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Insect populations are declining at alarming rates with notable 
losses across ecosystems and lineages1–5. Insects provide essential 
services including pollination, decomposition and food for higher 

trophic levels4. Consequently, the loss of insects has the potential 
to fundamentally disrupt biological communities and impair eco-
system functions locally, regionally and even globally5,6. Identifying 
factors that govern population dynamics, especially those that con-
tribute to declines of migratory species, is challenging as it requires 
disentangling the effects of multiple, interrelated stressors that may 
operate across seasons and spatial scales2,7. However, characteriz-
ing the proximate, and potentially shifting, drivers of population 
change is critical to avert this rapidly evolving crisis7.

One of the most striking examples of insect declines is that 
of monarch butterflies (Danaus plexippus) in North America, 
with substantial losses in both the eastern and western migratory  
populations8–10. The larger of the two populations occurs east  
of the Rocky Mountains and has declined sharply since the 
mid-1990s (Fig. 1a). Each year, the eastern population migrates 
thousands of kilometres over multiple generations, complicating 
efforts to identify the relative importance of seasonal stressors in 
its decline. In late winter and early spring (late February through 
March), monarchs leave their overwintering sites in central Mexico 
and migrate to breeding grounds in the southeastern United States, 
centred in and around eastern Texas, where they produce the first 
generation of the year. That first generation then migrates to sum-
mer breeding grounds in the northern United States and southern 
Canada, arriving in May and June, where two to three more gen-
erations are produced. Starting in late August, individuals in the 
final generation migrate south to the same overwintering sites in  
central Mexico.

Although monarchs are one of the most well-studied insects, the 
pattern and causes of their decline have been intensely debated9,11, 
in part because previous assessments have been based on a subset 
of the annual migratory cycle or a single data source. Three hypoth-
eses regarding the drivers of eastern monarch population dynam-
ics have garnered substantial support. The most prominent is the 
milkweed limitation hypothesis, which attributes changes in the 
monarch population, particularly the steep decline observed in 
the late 1990s, to widespread loss of milkweed (Asclepias spp.), the 
host plant and sole food source for larval monarchs. Many species 
of milkweed thrive in environments with occasional to frequent 
disturbance and were common in agricultural areas throughout 
the Midwestern United States for most of the twentieth century12,13. 
These agricultural regions could support >70 times as many mon-
archs as non-agricultural environments14. However, milkweed in 
agricultural areas began to decline in the 1990s with the introduc-
tion of genetically modified, herbicide-tolerant crops and subse-
quent increases in glyphosate use (Fig. 1b)15. This surge in herbicide 
use coincided with the steepest drop in the monarch population 
(Fig. 1). In contrast, the migration survival hypothesis attributes 
changes in the monarch population to failed autumn migration 
and/or re-establishment at overwintering sites. Focus on this por-
tion of the annual migratory cycle stems from work illustrating a 
disconnect between overwintering population declines and counts 
of adult monarchs from the longest-running monitoring pro-
gramme on the summer breeding grounds, which appeared to be 
relatively stable during the same time period16,17. This disconnect 
has spurred investigations into whether nectar availability along 
the autumn migratory corridor, disease-related migration mor-
tality and/or reductions in habitat at overwintering sites may be  
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driving changes in the monarch population11,18. Finally, the climate 
change hypothesis posits that changes in spring and/or summer 
climate are negatively impacting monarch population recruitment. 
Breeding-season temperatures and precipitation influence rates of 
larval development and survival19 and may also have indirect effects 
on the monarch population by altering the distribution, phenol-
ogy and abundance of milkweed resources. The size of the sum-
mer population has been linked to weather conditions20,21, which 
are becoming increasingly unsuitable for monarchs and native 
milkweeds at the southern end of the monarch spring and summer  
breeding ranges22,23.

To determine the extent to which each of these hypotheses 
explain recent dynamics of the eastern monarch butterfly popu-
lation, we collated available data on adult monarchs and seasonal 
stressors throughout the annual migratory cycle starting in 1994, 
when systematic monitoring of the overwintering population 
began. Each year, researchers comprehensively survey areas in 
central Mexico where the entire eastern population of monarchs 
form a limited number of dense aggregations (hereafter, colonies) 
in high-elevation forests24. Because overwintering behaviour pre-
vents precise estimation of monarch abundance within colonies24,25, 
researchers measure the area occupied by butterflies (in hectares) 
and use this as an index of population abundance. Starting in 2004, 
monitoring agencies reported the area occupied in early winter (late 
December) at each of 19 overwintering colonies (Supplementary 
Table 1); only a sum of the total area occupied across all colonies is 
available in each of the 10 years prior24.

On the summer breeding grounds, butterfly surveys began in 
1975. However, the amount of available data increased substantially 

in the mid-2000s with the expansion of volunteer-based monitoring 
programmes throughout the Midwestern United States. Between 
2004 and 2018, five independent butterfly monitoring programmes 
provided systematic counts of adult monarchs from >14,500 surveys 
at 773 locations in eight US states and southern Ontario, Canada. 
In contrast, summer count data were available from 4,004 sur-
veys at only 301 locations between 1994 and 2003 (Extended Data  
Fig. 1 and Supplementary Table 2). Because summer survey loca-
tions were not selected randomly, agricultural areas were underrep-
resented, particularly in the 1990s and early 2000s. This sampling 
bias could result in underestimates of summer population sizes, 
especially before 2004, when milkweed—and monarchs—were 
comparatively more abundant in agricultural areas15.

For pragmatic reasons, we thus partitioned the data and per-
formed analyses separately for 1994–2003 and 2004–2018, with 
somewhat limited ability to make inferences before 2004 when data 
on the summer breeding population were comparatively sparse and 
estimates of the area occupied by overwintering monarchs were 
aggregated among colonies. We further expected that the relative 
importance of various drivers may have shifted between the two 
time periods, given that average glyphosate use increased from 
<10% to ~75% between 1994 and 2003 (causing severe declines in 
milkweed densities)15 but plateaued at ~75–90% between 2004 and 
2018 (presumably maintaining milkweed at lower, but stable, densi-
ties; Fig. 1b).

