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E N V I R O N M E N T A L  S T U D I E S

The global ocean size spectrum from bacteria to whales
Ian A. Hatton1,2*†, Ryan F. Heneghan2,3†, Yinon M. Bar-On4, Eric D. Galbraith2,5

It has long been hypothesized that aquatic biomass is evenly distributed among logarithmic body mass size classes. 
Although this community structure has been observed regionally, mostly among plankton groups, its generality has 
never been formally tested across all marine life over the global ocean, nor have the impacts of humans on it been 
globally assessed. Here, we bring together data at the global scale to test the hypothesis from bacteria to whales. We find 
that biomass within most order of magnitude size classes is indeed remarkably constant, near 1 gigatonne (Gt) 
wet weight (1015 g), but bacteria and large marine mammals are markedly above and below this value, respectively. 
Furthermore, human impacts appear to have significantly truncated the upper one-third of the spectrum. This dramatic 
alteration to what is possibly life’s largest-scale regularity underscores the global extent of human activities.

INTRODUCTION
In 1972, Sheldon et al. (1) published measurements of marine 
plankton abundance spanning about six orders of magnitude in body 
mass (from ~0.6 to 100 m in body length), collected at approxi-
mately 80 Atlantic and Pacific stations in a circumnavigation of the 
Americas. At each station, the total biomass of all individuals was 
approximately evenly distributed across logarithmic size classes (1). 
On the basis of these planktonic observations, they boldly hypothe-
sized that “to a first approximation, roughly equal concentrations of 
material occur at all particle sizes within the range from 1 m to 
about 106 m, i.e., from bacteria to whales.” Although Sheldon et al. 
(1) were focused on the distribution of biomass at the regional scale, 
their study had immediate global implications. Yet, this extraordinary 
hypothesis has never been formally tested globally across the astro-
nomical range in body masses it encompasses nor has its possible 
alteration by human impacts been examined at the whole-ocean scale.

Since Sheldon et al.’s seminal work (1), the distribution that re-
sults from aggregating individuals, regardless of species identity, into 
size bins has become known as the size spectrum or Sheldon spec-
trum, among other names (2). Sheldon et al.’s hypothesis has been 
widely validated at local and regional scales, mostly among pelagic 
plankton groups (1–6), but occasionally extending up to fish (7, 8), 
as well as in freshwater systems (8–11). These studies have often 
reported notable similarity in the exponents of these distributions 
(fig. S2 and table S3) (1–3, 5, 7, 12). Although there are many ways to 
represent the size spectrum (2), these exponents are typically near −1 
for the relation between the logarithm of numerical abundance across 
logarithmic size classes, equivalent to an exponent near 0 for biomass 
across log size classes (2) (Materials and Methods).

These empirical findings have inspired a rich literature on size 
spectrum theory [see recent reviews; (2, 12–15)]. Existing explana-
tions for the size spectrum are predominantly based on variations 
of predator-prey interactions and tend to rely on a combination 
of two or more lower level factors to account for the distribution of 

biomass across size classes. These factors include metabolism (16–23), 
trophic growth efficiency (19–25), encounter rates or consumption 
(18, 26–28), predator-prey mass ratios (19–24, 26, 28–30), rates of 
growth (16, 17, 19, 22, 25–30), birth or reproduction (26–28), and 
mortality (16, 17, 25–30). Many of these variables exhibit robust 
allometric scaling relations with body size (31–34), but which com-
bination of variables ultimately dominate the maintenance of the 
size-spectrum across the diversity of marine taxa remains an open 
question. More generally, a great diversity of adaptive traits, from 
life history and resource encounter strategies to mobility and sensory 
ability, depends on organisms “being the right size” (14, 31, 33, 34). 
This suggests that not all size classes are created equal and that 
certain sizes should be selectively advantaged or disadvantaged, 
challenging the idea of an evenly distributed size spectrum. Knowing 
the community structure across the full size range of marine life is 
thus key to strengthening size spectrum theory and is needed for a 
broader understanding of biosphere functioning and human impacts 
on the global ocean (13, 15, 35).

Despite nearly 50 years of empirical and theoretical work, research 
has been dominated by regional studies and has been limited to 
much smaller size ranges than the 23 orders of magnitude originally 
conjectured [but see (36)]. Empirical size spectra have typically 
averaged a range in body mass of six orders of magnitude and have 
not exceeded 16 (5, 7, 8, 10) (table S3). A major challenge to com-
parisons over these disparate size scales is posed by the extremely 
different spatial scales over which measurements must be made. 
Whereas bacteria and small plankton can be estimated in a small 
water sample, the largest fish and mammals can actively range over 
thousands of kilometers, and only the global scale unambiguously 
captures the full spatial range of all marine organisms. Furthermore, 
although human activities are known to have locally altered the 
shape of many size spectra (2, 12, 15, 37, 38), the extent to which these 
activities may have affected the whole-ocean size spectrum has not 
been investigated.

Here, we make use of advances in global ocean observation and 
recent meta-analyses to test Sheldon’s original hypothesis from bac-
teria to whales at the global scale. We evaluate this hypothesis in a 
“pristine” state, before industrial-scale human capture of fish and 
marine mammals (pre-1850), based on a combination of marine 
ecosystem models and prior published historical reconstructions. 
We compare the pristine to present-day size spectrum based on 
published estimates of direct human impacts and population de-
clines (see Materials and Methods). Given the diversity of taxa and 
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observational scales, we tailored our methods to the available data 
for each group. For example, phytoplankton are estimated globally 
using satellite images of surface chlorophyll, with algorithms designed 
to estimate total depth-integrated biomass. Heterotrophic bacteria 
and all zooplankton groups, from single cells to large crustaceans, 

are estimated from >220,000 water samples, geographically distributed 
as shown in Fig. 1A (black points), and interpolated over the whole 
ocean based on environmental correlates. The biomass of fish, which 
aggregate, migrate, and can escape capture, is challenging to estimate 
from point samples but are nonetheless intensively “sampled” by 
commercial fisheries; so, we use two independent global process 
models constrained by global catch data (39, 40) (table S5). Last, 
given that large marine mammals can individually range across 
whole ocean basins, we compile global population estimates for 
most marine mammal species (n = 82) and use body size allometry 
and geographic ranges to estimate the remainder (n = 44; fig. S9; see 
Materials and Methods).

