Assessing surficial foraminiferal distributions as an overwash indicator in Sur Lagoon, Sultanate of Oman

Article in Marine Micropaleontology · January 2011

CITATION
1

READS
134

5 authors, including:

Jessica Pilarczyk
University of Southern Mississippi

22 PUBLICATIONS 222 CITATIONS

All content following this page was uploaded by Jessica Pilarczyk on 13 May 2014.

The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately.
Assessing surficial foraminiferal distributions as an overwash indicator in Sur Lagoon, Sultanate of Oman

Jessica E. Pilarczyk,⁎ Eduard G. Reinhardt,1, Joseph I. Boyce,1, Henry P. Schwarcz,1, Simon V. Donato,1,2

School of Geography and Earth Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4K1

Imperial Oil Resources, 237 4th Avenue Southwest, P.O. Box 2480 Station M, Calgary, Alberta, Canada T2P 3M9

Abstract

The identification of tsunami and storm deposits in arid coastal environments can be problematic, as overwash sediments may not show significant contrasting lithologic characters with lagoonal sediments. In this study foraminifera were evaluated as an overwash indicator in a small (12 km²) intertidal lagoon located at Sur, in the Sultanate of Oman. The lagoon is shallow (<5 m depth), tidally-controlled and communicates with the open sea through a narrow subtidal entrance channel. The lagoon is largely composed of intertidal sand and mudflats with fringing mangroves. Previous work at Sur identified evidence for overwash deposits associated with the 28 November 1945 Makran Trench tsunami (Mw 8.1) which were identified based on the presence of a laterally extensive shelly bed with distinctive taphonomic characters. In this study, particle size, stable isotopic and foraminiferal (taxa and taphonomy) analyses were conducted on surface sediment samples from Sur Lagoon to determine modern spatial trends in the lagoon for future comparison with overwash sediments deeper in the geologic record. Q-mode cluster analysis of the foraminiferal data (n=54) found three main biofacies which follow lagoon sub-environments: Shallow Marine Area, Main Lagoon Basin, and Distal Lagoon Basin. The Shallow Marine Area is mainly subtidal with higher wave energy, the Main Lagoon Basin is predominantly intertidal with moderate wave energy, whereas the Distal Lagoon Basin is isolated and mainly intertidal with low wave energy. The most useful parameters for assessing overwash events in Sur Lagoon are the foraminifera taxa rather than the taphonomic characters themselves. The most useful taxa for recognizing an overwash (e.g. tsunami or storm) will be the abundance of Amphistegina spp., Ammonia infausta, Elphidium advenum and planktics which are predominantly found in the Shallow Marine Area. The abundance trend of these species with distance into the lagoon has an inverse relationship with higher r² values than the other taxa. Taphonomically there is a predominance of larger specimens in the Shallow Marine Area along with a higher abundance of fossil specimens.
Taphonomic evidence has been used to document paleo-environmental trends in the geological record (e.g. Parsons-Hubbard, 2005; Reinhardt et al., 2006; De Francesco and Hassan, 2008; Donato et al., 2008) and is often referred to as taphofacies analysis (Martin, 1999). Fragmentation, edge preservation, luster, encrustation, biogenicity, articulation and other taphonomic characters are among the taphonomic characters that are often used (e.g. Martin et al., 1996; Best and Kidwell, 2000; Parsons-Hubbard, 2005; Reinhardt et al., 2006; Donato et al., 2008; Berkeley et al., 2009). The majority of the research has focussed on mollusc shells, with foraminiferal studies mostly examining vertical time averaging or lateral transport (Martin et al., 1995; Culver et al., 1996; Martin et al., 1996; Murray and Alve, 1999; Hippensteel et al., 2000). Foraminiferal provenance is a well recognized tool for determining overwash events (e.g. Hippensteel and Martin, 1999, 2000; Scott et al., 2003; Hippensteel et al., 2005) or tsunamis (e.g. Luque et al., 2002; Hawkes et al., 2007; Kortekaas and Dawson, 2007). However, very little research has been devoted to recognizing specific taphonomic features of these event beds. Berkeley et al. (2009) document the taphonomic character of individual intertidal foraminifera, demonstrating that foraminiferal taphonomic analysis, which has been associated with information loss, can be used to provide additional information concerning depositional environment and subsequent transport histories. Recent research from Anegada, British Virgin Islands has shown foraminiferal provenance, using the ecology and taphonomy (color, fragmentation and edge rounding) of Homotrema rubrum, to be useful and important for assessing overwash beds in hypersaline lagoons (Pilarczyk and Reinhardt, 2011).

In this study we assess the distribution of foraminifera and their taphonomic characteristics with particle size data to determine characteristics useful for discriminating overwash deposits from lagoonal background sedimentation. These data provide baseline information for identifying and interpreting tsunami and storm overwash deposits in the stratigraphic record (Mamo et al., 2009).