We developed a Bayesian, hierarchical model to estimate sea-
sonal monarch population sizes between 2004 and 2018. The model 
was composed of two components: the first describes the monarch 
population from the time at which individuals leave the overwin-
tering grounds through the spring and summer breeding periods 
(February–August; Fig. 2a–b) and the second describes the final 
generation as it leaves the summer breeding grounds and arrives 
on the overwintering grounds (August–December; Fig. 2a,c). We 
relied on the extensive monarch literature to determine which envi-
ronmental variables to include in our analysis and excluded factors 
(Supplementary Information) when evidence from previous studies 
suggested minimal population-level effects (autumn temperatures 
and infection with protozoan parasites) or when data were insuffi-
cient (parasitism by tachinid flies and insecticide use)11,15,17,18,20,21,26–28.  
In the first seasonal component, we modelled variation in summer 
count data (from butterfly surveys conducted between 14 June and 
15 August) as a function of late-winter population size (measured 
as the total area occupied by monarchs in late February), spring 
temperature (measured in growing degree days [GDD]) and pre-
cipitation (mm) in eastern Texas (where much of the first genera-
tion is produced), as well as temperature (GDD), precipitation, 
land cover and glyphosate use in counties throughout the summer 
breeding range (where subsequent generations are produced). In 
the second component, we modelled variation in the area occupied 
in early winter (from surveys conducted in late December) as a 
function of peak-summer population size, autumn nectar availabil-
ity and forest cover at overwintering sites. We linked the two model 
components through our index of peak-summer population size, 
a derived parameter in the first component of the model that we 
used as a covariate in the second part of the model. We constructed 
a similar but reduced version of the model to describe popula-
tion dynamics between 1994 and 2003, when fewer monarch and 
covariate data were available. Although the structure of our models 
precludes estimation of the total amount of variance explained by 
environmental factors, we used hierarchical partitioning to esti-
mate the relative importance of (or the amount of explained vari-
ance attributable to) factors in our model during each time period29. 
Finally, to evaluate linkages across the monarch’s annual cycle, we 
calculated the extent to which population size in one season was 
associated with population size in the previous season via post-hoc  
regression analyses.
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Fig. 1 | Overwintering monarch population size in Mexico and summer 
glyphosate use in the Midwestern United States. a, Total area occupied, in 
hectares, at overwintering colonies in late December with linear trend (blue 
line) and 95% CI (shaded area; slope!=!–0.37!ha!yr–1, 95% CI: –0.55, –0.19). 
b, Proportion of corn and soybean fields treated with glyphosate herbicide 
in 149 US counties that were surveyed for monarchs and had at least 10% 
agricultural cover (thin orange lines; thick line shows loess fit). Vertical 
dashed lines denote the break between our 1994–2003 and 2004–2018 
analyses.
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Results
Monarch population between 2004 and 2018. We found strong 
support for the climate change hypothesis and comparatively little 
support for the other two hypotheses during the period from 2004 
to 2018. Spring and summer weather conditions had the largest 
effects on summer population size, explaining 4.6 and 2.3 times 
more variation, respectively, than other factors combined (Fig. 2d). 

The relationships between spring weather variables and the sub-
sequent summer monarch population size were nonlinear, with 
expected monarch counts lower when temperatures and precipita-
tion deviated substantially from observed means (Fig. 3). Summer 
population size was positively associated with summer precipitation 
and summer temperatures (Fig. 4), except in the southern part of 
the breeding range, where high temperatures (annual GDD values 
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Fig. 2 | Relative importance of seasonal factors influencing the size of the eastern North American monarch population (2004–2018). a–c, Timing (a) 
and locations of the four monarch butterfly generations (G1–G4) as they migrate north and arrive on the spring and summer breeding grounds (b) and 
migrate south, returning to the overwintering grounds (c) (light and dark blue, overwintering grounds; green, spring breeding and migration corridor; 
orange, summer breeding grounds; yellow, autumn migration corridor). Coloured regions show the areas over which monarch and environmental data were 
summarized, not the complete geographic range of the population. d,e, Relative importance of factors affecting population sizes in summer (d) and early 
winter (e), 2004–2018.
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well above normal) had a slight negative effect on monarch counts 
(dotted line in Fig. 4c). Summer monarch counts were also posi-
tively associated with agricultural areas and negatively associated 
with glyphosate use (Supplementary Table 3), consistent with the 
milkweed limitation hypothesis but these effects were small rela-
tive to the effects of breeding-season weather and contributed less 
to explained variation in summer population sizes (Fig. 2d). This 
was not unexpected, however, as glyphosate application rates had 
reached high levels by 2004 and were relatively stable over this 15-yr 
period (Fig. 1b)21.

The size of the population in early winter was positively asso-
ciated with peak-summer population size, with minimal effects 
of autumn nectar availability and forest cover at overwintering 
sites (Fig. 2e and Supplementary Table 4). In contrast to a previ-
ous analysis supporting the migration survival hypothesis17, we 
found evidence of a decline in the summer breeding population 
via our model-derived estimates of peak-summer population 
size (Extended Data Fig. 2). Post-hoc linear regressions simi-
larly revealed a strong association between the estimated index 
of peak-summer population size and the total area occupied 
across all colonies in early winter (R2 = 0.67; Fig. 5a). This high 
correlation between peak-summer and subsequent early-winter 
population sizes, as well as the estimated decline in peak-summer 
population size, suggest that mortality incurred during autumn 
migration is not the principal driver of recent population changes. 
Taken together, these results underscore the value of integrating 
multiple sources of data to estimate summer population size rather 
than relying on raw counts from a single data source with limited 
spatial or temporal coverage16–18. We also found a moderately high 
correlation between the size of the monarch population at the 

beginning and end of the winter season (R2 = 0.43; Fig. 5b), provid-
ing evidence that overwintering mortality, between late December 
and late February, is unlikely to have been one of the primary driv-
ers of population change during this period. Indeed, the lowest 
correlation between seasonal population sizes occurred between 
late winter and peak summer (R2 = 0.31; Fig. 5c), highlighting the 
importance of environmental conditions during the monarch’s 
breeding seasons in determining annual population sizes.

Annual weather conditions on the spring and summer breeding 
grounds are shifting30–32. Between 1994 and 2018, there were mod-
est increases in spring temperature and precipitation (Fig. 3a,b). 
Expected monarch counts on the summer breeding grounds were 
highest following mild springs (that is, slightly warmer and drier 
than average conditions in 2004–2018), while other combinations 
of temperature and precipitation resulted in lower expected counts 
(Fig. 3c and Supplementary Table 3). Across the summer breeding 
grounds, the direction and magnitude of weather changes varied 
geographically (Fig. 4a,b and Extended Data Fig. 3). In northern 
parts of the summer breeding range, where average temperatures 
are cooler and have changed little or even decreased since 1994, 
expected monarch counts were highest during the warmest and 
wettest summers (Fig. 4c,d). In the warmer southern portions of the 
summer breeding range, temperature increases were greater than 
those observed in other regions over both the short-term (2004–
2018; Extended Data Fig. 3c) and long-term (1994–2018; Fig. 4a 
and Extended Data Fig. 3a). In contrast to northern parts of the 
summer breeding range, high summer temperatures in the south 
tended to have a slight negative effect on monarch counts (dotted 
line in Fig. 4c), indicating that these areas are becoming less hospi-
table for breeding monarchs22.
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Fig. 3 | Spring weather (1994–2018) and estimated effects on summer monarch population size (2004–2018). a, Temperatures, measured as GDD (°C), 
accumulated 22 March to 2 May, in eastern Texas. b, Cumulative precipitation (mm) during February to April, in eastern Texas. Solid black lines and shaded 
areas show linear trends with 95% CI. Vertical dashed lines denote the break between our 1994–2003 and 2004–2018 analyses. c, Estimated marginal 
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It is difficult to tease apart the extent to which weather and other 
environmental factors affect trends versus annual fluctuations in the 
eastern monarch population (Supplementary Information). While 
there is clear evidence that the overwintering population declined 
between 1994 and 2018 (–0.37 ha yr–1, 95% credible interval (CI): 
–0.55, –0.19), the population declined only modestly over the more 
recent 15-yr period (–0.12 ha yr–1, 95% CI: –0.36, 0.13), suggest-
ing that factors in our 2004–2018 model may be explaining annual 
population fluctuations to a larger extent than systematic declines. 
That said, we found no evidence of a temporal trend in residuals 
from the winter component of the 2004–2018 model (–0.003, 95% 
CI: –0.014, 0.008; Extended Data Fig. 4), while a reduced model 
that excluded temporal covariates did have a slight negative trend 

(–0.013, 95% CI: –0.026, 0.000). Thus, our model largely explained 
the more recent, although modest, decline in the overwintering 
population between 2004 and 2018 while also producing unbiased 
estimates of yearly variations.

