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INTRODUCTION: TheAnthropocene ismarkedby
an accelerated loss of biodiversity, widespread
population declines, and a global conservation
crisis. Given limited resources for conservation
intervention, an approach is needed to identify
threatened species from among the thousands
lacking adequate information for status assess-
ments. Suchprioritization for intervention could
come from genome sequence data, as genomes
contain information about demography, di-
versity, fitness, and adaptive potential. However,
the relevance of genomic data for identifying
at-risk species is uncertain, in part because
genetic variation may reflect past events and
life histories better than contemporary con-
servation status.

RATIONALE: The Zoonomia multispecies align-
ment presents an opportunity to systemati-
cally compare neutral and functional genomic
diversity and their relationships to contem-
porary extinction risk across a large sample
of diverse mammalian taxa. We surveyed
240 species spanning from the “Least Concern”
to “Critically Endangered” categories, as pub-

lished in the International Union for Conserva-
tion of Nature’s Red List of Threatened Species.
Using a single genome for each species, we
estimated historical effective population sizes
(Ne) and distributions of genome-wide hetero-
zygosity. To estimate genetic load, we identified
substitutions relative to reconstructed ancestral
sequences, assuming that mutations at evolu-
tionarily conserved sites and in protein-coding
sequences, especially in genes essential for vi-
ability in mice, are predominantly deleterious.
We examined relationships between the conser-
vation status of species and metrics of heterozy-
gosity, demography, and genetic load and used
thesedata to train and testmodels todistinguish
threatened from nonthreatened species.

RESULTS: Species with smaller historical Ne

are more likely to be categorized as at risk of
extinction, suggesting that demography, even
from periods more than 10,000 years in the
past, may be informative of contemporary
resilience. Species with smaller historical Ne

also carry proportionally higher burdens of
weakly and moderately deleterious alleles,

consistent with theoretical expectations of the
long-term accumulation and fixation of ge-
netic load under strong genetic drift. We found
weak support for a causative link between fixed
drift load and extinction risk; however, other
types of genetic load not captured in our data,
such as rare, highly deleterious alleles, may also
play a role. Although ecological (e.g., physiolog-
ical, life-history, and behavioral) variables were
the best predictors of extinction risk, genomic
variables nonrandomly distinguished threat-
ened from nonthreatened species in regression
and machine learning models. These results
suggest that information encoded within even
a single genome can provide a risk assessment
in the absence of adequate ecological or pop-
ulation census data.

CONCLUSION: Our analysis highlights the poten-
tial for genomicdata to rapidly and inexpensively
gauge extinction risk by leveraging relationships
between contemporary conservation status and
genetic variation shaped by the long-term dem-
ographichistory of species.Asmore resequencing
data and additional reference genomes become
available, estimates of genetic load, estimates of
recent demographic history, and accuracy of pre-
dictive models will improve. We therefore echo
calls for including genomic information in assess-
ments of the conservation status of species.▪
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Genomic information
can help predict extinc-
tion risk in diverse
mammalian species.
Across 240 mammals,
species with smaller his-
torical Ne had lower
genetic diversity, higher
genetic load, and were
more likely to be threat-
ened with extinction.
Genomic data were used
to train models that
predict whether a spe-
cies is threatened,
which can be valuable
for assessing extinction
risk in species lacking
ecological or census data.
[Animal silhouettes are
from PhyloPic]
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Violeta Munoz Fuentes15, Kathleen Foley16,17, Wynn K. Meyer17, Zoonomia Consortium‡,
Oliver A. Ryder1,18*§, Beth Shapiro2,3*§

Species persistence can be influenced by the amount, type, and distribution of diversity across the
genome, suggesting a potential relationship between historical demography and resilience. In this study,
we surveyed genetic variation across single genomes of 240 mammals that compose the Zoonomia
alignment to evaluate how historical effective population size (Ne) affects heterozygosity and deleterious
genetic load and how these factors may contribute to extinction risk. We find that species with
smaller historical Ne carry a proportionally larger burden of deleterious alleles owing to long-term accumulation
and fixation of genetic load and have a higher risk of extinction. This suggests that historical
demography can inform contemporary resilience. Models that included genomic data were predictive
of species’ conservation status, suggesting that, in the absence of adequate census or ecological data,
genomic information may provide an initial risk assessment.