1.2. Regional setting

The Sultanate of Oman has an arid, subtropical continental climatic regime. Seasonal weather changes are notably severe; in summer, temperatures peak to ~45–50 °C, whereas in winter, temperatures commonly dip to 0 °C (Lézine et al., 2002). Rainfall occurs predominantly in the winter due to eastern Mediterranean troughs which follow the Zagros Mountains and penetrate the Persian Gulf along the north of the Arabian Peninsula, with less rainfall in the summer months due to the south-western monsoon circulation (Deil, 1996). Average annual precipitation in Sur (Fig. 1) is 114.7 mm with the highest amount of precipitation falling between November and April. Humidity also peaks in the winter months (February=70%) and drops significantly in the summer (May=53%). Average mean monthly temperatures range from 21.7 °C in January to 34.1 °C in June (Lézine et al., 2002).

Sur Lagoon is a small (~12 km²) tidally-dominated, micro-tidal lagoon (mean tidal amplitude ~1.2 m) situated approximately 100 km south of the capital city Muscat on the western coast of Oman (Figs. 1–2). The lagoon is divided into Distal and Main Lagoon Basins and it communicates with the Shallow Marine Area (Gulf of Oman) through a narrow (103–209 m wide) entrance channel along its eastern edge, which connects a 2.5 km network of tidal channels in the lagoon. Paleocene–Eocene aged highlands border and define most of the extent of the lagoon with the entrance channel further restricted by a low relief sand spit (~2–3 m s.l.; Fig. 2b). Probable overwash during a storm or tsunami would follow the existing lagoon channel and possibly overtop the sand spit. Four wadi channels empty into the lagoon, the largest of which is Wadi Shamah that culminates in a ~1 km wide delta. The interior of the lagoon is made up of a series of intertidal sand and mudflats which are exposed and submerged through daily tidal cycles. At low tide ~90% of the lagoon surface is exposed, while at high tide only ~10% is exposed. Mangroves fringe most of the lagoon with the highest density along the NE tip of the Distal Basin and the SW section of the Main Basin (Fig. 2c).

The Shallow Marine Area outside of the lagoon has a narrow shelf which drops off to depths of over 200 m after ~5 km (Szuman et al., 2008). The coastline of north-eastern Oman supplies continuous sediment to the Gulf of Oman through erosion of prominent rocky headlands and ephemeral wadis. Wave action in the nearshore environment is high due to the large fetch associated with the Gulf of Oman. In contrast, the restricted lagoon basins experience little wave action and are predominantly tidal. Wadi systems (e.g. Wadi Shamah) provide poorly sorted sediment (muds–gravels) to the lagoon; whereas, predominantly fine to medium sands come from the Gulf of Oman.

Field observations and a Digital Elevation Model (DEM) were used to determine 12 sub-environments (Donato et al., 2008, 2009; Fig. 2c). These include: wadi, mangrove area, mudflat, lagoon shoreline, sandflat, lagoon creek (intertidal), flood delta, shelly firm ground, lagoon channel (subtidal), wadi delta, entrance channel and marine shoreface (Fig. 2c).

1.3. Overwash evidence in Sur Lagoon

Previous research from Sur Lagoon focused on the identification and characterization of a tsunami deposit from the 28 November 1945 Makran Trench earthquake (Donato et al., 2008, 2009). The seismically active Makran Subduction Zone (MSZ) located off the coast of Pakistan has been known to produce tsunamigenic earthquakes that have impacted the coasts of Iran, Pakistan, India and Oman (e.g. Heidarzadeh et al., 2008; Okal and Synolakis, 2008). Little is known about the MSZ, and predictions of future events are based on historical information as no geologic (i.e. tsunami deposit) evidence has been available (Ambroseys and Melville, 1982). Donato et al. (2008) documented an event horizon in Sur Lagoon, Oman inferred to be from the 1945 Makran Trench event, which consisted of a coarse shell-rich layer with distinctive taphonomic characteristics and
particle size trends: thick (5–25 cm), laterally extensive (>1 km²), sheet-like geometry that thinned and became finer grained with distance inland from the lagoon entrance, and contained whole and fragmented lower-shore offshore bivalves (Donato et al., 2008, 2009).

Cyclone activity in the northern Arabian Sea is rare and is generally characterized by small cells that dissipate quickly. However, the recent cyclones Gonu (Category 5; 2007) and Phet (Category 3; 2010) are considered exceptional and represent the most ‘severe cyclonic storms’ to strike the Arabian Peninsula in recorded history (Fritz et al., 2010). At Ras al-Hadd which is approximately 30 km east of Sur, Fritz et al. (2010) reported a 5 m high storm surge and a 200 m landward incursion of seawater. A field survey at Sur in November 2007 showed that Gonu’s rain (>610 mm) and resulting flow through Wadi Shamah eroded the small delta and washed away the bridge (Donato et al., 2009). Despite the estimated storm surge of 2.6 m, surveys of the lagoon after the event found no record of overwash or shells (Donato et al., 2009). Most of the sediment moved seaward into the Shallow Marine Area bypassing the Main Lagoon Basin, although lesser events would likely contribute sediment directly to the lagoon.