Monarch population between 1994 and 2003. We found large 
effects of breeding-season weather, particularly in the spring, on 
the size of the summer population during 1994–2003, provid-
ing evidence for the climate change hypothesis (Supplementary 
Table 4). Glyphosate use was negatively associated with summer 
population size in agricultural areas, although the magnitude of 
glyphosate-related effects was smaller than expected given the 
rapid increase in herbicide use and the concurrent decline in the  
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Fig. 4 | Summer weather (1994–2018) and estimated effects on summer monarch population size (2004–2018). a,b, Percentage change in average 
temperatures (GDD from 3 May to 15 August) (a) and precipitation (April–August) (b) for each US county in the summer breeding range between  
1994–2003 and 2004–2018; positive values (above dashed horizontal lines) indicate an increase between time periods. Solid black lines and shaded areas 
show loess fits. c,d, Estimated marginal effects (median and 95% CI) of GDD (c) and precipitation (deviations from 15-year averages) (d) on expected 
monarch counts in peak summer (19 July–25 July), 2004–2018. Positive deviations indicate values that are warmer (c) and wetter (d) than 2004–2018 
county averages, whereas negative deviations indicate values that are cooler (c) and drier (d). Vertical lines in a denote average GDD values associated 
with cool, average and warm counties depicted in c; similarly, the vertical lines in b denote average precipitation values associated with dry, average and 
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overwintering population (Supplementary Table 5 and Fig. 1). 
Unless additional and more representative data from this time 
period become available (for example, from sites within and 
adjacent to agricultural fields), definitively determining the pri-
mary driver(s) of the eastern monarch population decline before  
2004 will not be possible. However, our results, which are based 
on the most comprehensive set of systematic survey data currently 
available, reveal a consistently strong effect of spring weather condi-
tions on the summer monarch population over a 25-yr period and 
a growing importance of summer weather (Extended Data Fig. 5 
and Fig. 4).

Discussion
Abundance in many insect populations varies greatly from one 
year to the next, depending in large part on weather conditions33,34. 
Monarchs are no exception, but the importance of cross-seasonal 
effects (for example, spring weather on summer breeding popu-
lations) adds a complex, temporal component to these relation-
ships. Our understanding of the effects of weather on the eastern 
North American monarch population is further complicated by 
the immense geographic extent of their summer breeding range. 
Despite these challenges, our hierarchical, integrated model-
ling approach reveals that spring and summer weather condi-
tions were more important than other factors in determining the 
size of the summer population during 2004–2018. In turn, sum-
mer population size was a strong predictor of the size of the over-
wintering population. These findings highlight the importance 
of a changing climate to recent, and probable future, monarch  
population dynamics.

Climate models predict that ambient temperatures will increase 
throughout much of the monarch’s spring and summer breed-
ing ranges35 and we found evidence that these changes are already 
underway (Figs. 3a and 4a). The greatest increases in summer tem-
peratures occurred at lower latitudes (40–44° N; Extended Data 
Fig. 3), consistent with global climate projections36. If future tem-
peratures regularly exceed the optimal range for monarchs breed-
ing at lower latitudes during the spring and summer, the size of the 
monarch breeding population will probably continue to decline. 
Predicted changes in precipitation on the spring and summer breed-
ing grounds are more mixed37,38. Cumulative precipitation increased 
throughout much of the summer breeding range between 1994 and 
2018 (Fig. 4b), which could benefit monarchs if continued increases 
lead to greater milkweed availability. However, it is difficult to pre-
dict how the population will respond if future precipitation or future 
temperatures deviate substantially from historic values.

The role of herbicides in the decline of monarchs has been a 
topic of debate in both scientific and public forums. While there is 
substantial correlative evidence linking glyphosate use to declines in 
milkweed and monarch populations before 2004 (Fig. 1)15, we found 
little evidence that glyphosate use has been driving fluctuations and 
declines in the monarch population since that time. During 2004–
2018, ~74% of variation in glyphosate use was attributable to differ-
ences among counties, with annual changes accounting for <26% of 
the total variation. We found no evidence that declines in monarch 
counts were more severe in counties with higher glyphosate use, 
which we would expect if glyphosate effects were cumulative or if 
recent use continued to degrade or eliminate remaining breeding 
habitat for monarchs (Supplementary Information). Rather, we sus-
pect that milkweed abundance declined abruptly in the late 1990s 
and early 2000s in response to rapid adoption of glyphosate-resistant 
crops and glyphosate use since that time has largely prevented sub-
sequent growth of milkweed (and possibly monarch) populations in 
agricultural areas.

Insect declines in temperate regions have often been attributed to 
habitat loss and agricultural intensification, whereas until recently, 
climate-related stressors had largely been viewed as secondary or 
exacerbating factors39. Yet, weather can play a pivotal role in driv-
ing not only insect population dynamics but also their declines40,41. 
Climate change thus poses a considerable threat to insects,  
especially because near-term weather conditions cannot be manipu-
lated and climate change cannot be abated as readily as other stress-
ors. Although the mechanisms and magnitude of climate-related 
effects on insects are likely to vary regionally (as we demonstrate 
here), changes in temperature and precipitation regimes are occur-
ring worldwide, threatening not just monarchs but insect popu-
lations on a global scale. Understanding the extent and relative 
severity of these threats is paramount to mitigating current and 
future losses.
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Fig. 5 | Relationships among monarch population sizes in summer, early 
winter and late winter between 2004–2018. a–c, Relationship between 
monarch population size during: peak summer (19 July–15 August) and 
the subsequent early winter (15–31 December) (a); early winter and late 
winter (15–29 February) (b); and late winter and the subsequent summer 
(c). Winter population indices represent the total area occupied across 
all monarch colonies in Mexico (data collected and reported with no 
associated measures of uncertainty). Estimates of summer population size 
are model-based predictions of the expected number of adult monarchs 
observed per hour on an average survey (posterior medians with 95% CI). 
Trends from post-hoc linear regression models with 95% CIs (shading) and 
associated R2 values are also shown. b and c do not include 2004 because 
late-winter estimates were unavailable.
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Methods
Data on the monarch summer breeding population. We integrated count data 
on adult monarch butter!ies from multiple sources to characterize spatiotemporal 
variation in abundance on the summer breeding grounds. We de"ned the 
summer breeding grounds to include 545 counties in eight US states (Illinois, 
Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio and Wisconsin) and census 
districts (herea#er, counties) in Ontario, Canada above 40° N latitude (Extended 
Data Fig. 1). Our delineation of the summer breeding grounds was informed 
by recent isotopic evidence that suggests the majority of individuals arriving on 
the overwintering grounds originate from the Midwestern United States and 
southern Ontario, whereas a smaller proportion of individuals originate from 
the northeastern United States, the north-central United States and south-central 
Canada and the southeastern United States42. We excluded six counties in northern 
Ontario that extend north of 48° latitude, the approximate northern breeding limit 
of monarch butter!ies, where no surveys were conducted43.

