or positive—would sup-
portthe clustered declines hypothesis. For balance, we also examined
sensitivity to sequential removal of the greatest increasing populations.

Catastrophic versus clustered declines approach

We developed anapproach toseparate extreme population clusters the
growth or decline of which statistically deviated from typical popula-
tion trends, such that a small number of extreme populations would
no longer mask trends of the majority of populations (Fig.1). Although
some summarization is needed to understand global trends, hetero-
geneous growth rates and potentially multimodal distributions could
be expected, given multiple stressors with diverse effects, and differ-
encesinspecies vulnerabilities. We used aBHM model as our statistical

architecture, asit has several desirable properties: (1) it can represent
the null model and assess deviations from it; (2) it enables testing for
both negative and positive extremes (sometimes both existed in the
same system); (3) it quantifies the magnitude and proportion of those
extremes; (4) it provides a coherent way to separate extreme popula-
tions from the majority of populations (the primary cluster), which
enables tests of the clustered and catastrophic declines hypotheses;
(5) it provides ameasure of uncertainty as a direct outcome of analysis
(throughthe posterior distribution); and (6) it accounts for population
fluctuations and adjusts for the number of data pointsin the time series.

First, we specify the null model. Even in a system with no overall
trend, we expect stochastic fluctuations in population size. We also
expect some populations to be increasing or decreasing during any
time interval, given complex, real-world ecological dynamics. Thus,
the null model should include among-population heterogeneity, and
therefore consists of adistribution of growth rates (Fig. 1c). Statistical
deviations from this null model could be caused by ashift in the overall
distribution, inwhich asystem-wide mean growth <0 (that s, decline)
couldindicate a risk to the entire system, which would support the
catastrophic declines hypothesis (Fig. 1a). Alternatively, statistical
deviation from the null model could be caused by a few populations
that experience extreme declines, which is consistent with the clustered
declines hypothesis (Fig. 1b).

Tospecify our model, we begin with a standard Bayesian hierarchical
formulation (thatis, it does not yet contain mixtures of distributions).
We define 8 and T as the system-wide mean and variance, respectively,
of log-transformed growth rates across all populations in the system
(thatis, hyperparameters in Bayesian terminology). 8 and r determine
the distribution of the log-transformed population trends (x;) and
define the properties of the overall system. However, within-population
dynamics are also occurring, and the log-transformed growth rates
for population i at time ¢t are modelled as a population trend (;) and
within-population fluctuations (o) (see Supplementary Information
1b for full details and model formulation).

Using a standard Bayesian hierarchical model, we can test the cata-
strophic declines hypothesis by determining the probability that a
system-wide mean value of 6< 0. Testing the clustered declineshypoth-
esis, however, requires a mixture model to assess the evidence for the
occurrence of clusters. Thus, we define K as the number of clusters in
the mixture, f; is the fraction of populationsin the kth cluster,and 0, T
and fdenote the vectors of the parameters for the K clusters.

To test the clustered declines hypothesis, we modelled three clus-
ters: a primary cluster, corresponding to the typical trend; a negative
extreme cluster; and a positive extreme cluster (Fig. 1). Although our
main interest was in the mechanisms behind apparent global popula-
tion declines (that is, catastrophic versus clustered declines hypoth-
eses), we also assayed positive extreme clusters so that analyses were
notbiased to find only negative population trends. We considered four
cluster combinations: (1) asingle distribution; (2) a primary distribution
and a negative extreme distribution; (3) a primary distributionand a
positive extreme distribution; or (4) a primary distribution and both
positive and negative extreme distributions (Fig. 1). For referencing
purposes, we denote k =1as the primary cluster, k=2 as the negative
extreme cluster, and k=3 as the positive extreme cluster. Reality need
not be bi-modal (or tri-modal), but exploring generalities in trends
necessitates some aggregation. Nonetheless, the extreme clusters
identified by the mixture model could contain multiple extreme modes
inthe data (or evenresult fromaskewed distribution). With any of these
deviations, model selection would still choose the mixture model as
explaining the data better than a single normal distribution (see Sup-
plementary Information 1c for full details and model formulation).

We used the (lowest) deviance information criterion value to select
the mixture model with the strongest statistical evidence®. The cata-
strophic declines hypothesis would be supported by a mean decline
of'the primary population cluster (6, <0 and credible intervals did not



overlap zero), and would be particularly severe if the mean 6, was also
strongly negative (for example, 6,=-0.015would correspond to >50%
loss over 50 years). The clustered declines hypothesis would be sup-
portedifthe deviance information criterion selected a mixture witha
negative extreme cluster (combinations 2 or 4 above). The catastrophic
and clustered declines hypotheses are not mutually exclusive, as a sys-
tem could have both anegative extreme cluster and declining primary
cluster. Alarge fraction of populations in the negative extreme cluster
(f,) could alsobe interpreted as widespread catastrophic declines, but
this did not occur in our results. Although our hypotheses focus on
understanding declining trends, our model will also detect increases
inabundances.

To estimate the model parameters, we used Bayesian analyses and
the Markov chain Monte Carlo algorithm, which simultaneously esti-
mated uncertainty. For each Bayesian analysis, we ran 3 chains, each
with 10,000 iterations (3,000 used for burn-in). Convergence was
determined using R~ 1. Values for all parameters across all systems
ranged from(0.999 < R < 1.005). Bayesian analyses were conducted
using the STAN language®, and processed and analysed in R*.