T
he current rate of biodiversity loss amounts
to a sixth mass extinction (1) and is com-
pounded by substantial population de-
clines across nearly one-third of vertebrate
species (2). Many species need immediate

conservation intervention, but identifying them
from the>20,000 species currently categorized

as “Data Deficient” by the International Union
for Conservation of Nature (IUCN) is a chal-
lenge. Fortunately, genomic data, which are
increasingly available for a broad taxonomic
range of species, may hold promise for helping
to identify at-risk species by providing read-
ily accessible information on demography and
fitness-relevant genetic variation (3, 4). It re-
mains poorly explored, however, to what extent
genomic data on their own are sufficient to
help triage endangered species for conserva-
tion intervention.
Population genetic diversity and individual

heterozygosity are long-recognized correlates
of fitness-relevant functional variation (5, 6).
Our previous analysis of 124 placental mam-
malian genomes showed that lower heterozy-
gosity and increased stretches of homozygosity
are more common in species in threatened
IUCN Red List categories (7). However, func-
tional diversity, including estimates of adap-
tive variation and deleterious genetic load, may
also be useful correlates of population resiliency.
Such measures are increasingly accessible with
emerging genomic tools (8) and comparative
genomics resources such as the Zoonomia
alignment of placental mammalian genomes
(table S1) (7). The Zoonomia alignment pro-
vides high-resolution constraint scores and
reconstructed ancestral sequences that can
help to identify deleterious alleles at function-
ally important sites (7, 9).
In this study, we surveyed the distribution

of neutral and functional genetic variation
across 240 species in the Zoonomia alignment
to determine how historical effective popula-
tion sizes (Ne) have influenced heterozygosity

and deleterious genetic load (fig. S1). We tested
the value of genomic data to more precisely
target species for conservation efforts by com-
paring the outcome of predictive models of
conservation status that use ecological data,
genomic data, or both. While we acknowledge
the limitations of assuming that single ge-
nomes are representative of an entire species,
our approach capitalizes on the singular re-
source provided by the Zoonomia Consortium
to explore whether genomic data can provide
initial risk assessments that may be useful to
triage data-deficient species and guide resource
allocation for conservation intervention.

Historical population size is relevant
to contemporary extinction risk

Species with historically small Ne tend to be
classified into threatened IUCN Red List
categories (Fig. 1). Species classified as “Near
Threatened” (NT), “Vulnerable” (VU), “En-
dangered” (EN), or “Critically Endangered”
(CR) had significantly smaller harmonic mean
Ne (meanthreatened = 18,950) compared with
nonthreatened species [“Least Concern” (LC);
meannonthreatened = 27,839; P < 3.3 × 10−5 when
accounting for relationships across the phy-
logeny; Fig. 1B and fig. S2]. Ne was also signif-
icantly smaller in threatened species than in
nonthreatened species within two of three
taxonomic orders with sufficient numbers of
species to test (Cetartiodactyla: meanthreatened =
18,336, meannonthreatened = 22,648, P = 0.023; and
Carnivora:meanthreatened=9636,meannonthreatened=
26,195, P = 2.4 × 10−5; but not Primates:
meanthreatened = 22,508, meannonthreatened =
24,373, P = 0.31) (fig. S3). Within these two
orders in particular, large-bodied herbivores
and carnivores have declined in both geo-
graphic range and population size during the
Anthropocene (10, 11). Smaller populations
are expected to have higher extinction risk, yet
these historical Ne estimates reflect periods
more than 10,000 years in the past, suggesting
that long-term characteristics of ancestral pop-
ulations can be informative about present-
day population size and extinction risk. These
results support the utility of metrics of genome-
wide diversity in conservation assessments, a
topic that is currently being debated (12, 13).
Estimates of historical Ne can also identify