We collated all available monarch count data between 1994 and 2018 from 
five monitoring programmes on the summer breeding grounds. First, we obtained 
count data from surveys conducted by the North American Butterfly Association 
(NABA). NABA surveys were located throughout the summer breeding range 
and were typically completed once per season (Extended Data Fig. 1 and 
Supplementary Table 2). During each NABA survey, one or more groups of 
volunteers searched within a circular area (25-km diameter) and recorded the total 
number of adult butterflies observed, by species16,44. We summed monarch counts 
from all groups to obtain a single count per survey location per sampling event. 
The remaining data sources were ‘Pollard walk’ surveys conducted by butterfly 
monitoring networks (BMNs) in four states on the summer breeding grounds: 
Illinois (surveys began in 1987), Ohio (1995), Iowa (2006) and Michigan (2011) 
(Extended Data Fig. 1). In the four BMNs, volunteers surveyed locations multiple 
times each summer (median = five surveys per summer), walking fixed transects 
and counting the number of adult butterflies observed within a predetermined 
distance of the observer (Supplementary Table 2)16,44,45. Although all BMNs used 
Pollard walk methods, slight variations in protocols (for example, maximum 
observation distances and transect lengths) probably resulted in systematic 
differences among counts, which we accounted for in our analyses. For each BMN 
survey, we used the total number of monarchs observed per survey location per 
sampling event.

To account for seasonal variation in monarch abundance on the summer 
breeding grounds, we sequentially numbered each week of the season, designating 
week 1 to begin on 1 March to correspond with the approximate time at 
which monarchs leave the overwintering grounds and begin their northward 
migration20,21,46. We included counts from summer surveys completed in weeks 
16–24 (14 June–15 August) to capture the growth of the summer breeding 
population, but considered ‘peak’ summer abundance (our covariate in the winter 
submodel) to occur over a 4-week period, weeks 21–24 (19 July–15 August)16–18. 
Our 2004–2018 dataset included 1,393 NABA surveys at 145 locations in eight US 
states and Ontario, Canada, and 13,198 surveys conducted by four BMNs at 628 
locations (Supplementary Table 2). Our 1994–2003 dataset included 577 NABA 
surveys at 108 locations in seven US states and 3,427 surveys conducted by Illinois 
and Ohio BMNs at 193 locations. We excluded Canadian surveys from the  
1994–2003 analysis because corresponding covariate data were unavailable.

Data on the monarch overwintering population. We used data collected in 
Mexico in early winter (late December) as an index of monarch population size 
shortly after arrival on the overwintering grounds. By late December, butterflies 
form dense colonies in high-elevation forests in the central Mexican states of 
Michoacán and México24. Most colonies are located within the Monarch Butterfly 
Biosphere Reserve (MBBR), which was established in 2000 to protect forests 
inhabited by the overwintering population47. Monarch colonies are typically 
assigned names on the basis of the agrarian, state, federal or private property in 
which the colony is located (19 unique colony names between 1994 and 2018) 
(Supplementary Table 1). Only a subset of properties is occupied each year  
and the geographic location of a colony within a property, when present,  
varies over time.

Between 1994 and 2018, researchers surveyed each colony present in the 
region, both inside and outside of the MBBR. Although surveys were conducted 
intermittently at known overwintering locations before 1994, limited effort was 
spent locating new colonies and, as a result, these earlier estimates of population 
size were unlikely to represent the entire overwintering population48. Thus, 
we elected to analyse data from 1994 to 2018, during which time researchers 
delineated the perimeter of each colony and measured the total area occupied, in 
hectares, in the second half of December48. Because overwintering aggregations 
are dense and virtually impossible to census24,25, we used measurements of the 
area occupied in late December as an index of population size, as previous studies 
have done. Between 1994 and 2003, observers from Comisión Nacional de Áreas 
Naturales Protegidas (CONANP) and the MBBR led data collection efforts, 
reporting annual estimates of the total area occupied across all colonies. The 
World Wildlife Fund–Mexico (WWF) in alliance with CONANP began leading 
data collection efforts starting in December 2004, reporting the area occupied 
in each colony instead of a single aggregate value24. For 2004–2018 analyses, 

we combined the late-December measures of area occupied among colonies in 
close proximity to one another and refer to these units as ‘supercolonies’ (n = 13) 
(Supplementary Table 1). We used expert opinion to delineate supercolonies rather 
than use estimates from the original 19 colonies, as has been done previously18, 
because locations of several colonies were near one another, occasionally shifted 
within or among seasons and intersected property boundaries, suggesting that 
they were unlikely to function as independent units through time. Nevertheless, 
preliminary models fit to colony-level data produced inferences that were 
qualitatively similar to those from models fit to data that had been aggregated 
into supercolonies (results not shown). We thus chose the more parsimonious 
designation of supercolonies for the biological rationale stated above. There are 
technically only three supercolonies that represent the aggregation of multiple 
colonies (Supplementary Table 1); however, we collectively refer to the group of 
three supercolonies and ten colonies used in our model as supercolonies.

In addition to supercolony-specific estimates of area occupied in late 
December, WWF-CONANP also began reporting the total area occupied (summed 
across colonies) twice each month throughout the winter season beginning in 
the winter of 2004–200524. We used measurements of the total area occupied 
in late February, before most monarchs leave the overwintering grounds to 
migrate north, as an index of monarch population size at the end of winter21. To 
include late-winter population values as a covariate in the 2004–2018 summer 
submodel, we imputed the predicted area for February 2004 on the basis of a linear 
regression relating estimates in February to the previous December, 2005–2018 
(Bayesian R2 = 0.43; Fig. 5b) and the reported area occupied in December 2003 
(11.12 ha) (ref. 24).

Overview of covariate data. We used the extensive literature on seasonal and 
annual factors influencing the eastern monarch population as a guide to determine 
which covariates to include in our models11,15,17,18,20,21,26–28,46,49. In the sections 
that follow, we detail each covariate included in analyses. Information about 
covariates we considered but ultimately excluded from analyses can be found in the 
Supplementary Information. Except where noted, covariates were calculated for the 
years 1994–2018 and were included in both the 2004–2018 full annual-cycle model 
and the reduced model for 1994–2003. We use the following notation to identify 
the spatial and temporal scale at which covariates were measured: i denotes survey 
locations (i = 1, …, mc) in county c (c = 1, …, n) on the summer breeding grounds 
and k (k = 1, …, 9) denotes weeks 16–24 in year t (t = 1, …, 15 or t = 1, …, 10 in 
2004–2018 or 1994–2003 models, respectively). We use j (j = 1, …, 13) to denote 
supercolonies on the overwintering grounds.

Spring covariates. In late February and March, monarchs leave the overwintering 
grounds, migrating north to the spring breeding grounds in eastern Texas and 
surrounding areas, where they lay eggs and subsequently die. Approximately 
1 month later, adults that successfully develop from those eggs continue the 
northward migration towards the summer breeding grounds. We defined the 
spring breeding region as eastern Texas (94° W to 100° W, 26° N to 34° N) (Fig. 2b)  
because evidence suggests that most monarchs migrate through this region and 
comparatively few individuals migrate through the western part of the state, 
which is more arid23,50. We characterized temperatures and precipitation across the 
spring breeding region and used these weather-related covariates in the summer 
submodel to explain variation in counts of adults in subsequent generations on the 
summer breeding grounds.

Temperature. Like many Lepidoptera, the rate of monarch development from egg 
to adult life stages depends on ambient temperatures19. Temperatures may also 
affect monarchs indirectly by influencing availability and quality of their milkweed 
host plants. Similar to previous studies, we used GDD to characterize the thermal 
environment in the spring breeding region51. GDD measures the heat accumulated 
within a species-specific range of temperatures (11.5–33 °C for monarchs) that 
allows for development19,51. To calculate spring GDD, we obtained temperature 
data from Daymet52, which provides daily climate data at a 1-km resolution across 
North America, from 1980 to the present. Specifically, we obtained daily minimum 
and maximum temperatures between 22 March and 2 May (weeks 4–9) for gridded 
points separated by 1° across eastern Texas. We computed GDD values for each 
location and year and then averaged values across locations to produce an annual 
GDD value for eastern Texas (spGDDt)20,21,46.