Our approach allows us to estimate the biomass of 12 major 
groups (aggregated into 5 groups in the figures) over approximately 
33,000 1° grid points of the global ocean. The total group biomasses 
are broadly concordant with prior global compilations of particular 
groups, as shown in tables S1 and S2 (41–43). We partition each 
group biomass into order of magnitude body mass size classes over 
their respective size ranges, based on published size distributions 
(table S3), or if unknown, we partition biomass uniformly across 
the group size range and test this assumption with alternative distri-
butions and sensitivity analysis (figs. S11 and S12) (44). For each 
group and size class, we estimate a logarithmic 95% confidence 
interval (CI), representing a multiplicative fold uncertainty. We 
outline our data sources, methods for estimating pristine, and 
present-day biomass, as well as the various sources of uncertainty 
in Materials and Methods and the Supplementary Materials (44), and 
report here the most robust overall results.

RESULTS
We find that the reconstructed pristine global ocean size spectrum is 
largely consistent with Sheldon et al.’s original hypothesis (Fig. 1B), 
particularly in the epipelagic (the upper, sunlit portion of the ocean). 
The least squares regression fit to log abundance versus log size 
class is close to the long-hypothesized value of −1 (−1.04, 95% CI: 
−1.05 to −1.02) and exhibits remarkable regularity. This regularity 
derives from the fact that we are aggregating organisms over very 
large spatial extents and size classes and representing the relation 
over an enormous 23 orders of magnitude, over which even large 
residual variation is undetectable.

This pattern indicates that biomass is generally not dominated by 
any best adapted size, as is evident when abundance is transformed 
to biomass (Fig. 2A). However, our results show exceptions at the 
extremes: Bacteria and whales diverge from the uniformity in 
biomass, which are more obvious when displayed on a linear scale 
(Fig. 2B). Whereas all other groups sum to approximately 1 gigatonne 
(Gt) wet weight (1015 g) of biomass in each order of magnitude size bin, 
the size bins dominated by bacteria and whales are notably different. 
Although there is considerable uncertainty in our estimates (Fig. 2A) 
(44), these differences are more pronounced and significant when 
we consider the size spectrum over the entire water column 
(cross-shading in Fig. 2), with bacteria dominating the biomass in 
the cold, dark ocean. Mesopelagic nekton are also relatively abun-
dant, leading to a peak at 0.01 to 1 g, but these estimates are prone 
to large uncertainties (41, 42, 44), and we hesitate to draw a strong 
conclusion about this portion of the spectrum. Sensitivity analysis 
shows that the overall size spectrum slope is robust to both the choice 
of group biomass distributions and the possible broad variations in 
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Fig. 1. The global ocean size spectrum. (A) The black mapped points are 
n = 226,405 sample locations for measurements of heterotrophic bacteria and 
zooplankton. Autotrophs were estimated from satellite imagery of surface chlorophyll 
and fish from global process models constrained by catch data. Marine mammals 
are estimated from species global population estimates, and their biomass is not 
included on the map. Biomass (g/m2; wet weight) of each group is summed over all 
groups in each 1° region of the ocean (only biomass in the upper 200 m is shown 
here). (B) Total ocean biomass (wet weight) is partitioned across relevant size classes 
(g, wet weight) for each group to estimate the global size spectrum. This is shown 
as the total number of individuals in each order of magnitude size class over the 
ocean’s epipelagic and continental shelves (upper ~200 m), giving an exponent 
of −1.04 (95% CI: −1.05 to −1.02). The gray confidence band includes biomass un-
certainty in each size class (Fig. 2 A) and uncertainty in the size distribution of each 
group (Fig. 2C, i). Bin colors show the relative fraction of each group on a linear 
axis [no relation to y axis or to the biomass in (A)]. Further details are in Materials 
and Methods.
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biomass within our uncertainty bounds (slope 95% CI = ±0.043; 
Fig. 2C, i, and figs. S11 and S12) (44). Slope estimates are also robust 
to different fitting methods (table S7) and binning schemes (fig. S11). 
Last, our data allow us to approximate size spectra over most 1° lat-lon 
regions of the ocean, and although we are less confident in these 
~33,000 slope estimates, given the patchiness in the data and lack of 
some important major groups, our data suggest that size spectra 
slopes may be similar across global environmental gradients (fig. S13).

 Our analysis also shows that the whole-ocean pattern is not 
immune to human impacts. Despite marine mammal and wild fish 
catches amounting to <3% of annual human food consumption (44), 
the previously reported cumulative impacts of industrial fishing and 
whaling (45–48) are notable when viewed within the context of the 
global size spectrum. Fish >10 g in size and marine mammals are likely 
to have been reduced in biomass by about 2 Gt (~60% reduction; 
Fig. 3A), and the largest size classes appear to have experienced a 
near 90% reduction in biomass since 1800 (Fig. 3B). We also esti-
mate potential climatic impacts that could occur over the next 
century. To do so, we use published impacts on major groups from 
high emission–projected changes in climate [representative con-
centration pathway (RCP) of 8.5; (49–51)] and assume that current 
fishing effort remains constant (Fig. 3B). These estimates suggest 
that fishing and whaling could have already had a considerably 
greater impact among large size classes than will climate change 
over the coming decades. Although there are considerable uncertain-
ties in these projections, it is clear that the direct impacts of fishing 
and whaling have markedly altered the ocean biomass spectrum. 
We find that the upper one-third of the biomass spectrum has 
been severely truncated and the whole-spectrum slope significantly 
altered (Fig. 3C).