previously large populations that have expe-
rienced contemporary declines. Specifically,
if the estimate of historical Ne is large while
the population census size (Nc) is small, this
inflates theNe/Nc ratio. In a study of pinnipeds,
for example, most species that had undergone
recent declines had smaller Nc than expected
given their historical Ne (14). To test this hy-
pothesis across the taxonomic range of the
Zoonomia alignment, we examined the ratio
of deep historical Ne to contemporary Nc for
89 species with population census informa-
tion available in PanTHERIA (15). Species in
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threatened IUCN categories had larger Ne/Nc

ratios, that is, smaller contemporary Nc rela-
tive to historical Ne (meanthreatened = 1.07 ×
10−3; meannonthreatened = 4.29 × 10−4; P = 0.012;
Fig. 1C). The relationship was also significant
within Primates (phylolm, meanthreatened =
3.46 × 10−3; meannonthreatened = 1.11 × 10−3; P =
0.029), the only order with available Ne/Nc es-
timates for a sufficient number of taxa in the
two threat categories, indicating that the pattern
holds among species with similar life-history
traits. Across taxa, the largest Ne/Nc ratios
included American bison (Bison bison), giant
panda (Ailuropoda melanoleuca), and hirola
(Beatragus hunteri), all of which have declined
because of recent human activities (16–18).

Historically smaller populations carry
proportionally larger burdens of genetic load

Historical Ne is correlated with the propor-
tion of deleterious substitutions in mamma-
lian genomes, reflecting the accumulation and
fixation of genetic load over long evolution-
ary time periods. We called derived, single-
nucleotide substitutions for each species relative
to the reconstructed sequence of the nearest

ancestral phylogenetic node and called hetero-
zygous sites from short-read data mapped to
the focal genome. We inferred the impacts of
derived substitutions and heterozygous var-
iants, assuming that mutations at sites that
are conserved across taxa (phyloP > 2.27) (9)
and nonsynonymous mutations are predomi-
nantly deleterious (fig. S1) (19). Assumingmost
substitutions are fixed and mutation rates
are similar across the phylogeny (20, 21), the
proportion of substitutions that are delete-
rious should be correlated with the total
number of fixed deleterious mutations in the
genome. Deleterious substitutions should there-
fore largely reflect fixed drift load that reduces
the mean fitness of the population, whereas
heterozygous deleterious variants reflect seg-
regating mutational load (22).
We found that species with smaller Ne had

proportionallymore substitutions at evolution-
arily conserved sites genome-wide (phylolm,
P = 9.65× 10−3) and proportionally more mis-
sense substitutions in genes (phylolm, P = 7.76 ×
10−5; fig. S4). PhyloP kurtosis, which describes
the extreme phyloP outliers in the tail of the
distribution across substitutions, was posi-

tively correlated with Ne (phylolm, P = 0.014).
This correlationmeans that species with smaller
Ne had smaller right tails and therefore fewer
substitutions at extremely conserved sites. To
further parse potential fitness impacts of mu-
tations in protein-coding regions, we examined
genes with associated viability phenotypes
in single-gene knockout mouse lines classi-
fied by the International Mouse Phenotyping
Consortium (IMPC), assuming that, when ag-
gregated across many genes, viability classi-
fications are correlated to their fitness impacts
in other species (23). Species with smaller Ne