Precipitation. Cumulative precipitation in eastern Texas is likely to affect the 
quantity and quality of host plant resources available to breeding monarchs23. We 
obtained monthly precipitation totals (mm) from Daymet for the same gridded 
locations in eastern Texas in February, March and April because these months 
coincide with the growing seasons for native milkweed and monarchs20,23. We 
averaged values across locations in each month and summed the monthly values to 
produce an annual estimate of spring precipitation for eastern Texas (spPCPt).

Summer covariates. Monarchs that originated in the Texas region begin arriving 
on the summer breeding grounds in May. On average, another three generations 
are produced on the summer breeding grounds between May and August before 
the last generation enters reproductive diapause and begins migrating south to the 
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overwintering grounds27. We characterized weather, land cover and agricultural 
practices in the Midwestern United States and southern Ontario and used these 
covariates in the summer submodel to explain variation in counts of adult 
monarchs. With the exception of one summer covariate that was measured at 
each survey location and used to explain local-scale variation in counts (amount 
of unforested area; openi), we calculated all covariates on the summer breeding 
grounds at the county level.

Temperature. Like spring temperatures, we expected that temperatures on the 
summer breeding grounds could affect larval monarchs directly and indirectly 
by influencing milkweed availability. We characterized spatiotemporal variation 
in temperatures on the summer breeding grounds in two ways. First, we used 
county-level measures of GDD accumulated throughout the entire summer 
breeding season, averaged across years, to characterize spatial variation in thermal 
conditions (avgGDDc)20,21,46. Second, we used differences between weekly GDD 
values and long-term averages in each county to assess whether conditions 
were warmer or cooler than average in a given week and year (diffGDDc,k,t). To 
calculate GDD values, we obtained daily minimum and maximum temperatures 
from Daymet for the centroid of each county between 3 May and 15 August 
(weeks 10–24). For each county and year, we calculated nine weekly GDD values, 
characterizing heat accumulated between week 10 and the end of each week in 
the summer breeding season (that is, weeks 16–24). We calculated diffGDDc,k,t as 
the difference between each weekly GDD value and the average for that period 
and county across all years included in the analysis (2004–2018 or 1994–2003). 
We calculated avgGDDc for each county by averaging GDD values associated with 
week 24 (that is, heat accumulated over the entire summer, between weeks 10 and 
24) across years.

Precipitation. We used cumulative rainfall in April, May, June, July and August to 
explain variation in counts of adult monarchs because these months coincide with 
growth of native milkweed and monarchs on the summer breeding grounds23. 
We obtained monthly precipitation totals for the centroid of each county from 
Daymet. Similar to the approach we used to model variation in summer GDD, 
we characterized spatial variation in summer precipitation by averaging annual 
precipitation values in each county (avgPCPc). We characterized temporal 
variation in precipitation (diffPCPc,t) by calculating the difference between annual 
precipitation values and avgPCPc.

Land cover. Milkweed, the primary host plant for larval monarchs, is associated 
with open and/or disturbed environments15. Through most of the twentieth 
century, milkweed was common in and adjacent to agricultural areas in the 
Midwestern United States and southern Canada12,13,53,54. We included county-level 
estimates of crop cover across the summer breeding grounds as a measure of 
potential habitat for monarchs. In addition to landscape-scale measures of crop 
cover, we assessed the relative amount of unforested area at each survey location. 
We included this local-scale measure because monarch abundance is likely to be 
positively associated with open areas and, importantly, observers may be more 
likely to detect monarchs when present in these environments.

We calculated percentage crop cover (cropc) in each US and Canadian county 
on the basis of 30-m resolution data from the 2011 National Land Cover Database 
(NLCD) and 2010 North American Land Change Monitoring System database, 
respectively. We assumed values were constant over the study period because 
estimates of percentage crop cover in US counties on the basis of 2001 and 2006 
NLCD databases were similar to those reported in 2011 (average difference 
from exploratory analysis <0.2). This finding corresponds with general patterns 
observed throughout the Midwest, where total crop cover has remained relatively 
constant over the last several decades despite changes in agricultural practices 
and crop composition55,56. To assess land cover at a local scale, we used the same 
data sources to calculate percentage area that was unforested within 12.5 km or 
2.5 km of each NABA or BMN survey location, respectively (openi). We classified 
deciduous forests, evergreen forests, mixed forests and woody wetlands as ‘forested’ 
and all other land cover categories as ‘open’.

Herbicide use. Declines in milkweed on the summer breeding grounds have 
been linked to increases in the use of glyphosate on genetically modified crops, 
particularly corn and soybeans15,57. We used multiple data sources to estimate 
the proportion of corn and soybean crops in each county that were sprayed with 
glyphosate each year.

For each US county in our study region, we obtained the weight of glyphosate 
applied to all crops in each year and the proportion of glyphosate purchased 
in the associated state that was applied to corn and soybean crops from the US 
Geological Survey Pesticide National Synthesis Project58. We calculated the weight 
of glyphosate applied to corn and soybean crops in each county and year (weightc,t) 
as the product of these two values. We then obtained annual estimates of corn and 
soybean acres planted in each county (acresc,t) from farmer survey data provided 
by the US Department of Agriculture59. We used linear interpolation to impute 
missing values and assumed zero acres of corn and soybean were planted in 
counties where no values were reported between 1994 and 2018. We calculated the 
proportion of crops treated in each county and year (glyc,t) as:
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where app.ratet represents glyphosate application rate, which we assumed was 
0.75 lb acid equivalent (ae) per acre from 1994 to 2009 and 1.13 lb ae per acre from 
2010 to 201821.

For each Canadian county in our study region, we acquired data to estimate 
glyphosate use from the Ontario Ministry of Agriculture, Food and Rural Affairs60. 
Because county-level estimates of corn and soy acres planted were unavailable 
before 2003, we did not include butterfly survey and covariate data from Canada 
in the 1994–2003 model. We used linear interpolation to generate estimates of 
the total amount of glyphosate applied to corn and soybean crops throughout 
Ontario between 2004 and 2018 on the basis of data that were available in 2003, 
2008 and 2013; we assumed values in 2014–2018 were the same as those reported 
in 2013. We calculated county-level estimates of glyphosate use (weightc,t) by 
multiplying provincial estimates of glyphosate use by the proportion of corn and 
soybean acres in Ontario that were planted in each county each year (assuming 
uniform application of glyphosate to all corn and soy crops). Finally, we assumed 
application rates were the same as those in the United States and calculated the 
proportion of crops treated in each county and year (glyc,t) with the same approach 
used for US counties.

Autumn covariates. Unlike during spring migration, most monarchs do not 
breed during autumn migration. Most individuals that hatch from eggs laid in the 
Midwestern United States and Ontario in late summer enter reproductive diapause 
and migrate to overwintering sites in central Mexico, with surviving individuals 
arriving between late October and early December. A small but unknown 
proportion of migrating monarchs reproduce in the southern United States; they 
and their offspring may or may not reach the overwintering grounds in central 
Mexico61. We used autumn covariates in the winter submodel to explain variation 
in the area occupied by adults on the overwintering grounds in early winter, shortly 
after monarchs form well-defined colonies.