2. Materials and methods

In March 2006 (i.e. before Gonu), 111 sediment samples (upper 2 cm) were collected along 12 transect lines spaced ~300 m apart (Fig. 3). Sample locations used in the microfossil analysis are shown in

Fig. 2. a) Satellite image of Sur Lagoon obtained from Google Earth. b) Digital Elevation Model (DEM) of the study area using data collected with a Trimble R3 unit and a Lowrance SONAR. c) Sedimentary sub-environments within the lagoon. Colors correspond to varying lithofacies identified during a field survey, DEM analysis, and satellite imagery. d) Location of surface samples used in the foraminiferal analysis. Nodes at the base of the entrance channel and at the Main–Distal Lagoon boundary were used to calculate the distance of each sample location relative to the marine source (Figs. 7–9).

Fig. 3. Particle-size distribution (PSD) plots for Sur Lagoon based on percent abundance of particle size fraction (0–11 Φ). Sample locations (n=111) used for particle-size analysis are represented by black circles.
Nearshore marine samples were collected by free-diving along similar grid lines. All sub-environments within the lagoon and marine embayment were sampled (e.g. entrance channel, intertidal, subtidal, mangrove area, sandflat, mudflat, beach, shallow marine, wadi).

A Trimble differential GPS (D-GPS) unit was used to create a digital elevation model of the modern lagoon surface (DEM; Fig. 2b; Donato et al., 2009). The DEM was produced by walking the D-GPS in north–south transects spaced 100 m apart, and east–west lines at 300 m spacing. A single-beam echo sounder was used to survey depths greater than 1.5 m within the lagoon, the entrance channel, and the Shallow Marine Area ~1 km out from the coastline. Both datasets were combined using Geosoft Oasis™ software to create the DEM and were leveled to a mean sea level datum (see Donato et al., 2008).

2.1. Foraminiferal analysis

Samples (n = 54) were selected for foraminiferal analysis based on the facies and spatial distribution within the lagoon (Fig. 2c; Online Table S1). Fifty-five samples were collected; however, only 54 were used for foraminiferal analysis. Due to limited sample volume, geochemical analysis required the use of an additional sample (sample no. 35), which is indicated in Fig. 2d. Samples ranged in volume from 5 to 20 cm³ and were sieved (≥63 μm), dried, randomly split to provide specimen counts of ~300, and analyzed using an Olympus SZX12® microscope. A total of 22 foraminifera taxa (Plate 1; Table 1; Online Table S2) were identified using the taxonomy of Hottinger et al. (1993) and Hayward et al. (2004). Scanning Electron Microscopy (SEM) was conducted at the Brockhouse Institute for Materials Research at McMaster University (Plates 1–2).

Q-mode (statistically similar populations) and R-mode (statistically affiliated populations) cluster analysis of the foraminiferal data (% species) was performed in the statistical software package PAST™ (Fig. 4). Q-mode cluster analysis used Ward’s Minimum variance and is reported as squared Euclidean distances (Fishbein and Patterson, 1993). Standard error was calculated on the fractional abundances following Patterson and Fishbein (1989) and species that had standard errors greater than relative fractional abundances in all samples were eliminated from the cluster analysis. A total of 16 species were found to be statistically significant at least one sample: *Ammonia inflata*, *Ammonia parkinsoniana*, *Ammonia tepida*, *Amphistegina lessonii*, *Amphistegina lobifera*, *Elphidium advenum*, *Elphidium craticulatum*, *Elphidium striatopunctatum*, *Peneroplis planatus*, *Porosonion granosa*, *Rosalina orientalis*, *Cibicides pseudolobatulus*, *Elphidium gerthi*, *Elphidium striatopunctatum*, *Quinqueloculina seminulum*, *Porosonion granosa*, *Rosalina orientalis*, *miliolids and planktics* (Fig. 4; Table 1; Online Table S2). *Amphistegina lessonii* and *Amphistegina lobifera* were combined as were *Cycloforina carinata*, *Pseudotriocolina laevigata*, *Quinqueloculina multigramina*, *Quinqueloculina patagonica* and *Quinqueloculina seminulum* as they share similar ecological constraints and combining them produced better cluster results (Fig. 4).

Taphonomic analysis used the following characters: (1) unaltered, (2) degree of fragmentation (small fragment: <49% of specimen, large fragment: >50% of specimen), (3) degree of corrosion (combined influence of corrosion and abrasion; minimal, moderate, maximal), and (4) size (>150 μm, 150–250 μm, 250–500 μm, 500–1000 μm, >1000 μm). In addition, the abundance of in-filled fossil specimens was recorded although, they were heavily altered and could not be reliably identified to the species level (Fig. 5; Plate 2; Table 2; Online Table S3). This taphonomic data was clustered using the same method as described previously (Fig. 6).

Plots of taxa and taphonomic characters vs. linear distance into lagoon used measurement nodes in the entrance channel (0 km) and at the transition (2.5 km) between the Distal and Main Lagoon Basins.
Table 1
Biofacies elevation, exposure time, average Shannon Diversity Index (SDI) and foraminalineral abundances (mean±1 std.) for the three biofacies determined with cluster analysis.