Additionally, we explored the theoretical behaviour of each model,
including the geometric mean model, in the presence of clustered
declines (Supplementary Information 1d, 2a), and our catastrophic and
clustered declines approach given our selection of priors, application
of constraints and other modelling choices; these simulation analyses
showed thatour approachyielded appropriate theoretical behaviour
(Extended Data Fig.1and Supplementary Information le, 2b). Finally,
we conducted sensitivity analyses and showed that results were robust
to modelling choices (Extended Data Fig. 2, Supplementary Informa-
tion 2c and Supplementary Table 1).

Application of the catastrophic and clustered approach to LPI
data

We tested for extreme clustersin each of the 57 domain-realm-taxon
systems of the LPI, by choosing the mixture model with the lowest
devianceinformation criterion value. We also examined the number of
populationsineachcluster,asafraction of the total number of popula-
tions, scaled using LPI system-specific weightings® (see Supplementary
Information 1f for more details).

Next, we examined evidence for the catastrophic declines hypothesis
ineach system by searching for negative mean growth ratesin the pri-
mary cluster (6,). We defined ‘high certainty’ of decline (orincrease) as
95% credible intervals that did not overlap zero, and ‘strong’ decline as
6,<-0.015, corresponding to a~-50% declineifit persisted for 50 years
(6,>0.015was used for astrong positive relations, correspondingtoa
doubling over 50 years).

We assessed the effect of small time series onboth extreme clusters
and trends in primary clusters, by omitting all data with fewer than
10 points, as has often been done in other studies'. These small time
series accounted for 52% of the population estimates (7,110 populations
remained in the analysis).

Finally, we examined whether trends differed between large- versus
small-bodied animals. Within each class (but with Agnatha lumped
with Osteichthyes), we scaled body size as standard deviations on the
naturallog scale—thus creating anindex of relative species size withina
taxonomic group. Intwo cases, we separated out different groups within
aclassthat hadrelatively distinct body plans that would influence this
size scaling. We scaled size within the superorder Batoidea (Rajiformes,
Myliobatiformes and Torpediniformes) and separately scaled size for
the rest of the chondrichthyans (Selachimorpha and Holocephali). For

the amphibians, we separated out the orders Caudata and Anura and
scaled size within each of these groups. For each taxonomic group,
we scaled body size and separated species into larger-than-average
(hereafter ‘larger’) versus smaller-than-average (hereafter ‘smaller’)
species. This yielded 9,596 populations from 1,765 larger species, and
5,103 populations from 1,745 smaller species. We then reran the BHM
model for larger animals and again for smaller animals. Body sizes
were divided unevenly among habitat domains and realms; 12 domain-
realm-taxon systems contained <1 smaller species so were excluded
from the small-animal model.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.
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Data can be obtained from the LPI database (www.livingplanetin-
dex.org), AmphiBio* (https://figshare.com/articles/Oliveira_et_al_
AmphiBIO _v1/4644424), FishBase (www.fishbase.org)*®and life-history
traits can be obtained from the amniote life-history database? (https://
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Research sample The data was obtained from the Living Planet Index database. <www.livingplanetindex.org/>. (2016), and consisted of 15241
vertebrate populations. To avoid double counting, when a species contained both finer resolution estimates within a country (2593
entries) as well as a country-wide aggregate, we excluded the country-wide aggregate (537 entries). This resulted in 14700
populations remaining in our analysis. Each system was defined by a combination of habitat domain (terrestrial, freshwater and
marine), biogeographic realm, and taxonomic grouping (Fish=Actinopterygii, Elasmobranchii, Holocephali, Myxini, Chondrichthyes,
Sarcopterygii, Cephalaspidomorphi; Birds=Aves, Mammals=Mammalia, Herps = Amphibia, Reptilia). Terrestrial and freshwater habitat
domains were separated into five realms (Afrotropical, Nearctic, Neotropical, Palearctic, and Indo-Pacific), whereas the marine
domain was separated into six realms (Arctic, Atlantic north temperate, Atlantic tropical/sub-tropical, Pacific north temperate, Indo-
Pacific tropical/sub-tropical, and South-temperate/Antarctic).

Sampling strategy All population time-series data in the LPI dataset were used. To avoid double counting, when a species contained both finer
resolution estimates within a country (2593 entries) as well as a country-wide aggregate, we excluded the country-wide aggregate
(537 entries). This resulted in 14700 populations remaining in our analysis.

Data collection The data was obtained by Dan Greenberg, and downloaded from publicly available databases identified in the data availability
statement

Timing and spatial scale Data were analyzed from 1970-2014, as these coincided with the analyses from the Living Planet Index. The spatial scale for the
analysis was global. The data was comprised of 14700 populations across many studies, and thus was measured at many scales. Thus,
relative changes per population was used.

Data exclusions To avoid double counting, when a species contained both finer resolution estimates within a country (2593 entries) as well as a
country-wide aggregate, we excluded the country-wide aggregate (537 entries). This resulted in 14700 populations remaining in our
analysis.

Reproducibility This is not relevant, as the existing LPI database was used. The purpose of the study was not an experiment, but instead to re-analyze

the available information on vertebrate trends, to evaluate whether previous estimates of decline (>50%) were due to clusters of
extremely declining populations, and to separate and analyze extreme clusters and primary clusters separately.

Randomization This is not relevant, as the existing LPI database was used, chosen for its impressive size and geographic coverage, and because
previous analyses of these data suggested broad-scale average vertebrate.

Blinding This is not relevant. Blinding as done in clinical trials, where group assignments of individuals is hidden from some researchers.
Primary data collection and experiments were not conducted in this study.

Did the study involve field work? [ |Yes — [X|No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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