Normalized difference vegetation index. Flower nectar provides energy for 
monarchs to migrate from summer breeding grounds in the northern United 
States and Canada to the overwintering grounds in Mexico62,63. Previous work and 
preliminary analyses demonstrated that among potential drivers operating during 
autumn migration, variation in overwintering population size is better explained 
by vegetation conditions early in the migration as compared to later in the season18. 
We therefore used landscape greenness as a proxy for landscape-scale nectar 
availability in the first half of migration (between 15 September and 15 October), 
while monarchs are traversing the central United States migratory corridor (90° W 
to 105° W, 30° N to 40° N; Fig. 2c)64. Similar to previous studies, we used a remotely 
sensed measure of landscape greenness (normalized difference vegetation index; 
NDVI) at a region-wide scale18,65. We obtained NDVI values, at 250-m resolution, 
from Terra Moderate Resolution Imaging Spectroradiometer (MODIS v.006) 
Vegetation Indices (MOD13Q1)66. For each year, we extracted and averaged NDVI 
values within the corridor during the first half of migration, generating a single 
mean value for each year (nectart).

Early-winter covariates. Monarchs begin arriving on the overwintering grounds 
in late October and early November and form colonies starting in December24. We 
characterized the quality of habitat available to monarchs as they formed colonies 
and used these covariates in the winter submodel to explain variation in the area 
occupied in early winter.

Forest cover. Monarchs spend the winter in high-elevation forests, primarily 
aggregating in mature stands of oyamel fir (Abies religiosa), pine (Pinus spp.) 
and oak (Quercus spp.)67. These forests protect overwintering monarchs from 
extreme temperatures and precipitation, allowing them to survive and remain 
in reproductive diapause throughout the winter68. The primary threats to the 
high-elevation forests are illegal logging, fires and storm-induced damage49,67,69–71. 
Illegal logging has decreased since the late-2000s with the establishment of the 
MBBR and various conservation efforts67,72, whereas fires and severe winter storms 
may become more frequent with climate change73.

We estimated the availability of dense forest cover at each supercolony using 
maps developed to monitor long-term changes in land-use in the MBBR and 
surrounding areas49,72,74,75. We used grouped map categories to differentiate areas 
with dense forest cover (canopy cover >70%) from areas with open forest cover 
(canopy cover 40–70%), secondary shrubs and no forest cover. For each of the 19 
colonies, we delineated a 100-ha ‘critical area’ that encompassed historical locations 
of the colony (elliptical-shaped and oriented downhill to account for microclimate 
and within-season movements of individuals) as well as a buffer that extended 
500-m from the critical area boundary18. Before calculating covariate values 
for each supercolony (the spatial unit for which we had corresponding annual 
measures of the area occupied by overwintering monarchs), we created the union 
of overlapping critical areas and buffers for those supercolonies that represented 
the aggregate of multiple colonies (n = 3). For each year that maps were available 
(1993, 2000, 2003, 2006, 2009, 2012, 2015 and 2018), we then calculated the 
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percentage of land area surrounding each supercolony (critical area plus  
buffer) that was comprised of dense forest cover. We used linear interpolation  
to estimate forest cover values for years when maps were unavailable (for  
example, 1994–1999, 2001–2002 and so on) to create an annual index of dense 
forest cover at each supercolony (forestj,t). To include forest cover in the 1994–2003 
model, when separate estimates of area occupied were not available for each 
supercolony, we averaged forest cover estimates among all supercolonies to 
produce an annual estimate of forest cover for the entire overwintering  
population (forestt).

Supercolony location. The MBBR was created in 2000 to protect forests deemed 
essential for persistence of the monarch population and, as a result, most 
supercolonies (8 of 13) and those with the largest consistent aggregations are 
located inside the Reserve24,47. To account for this potential source of spatial 
variation, we included a binary variable in the 2004–2018 model that indicated 
whether the supercolony was located inside or outside of the MBBR (reservej = 1  
or 0, respectively)18.

Full annual-cycle model, 2004–2018. We modelled changes in the size of the 
eastern monarch population as a function of environmental covariates using a 
Bayesian, hierarchical framework. The full annual-cycle model is composed of two 
submodels. The summer submodel describes variation in counts of adult butterflies 
on the summer breeding grounds as a function of population size in late winter 
(delineated from surveys of the overwintering grounds in late February of the  
same year) and spring and summer covariates. The winter submodel describes 
variation in the area occupied by supercolonies in early winter (delineated from 
surveys of the overwintering grounds in December) as a function of population 
size in the last 4 weeks of the preceding summer (that is, estimated peak-summer 
population size) and autumn and early-winter covariates. The two submodels are 
linked through the estimate of peak-summer population size, which is a derived 
parameter in the summer submodel that is subsequently used as a covariate in the 
winter submodel. Thus, the two submodels are part of a single, unified analysis 
represented by different components within a joint likelihood. By estimating 
peak-summer population size as a derived parameter in a Bayesian framework 
instead of using an index based on raw counts, we account for uncertainty 
associated with estimates of peak-summer population size (by using the full 
posterior distribution of the derived parameter) and reduce potential biases 
resulting from uneven sampling effort.

Modelling variation in summer counts. We structured the summer submodel 
hierarchically, decomposing variation in monarch counts into that attributable 
to ecological factors operating at a landscape scale (variation among 
counties throughout the breeding range) and that attributable to survey- and 
detection-related factors operating at a local scale (variation within counties).  
We used this approach to reduce potential biases resulting from non-random 
survey locations (Extended Data Fig. 1). We modelled counts from surveys 
conducted between 14 June and 15 August (weeks 16–24). Similar to previous 
studies21,46, we assumed a negative binomial distribution (specified as a 
Poisson-gamma mixture) for counts of adult monarchs, Z
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), fixed effects allowing for 
differences in expected counts between BMN and NABA surveys (that is, ILi(c) = 1 
if survey i(c) is part of the Illinois BMN and 0 otherwise; similar specification 
for Iowa (IA), Michigan (MI) and Ohio (OH) surveys) and the percentage of 
surrounding area that was unforested (openi(c)). We used NABA as a reference level 
because NABA surveys were dispersed throughout the summer breeding range, 
whereas BMN survey locations were geographically restricted. We accounted for 
variation in survey effort by including the total number of search hours as an  
offset (effi(c),k,t):
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. We modelled the expected mean count in county c ( Ȋ
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) as a function  
of week (weekk), overwintering population size in late winter (Febt), temperature 
and precipitation in eastern Texas in spring (spGDDt and spPCPt, respectively)  
and temperature (avgGDDc and diffGDDc,k,t), precipitation (avgPCPc and 
diffPCPc,t), percentage crop cover (cropc) and glyphosate use (glyc,t) in each  
county in summer:
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, respectively, that allow for annual variation in the time at which monarch 
counts reach a seasonal maximum. We explored whether the effects of weather in 
spring and summer were nonlinear by creating a model that included quadratic 
terms; we retained quadratic terms in the final model if 95% CIs for the coefficients 
excluded zero. We also included an interaction between summer temperature 
covariates (avgGDDc and diffGDDc,k,t) and summer precipitation covariates 
(avgPCPc and diffPCPc,t), which allowed the effects of GDD and precipitation 
to vary regionally. Finally, we included an interaction between crop cover and 
glyphosate use because evidence suggests that the influence of glyphosate on 
monarchs varies with amount of surrounding crop cover21. We standardized all 
covariates, in both the survey-level and county-level models (equations (3) and (4), 
respectively), by their respective means and standard deviations.