<table>
<thead>
<tr>
<th>Biofacies</th>
<th>BF_A</th>
<th>BF_B</th>
<th>BF_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation (m.s.l.)</td>
<td>0.6 ± 0.5</td>
<td>0.3 ± 0.6</td>
<td>−0.8 ± 1.1</td>
</tr>
<tr>
<td>Exposure time (h/day)</td>
<td>11</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Shannon–Weaver Diversity (SDI)</td>
<td>1.8 ± 0.1</td>
<td>1.9 ± 0.1</td>
<td>2.0 ± 0.2</td>
</tr>
<tr>
<td>Ammonia inflata</td>
<td><1</td>
<td><1</td>
<td>2 ± 2</td>
</tr>
<tr>
<td>Ammonia parkinsoniana</td>
<td>14 ± 5</td>
<td>17 ± 5</td>
<td>18 ± 7</td>
</tr>
<tr>
<td>Ammonia tepida</td>
<td>13 ± 5</td>
<td>12 ± 7</td>
<td>6 ± 11</td>
</tr>
<tr>
<td>Amphistegina spp.</td>
<td><1</td>
<td>2 ± 2</td>
<td>12 ± 13</td>
</tr>
<tr>
<td>Patellinella sp.</td>
<td><1</td>
<td><1</td>
<td>5 ± 7</td>
</tr>
<tr>
<td>Brizalina striatula</td>
<td>4 ± 2</td>
<td>3 ± 1</td>
<td>1 ± 1</td>
</tr>
<tr>
<td>Clidium pseudobulbatus</td>
<td>1 ± 2</td>
<td>1 ± 2</td>
<td>1 ± 2</td>
</tr>
<tr>
<td>Elphidium gerthi</td>
<td>11 ± 6</td>
<td>15 ± 6</td>
<td>10 ± 6</td>
</tr>
<tr>
<td>Elphidium craticulatum</td>
<td>2 ± 2</td>
<td>2 ± 2</td>
<td>2 ± 2</td>
</tr>
<tr>
<td>Elphidium advenum</td>
<td><1</td>
<td><1</td>
<td>2 ± 3</td>
</tr>
<tr>
<td>Peneroplis planatus</td>
<td>9 ± 5</td>
<td>7 ± 4</td>
<td>2 ± 3</td>
</tr>
<tr>
<td>Elphidium striatopunctatum</td>
<td>2 ± 2</td>
<td>2 ± 4</td>
<td><1</td>
</tr>
<tr>
<td>Porosonion gronosa</td>
<td>4 ± 2</td>
<td>3 ± 3</td>
<td>2 ± 2</td>
</tr>
<tr>
<td>Miliolids</td>
<td>37 ± 8</td>
<td>28 ± 10</td>
<td>22 ± 12</td>
</tr>
<tr>
<td>Planktics</td>
<td>2 ± 2</td>
<td>6 ± 3</td>
<td>14 ± 10</td>
</tr>
</tbody>
</table>

2.2. Stable isotopic analysis

Unaltered A. parkinsoniana specimens (n = 3 to 5; 85–100 µg) were selected for stable isotopic analysis (δ18O, δ13C) from 22 of the surface samples obtained along a transect within the lagoon. A. parkinsoniana was chosen due to its abundance in all samples and because it has been reported to have minimal microbabitat effects (Chandler et al., 1996). Prior to analysis, samples were washed in an ultrasonic bath of distilled water to remove any sediment particles. SEM analysis showed that the selected specimens were free from any encrustation or sediment in-filling. Stable isotopic analysis was performed on the Finnigan Delta Plus XP® mass spectrometer (δ13C precision = ± 0.10; δ18O precision = ± 0.07) at McMaster University’s Stable Isotope Research Laboratory (MSIRL). Values are reported relative to VPDB and are the average of two trials for each sample location.

2.3. Particle size analysis

Sediment samples (n = 110) were treated with 10% HCl to remove carbonates (54 ± 7% removed) and 40% H2O2 to remove organic material (<1% removed). The remaining siliciclastic fraction was sieved using an 1800 µm mesh before analysis with a Beckman Coulter LS 230 laser diffraction particle size analyzer. Samples were stirred as a moist paste to homogenize the sediment, then ultrasonically disaggregated with hexametaphosphate (NaPO3)6 to reduce flocculation. Particle size values were calculated using the Fraunhofer Optical Model (Murray, 2002; van Hengstum et al., 2007; On Table S1) and are the average of two replicates. Particle sizes were converted to the Wentworth Phi Scale, interpolated and gridded using a Triangular Irregular Network (TIN) algorithm according to Sambridge et al. (1995), and plotted as Particle Size Distribution (PSD) plots in Geosoft Oasis TM (Fig. 3).

3. Results

3.1. Bio- and taphofacies

R-mode cluster analysis shows that populations of A. tepida, A. parkinsoniana, E. gerthi, P. planatus and miliolids are closely associated and are predominantly found in the lagoon basins (Distal and Main); whereas A. inflata, Amphistegina spp., Patellinella hanzawai, B. striatula, C. pseudobulbatus, E. advenum, E. craticulatum, E. striatopunctatum, P. granosa, R. orientalis, and planktics are mostly found in the Shallow Marine Area. Q-mode cluster analysis of taxonomic and taphonomic data produced dendrograms with three biofacies and taphofacies: Biofacies A (BF_A), BF_B and BF_C; Taphofacies A (TFA), TFB and TFC (Figs. 4 and 5). Generally, biofacies correspond well with lagoon areas although inter-sample variabilities were quite high with high standard-deviations (Fig. 6).