DISCUSSION
Our estimated reconstructions of the pristine ocean biomass suggest 
a robust law-like property of marine systems that appears to hold 
across nearly all marine life. These estimates imply that biomass is 
nearly invariant across logarithmic size classes but diverges at the 
extremes with a relatively higher abundance of bacteria and lower 
abundance of whales. These divergences mark a departure from 
what might be considered a strong interpretation of the Sheldon 
hypothesis. Moreover, the cumulative impacts of historical fishing 
and whaling appear to have resulted in major alterations to the 
present-day size spectrum. We discuss the theoretical and applied 
implications of these findings.

Implications for theory
Much of the current size spectrum theory has focused on particular 
groups such as plankton or fish, typically using body mass allometries 
for those groups to estimate key variables of the theory. Although 
several size spectrum theories make predictions for the slope based 
only on a small number of variables, such as metabolic scaling and 
predator-prey body mass relations (16, 18, 19, 21, 25), these predic-
tions depend on the scaling exponents of the presumed underlying 
body mass allometries (16–18, 21, 27–29) or require that particular 
combinations of exponents sum to one for dimensional reasons 
(16, 17, 25). Since the size spectrum apparently holds over nearly all 
eukaryotes, the question may be raised as to whether the body mass 
allometries, which have been used to explain the size spectrum, 
show the same consistency over this vast size range. In contrast with 
what is widely assumed, predator-prey mass ratios are extremely 
variable, with up to six orders of magnitude residual variation in 
any given size class (fig. S14) (52–54), and metabolism does not scale 
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Fig. 2. The pristine ocean biomass spectrum. Total estimated historic ocean biomass in each order of magnitude size class is approximately 1 Gt (gigatonnes or 
petagrams = 1015 g), with exceptions at either extreme. Biomass is shown in the upper 200 m of the ocean (colored) and extending to the seafloor (hatched colors represent 
the group that dominates below the epipelagic; bacteria dominate <10−11 g, and mesopelagic fish dominate size classes 10−3 to 103 g). (A) Global ocean biomass is shown 
on a logarithmic scale with logarithmic 95% CIs on epipelagic biomass. Bin colors show the relative fraction of each group (no relation to y axis). (B) Biomass estimates in 
(A) are shown on a linear scale to highlight differences of bacteria and whales from the overall trend. (C) Frequency histograms of biomass spectrum slopes for (i) resampled 
data incorporating uncertainty in both biomass [shown in (A)] and the size distribution of each group (n = 10,000 simulations) and (ii) prior published slope values for 
n = 325 measured biomass spectra (from 47 separate studies; note the difference in x axis from C, i).
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as 3/4 with body size but closer to one (fig. S15) (33, 34, 55, 56). 
Near-proportional metabolic scaling, for example, significantly 
alters the predictions of several of the theories that rely upon it, 
yielding predicted slopes that differ significantly from the observed 
slope by −0.2 (18, 28) to +0.25 (20, 21, 23), depending on the theory. 
While this may be insufficient to falsify these theories, it suggests 
that size spectrum theory may need to be questioned in light of new 
evidence. More broadly, the size spectrum appears more general 
and consistent than many of the individual-level processes and 
allometries presumed to be its cause.

Human impacts on energy flow
Our results place the global loss of marine animals due to human 
consumption within the context of the size spectrum. Prior work 

has pointed out that humans are now the top predator in the marine 
ecosystem, having extracted most of the predatory fish and mam-
mals that previously occupied the upper ranges of the size spectrum 
(57). This raises the question: Do humans now play the same 
role previously played by the predators we have removed? Have 
we simply inserted ourselves into the marine size spectrum and 
now act as a functionally equivalent top predator? The answer is 
clearly no.

Although human biomass is now among the largest of any single 
vertebrate species (at approximately 0.4 Gt), it remains unexpectedly 
small relative to the marine biomass that has been lost from the 
largest size classes as a direct result of fishing and whaling (~2.7 Gt; 
Fig. 3A). Furthermore, we can estimate the metabolic energy asso-
ciated with the lost biomass spectrum using empirical metabolic 
scaling relations for fish and mammals. As detailed in Materials and 
Methods, we estimate that the lost biomass spectrum (pink hatched 
area in Fig. 3C) would have previously dissipated energy (in units of 
biomass) amounting to as much as 14 Gt/year (12 Gt/year, if we 
only consider fish). This represents a lost metabolic demand that is 
two orders of magnitude greater than the ~0.1 Gt/year of biomass 
energy obtained through fishing [and not exceeding ~0.2 Gt/year; 
(58)]. Clearly, humans have not merely replaced the ocean’s top 
predators but have instead, through the cumulative impact of the 
past two centuries, fundamentally altered the flow of energy through 
the ecosystem. Further work is necessary to understand how this 
massive alteration of biomass flow may be affecting ocean eco-
system functioning.

In summary, our results provide evidence that the pristine size 
spectrum regularities previously observed at the local scale among 
particular groups are largely preserved at the global scale across all 
groups, as hypothesized by Sheldon et al. (1) half a century ago. The 
fact that biomass is so evenly distributed across such a vast size 
range raises questions about the generality of existing size spectrum 
theory, demanding renewed effort to uncover the dominant under-
lying processes. At the same time, our analysis has quantified a 
major impact of humanity on the distribution of biomass across 
size ranges, highlighting the degree to which human activities in the 
Anthropocene have altered life at the global scale.