Modelling variation in size of supercolonies in early winter. Because every 
supercolony was not present every year, resulting in zero values for 28% of 
supercolony–year combinations, we used a hurdle model to estimate (1) the 
probability a supercolony was present and (2) the area occupied, conditional on 
presence18,76. Specifically, we used a Bernoulli distribution to model zero and 
non-zero values, where Ȗ

K
U

 represents the probability of monarch presence in 
supercolony j (j = 1, …, 13) in year t. We assumed a gamma distribution for the 
area occupied by supercolony j in year t ("

K
U

), conditional on presence, resulting in 
the following probability function:
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where T and S
K
U

 represent shape and rate parameters, respectively. We assumed that 
probability of monarch presence varied randomly among the 13 supercolonies:
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modelled mean area occupied, ȗ
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K
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, as a function of peak population size in 
the preceding summer (summert), nectar availability in autumn (nectart), as well as 
supercolony location (reservej) and extent of dense forest cover surrounding each 
supercolony (forestj,t) in early winter:
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where ȯ
ȗ
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 is a random effect of supercolony with mean 0 and variance ȑ�

ȗ

. We 
standardized nectar and forest cover values by their respective means and standard 
deviations. We used an estimate of peak-summer population size (summert), 
derived from the summer submodel, as a covariate in the winter submodel. 
Specifically, for each year and county in the summer breeding range (regardless of 
whether the county was surveyed or not), we generated expected monarch counts 
on NABA surveys in weeks 21–24 on the basis of the county-level model (equation 
(4)). We calculated a mean value across the 4 weeks in each county and year and 
then averaged values across counties, weighted by the amount of unforested land 
area in each county (B

D

):
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To improve convergence, we standardized the resulting annual values 
(summert) by a fixed mean (11.4) and standard deviation (6.0) that approximated 
expected values based on preliminary runs of the summer submodel77.

Reduced annual-cycle model, 1994–2003. We used a ‘reduced’ version of the full 
annual-cycle model that accounted for data limitations to describe population 
dynamics between 1994 and 2003. Despite having comparatively less data, we 
sought inferences from this earlier period to assess the relative importance of 
environmental covariates on monarch population sizes during the period when the 
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decline was most severe (Fig. 1a). We integrated count data from three monitoring 
programmes on the summer breeding grounds in the United States (Illinois and 
Ohio BMNs and NABA), the only systematically collected summer data available 
on adult monarchs during 1994–2003. We excluded data from Canada because 
county-level estimates of corn and soy acres planted were unavailable before 2003. 
We used the same hierarchical structure in the summer submodel as that used for 
2004–2018 data (equations (2)–(4)) and included all the same covariates, with the 
exception of Febt because estimates of late-winter population size were unavailable 
before 2005. We simplified the structure of the winter submodel for 1994–2003 
because we had only measures of the total area occupied in early winter rather 
than supercolony-level measures. Because zero values were no longer possible, 
there was no need for a hurdle model and, instead, we modelled annual estimates 
of the area occupied with a gamma distribution (that is, the same distribution 
used in the second part of the hurdle model for 2004–2018). We averaged values 
of dense forest cover across supercolonies to create an annual index of forest cover 
for the entire overwintering population (forestt) and removed reservej from the 
model since it was no longer relevant. In addition, we excluded nectart from the 
model because NDVI values were unavailable before 2000. Finally, we confirmed 
that inferences about population size and covariate effects were robust to changes 
in model structure by verifying that estimates from the original ‘full’ model 
and a ‘reduced’ model were similar for data collected between 2004 and 2018 
(Supplementary Tables 3 and 5).

Assessing relative importance of seasonal factors. We used hierarchical partitioning 
to assess the relative importance of seasonal factors in governing population 
dynamics of monarch butterflies29,78. Hierarchical partitioning uses differences 
between goodness-of-fit measures from nested models to assess the extent to 
which a covariate, or group of covariates, explains variation in a response variable 
independent of other factors under consideration78,79. Because assumed probability 
distributions and sample sizes differed for response variables in the summer and 
winter submodels (which would impact hierarchical partitioning results), we assessed 
the submodels separately. We used log-likelihood to assess model fit, calculating 
values for summer and winter submodels by summing log probability mass or density 
values across all surveys (equation (3)) and all estimates of area occupied (equation 
(5)), respectively. For each covariate group (see below), we began by averaging 
differences in log-likelihoods associated with each nested pair of models at each 
hierarchical level of model complexity (number of covariate groups in the model). We 
then averaged across hierarchical levels to generate the independent contribution of 
that covariate group to explained variation in the response variable.

To assess the relative importance of seasonal factors in the summer submodel 
for 2004–2018, we divided temporally varying covariates into four groups: 
late-winter population size (Febt), spring weather (spGDDt, spGDD2

t, spPCPt, 
spPCP2

t), summer weather (diffGDDc,k,t, diffGDD2
c,k,t, avgGDDc × diffGDDc,k,t, 

diffPCPc,t, diffPCP2
c,t, avgPCPc × diffPCPc,t) and summer land-use (glyc,t, cropc × 

glyc,t). If the independent contribution of spring and/or summer weather were 
large relative to the contributions of late-winter population size and summer 
land-use, that would provide evidence supporting the climate change hypothesis. If 
summer land-use was more important, that would provide evidence supporting the 
milkweed limitation hypothesis. We calculated log-likelihoods for 16 models that 
contained all possible combinations of the four covariate groups (thus, groups, not 
individual covariates, were included or excluded from each model). We included 
linear effects of time-invariant factors (avgGDDc, avgPCPc, cropc) in all models 
because we were interested primarily in the capacity of factors to explain temporal 
variation in monarch counts. To ensure that random effects did not confound 
assessments of variable importance, we either removed random effects (ȯ

D

, ȯ
J(D)) 

or converted them to fixed effects (ǿ

�
U

, ǿ
�
U

). We used the same approach to assess 
the relative importance of seasonal factors in the summer submodel for 1994–2003, 
except we only assessed the relative importance of three covariate groups (spring 
weather, summer weather and summer land-use) given that estimates of late-winter 
population size were unavailable.

To assess the relative importance of seasonal factors in the winter submodel 
for 2004–2018, we calculated log-likelihoods for eight models that contained all 
possible combinations of three individual covariates: peak-summer population 
size (summert), autumn nectar availability (nectart) and forest cover at each 
supercolony location (forestj,t). If the independent contributions of autumn nectar 
availability and/or forest cover were larger than the contribution of peak-summer 
population size, that would provide evidence supporting the migration survival 
hypothesis. Because summert is a derived parameter from the summer submodel, 
we ran the entire full annual-cycle model but only used log-likelihoods from the 
winter submodel to assess relative importance of the three covariates. We included 
all late-winter, spring and summer covariates in the summer submodel to generate 
summert, although including only a subset of covariates in the summer submodel 
did not qualitatively change hierarchical partitioning results for the winter 
submodel. As with the summer submodel assessment, we removed random effects 
(ȯ

D

, ȯ
J(D)) or converted them to fixed effects (ȯ

Ȗ 
K

, ȯ
ȗ
K

, ǿ
�
U

, ǿ
�
U

). We did not use 
hierarchical partitioning to assess the relative importance of factors in the winter 
submodel in 1994–2003 (summer population size and autumn nectar availability) 
because we had only a single, aggregate estimate of overwintering population size 
each year and thus data were quite limited.

Assessing trends in model residuals, 2004–2018. We evaluated the extent 
to which covariates in the 2004–2018 model explained the decline in the 
overwintering population by assessing evidence of temporal trends in the estimated 
residuals (posterior medians) from the winter submodel, excluding supercolony–
year combinations when monarchs were not present. We presumed that covariates 
in our model sufficiently explained underlying population declines if there was no 
evidence of a decline in the residuals. We did not estimate trends in residuals from 
the 1994–2003 model because estimates of the area occupied in each supercolony 
were unavailable and, thus, there were only ten observations of the total area 
occupied (compared to 140 observations of supercolonies when monarchs were 
present during 2004–2018). See Supplementary Information for additional details 
on the difficulties of differentiating trends from annual fluctuations in short-lived, 
migratory populations, such as the monarch butterfly in eastern North America.