had proportionally more missense mutations
relative to coding mutations in nearly all cat-
egories (phylolm, P < 3.00 × 10−5; Fig. 2 and figs.
S5 and S6). We observed proportionally fewer
missense mutations in IMPC lethal genes rela-
tive to IMPC viable genes (analysis of variance,
P < 4.42 × 10−9; fig. S7), reflecting stronger
purifying selection in the lethal gene class, but
the negative correlation was nonetheless con-
sistent for both lethal and viable categories
(Fig. 2). This relationship supports theoret-
ical predictions that smaller populations
experiencing strong drift accumulate and
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Fig. 1. Demographic history across mammalian orders and IUCN Red List
categories. (A) Estimates of effective population sizes (Ne) over time, displayed by
taxonomic order. Lines represent individual species, colored by IUCN status (LC,
Least Concern; NT, Near Threatened; VU, Vulnerable; EN, Endangered; CR, Critically
Endangered; DD, Data Deficient). Colored dots correspond to the taxonomic order
of species depicted in (B) and (C). For visualization, only species with Ne estimates

of <200,000 for every time point are shown. (B) Harmonic mean Ne was
significantly lower in threatened IUCN categories relative to nonthreatened
(phylolm, P < 3.3 × 10−5). (C) The ratio of historical Ne to contemporary census
population size (Ne/Nc) can identify species with smaller Nc than expected
from historical Ne (phylolm, P = 0.012). Points in (B) and (C) show individual
species, colored by taxonomic order. [Animal silhouettes are from PhyloPic]
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fix weakly and moderately deleterious alleles
(drift load) (12, 24) and supports empirical
studies involving fewer or single taxa (25–27).
The correlations between Ne and conserva-

tion status and betweenNe and drift load sug-
gest that historical demographymay influence
contemporary extinction risk by shaping genome-
wide diversity and genetic load. We found in-
consistent relationships, however, between a
species’ proportional genetic load and its odds
of being threatened. Species with proportion-
ally more missense substitutions were more
likely to be threatened when considering all
genes (phyloglm, P = 0.002; fig. S4D) and
when considering genes in lethal and viable
IMPC categories (phyloglm, P < 0.023; fig. S6),
as observed in other taxa (28). Drift load esti-
mated from evolutionary constraint across the
genome, however, showed the opposite pat-
tern: Species with proportionally fewer sub-
stitutions at evolutionarily conserved sites
were more likely to be threatened (phyloglm,
P = 1.38 × 10−5; fig. S4C). This latter result
contrasts with expectations, given that threat-
ened species have smaller Ne on average (Fig. 1)
and smaller Ne is associated with propor-
tionally more substitutions at conserved sites
(phylolm, P = 9.6 × 10−3; fig. S4A). Notably, a

previous study of 100 mammal genomes also
found that threatened species had lowermean
conservation scores across mutations (29). The
authors suggested that the pattern may reflect
fewer recessive deleterious alleles because of
purging or the loss of these rare alleles to drift.
The conflicting relationships between conser-
vation status and metrics of drift load thus
do not provide strong support for a mecha-
nistic link between fixed drift load as mea-
sured in this study and species’ resilience
against extinction.

Genomic information can help predict
extinction risk

HistoricalNe was themost consistent genomic
predictor of conservation status across regres-
sion models, whereas the predictive value of
genetic load metrics varied with phylogenetic
context (Fig. 3 and tables S2 and S3). Ordinal
and logistic regression models incorporating
genomic variables with taxonomic order and
dietary trophic level showed that the effect
of Ne varied by ecological context. For exam-
ple, an herbivore with a given Ne was more
likely to be threatened than a carnivore or
omnivore with the same Ne (Fig. 3B), support-
ing findings of elevated extinction risk in her-

bivores despite larger populations (30). Sim-
ilarly, Carnivora and Primates both had in-
creased risk with lower levels of severely
deleterious genetic load. However, the specific
metric of load that predicted conservation
status differed among taxonomic orders, per-
haps reflecting differences in natural history
or ecological flexibility (figs. S8 to S10). Prin-
cipal components regression of demographic
and genetic load variables showed that, over-
all, threatened species tended to have propor-
tionally more deleterious mutations in coding
regions, lower heterozygosity, and smaller
Ne (PC1; P = 0.0038), as well as proportion-
ally more missense substitutions (PC3; P =
5.6 × 10−4; Fig. 3A and table S3). Although no
single genomic variable unambiguously dis-
criminated threatened from nonthreatened
species (fig. S2), many have predictive value,
which will be particularly relevant for species
lacking adequate ecological or census data.
Although ecological data were more power-