MATERIALS AND METHODS
To construct the global ocean size spectrum and assess human 
impacts, we drew on a diverse assemblage of data using methods 
tailored to the data available for different taxonomic groups and 
following a number of simplifying assumptions. Here, we summarize 
our data sources and methodology for estimating the biomass of each 
major functional group (heterotrophic bacteria, phytoplankton, 
zooplankton, fish, and mammals; Table 1), as well as the assump-
tions and limitations associated with reconstructing pristine ocean 
biomass. We describe how these estimates are used to build the 
global marine size spectrum, by partitioning biomass across rele-
vant size classes for each of 12 major groups. We outline the various 
sources of uncertainty and how we estimate the 95% CI of our biomass 
estimates for each functional group. We also detail our approach to 
estimate human impacts on the size spectrum through animal hunting 
and climate change. Full details of our approach are in the Supplementary 
Materials, including all data and referenced sources, as well as source 
code, allowing our analysis to be reproduced and updated as new 
data become available (https://doi.org/10.5281/zenodo.5520055).
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The size spectrum can be represented in many ways. In Fig. 1B, 
we show the relation between the logarithm of numerical abundance 
versus logarithmic size class, obtaining a slope near −1. As we show 
in Fig. 2, this is equivalent to a slope near 0 for log biomass versus 
log size class. Alternatively, we can normalize our size classes by 
dividing by their width, which gives a normalized abundance spec-
trum with a slope near −2 and a normalized biomass spectrum with 
a slope near −1 (2, 13). Furthermore, size spectra can be represented 
as a probability density function (exponent near −2), a complementary 
cumulative distribution function, or rank-size relation [exponent 
near −1; i.e., Zipf’s law; (59)]. It is also important to recognize that 
Sheldon et al. (1) used octave size classes (powers of 2) in terms of 
body mass but plotted these size classes in terms of equivalent spheri-
cal diameter (ESD). If size class is instead based on log ESD, then log 
abundance versus log ESD gives an expected exponent near −3 (44).

Data sources
Our data sources are summarized in Table 1. All raw data, comprising 
more than 290,000 samples of abundance or biomass of particular 
taxonomic groups at various ocean locations and depths, are included 
in the Supplementary Materials and our source code (https://
doi.org/10.5281/zenodo.5520055). In addition, we provide our 
biomass predictions for each spatially resolved major group for each 1° 
latitude and longitude region of the ocean (fig. S1), amounting to 
>33,000 biomass estimates for each of eight spatially resolved groups 
(Table 1).

Bacteria abundance data were obtained from >47,000 sample 
measurements deriving from three sources (60–62), and ~500 in situ 

measurements of individual cell size were taken from five studies 
covering pelagic and coastal regions (44). Phytoplankton biomass 
across all groups were derived from sea surface temperature and 
satellite chlorophyll a measurements, obtained from monthly clima-
tologies of MODIS-Aqua (Moderate Resolution Imaging Spectro-
radiometer aboard the Aqua spacecraft, 4-km resolution) from 
2002 to 2016, and aggregated to a 1° spatial resolution. Zooplankton 
biomass across all groups except nanozooplankton derive from a 
total of >200,000 biomass samples aggregated from four sources, 
most notably COPEPOD and MAREDAT (63–66). Fish biomass 
was estimated from two data-constrained global ecosystem models 
[BiOeconomic mArine Trophic Size-spectrum model (BOATS) 
(39) and FishErIes Size and functional TYpe model (FEISTY) (40)]. 
Mammal biomass was estimated from 126 species global population 
estimates deriving from the International Union for Conservation 
of Nature (IUCN) (47) and meta-analyses (48, 67). In addition, for 
building generalized linear models for bacteria and zooplankton 
groups, we used bathymetry data for each 1° region of the global 
ocean from General Bathymetric Chart of the Oceans, as well as annual 
average chlorophyll a and sea surface temperature from MODIS-Aqua.

Reconstructing pristine biomass
To estimate pristine biomass before industrial-scale fishing and 
whaling (circa 1850), we consider only the direct impacts of animal 
capture on the extracted fish and mammal groups. We have not 
considered the many possible indirect impacts, including trophic 
cascades, changes in bioenergetic pathways, or habitat loss, and so 
we do not attempt to estimate possible indirect changes to the various 

Table 1. Summary of pristine ocean biomass estimates, data sources, and methods among groups. Estimated pristine ocean biomass (wet weight;  
1 Gt =1015 g) are compared across major groups for the epipelagic (top 200 m) and full depth to the seafloor. Because depth-resolved estimates of fish and 
mammals were not available,  these taxa were roughly allocated to top and full depth categories. Fold uncertainty is a multiplicative 95% CI on biomass. These 
biomass estimates are consistent with other global meta-analyses across major groups (20, 41–43, 67) and were used to partition biomass across the body size 
range to build the global ocean size spectra in Figs. 1 and 2. GLM, generalized linear model; SST, sea surface temperature.

Heterotrophic bacteria 10-14 10-11 3.7 14.5 3.9 n = 47,254 samples from (60-62
with chlorophyll, SST and bathymetry to interpolate globally.

Picophytoplankton 10-14 10-11 2.2 2.2 3.2 n = 39,402 chlorophyll a
MODIS-Aqua satellite data averaged over 2002-2016. 
Biomass of each phytoplankton group was calculated using 
satellite chlorophyll, based on empirical equations from (72, 
73, 82-84 ). Data also from (41-43).

Nanophytoplankton 10-12 10-8 1.8 1.8 3.2

Microphytoplankton 10-9 10-5 1.4 1.4 3.2

Nanozooplankton 10-13 10-10 1.21 2.5 6.5 Global estimates (not spatially resolved) from (41, 42, 69).  

Microzooplankton 10-11 10-5 2.3 4.8 6.5 n = 3866 samples from (64 ).

