SFU BLOODBORNE PATHOGENS EXPOSURE CONTROL PLAN
SFU Bloodborne Pathogens Exposure Control Plan

Table of Contents

1. Purpose ... 2

2. Roles and Responsibilities ... 2
 2.1 Principal Investigators, Supervisors, Department Managers ... 2
 2.2 Staff, students, volunteers and visitors .. 3
 2.3 Environmental Health and Safety (EHS) Department ... 3

3. Definitions ... 3

4. Overview of bloodborne pathogens ... 5

5. Modes of transmission .. 5

6. Exposure Control ... 6
 6.1 Routine Practices and Universal Precautions ... 6
 6.2 Engineering controls ... 7
 6.2.1 Biological Safety cabinets .. 7
 6.2.2 Needles and Syringes .. 7
 6.3 Safe handling of biohazardous materials .. 7
 6.3.1 Hand washing .. 7
 6.3.2 Hygienic practices ... 8
 6.3.3 General work practices ... 8

7. Decontamination and Spill response .. 9
 7.1 Decontamination ... 9
 7.2 Spill Response .. 9

8. Waste Management ... 10
 8.1 Solid Biohazardous waste .. 10
 8.2 Liquid Biohazardous Waste .. 10
 8.3 Sharps and needles .. 10
 8.4 Broken Glassware ... 11

9. Personal protective equipment (PPE) ... 12

10. Medical Surveillance Program .. 13

11. Additional Information for Service Personnel .. 14

Appendix A- Exposure Health Management Procedures ... 15

Appendix B- Medical Surveillance Vaccination Form ... 16

Page 1 of 17
Last Revised: 2018.09.19
1. Purpose

The purpose of the SFU Bloodborne Pathogens Exposure Plan is to eliminate or minimize the risk of occupational exposure to bloodborne pathogens in blood or in other potential infectious materials (OPIMs) as well as to reduce the risk of infection, should exposure occur. To meet this objective, this document aims to provide:

- A basic understanding of bloodborne pathogens;
- An explanation of the modes of transmission and methods to prevent transmission;
- An outline of the procedures, responsibilities and expectations that need to be met in accordance with all relevant acts, regulations and standards from WorkSafeBC and the Public Health Agency of Canada.

2. Roles and Responsibilities

2.1 Principal Investigators, Supervisors, Department Managers

- Inform personnel about the potential for exposure to bloodborne pathogens, the hazards related to exposure, and the methods used to control and mitigate these hazards;
- Ensure that engineering controls are established;
- Ensure that safe work practices and written work procedures are developed, and followed by all personnel;
- Ensure that personnel wear appropriate personal protective equipment
- Advise personnel they have access to occupational health resources if they require a medical risk assessment;
- Provide job and task-specific training on risk mitigation strategies including but not limited to: use of engineering controls, safe work practices and proper use of personal protective equipment;
- Maintain up-to-date training records;
- If required, ensure a SFU biosafety permit has been obtained;
SFU Bloodborne Pathogens Exposure Control Plan

- Instruct personnel to report all incidents and near misses to their supervisor, EHS and to seek medical attention within two hours of a known or suspected exposure.

2.2 Staff, students, volunteers and visitors

- Complete and attend all required training, online courses, education and job/task-specific training;
- Utilize appropriate exposure control measures such as: engineering controls, safe work practices and personal protective equipment
- Report all incidents and accidents to their supervisor, EHS and to seek medical attention within two hours of a known or suspected exposure;
- Participate in incident investigations of exposure incidents to blood or OPIMs.
- Read and understand the SFU Bloodborne Pathogens Exposure Control Plan;
- Ensure appropriate vaccinations are up to date;

2.3 Environmental Health and Safety (EHS) Department

- Provide information and guidance on regulatory requirements;
- Ensure compliance of SFU with the relevant acts, regulations and standards;
- In collaboration with departments, and the SFU Biosafety Committee, undertake overarching and local risk assessments;
- Provide general safety training and education
- Conduct regular annual biosafety inspections of laboratories using regulated blood and body fluids;
- Review all incidents involving exposure to blood and OPIMs and participate in incident investigations;
- Inform the Public Health Agency of Canada of reportable occupational exposure incidents occurring at SFU;
- Review and update the SFU Bloodborne Pathogens Exposure Control Plan at least annually.

3. Definitions

The following terms are used in the WorkSafeBC Occupational Health and Safety Regulation and in this plan.

bloodborne pathogen: pathogenic organisms present in body fluids, human blood and any tissue or organ, other than intact skin, from a human being (living or deceased) that can cause disease in humans. The bloodborne pathogens of greatest concern are the Hepatitis B (HBV) virus, Hepatitis C (HCV) virus and the Human Immunodeficiency Virus (HIV).

medical sharp: means a needle device, scalpel, lancet or any other medical device that can reasonably be expected to make parenteral contact;
occupational exposure: means reasonably anticipated contact with a biological agent, that is designated as a hazardous substance in section 5.1.1, resulting from the performance of a worker's duties;

other potentially infectious materials (OPIMs): materials other than blood that can also be sources of bloodborne pathogens, such as:
- semen, vaginal secretions, cerebrospinal fluid, synovial fluid, pleural fluid, pericardial fluid, peritoneal fluid, amniotic fluid, saliva, breast milk
- any body fluid that is visibly contaminated with blood
- unfixed human tissues or organs other than intact skin

parenteral contact: means piercing of mucous membranes or the skin;

precautionary principle: means adopting provisional precautions covering all routes of transmission, based on a higher level of protection, when the identity, aetiology or routes of transmission of the biological agent designated as a hazardous substance in section 5.1.1 have not been established;

route of transmission: means any route by which a biological agent designated as a hazardous substance in section 5.1.1 may be transmitted including contact, droplet or airborne transmission;

safety-engineered medical sharp: means a medical sharp with a built-in safety feature or mechanism that eliminates or minimizes the risk of accidental parenteral contact while or after the sharp is used;

safety-engineered needle: includes a self-sheathing needle device and a retractable needle system.