ful than genomic data in predicting extinction
risk in our predictive models, models using
only information from single genomes none-
theless identified species at risk of being threat-
ened. We generated random forest models to
predict conservation status from ecological
traits (31, 32) and genomic features, using
area under the receiver operating character-
istic (AUROC) to evaluate performance. A
model with AUROC of 0.5 has no predictive
ability, whereas a model with AUROC of 1.0
has perfect predictive performance. We selected
predictive variables from among 13 genome-
wide summary statistics including demo-
graphic history, genetic diversity, and genetic
load variables; ~57,000 window-based metrics
per genome; and 39 ecological variables from
PanTHERIA (15), including physiological, life-
history, and behavioral variables (table S4).
Models including only genomic features and
no ecological variables (17 models; AUROC
ranging from 0.69 to 0.82) performed worse
than models including only ecological vari-
ables (one model; AUROC of 0.88) and per-
formed similarly to models including both
genomic and ecological variables (17 models;
AUROC ranging from 0.68 to 0.83; table S5).
Models with only genomic features, however,
were consistently better able to distinguish
threatened from nonthreatened species (tables
S5 and S6 and figs. S11 to S13) compared with
random chance (i.e., AUROC of 0.5). Models
including only genomic variables performed
similarly to other studies that predicted IUCN
status from ecological or morphological data
with comparable sample sizes (e.g., AUC rang-
ing from 0.67 to 0.90 for n = 171 to 430 spe-
cies) (33–35).
The number of species with values for eco-

logical variables, genome-wide summary sta-
tistics, and genomic window-based metrics
differed, which may affect model performance.
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To compare the predictive value of genomic
and ecological features directly, we next tested
models in a set of 210 species for which both
data types were available (tables S4 and S6).
Again, themodel with genome-wide summary
statistics alone was predictive of threatened
status (AUROC of 0.71) but performed more
poorly than the model with ecological vari-
ables (AUROC of 0.83). Combining genomic
summary statistics with ecological variables
led to a modest improvement in distinguish-
ing threatened from nonthreatened species
(AUROC of 0.85) compared with genomic var-
iables alone, with Ne as the fourth most im-
portant predictor in the model after weaning
age, age at first birth, and age of sexualmaturity
(fig. S14). Models including genomic window–

based features never outperformedmodelswith
ecological variables alone (table S6), suggest-
ing that complementary information provided
by genomic versus ecological data may be
better captured by summary or transformed
variables (e.g., principal components) than by
numerous weakly informative window features
that may overwhelm the predictive models.
Overall, our evaluation suggests that while
genomic information from a single individual
is not better than ecological data for predicting
threatened status, these data do have predic-
tive value, especially when ecological variables
are unavailable.
As a demonstration of their utility, we ap-

plied our regression and random forest models
to predict the status of three species consid-

ered “Data Deficient” by the IUCN (Fig. 3D).
The models suggest the Upper Galilee Moun-
tains blind mole rat (Nannospalax galili),
which lacks ecological data, is least likely to
be threatened (11 to 44% probability), whereas
the killer whale (Orcinus orca), for which both
ecological and genomic data are available, is
more likely to be threatened (35 to 68% prob-
ability), consistent with the identification of
some at-risk populations (36). Predictions for
the Java lesser chevrotain (Tragulus javanicus)
depend on model specifications, with the high-
est threat prediction from the within-order
regression model (67% probability), and other
models suggesting it is less likely to be threat-
ened (24 to 49% probability). The results indi-
cate that, among the three species, the killer
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diet and scaled values of historical Ne (B) and by taxonomic order and historical Ne
of species (C). Decreased historical Ne is consistently associated with increased