Mesozooplankton 10-6 10 4.1 10.9 7.7
n = 176,042 from COPEPOD (63 ) &
n = 1509 samples from (65 ).

Macrozooplankton 10-3 103 0.24 1.5 11 n = 23,815 from MAREDAT (66 ). 

10-3 107 5.5 5.5 5
Two independent data-constrained global marine ecosystem 
models (39, 40) forced with Earth system model inputs in 

20, 41).

10-2 103 0 5.4 3 Global estimates (not spatially resolved) from (41, 42, 75)

Mammals 104 109 0.44 0.44 5 n = 126 species global population estimates (not spatially 
resolved) from IUCN (47), and meta-analyses of (48, 67).

Major group
Biomass Gt

GLM with sample 
depth, chlorophyll 
and SST for global 
interpolation.

Data sources and methods summary
(n is number of measurements)

Body mass 
range g

Top 
200 m

Full
depth

Uncertainty
(
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groups of bacteria, plankton, and mesopelagic fish, or nonmesopelagic 
fish less than 10 g in size, and assume these groups have remained 
the same through time. This represents an important but unavoid-
able source of uncertainty.

Reconstructions of pristine fish biomass are also subject to con-
siderable uncertainty. For our estimates of fish (which includes true 
fish, cephalopods, and benthic invertebrates), we relied on two spa-
tially resolved marine ecosystem models that predict fish biomass 
from environmental parameters (39, 40). These models were built 
independently and are each constrained with recent fishery harvest 
data. For the pristine estimates used here, the models were each run 
without fishing and forced with preindustrial environmental inputs 
from an Earth system model (CESM-BGC1) for the decade 1850–1860. 
The resulting biomass estimates derived from these simulations are 
necessarily dependent on the assumptions of the two models and 
the Earth system model used to force them. Despite the inherent 
uncertainties, both models produce global-scale patterns in catch and 
biomass consistent with current-day empirical estimates (table S1) 
(20, 41, 42) and yield pristine biomass estimates within a factor of 
two of one another (table S5).

To estimate pristine marine mammal biomass, we used current 
global population estimates, adding estimates of population declines, 
obtained from the IUCN (47) or else took the upper CI values ob-
tained from multiple present-day global abundance estimates, when 
there were only qualitative reports of declines. For many of the largest 
whales, we relied on pristine reconstructions from (48). In the ab-
sence of any data on pristine estimates or population declines, we 
assumed that pristine and present-day global populations are the 
same (n = 47 of 126 species; see data S1).

Estimating major group biomass
Below, we summarize our methods for estimating biomass for 
each major group. A full description is available in the Supplemen-
tary Materials.
Heterotrophic bacteria and zooplankton
Our data sources for heterotrophic bacteria abundance did not dis-
tinguish between bacteria and archaea, so we include both of these 
groups in our heterotrophic bacteria biomass estimate. These are 
often just referred to as bacteria; photosynthetic bacteria are included 
in phytoplankton. Bacterial abundance was multiplied by mean 
bacteria cell size to estimate global biomass. We did not find a 
statistically significant difference in mean bacteria cell size between 
coastal and open ocean samples, so we assumed a single mean indi-
vidual bacteria cell size across the global ocean (fig. S4) (44). To 
estimate total zooplankton biomass, we split zooplankton into four 
groups defined by their linear size ranges: nano (0.8 to 5 m), micro 
(5 to 200 m), meso (200 m to 2 cm), and macro (0.2 to 10 cm) 
(43, 68). Nano- and microzooplankton cover protists groups such 
as heterotrophic flagellates, dinoflagellates, ciliates, and juvenile 
mesozooplankton (64, 69). Mesozooplankton covers groups such as 
copepods, larvaceans, amphipods, and giant rhizaria (65, 70). Macro-
zooplankton includes groups such as chaetognaths, euphausiids, 
tunicates, fish larvae, ctenophores, and cnidaria (71).

Global estimates of abundance for bacteria and biomass for each 
zooplankton group (micro-, meso-, and macrozooplankton, as well 
as all other animals that pass through a zooplankton life stage, but 
excluding nanozooplankton) were calculated using generalized linear 
models fit to log-transformed sample measurements from across 
the world’s oceans (n = 226,405; Fig. 1A). Bathymetry, satellite sea 

surface temperature, and chlorophyll a measurements were used as 
environmental predictor variables. For nanozooplankton, we were 
unable to find a sample source with which to generate a global sta-
tistical model, so we used an aggregate estimate of biomass for this 
group and partitioned biomass across its size range (42). Since no 
uncertainty bound was provided for nanozooplankton estimates, we 
use the uncertainty range calculated for microzooplankton, which 
overlaps taxonomically with the nanozooplankton. For bacteria and 
zooplankton groups, we follow the approach of (41, 42) in reporting 
our uncertainty interval, which derives from (i) the standard error 
from 1000 bootstrap predictions of mean global abundance or bio-
mass from the statistical model and (ii) the SD of the log-transformed 
sample data on which the statistical model was fit (44).
Phytoplankton
To estimate global phytoplankton biomass, we used annual average 
satellite chlorophyll a observations from MODIS-Aqua, from 
2002 to 2016, and empirical equations of chlorophyll a with depth 
and by functional type, to calculate the global biomass of pico-, 
nano-, and microphytoplankton. Our estimate of total phytoplankton 
biomass includes both autotrophs and mixotrophs, since both of 
these groups contain chlorophyll a and so are represented in satellite 
estimates. To convert satellite chlorophyll a observations to phyto-
plankton biomass, we first split total satellite surface chlorophyll a 
in each 1° region into pico-, nano-, and microphytoplankton 
chlorophyll a using equations from (72). These equations model the 
nonlinear shifts in the relative proportions of each group—in regions 
of low chlorophyll a, picophytoplankton tend to dominate the 
biomass, and in regions of high chlorophyll a, the larger nano- and 
microphytoplankton tend to dominate. We converted surface 
chlorophyll a into total chlorophyll in the water column in each 1° 
region using an empirical equation in (72) and, finally, converted 
total chlorophyll a into carbon and, last, wet biomass following (73). 
We obtained the cumulative 95% CI by multiplying the reported 
multiplicative 95% CIs from each empirical equation (44).
Fish
The major group we have called “fish” include epipelagic, meso-
pelagic, and demersal organisms as well as some benthic organisms 
that are not included in zooplankton data. Hence, our fish group 
includes true fish (bony and cartilaginous) and invertebrates of the 
same size range (mostly cephalopods). To calculate total fish biomass, 
we estimate nonmesopelagics and mesopelagics separately.

