INTRODUCTION

Glacigenic undulating terrain is widespread across North America and is recognized in the southwestern United States (Kesel, 1953; Ives, 1965). Studies of this terrain in the United States have focused on understanding its origin and evolution (e.g., Lutich, 1980; Kesel, 1981; Lutich and Kesel, 1982). In Canada, the focus has been on understanding the origin and evolution of similar terrain in the western provinces (e.g., Sali and Smith, 1982; Smith, 1983; Smith et al., 1985).

Recently, a series of studies have been conducted in the southeastern United States to understand the origin and evolution of similar terrain (e.g., Lutich, 1980; Kesel, 1981; Lutich and Kesel, 1982). These studies have provided insights into the role of ice-marginal processes in the development of undulating terrain.

METHODOLOGY

The study area is located in the southeastern United States, where undulating terrain is well-developed and easily observable. The study area is characterized by a series of undulating surfaces that are well-preserved and easily observable. The study area is located in the southeastern United States, where undulating terrain is well-developed and easily observable. The study area is characterized by a series of undulating surfaces that are well-preserved and easily observable.

CONCLUSIONS

The results of this study support the hypothesis that undulating terrain in this area is the result of glacial processes. The undulating surfaces are characterized by a series of undulating surfaces that are well-preserved and easily observable. The undulating surfaces are characterized by a series of undulating surfaces that are well-preserved and easily observable.

ACKNOWLEDGMENTS

This research was funded by a grant from the National Science Foundation. The authors wish to thank the following institutions for their support: University of Missouri, University of Alabama, and University of South Carolina.