risk, but the magnitude varies by diet and taxonomic order. (D) Conservation status
predictions for three data-deficient species using random forest models with
genomic window-based metrics (“window”), ecological variables (“ecological”), and/or
genome-wide summary variables (“summary”) and predictions from regression
models within and across taxonomic orders. N. galili lacked ecological data and
adequate within-order data, so only predictions from across-order regression and
windows models are shown for this species. Boxes extend from the first to third
quartiles. Whiskers show first and third quartiles ± 1.5 times the interquartile range.
[Animal silhouettes are from PhyloPic]
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whale should be prioritized for further study,
and they demonstrate how genomic data can
provide a rapid and inexpensive initial con-
servation assessment.

Discussion

Our results provide empirical support for theo-
retical predictions that small populations
accumulate and fix weakly and moderately
deleterious alleles, and they demonstrate a
correlation between historical effective popu-
lation size and contemporary extinction risk.
We found little evidence, however, that spe-
cies with historically small effective popu-
lation sizes have higher risks of extinction
because of elevated drift load. Alternatively,
historically small populations may have an
elevated extinction risk simply because these
populations are small and thus more vulner-
able to other threats, such as habitat loss or
change, the introduction of infectious disease,
competition with invasive species, and new
hunting or predation pressures.
Despite the limitations of assuming that a

single genome is representative of the diver-
sity within a species, our comparative geno-
mics approach allowed us to maximize the
number of species analyzed to explore the
power to detect genomic correlates of endan-
germent. Empirical studies suggest that a
single individual can represent a species for
characteristics shaped by long-term evolution-
ary history; variation in the proportion of del-
eterious mutations is typically smaller within
species than between them (29, 37), and his-
torical Ne estimates are consistent across con-
specifics (38, 39). The analysis of multiple
resequenced individuals per species, how-
ever, will increase accuracy and resolution by
capturing intraspecific variation in genetic di-
versity, heterozygosity, and inbreeding (es-
pecially for species with strong population
structure), enabling estimation of allele fre-
quencies, improving inference of more recent
demographic history, and allowing better de-
tection of rare and segregating variants [e.g.,
inbreeding load (22)]. The latter may be par-
ticularly important for estimating extinction
risk, as segregating variants tend to be en-
riched for deleterious alleles (40, 41) and may
disproportionately affect extinction risk from
population bottlenecks (12). In the future,
larger datasets comprising multiple individ-
uals per species may shed light on long-
standing questions about the relative impact
on fitness of many weakly deleterious alle-
les versus a few strongly deleterious alleles
(22, 25, 37, 42, 43).
Inferring real-world fitness from genomic

data includes caveats. Evolutionary constraint
may, for example, reflect past selection on loci
that no longer affect fitness (44). Loci that
seem functionally important in model species
may be irrelevant to the species of interest,

compensatory mutations may ameliorate the
impact of deleterious mutations, and factors
such as dominance, epistasis, pleiotropy, and
purging may also complicate the relationship
between genetic load and fitness. Finally, local
differences in habitat may mean that the im-
pact of deleterious mutations differs among
individuals or populations (25, 45, 46). For
these reasons, the impact of the observed pro-
portionally higher load in smaller populations
will be challenging to know in the absence of
direct fitness data, such as reproductive suc-
cess and the frequencies of genetic diseases
and congenital abnormalities (26, 43, 47).
As additional genomes and population re-

sequencing data become available (48), the
power and accuracy of predictions of extinc-
tion risk from genomes will improve (8). Our
analyses of the genomes of single individuals,
which can be generated rapidly and inexpen-
sively (49), demonstrate the potential for using
genomic estimates of demography, diversity,
and genetic load to triage species in need of
immediate management intervention, and we
join in the calls for including genomics in con-
servation status assessments (50–53).