3.1.1. Distal Lagoon Basin (BF_A, TFA)

BF_A is predominantly found in the Distal Lagoon Basin located in the westernmost arm of the lagoon (Fig. 6a), which has the highest mean elevation (n = 17; Eavg = 0.6 ± 0.5 m.s.l.) and the most subaerial exposure time over tidal cycles (tsub = 11 h/day; Table 1). BF_A is characterized by high proportions of miliolids (37 ± 8%), A. parkinsoniana (14 ± 5%), A. tepida (13 ± 5%), E. gerthi (11 ± 6%) and P. planatus (9 ± 5%), with a near absence of open marine benthics including A. inflata, Amphistegina spp. and planktics (<2%). Main Lagoon Basin samples 44 and 28 cluster with BF_A probably because their elevations were relatively high for this lagoon have negative distances and were measured in a N–NW direction. These measurement nodes were selected to reflect a probable transport path for a marine incursion (storm or tsunami; Figs. 7–9).
part of the basin. Mean Shannon Diversity Index (SDI) values at 1.8 ± 0.1 (Table 1) indicate that the Distal Lagoon Basin is a transitional (SDI = 1.5–2.5) environment rather than stable (SDI = 2.5–3.5) or stressed (SDI = 0.1–1.5; e.g. Patterson and Kumar, 2000, 2002). In fact, all sample locations within the lagoon exhibited SDIs within the transitional range (1.5–2.4), except sample 57 (SDI = 1.4) which reflects a stressed environment at the mouth of Wadi Shamah (Fig. 8; Table 1). Generally, the diversity decreases with increased tidal exposure time (Shallow Marine Area = 2.0 ± 0.2; Main Lagoon Basin = 1.9 ± 0.1; Distal Lagoon Basin = 1.8 ± 0.1; Table 1), although there is considerable overlap in these values. It is questionable as to whether the SDIs are a true reflection of conditions within the lagoon as transport of allochthonous tests is likely to be quite high.

The Distal Lagoon Basin is predominantly made up of TF_A (n = 16; Fig. 6b; Table 2). The TF_A has the highest abundance of recent relative to fossil specimens (84 ± 8%), as well as the most unaltered recent foraminifera (51 ± 22%) with the highest values of corrosion (31 ± 14%) and bioerosion (11 ± 7%). Fossil specimens are low in abundance (16 ± 8%) and did not seem to have any distinctive characteristics (Table 2).

Fig. 4. Q-mode vs. R-mode cluster analysis using Ward’s method indicating three biofacies.
3.1.2. Main Lagoon Basin (BF_B, TF_B)

Biofacies B (n=20) is predominantly found in the Main Lagoon Basin with a mean elevation and tidal exposure time slightly lower than that of the Distal Lagoon ($E_{avg}=0.3 \pm 0.6$ m.s.l., $e_{ex}=8$ h/day; Table 1; Fig. 6a). There are only minor differences in the biofacies composition relative to BF_A. Miliolids (28 ± 10%), A. parkinsoniana (17 ± 5%), E. gerthi (15 ± 6%) and A. tepida (12 ± 7%) are still the dominant taxa; however, the presence of minor allochthonous species (planktics: 6 ± 3%; Amphistegina spp.: 2 ± 2%; and A. inflata: <1%) distinguishes it from BF_A in the cluster analysis (Fig. 4; Table 1). The network of intertidal channels connecting the Main Lagoon Basin with the Shallow Marine Area is the likely source for these taxa which would be transported into the lagoon via storms and tidal currents (e.g. Amphistegina spp. = 12 ± 13%). These taxa are virtually absent in the Distal Lagoon Basin (Table 1).
TFB is predominantly made up of recent specimens (78±14%) which is slightly lower than TFA (84±8%), but higher than TFC (68±25%; Table 2; Fig. 6b). The other taphonomic characters are very similar to those in TFA with only minor differences (e.g. corrasion and bioerosion; Table 2) although, there are larger differences with the Shallow Marine Area.

3.1.3. Shallow Marine Area (BFC, TFC)

Biofacies C (n=15) is mainly found in the Shallow Marine Area, embayment and also subtidal regions of the lagoon and has the lowest elevations (−0.8±1.1 m.s.l; i.e. open marine, entrance channel, main subtidal channel; Table 1; Fig. 6a). BFC is characterized by lower abundances of miliolids (22±12%) and *A. tepida* (6±11%), and higher abundances of planktics (14±10%), *Amphistegina* spp. (12±13%), *Patellina* sp., (5±7%) and *A. inflata* (2±2%). *A. inflata* abundances are low but important, as it is absent to very low in the lagoon basins. In general, the largest and most robust species (e.g.

Table 2

Taphofacies elevation, exposure time, and average foraminiferal taphonomic characteristics (mean%±1 std.) for the three taphofacies determined with cluster analysis.