We estimate biomass of epipelagic and demersal fish, cephalopods, 
and large benthic invertebrates using spatially resolved estimates 
derived from two process-based global marine ecosystem models 
(39, 40). These models were built independently, are each comprehen-
sive in their spatial coverage and size range, and both constrained 
with fishery catch data. The first estimate comes from the BOATS 
(39), a size-based global model that represents harvested organisms 
(including epipelagic and demersal fish, squid, and benthic inverte-
brates) from 10 g to 100 kg, using average temperature in the top 
75 m with integrated primary production in the water column as 
environmental inputs. The second estimate comes from the FEISTY 
(40), which represents the global biomass of epipelagic and demersal 
fish and benthic invertebrates from 1 mg to 125 kg. This model 
estimates biomass of functional types, with sea surface temperature, 
zooplankton carbon concentration, and particulate organic carbon 
flux to the sea floor as environmental inputs.

We used publicly available output from these models to derive 
our global biomass estimates from simulations where each model is 
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forced with environmental inputs from the CESM-BGC1 Earth 
system model (both models’ output available at https://www.isimip.
org/about/marine-ecosystems-fisheries/). For each model, we cal-
culated their global average biomass using the decadal average from 
1850 to 1860 from simulations of pristine ocean biomass with no 
fishing. We chose this decade because it was the furthest in the past 
that both models have been run through, and it is far enough back 
in time that anthropogenic climate impacts are not discernible from 
existing climate variability (74). To obtain the biomass of fish with 
body sizes greater than 100 kg, we used the scaling relationship 
between biomass and body size from (20) to define the relationship 
between biomass and body size as a power function with an average 
exponent of −0.06 (assuming an average ecosystem trophic transfer 
efficiency of 0.125 and an average predator-prey mass ratio of 1000). 
The fish component of this biomass was then calculated by sub-
tracting mammal biomass, which was estimated separately (see 
“Mammals” section). To calculate the uncertainty range for our esti-
mates of epipelagic and demersal fish biomass, we follow the ap-
proach of (42), taking the 90% CI of global fish biomass from (20) 
as representative of this uncertainty range.

Mesopelagic fish live in the mesopelagic zone (200 to 1000 m) of 
the global ocean. Although difficult to sample directly, these fish can 
be detected by the reflectance of acoustic signals from sonar, and 
this reflectance can be used to estimate their biomass (75). For our 
estimate of mesopelagic fish biomass, we used results from (75), who 
developed a model to estimate global estimates of mesopelagic fish 
biomass from acoustic surveys, accounting for uncertainties in the 
body structures of mesopelagic fish (44).
Mammals
Marine mammal biomass was estimated from species-specific surveys 
for the majority of all known marine mammal species. Population 
data of varying quality exist for more than two-thirds of all approx-
imately 126 extant species of marine mammals, with nearly all current 
estimates of marine mammals taken from the IUCN (47) (n = 87). 
We estimated “prewhaling” population counts by taking larger valued 
abundance estimates or upper CIs when extensive capture levels have 
been reported or else from expert opinion or modeling studies (n = 83). 
For most species of whales, we relied on the historic reconstruction 
estimates in (48). When no additional information was available 
beyond current estimates (n = 47 species), we assumed pristine num-
bers were the same as exist currently. We believe this approach is 
more likely to underestimate pristine abundance than overestimate it 
in most instances, but the values provided are among the most com-
plete tallies of currently available data for marine mammal biomass.

Estimates of marine mammal uncertainty is obtained from addi-
tional species population data from multiple additional sources, 
summarized in the mammal dataset—available in the Supplementary 
Materials, which includes minimum, mean, and maximum values 
for 115 marine mammal species—and drawn from 275 primary 
published sources (67). Given the necessarily limited knowledge of 
the prewhaling period, we assumed the uncertainty range for pristine 
mammal biomass to be slightly more than double the range of our 
calculated present-day mammal biomass [from 2.2 to 5; (44)].

Sources of uncertainty
There are several kinds of uncertainty associated with our recon-
structions of the pristine size spectrum and its present-day structure. 
Below, we list the kinds of uncertainties and how we attempted to 
deal with each.