Materials and methods summary

We provide a summary of our materials and
methods below. Refer to the full materials and
methods in the supplementary materials for
further details.

Mammal genomes and metadata

We examined genomic variation in 240 spe-
cies represented by 241 reference genomes in
the Zoonomiamultispecies alignment. The ge-
nome assemblies varied in quality, with contig
N50 values ranging from 1 KB to 56 MB (table
S1). Short-read sequence data, usually from
the reference individual, were used to estimate
metrics related to historical demography, het-
erozygosity, and heterozygous deleterious
variants from single genomes. Homozygous
deleterious genetic loadwas estimated relative
to reconstructed ancestral sequences from the
multispecies alignment (fig. S1).
For all species, we compiled metadata on

conservation status, diet, and generation time
(table S1). We assigned a conservation status
[Least Concern (LC), Near Threatened (NT),
Vulnerable (VU), Endangered (EN), or Critical-
ly Endangered (CR)] to the lowest known
taxonomic level of the sequenced sample,
using the IUCN Red List of Threatened Spe-
cies (IUCN Red List API version 3) as a proxy
for extinction risk. We classified each species
as carnivore, herbivore, or omnivore accord-
ing to (54), using information for the genus
when species-specific information was unavail-
able. From available metadata, we categorized
the sample used for both the reference ge-
nome and short-read data as a wild, captive,
or domesticated individual. We tested correla-

tions between all genomic metrics, and between
genomic metrics and extinction risk, using
a statistical framework that accounts for phy-
logenetic relationships across species. Phy-
logenetic linear regressions and phylogenetic
logistic regressions were conducted in the R
package phylolm (55), incorporating the phy-
logenetic tree with branch lengths (56) to ac-
count for non-independence. Using regression
and machine learning models, we tested the
potential for genomic data to predict the con-
servation status of species.

Estimating historical effective population sizes
and genome-wide heterozygosity

We called heterozygous positions in all ge-
nomes with short-read data using the GATK
pipeline, as described previously (7). Briefly,
we mapped paired-end sequencing data to
the respective genome assemblies using BWA
mem (version 0.7.15) (57),marked and removed
optical duplicates, and called heterozygous
variants using the HaplotypeCaller module of
the GATK software suite (version 3.6) (58).
We inferred the history of effective popula-

tion sizes (Ne) for each species using PSMC
(version 0.6.5-r67) (59). We called variants in
each genome from scaffolds >50 KB in length,
filtered for sequence read coverage and base
quality score, and used these as input for PSMC.
We rescaled the PSMC output using species-
specific generation times (60) and amammalian
mutation rate (21) and calculated the harmonic
mean across temporal estimates from periods
>10 thousand years ago. To compare contem-
porary population sizes to historical Ne, we
obtained census population estimates (Nc) for
89 species from the PanTHERIA database (15),
estimating Nc as the product of population
density and geographic area from census data
(15, 61).
We identified runs of homozygosity (RoH)

using our previously described method (7). For
every assembly, we calculated the ratio of het-
erozygous to callable positions in nonoverlap-
ping 50-kb windows and fit a two-component
Gaussian mixture model to the joint distribu-
tion, which is expected to be bimodal with a
peak at the lower tail of the distribution cor-
responding to RoH (fig. S1B). Windows were
then assigned as RoH or non-RoH and used
to calculate the proportion of the genome in
RoH (fRoH), genome-wide heterozygosity, and
outbred heterozygosity (i.e., heterozygosity in
non-RoH regions; figs. S2 and S15).