<table>
<thead>
<tr>
<th>Taphofacies</th>
<th>TF_A</th>
<th>TF_B</th>
<th>TF_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taphofacies elevation (m.s.l.)</td>
<td>0.4±0.3</td>
<td>0.2±1.1</td>
<td>−0.1±1.4</td>
</tr>
<tr>
<td>Exposure time (h/day)</td>
<td>11</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Specimen size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>500 μm</td>
<td><1</td>
<td><1</td>
<td>4±8</td>
</tr>
<tr>
<td>250–500 μm</td>
<td>6±3</td>
<td>4±3</td>
<td>13±12</td>
</tr>
<tr>
<td>150–250 μm</td>
<td>27±9</td>
<td>26±10</td>
<td>35±17</td>
</tr>
<tr>
<td><150 μm</td>
<td>67±11</td>
<td>69±13</td>
<td>48±25</td>
</tr>
<tr>
<td>Recent foraminifera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total recent</td>
<td>84±8</td>
<td>78±14</td>
<td>68±25</td>
</tr>
<tr>
<td>Minor corrosion</td>
<td>29±13</td>
<td>21±19</td>
<td>23±17</td>
</tr>
<tr>
<td>Moderate corrosion</td>
<td>2±1</td>
<td>2±2</td>
<td>4±6</td>
</tr>
<tr>
<td>Maximal corrosion</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total corrosion</td>
<td>31±14</td>
<td>22±19</td>
<td>29±19</td>
</tr>
<tr>
<td>Small fragment</td>
<td>3±2</td>
<td>4±5</td>
<td>3±5</td>
</tr>
<tr>
<td>Large fragment</td>
<td>29±10</td>
<td>28±15</td>
<td>26±18</td>
</tr>
<tr>
<td>Total fragments</td>
<td>32±10</td>
<td>32±17</td>
<td>30±23</td>
</tr>
<tr>
<td>Bioeroded</td>
<td>11±7</td>
<td>6±6</td>
<td>7±4</td>
</tr>
<tr>
<td>Unaltered</td>
<td>51±22</td>
<td>45±28</td>
<td>49±21</td>
</tr>
<tr>
<td>Fossil foraminifera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total fossil</td>
<td>16±8</td>
<td>22±14</td>
<td>32±25</td>
</tr>
<tr>
<td>Minor corrosion</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Moderate corrosion</td>
<td>34±20</td>
<td>49±29</td>
<td>56±31</td>
</tr>
<tr>
<td>Maximal corrosion</td>
<td>66±20</td>
<td>51±29</td>
<td>45±31</td>
</tr>
<tr>
<td>Small fragment</td>
<td>2±1</td>
<td>3±5</td>
<td>1±2</td>
</tr>
<tr>
<td>Large fragment</td>
<td>17±9</td>
<td>11±6</td>
<td>10±8</td>
</tr>
<tr>
<td>Total fragments</td>
<td>19±9</td>
<td>14±10</td>
<td>12±10</td>
</tr>
</tbody>
</table>

![Fig. 6.](image-url) Distribution of biofacies (a) and taphofacies (b) showing relationship with geographic boundaries (Distal Lagoon Basin, Main Lagoon Basin and Shallow Marine Area).

Fig. 7. a) Elevation along a transect from the Shallow Marine Area through the Main and Distal Lagoon Basins using nodes shown in Fig. 2d. b) Stable isotope data for sample locations along the transect. c) Particle-size plots for the transect (D.V.% = differential volume percent).
Amphistegina spp.) tend to dominate the Shallow Marine Area which has higher wave and current energies. The taphonomic characters show similar trends with high abundances of robust fossil specimens (32 ± 25%), and large sized foraminifera (>500 μm = 4 ± 8%, 250–500 μm = 13 ± 12%), compared to the Distal and Main Lagoon Basins (Tables 1–2; Peebles and Lewis, 1991).

3.2. Stable isotopes

The stable isotopic data shows minor variations and is not useful in distinguishing subenvironments (Fig. 7). Generally, the subtidal Shallow Marine Area and the Main Lagoon Basin have slightly more negative δ18O values (δ18Oavg = −1.7 ± 0.1‰) than the intertidal environments in the Distal Lagoon Basin (δ18Oavg = −1.3 ± 0.4‰). This lack of contrast seems unusual since the intertidal areas would have higher average temperatures and evaporation rates with the 8–10 h/day subaerial exposure (Fig. 7). The Gulf of Oman off Sur has sea surface temperatures of ~27 °C and salinities of ~36.5 ppt (Sultan and Elghribi, 1996; Schils and Wilson, 2006). Measured salinity and temperature in the mangrove areas are higher (41.7–44.2 ppt; 26–29 °C) than the open sea, so some evaporative effect would be expected. The lack of contrast in values maybe due to taphonomic biases resulting from the reworking of older tests, or the transport of specimens from subtidal areas of the lagoon.

Similarly the δ13C values follow no trend and are more variable within the lagoon, likely due to the taphonomic issues already pointed out, but also due to the complexity of factors affecting the dissolved inorganic carbon of the water (e.g. salinity, productivity and OM decomposition; Mackensen et al., 2001; Bickert and Mackensen, 2004; Peros et al., 2007).