Boundaries of the “Sheldon hypothesis”
There are conceptual uncertainties in delineating the physical and 
taxonomic boundaries of what should be included to test the con-
jecture raised by Sheldon et al. (1). In particular, the question arises 
of whether to include all ocean depths, estuaries, benthic and sedi-
ment species, seabirds, etc. Sheldon et al. made measurements of 
mostly the pelagic environment in the upper water column, which 
characterizes most empirical studies of size spectra up to the present 
(summarized in table S3) (5). We have thus tried as closely as possible 
to reproduce this analysis globally, over all taxa, but our estimates of 
fish biomass also include demersal fish and large benthic organisms 
over the continental shelves. We have also excluded brackish waters 
and mangrove ecosystems, as well as species such as seabirds that do 
not physically reside in the ocean. Although we have thus focused 
on the epipelagic, we show results that include biomass estimates 
down to the seafloor in Fig. 2 and Table 1.
Measurement error
There are various kinds of measurement errors associated with 
the estimation of each major group. For example, phytoplankton 
estimates from satellite imagery of surface chlorophyll a concentra-
tions require well-calibrated ground truthing and reproducible 
relationships between chlorophyll across each phytoplankton group 
(76). Zooplankton biomass samples have been taken with dozens of 
different gear types and mesh sizes but cannot capture very small or 
large zooplankton as reliably (63), and it is difficult to evaluate the 
effects of zooplankton avoidance, aggregation, and diurnal migra-
tion (77). Fish biomass is particularly difficult to estimate over the 
global ocean, and although our marine ecosystem models are con-
strained by global catch data, there are large uncertainties in harvest 
data due to underreported and illegal catches (58). Last, mammal 
biomass derives from visual observation at the sea surface and in 
breeding grounds, with unequal observational effort across regions 
and species (47). We did not explicitly attempt to deal with measure-
ment error and assumed that our data sources are the best available, 
and the specific studies from which they derive had attempted to 
deal with these measurement issues. More generally, we do not ex-
pect these errors to significantly bias our final analysis, which aggre-
gates a great number of measurements into relatively coarse order 
of magnitude size classes (44).
Geographic bias
With the exception of phytoplankton, which derives from satellite 
data with uniform global coverage and is averaged over more than a 
decade, all other groups are not uniformly sampled over the global 
ocean or at different depths. As shown in Fig. 1A, sampled observa-
tions of heterotrophic bacteria and the various zooplankton groups 
are patchy, with far fewer samples in the southern hemisphere. We 
attempted to correct this geographic bias by using generalized linear 
models that interpolate biomass over the global ocean using environ-
mental predictor variables (chlorophyll a, sea surface temperature, 
and bathymetry), which are consistent in their coverage globally (44).
Major group biomass
For each major group, we estimated global biomass uncertainty, 
represented as a multiplicative 95% CI around the average biomass 
estimate (Fig. 2A). Following the approach of (41, 42), we report 
these uncertainty ranges as multiplicative fold changes (×/÷) from 
the mean, rather than additive changes (±). We elected to use a 
multiplicative factor to represent uncertainty because the distribu-
tion of sample data is best approximated by a log-normal distribu-
tion, and the geometric mean (i.e., the arithmetic mean on log scale) 
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will give an estimator that is more robust to outliers, particularly 
when data are sparse (41, 42). Given the range of source methods we 
use to estimate biomass, our calculations of 95% CI were not the 
same for all groups, such that uncertainty bounds are not strictly 
comparable across different methodologies. Nonetheless, our mean 
biomass and uncertainty ranges for each group are consistent with 
those from other global biomass studies that use different method-
ologies (20, 41–43, 67) (table S1). Full methods to calculate uncer-
tainties for each group are given in the Supplementary Materials.
Major group size distributions
While most size distributions within plankton groups are well studied 
and similar [i.e., approximately even biomass across log size classes; 
table S3; (5)], relatively little is known of the overall size distributions 
of heterotrophic bacteria, fish, and mammals. For mammals, we 
used average species body mass with each global population count, 
thus avoiding the need for any assumptions of their size distributions. 
For groups where less is known about the size distribution, we used 
an even biomass across log size classes as a starting point and tested 
this assumption by sensitivity analysis with randomly generated 
size distributions (see “Building the size spectrum” section). We find 
that the particular size distribution within major groups has very little 
effect on the overall global size distribution (Fig. 2C, i, and fig. S12).

Building the size spectrum
To construct the abundance and biomass spectra in Figs. 1 and 2, 
we partitioned the global biomass estimates for each major group 
across their relevant size classes (Table 1). Biomass was assigned 
to relevant group size classes in different ways, depending on the 
group, as described above. It is important to note that given the nature 
of the data, macrozooplankton, for example, may include fish larvae, 
and mesozooplankton may contain juvenile species of what are 
otherwise macrozooplankton. For mammals, on the other hand, 
we used global population estimates for each species and associated 
these numbers to a mean species body mass. We do not expect indi-
vidual versus species mean values of body size to bias our results over 
order of magnitude size classes.

Most research over the past 50 years has revealed that the bio-
mass distribution within major groups is approximately invariant 
across log size class (Fig. 2C, ii, shows the distribution of slopes over 
325 size spectra from 47 different studies; see also table S3). We thus 
assumed an even distribution of biomass across log size classes in 
each group and then tested the sensitivity of this assumption to 
different size distributions. We randomly allocated group biomass 
across log size classes where total group biomass itself is also drawn 
at random from a log-normal distribution centered on the mean 
biomass with SD obtained from the 95% CI fold uncertainty for 
10,000 simulations. Our sensitivity analysis shows that even quite 
extreme variation in group size distribution still yield overall biomass 
spectrum slopes very near our reported value of −0.04, with little 
variation, as shown in Fig. 2C, i (see also fig. S12). For the top 200 m, 
we obtained a normal distribution of slope values with mean of −0.049 
and SD of 0.021, thus giving a 95% CI for the slope of the average 
global biomass of −0.085 to −0.003. Across the entire water column, 
we obtain a normal distribution with mean of −0.056 and SD of 0.020, 
giving a 95% CI for the slope of −0.095 to −0.017 (fig. S12).

Although we report best-fit parameters from ordinary least squares 
(2), we also investigated the effect of alternative fitting methods in-
cluding reduced major axis (RMA) (78) and maximum likelihood 
(MLE) (79), finding very slight differences between fitting methods, 

with biomass spectrum slopes that ranged from −0.03 (MLE) to −0.04 
(RMA), as summarized in table S7. We also investigated the use of 
alternative binning of biomass, such as half order of magnitude, and 
found this also had very little effect on the overall slope (fig. S11).