Deleterious genetic load

We called heterozygous variants from single-
sample short-read data mapped to the refer-
ence genome of each species. Homozygous
substitutions were estimated from each refer-
ence genome relative to the closest reconstruct-
ed ancestral sequence in the phylogeny using
the halBranchMutations tool in the Comparative
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Genomics Toolkit (62). Because new alleles
become fixed or lost on the order of <4 Ne

generations (63), most homozygous substi-
tutions between species are likely fixed. We
assessed the potential functional impact of mu-
tations by (i) evolutionary conservation of
the site (phyloP) and (ii) the estimated impact
of the mutation on protein-coding genes. Mu-
tations at evolutionarily conserved sites [phyloP
> 2.27 (9)] and those that cause nonsynon-
ymous changes in protein-coding genes were
assumed to be predominantly harmful (19).
Variant sites in each genome were assigned
human-based phyloP scores estimated from
the multispecies alignment (9). To infer func-
tional impacts on protein-coding genes, each
genome was annotated with human orthologs
by lifting over human exon intervals to the
target species. Synonymous,missense, and loss-
of-function variants were then estimated in the
program SnpEff v.5.0e (64). We also examined
mutations in single-copy genes with associ-
ated viability phenotypic data in knockoutmice
as classified by the IMPC (23), using IMPC
categories (e.g., lethal or viable) as proxies for
gene essentiality and the potential fitness im-
pacts of mutations in these genes (23).

Predicting threat from genomic variables

To predict whether a species is threatened
(NT, VU, EN, and CR categories) or nonthreat-
ened (LC category), we modeled conservation
status across species from genomic variables
using both regression and machine learning
models.
We took two main approaches in our re-

gression models of conservation status across
species, using (i) phylogenetic logistic regres-
sion to model threatened versus nonthreat-
ened status, which allowed us to test the
significance of predictor variables, but not
make predictions for species with unknown
threat status, and (ii) ordinal regression mod-
els of specific IUCN categories, which allowed
us to test significance and make predictions
for specieswith unknown threat status. Unlike
logistic regression, ordinal regression did not
inherently incorporate the phylogeny, so we
included taxonomic order as a factor in the
models. We tested 13 genomic variables (table
S2),modeled individually and as principal com-
ponents, and included taxonomic order and
dietary trophic level, a previously described
correlate of extinction risk (65). We estimated
model error by fitting parameters on 80% of
the data and testing the remaining 20% of
the data across 100 runs with different data
subsets.
We used random forest–based classification

to estimate the likelihood that a species is
threatened from 13 genome-wide summary
statistics of heterozygosity, demographic history,
and genetic load and from five genomic metrics
within homologous 50-KB windows (table S4).

We trainedmodels using the two genomic data
types (windows-based and genome-wide), sep-
arately and combined, and incorporated 39
ecological variables from the PanTHERIA data-
base (table S4). We used the scikit-learn 1.0.2
package for fitting all the models (66).
We first split our dataset into a 75% training

set and a 25% test set. For each model, we
performed preprocessing and imputation steps
using only the training data, then we trained
the model on the training set and evaluated it
on the test set.We ran fivefold cross-validation
on the training set to determine the optimal
set of hyperparameters, tuning the number of
decision trees, themaximumdepth of the trees,
and the number of features used at each deci-
sion to optimize a performance metric. We
used AUROC to estimate how well a model
predicts the correct output class. AUROC is
designed to be more robust to class imbalance
in comparison to a metric such as accuracy.
To leverage all available data, we first ran

models using all species with data for a given
data type (table S5). The number of species
with values for ecological, genome-wide sum-
mary statistics, andwindow-basedmetrics dif-
fered however, whichmay affect the results. To
compare the performance of ecological and
genomic variables and their combination across
the same set of species, we also trained and
tested models in the set of species for which
both data types were available (table S6).
The Zoonomia alignment included three spe-

cies classified as Data Deficient by the IUCN,
the Upper Galilee Mountains blind mole rat
(N. galili), the Java lesser chevrotain (T. javanicus),
and the killer whale (O. orca). The blind mole
rat lacked ecological data on PanTHERIA. We
used the within-order and across-order ordi-
nal regression models and all random forest
models to predict the probability that these
species are threatened.
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