Evaluating relationships between population-level indices of seasonal 
abundance, 2004–2018. We calculated the extent to which population size in one 
season was associated with population size in the previous season with post-hoc 
linear regression analyses and Bayesian R2 values80. We assessed the relationship 
between early-winter population size (total area occupied in late December; 
dependent variable) and population size at the peak of the previous summer 
(posterior medians of the estimated annual index values; independent variable), 
the relationship between late-winter population size (late area occupied in late 
February) and the preceding early-winter population size and the relationship 
between peak-summer population size and the preceding late-winter  
population size.

Model implementation and assessment. We used a Bayesian approach for 
analysis, fitting models in STAN executed from R using the package rstan81–83. We 
specified independent, diffuse prior distributions for model parameters. We ran 
three Markov chains initiated at random values for 3,000 iterations, discarded 
the first 500 iterations as burn-in and used the remaining 2,500 iterations (7,500 
samples from the three chains) to summarize posterior distributions. We assessed 
model convergence by inspecting trace plots and checking that ˆ3 statistics were 
<1.1 (ref. 84). We assessed goodness-of-fit by verifying that posterior predictive P 
values for three summary discrepancy measures (mean and standard deviation of 
counts on the summer breeding grounds; mean of area occupied in early winter, 
conditional on presence) were ≥0.2 and ≤0.8 (ref. 85).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Monarch data from the overwintering grounds and covariate data are available 
on Zenodo (https://doi.org/10.5281/zenodo.4085906). Monarch data from 
the summer breeding grounds are proprietary and were obtained from the 
North American Butterfly Association (https://www.naba.org/), the Iowa 
Butterfly Survey Network (https://www.reimangardens.com/collections/insects/
iowa-butterfly-survey-network/), the Illinois Butterfly Monitoring Network 
(https://bfly.org/), the Michigan Butterfly Network (https://michiganbutterfly.
org/) and the Ohio Lepidopterists (http://www.ohiolepidopterists.org/). These data 
may be available upon reasonable request to L.R. and with permission from the 
aforementioned programmes.

Code availability
Code needed to run analyses (R scripts and Stan model files) is available on 
Zenodo (https://doi.org/10.5281/zenodo.4085906) and Github (https://zipkinlab.
github.io/#dataintegration2021Z).
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Extended Data Fig. 1 | Locations of monarch butterfly surveys on summer breeding grounds between 1994–2018. Locations of surveys conducted 
between 14 Jun–15 Aug by the North American Butterfly Association (NABA; blue) and state-specific butterfly monitoring networks (BMNs; red) in a, 
1994–2003 and b, 2004–2018. Counties (U.S.) and census districts (Canada) that are included in our delineation of the summer breeding range for the 
1994–2003 reduced annual-cycle model and the 2004–2018 full annual-cycle model are outlined in grey.
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Extended Data Fig. 2 | Model-based index of monarch butterfly population size during peak summer, 1994–2018. Model-based predictions (posterior 
medians with 95% credible intervals [CI]) of the expected number of adult monarchs observed per hour on an average NABA survey conducted between 
19 Jul–15 Aug, 1994–2018, with linear trend (grey line) and 95% CI (shaded area; slope = –0.15 adults/hr/yr, 95% CI: –0.30, 0.01). Vertical dashed line 
denotes the break between our 1994–2003 and 2004–2018 analyses.
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Extended Data Fig. 3 | Changes in summer climate on monarch summer breeding grounds. Percent change between 1994–2003 and 2004–20018 in a, 
average temperatures (GDD from 3 May–15 Aug) and b, cumulative precipitation (mm, Apr–Aug) for each U.S. county included in our delineation of the 
monarch summer breeding range. Temporal trends over a recent 15-year period (2004–2018) in c, GDD (°C/yr), and d, cumulative precipitation (mm/
yr). Positive values indicate increases or positive trends in weather variables; negative values indicate decreases or negative trends. Canadian counties 
were excluded from panels a and b because data limitations prevented us from including these regions in our 1994–2003 model of monarch population 
dynamics.
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Extended Data Fig. 4 | Residuals from the winter submodel describing variation in the area occupied by monarch butterflies. Estimated residuals 
(posterior medians) from the winter submodel describing the area occupied by monarchs in each of the overwintering supercolonies, when monarchs 
were present in early winter, 2004–2018. Solid grey line and shaded area represent a linear trend with 95% credible interval (slope= –0.003, 95% CI = 
–0.014, 0.008).
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Extended Data Fig. 5 | Effects of summer weather on monarch population size, 1994–2003. a, Estimated marginal effects (median and 95% credible 
intervals) of GDD (deviation from county 10-year average) on expected monarch counts during peak summer (expected mean count of adult monarchs 
per search hour, 19 Jul–25 Jul), for typical cool, average, and warm counties (avgGDDc = 711, 898, and 1033!°C, respectively) within the summer breeding 
range, 1994–2003. b, Estimated marginal effects of precipitation (deviation from county 10-year average) on expected monarch counts during peak 
summer, for typical dry, average, and wet counties (avgPCPc = 422, 525, and 578!mm, respectively), 1994–2003.

NATURE ECOLOGY & EVOLUTION | www.nature.com/natecolevol

http://www.nature.com/natecolevol

	Changes in climate drive recent monarch butterfly dynamics

	Results

	Monarch population between 2004 and 2018. 
	Monarch population between 1994 and 2003. 

	Discussion

	Methods

	Data on the monarch summer breeding population
	Data on the monarch overwintering population
	Overview of covariate data
	Spring covariates
	Temperature
	Precipitation

	Summer covariates
	Temperature
	Precipitation
	Land cover
	Herbicide use

	Autumn covariates
	Normalized difference vegetation index

	Early-winter covariates
	Forest cover
	Supercolony location

	Full annual-cycle model, 2004–2018
	Modelling variation in summer counts
	Modelling variation in size of supercolonies in early winter

	Reduced annual-cycle model, 1994–2003
	Assessing relative importance of seasonal factors
	Assessing trends in model residuals, 2004–2018
	Evaluating relationships between population-level indices of seasonal abundance, 2004–2018
	Model implementation and assessment
	Reporting Summary

	Acknowledgements

	Fig. 1 Overwintering monarch population size in Mexico and summer glyphosate use in the Midwestern United States.
	Fig. 2 Relative importance of seasonal factors influencing the size of the eastern North American monarch population (2004–2018).
	Fig. 3 Spring weather (1994–2018) and estimated effects on summer monarch population size (2004–2018).
	Fig. 4 Summer weather (1994–2018) and estimated effects on summer monarch population size (2004–2018).
	Fig. 5 Relationships among monarch population sizes in summer, early winter and late winter between 2004–2018.
	Extended Data Fig. 1 Locations of monarch butterfly surveys on summer breeding grounds between 1994–2018.
	Extended Data Fig. 2 Model-based index of monarch butterfly population size during peak summer, 1994–2018.
	Extended Data Fig. 3 Changes in summer climate on monarch summer breeding grounds.
	Extended Data Fig. 4 Residuals from the winter submodel describing variation in the area occupied by monarch butterflies.
	Extended Data Fig. 5 Effects of summer weather on monarch population size, 1994–2003.