Fishing and climate projections
To estimate the impacts of fishing on the size spectrum, we use two 
estimates (45, 46), focusing on the depletion caused by industrial 
fishing up until the early 2000s. We combined these two estimates 
for the fraction of fish >10 g remaining from pristine fish biomass 
[58% inferred from (46) and 33% inferred from (45)] by taking their 
geometric mean, giving a value of 44% of fish >10 g remaining. We 
therefore calculated the size spectrum slope that would be consistent 
with the 44% depletion among the fraction >10 g, assuming that fish 
≤10 g have not been significantly affected by current harvesting in 
the global average. This assumes that the slope has thus steepened 
by −0.17 for all fish >10 g (44).

In addition to steepening in the size spectrum due to fishing, there 
have also been significant declines in large mammals, particularly 
whales. We compiled both prewhaling and current abundance for 
more than two-thirds of all ~126 included species of marine mammals. 
These data are derived from over 275 primary sources and drawn 
from meta-analyses of (48, 67), as well as expert opinion and com-
pilation from (47). These data suggest that among the smallest marine 
mammals (10 to 100 kg), only 47% remain, but progressively smaller 
fractions characterize the larger size classes, with possibly only 25% 
of mammals remaining in the 10- to 100–metric ton (MT) size class 
and only 3% of blue whales, making up the largest size class (47, 48). 
Combining the global estimates of fish reductions (45, 46) with those 
of marine mammals (47, 48, 67), we calculated the percentage lost 
in each size class (Fig. 3B) and the resulting shape of the global bio-
mass spectrum (Fig. 3C) (44).

We compare fishing and whaling impacts up to the present with 
combined projected future fishing and climate change impacts across 
the entire size spectrum. To assess combined fishing and climate 
impacts to the end of the 21st century, we assume that the impacts 
of fishing and climate on biomass are additive, with little nonlinear 
interaction between them (50). We also assume that the cumulative 
historical fishing impacts are maintained into the future, such that 
effective fishing effort remains approximately constant. Projected 
climate change impacts are obtained from Earth system model sim-
ulations that estimate the changes in ocean temperature, circulation 
patterns, and biogeochemical cycling that will result from a given 
future trajectory of atmospheric greenhouse gases. Here, we use the 
worst-case scenario trajectory, RCP of 8.5. Rather than relying on a 
single model, we take the mean estimate from the 10 climate models 
that participated in the fifth simulation round of the climate model 
intercomparison project (CMIP5), as analyzed by (80).

Estimated changes in phytoplankton, zooplankton, and fish bio-
mass were calculated using ecosystem modules that were run in a fully 
coupled mode with the ocean modules (49–51), and we assumed uni-
form changes across each group’s respective size ranges. Unlike the 
case for the preceding groups, there are no global process models avail-
able for marine mammals. Instead, we use the model of (51), combined 
with the mean projected sea surface temperature increase from the 
10 CMIP5 climate models. Last, we were unable to find prior esti-
mates for the relative changes in bacteria concentrations under climate 
change. Instead, we used an approach analogous to that used by (51) 
for marine mammals and estimated changes in global bacteria 
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biomass using the temperature and chlorophyll a dependence from the 
statistical model we developed to estimate global bacteria abundance, 
forced by sea surface temperature and surface chlorophyll a concen-
trations for 2090 to 2100 from CMIP5 Earth system models (44).

Energy loss from the reduced biomass spectrum
We estimate the loss in energy use associated with the lost portion 
of the biomass spectrum (pink hatched area in Fig. 3C). To do so, 
we make use of resting Wrest and maximal Wmax metabolic rates of 
fish using data from (56) (data are shown in fig. S15). These data 
were converted to watts and temperature corrected to 15°C using 
reported Q10 values in (56). The resulting metabolic scaling relations 
with body mass (g) are as follows

​​W​ rest​​ = 2.71 × 1 ​0​​ −4​ ​m​​ 1.02​ (​R​​ 2​ = 0.90; n =  112 fish species; 
                       ​m​ min​​  =  0.5 g; ​m​ max​​  =  7500 g)​	

​​W​ max​​ = 1.21 × 1 ​0​​ −3​ ​m​​ 1.02​(​R​​ 2​  =  0.94; n = 79 fish species;  
                      ​m​ min​​  =  0.5 g; ​m​ max​​  =  8500  g)​	

We assume that resting metabolism represents a lower bound and 
that actual energy use in the wild is within these extremes. Given 
that exponents in both relations are 1.02, we can take the geometric 
mean of their coefficients as a possible estimate of active energy use 
(5.7 × 10−4). We convert watts into grams per year, following (81), 
who estimated energy content of biomass over many aquatic species 
to be approximately 4250 J/g. Hence, we convert basal metabolism 
(in watts ≡ joules per second) into a basal energy use in units of 
grams per year. Further, we convert this relation into a mass-specific 
metabolic rate by dividing by body mass, such that mass-specific 
metabolism is expressed in terms of grams of embodied energy re-
spired per gram tissue (1/year). The relation of estimated active 
mass-specific energy use wactive in units of 1/year is

	​​ w​ active​​  =  4.25 ​m​​ 0.02​​	

For each log size class >10 g, we multiply the reduced biomass 
(pink hatched area, Fig. 3C) by the respective wactive calculated for 
the geometric mid-point of the size class. The sum over all such size 
classes is equal to 14.3 Gt/year and represents the total metabolism 
(Gt/year) associated with the reduced biomass spectrum (pink 
hatched area, Fig. 3C). Doing the same calculation for resting mass-
specific metabolism gives a total reduced metabolism of 6.7 Gt/year. 
Excluding mammals and considering only fish, the lost active 
metabolic energy is estimated to be 12.1 Gt/year.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abh3732
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