3.3. Particle size

Generally, the fine silt and clay sized sediment is found in the mangrove areas on the southern lagoon margin as well as the Wadi Shamah deltaic area. Sandy sediments dominate the rest of the Lagoon (Main and Distal) and Shallow Marine Area. The Shallow Marine Area tends to have very coarse sand which transitions to medium sand in the Main Lagoon and fine to very fine sand in the Distal Lagoon (Fig. 3). The PSD transect with increasing penetration distance into the lagoon (Fig. 7), shows a coarse PSD tail (0 phi) in the Main Lagoon Basin but not in the Distal Lagoon Basin. This transition from coarse to fine particle sizes separates the subtidal and intertidal regions and is likely a reflection of reduced tidal current competence deeper into the lagoon.
4. Discussion

4.1. Foraminiferal and taphonomic trends

Sediment inputs for Sur Lagoon predominantly come from three ephemeral wadis that occasionally flood during the rainy season, but do not provide a constant source of sediment. Wadi Shamah in particular, with its bird’s foot delta, is likely one of the main inputs of new sediment into the lagoon (Figs. 2–3). Sediment is transported in and out of the lagoon via storms and tidal currents, with sediment removed from the Shallow Marine Area due to longshore transport or export to the steeply sloping shelf. The coastline to the NW and SE of Sur is very rocky with one large wadi to the NW of Sur that is also a potential sediment source.

The transport of sediment in and out of the lagoon, with residence time in both areas, is supported by foraminiferal results. Overall, there is not a large difference in the foraminiferal biofacies or taphofacies between the Shallow Marine Area and the Lagoon Basins (Main and Distal), even though there is considerable environmental difference with tidal exposure and wave climate inside and outside of the lagoon. The greatest difference is between the Distal Lagoon Basin and Shallow Marine Area, with the Main Lagoon Basin acting as a transitional zone (Figs. 6, 8–9; Tables 1–2). This similarity suggests that sediment spends residence time inside and outside of the lagoon inheriting taphonomic characteristics from both environments.

The abundance of milliols, *Amphistegina*, *A. tepida*, *A. parkinsoniana* and *E. gerthi* suggests they are the dominant taxa living in the lagoon, which is consistent with other similar coastal environments (e.g. Murray, 1991; Debenay et al., 2001; Lézine et al., 2002; Ghosh et al., 2009). The less-calcified specimens (e.g. *A. tepida*) are likely destroyed quickly in the Shallow Marine Area if exported from the lagoon, while the heavily calcified and larger *Amphistegina* spp. make their way into the Main Lagoon through storms (e.g. storm surge without the high rainfall of Gonu), but not into the Distal Lagoon Basin (Fig. 8). This is supported by particle size data showing a slight fining trend into the Distal areas, and fossil fragment size which gets smaller into the Distal Lagoon (Figs. 3, 7, 9). Likewise, the abundance of fossil specimens is greatest in the Shallow Marine Area likely due to their robustness and resistance to fragmentation and abrasion in the more energetic wave-dominated regime (i.e. vs. the recent specimens; Tables 1–2; Fig. 9). Fossil specimens are likely eroding out of Tertiary rocks outcropping on the coast and shelf areas as there is not an increased abundance of them in the wadi channels.

The degree of corrasion also shows some relationship with distance into the lagoon but it is only expressed in the fossil foraminifera. Maximal corrasion is highest in the Main and Distal Lagoon Basins but this may be a size effect. The inner confines of the lagoon have higher quantities of fossil fragments which may have been exposed to corrasion for a longer period vs. whole fossils which are found in the outer marine areas (Fig. 9).

Corrasion with recent specimens did not show a predictable trend; it was present, but was highly variable within the basins (Table 2). The lack of a clear trend may be due to transport as discussed, or may relate to our ability to distinguish between dissolution and abrasion which would be correspondingly high inside vs. outside the lagoon.

4.2. Foraminiferal taphonomy as a potential overwash indicator

Based on the transect data, the most useful parameters for assessing an overwash event in Sur Lagoon will be the foraminifera taxa rather than the taphonomic characters per se (Figs. 8–9). The most useful taxa for recognizing a marine incursion (e.g. tsunami or storm) will be the abundance of *Amphistegina* spp., *A. inflata*, *E. advenum* and planktics, and these are expected to be highly concentrated through transport and sorting in an event bed. These species have higher r^2 values with distance into the lagoon, and a distinct transition from the Shallow Marine Area to the Main and Distal Lagoon Basins. Taphonomically, large specimen sizes (>250 µm) and high proportions of fossil specimens were also closely associated with the Shallow Marine Area and therefore may be useful as a potential overwash indicator. Of note is the presence of planktic taxa and large sized specimens, which have been used previously (e.g. Hawkes et al., 2007) with respect to the 2004 Indian Ocean tsunami, and based on this study will also prove important here.

