The Chako gneisses outcrop in the Nar Valley, north of the Annapurna massif in central Nepal. Reconnaissance mapping recognised the Chako Dome, an enigmatic dome of Greater Himalayan sequence, surrounded by rocks correlated with the Tethyan sedimentary sequence. A new, detailed map of the Nar Valley with a significant re-interpretation is presented. The map area is divided into two different structural levels. Lower Level rock types, high-strain zones with south-verging shear-sense indicators, and high-grade metamorphism all suggest it is part of the Greater Himalayan sequence. The rocks of the Upper Level, previously mapped as the sub-greenschist or zeolite facies Tethyan sedimentary sequence, are garnet-bearing schists. Petrography and garnet-biotite thermometry imply these gneisses equilibrated at amphibolite facies (500-650°C), suggesting that the Upper Level is a previously undescribed component of the Greater Himalayan sequence. Unmetamorphosed sediments of the Tethyan sedimentary sequence structurally overly the Upper Level and are separated by the uppermost fault of the South Tibetan detachment system. Differences in structural style and possible differences in peak metamorphic grade suggest that each level may have different early tectonometamorphic histories. Upper Level structures suggest it was deformed at considerably higher structural levels. The lack of cross-cutting isograds or temperature constraints from the Lower Level make it impossible to determine if both panels experienced similar peak metamorphic conditions. These two panels are juxtaposed along the synmetamorphic Chame detachment at ~20 Ma during retrograde metamorphism. After ~19 Ma, the Phu detachment juxtaposed the unmetamorphosed Tethyan sedimentary sequence above the Lower and Upper Levels. The entire package was folded, after 19 Ma, by a non-cylindrical antiform-synform pair with a ~25 km wavelength. These folds created an apparent dome and record continued contraction after the peak of Neohimalayan orogenesis.