5. Conclusions

In this arid intertidal lagoon at Sur, full taphonomic analysis is of limited value as the different environments are not causing a significant taphonomic imprint on the foraminifera. By far the most useful character is the foraminiferal assemblage itself and the enumeration of the number of fossil specimens. An overwash event at Sur Lagoon is expected to contain poorly sorted, heterogeneous sand with relatively high abundances of *A. inflata*, *Amphistegina* spp., *E. advenum* and planktics, as well as large specimen sizes (>250 µm) and high proportions of fossil specimens. The best location to detect the overwash beds with foraminifera will be in the inner areas of the lagoon (Distal Lagoon and parts of the Main Lagoon Basins) where the number of robust specimens (recent or fossil) is low or non-existent. This study illustrates the need for baseline taphonomic data to determine the best target areas for finding overwash records in the stratigraphic record and to assess taphonomic overprinting that may occur during an extreme event (e.g. tsunami fragmentation of bivalves).

Supplementary materials related to this article can be found online at doi:10.1016/j.marmicro.2011.06.001.

Acknowledgments

The authors gratefully acknowledge (1) Richard Rothaus for field support, (2) Tom Vosmer and Barry Jupp for their assistance while on site in Oman, (3) Martin Kniff for technical assistance in McMaster’s biogeochemistry laboratory, and (4) St. Cloud State University for the use of their Lowrance SONAR and Trimble R3. Funding was provided by NSERC research grants to Eduard Reinhardt (Discovery) and Jessica Pilarczyk (CGSM). This manuscript was greatly improved by comments from Ron Martin and two anonymous reviewers.

Appendix A

A.1. Systematics of Foraminifera

Faunal reference list for dominant taxa. The classification follows that of Hottinger et al. (1993), Hayward et al. (2004) and Loeblich and Tappan (1987). Systematics of individual species are from Hottinger et al. (1993) and references therein.

Amphistegina lessonii D’ORBIGNY, 1826

Amphistegina lobifera LARSEN, 1976

Ammonia inflata = *Rosalina inflata* SEGUENZA, 1862

Ammonia parkinsoniana = *Rosalina parkinsoniana* D’ORBIGNY, 1839

Ammonia tepida = *Rotalia beccarii var. tepida* CUSHMAN, 1936

Cibicides pseudolobatulus PERELIS & REISS, 1976

Elphidium advenum CUSHMAN, 1930

Elphidium craticulatum = *Nautilus craticulatus* FICHTEL & MOLL, 1798

Elphidium gerthi VAN VOORTHUYSEN, 1957

Elphidium striatopunctatum = *Nautilus striatopunctatus* FICHTEL & MOLL, 1798

Peneroplis planatus = *Nautilus planatus* FICHTEL & MOLL, 1798

Porosonion granosa = *Noionina granosa* D’ORBIGNY, 1846

Ammonia inata, Amphistegina spp., E. advenum and planktics, as well as large specimen sizes (>250 µm) and high proportions of fossil specimens. The best location to detect the overwash beds with foraminifera will be in the inner areas of the lagoon (Distal Lagoon and parts of the Main Lagoon Basins) where the number of robust specimens (recent or fossil) is low or non-existent. This study illustrates the need for baseline taphonomic data to determine the best target areas for finding overwash records in the stratigraphic record and to assess taphonomic overprinting that may occur during an extreme event (e.g. tsunami fragmentation of bivalves).

Supplementary materials related to this article can be found online at doi:10.1016/j.marmicro.2011.06.001.

Acknowledgments

The authors gratefully acknowledge (1) Richard Rothaus for field support, (2) Tom Vosmer and Barry Jupp for their assistance while on site in Oman, (3) Martin Kniff for technical assistance in McMaster’s biogeochemistry laboratory, and (4) St. Cloud State University for the use of their Lowrance SONAR and Trimble R3. Funding was provided by NSERC research grants to Eduard Reinhardt (Discovery) and Jessica Pilarczyk (CGSM). This manuscript was greatly improved by comments from Ron Martin and two anonymous reviewers.

Appendix A

A.1. Systematics of Foraminifera

Faunal reference list for dominant taxa. The classification follows that of Hottinger et al. (1993), Hayward et al. (2004) and Loeblich and Tappan (1987). Systematics of individual species are from Hottinger et al. (1993) and references therein.

Amphistegina lessonii D’ORBIGNY, 1826

Amphistegina lobifera LARSEN, 1976

Ammonia inflata = *Rosalina inflata* SEGUENZA, 1862

Ammonia parkinsoniana = *Rosalina parkinsoniana* D’ORBIGNY, 1839

Ammonia tepida = *Rotalia beccarii var. tepida* CUSHMAN, 1936

Cibicides pseudolobatulus PERELIS & REISS, 1976

Elphidium advenum CUSHMAN, 1930

Elphidium craticulatum = *Nautilus craticulatus* FICHTEL & MOLL, 1798

Elphidium gerthi VAN VOORTHUYSEN, 1957

Elphidium striatopunctatum = *Nautilus striatopunctatus* FICHTEL & MOLL, 1798

Peneroplis planatus = *Nautilus planatus* FICHTEL & MOLL, 1798

Porosonion granosa = *Noionina granosa* D’ORBIGNY, 1846