standard or routine infection control precautions: means safe work practices as defined by the Practical Guidelines for Infection Control in Health Care Facilities issued by the World Health Organization, as amended from time to time, and the Routine Practices and Additional Precautions for Preventing the Transmission of Infection in Healthcare Settings guidelines issued by Health Canada, as amended from time to time;

transmission-based precautions: means safe work practices based on the route of transmission as defined by the Practical Guidelines for Infection Control in Health Care Facilities issued by the World Health Organization, as amended from time to time, and the Routine Practices and Additional Precautions for Preventing the Transmission of Infection in Healthcare Settings guidelines issued by Health Canada, as amended from time to time.
SFU Bloodborne Pathogens Exposure Control Plan

4. Overview of bloodborne pathogens

Bloodborne pathogens are microorganisms such as viruses or bacteria that are carried in blood, cause disease in people and can be transmitted from one person to another though exposure to contaminated blood and/or blood products. The organisms of most concern are: Hepatitis B virus (HBV), Hepatitis C (HCV) and the Human Immunodeficiency Virus (HIV).

For more information on the transmission, treatment, prophylaxis and viral stability of these viruses, please refer to the relevant Pathogen Safety Data Sheets (PSDSs) here. These documents also describe the hazardous properties of these pathogens and provide recommendations for work involving these agents in a laboratory setting.

5. Modes of transmission

As mentioned, bloodborne pathogens such as HBV, HCV and HIV are transmitted by infected fluids and tissues (see table below). For infection to occur, viruses from infected blood and body fluids must enter the body’s bloodstream.

For SFU personnel, the highest-risk exposures are from:

- percutaneous injury e.g. needle stick injuries, puncture wounds or cuts from needles or other sharp items that are contaminated with blood or body fluids;
- splashes of contaminated blood or body fluids to:
 - mucous membranes (eyes, nose and mouth);
 - non-intact skin - open sores, cuts, abrasions, acne, chronic dermatitis (e.g. eczema), any sort of damaged or broken skin such as sunburn or blisters may allow for viral transmission.
 - In general, splashes are considered extremely low risk for infection because intact, unbroken skin is an effective barrier that prevents the virus from gaining entry;
- production of aerosols – aerosolization of tissue and/or bone (e.g. during drilling or sawing);
Fluids and Tissues capable of transmitting bloodborne pathogens

<table>
<thead>
<tr>
<th>Fluid</th>
<th>HIV</th>
<th>HBV</th>
<th>HCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and fluids visibly contaminated with blood</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Semen</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes, if blood present</td>
</tr>
<tr>
<td>Vaginal secretions</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes, if blood present</td>
</tr>
<tr>
<td>Pleural, amniotic, pericardial, synovial and cerebrospinal fluids and inflammatory exudates</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Saliva</td>
<td>No, unless contaminated with blood</td>
<td>Yes</td>
<td>No, unless contaminated with blood</td>
</tr>
<tr>
<td>Transplanted tissue or organs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Breast milk</td>
<td>Yes</td>
<td>Plausible</td>
<td>Plausible</td>
</tr>
<tr>
<td>Feces, Nasal secretions, Sputum, Sweat, Tears, Urine, Vomitus</td>
<td>No, unless contain visible blood</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reproduced from: BC Centre for Disease Control Communicable Disease Control Blood and Body Fluid Exposure Management October 2017. Link [here](#).

6. Exposure Control

6.1 Routine Practices and Universal Precautions

Routine practices and universal precautions refer to a set of infection prevention strategies in which all blood and OPIMs are treated as if they are infectious, regardless of the perceived status of the source individual. This approach is used in all situations where exposure to blood or OPIMs is possible.
SFU Bloodborne Pathogens Exposure Control Plan

Consequently, certain engineering and work practice controls, in addition to personal protective equipment shall always be utilized in situations where exposure may occur.

6.2 Engineering controls

Engineering controls decrease personnel exposure by removing or decreasing the hazard at the source through mechanical means. Examples include biosafety cabinets, safety engineered needles, room ventilation and appropriate sharps containers.

6.2.1 Biological Safety cabinets

Biological safety cabinets (BSCs) provide effective primary containment for work with biohazardous materials by containing bioaerosols. BSCs must be used in all work with human blood, body fluids, tissues or OPIMs that has the potential to create aerosols (e.g., opening and closing tubes, pipetting, sonicating, cell sorting, vortexing, etc.). Minimize the amount of splashing, spraying, splattering, and generation of droplets when performing any procedures involving blood or potentially infectious materials.

6.2.2 Needles and Syringes

Needles and syringes should be avoided whenever possible. If they must be used, syringes must never be recapped. They must be discarded into the appropriate biohazard sharps containers.

In accordance with WorkSafeBC, any medical procedure that involves the use of hollow bore needles requires safety-engineered needles or needleless systems. These procedures include:

- Withdrawal of body fluids;
- Accessing a vein or artery;
- Administration of medications or fluids;
- Any other procedure, for example immunization, involving the potential for an exposure to accidental parenteral contact for which a needleless system or safety-engineered needle system is available.

6.3 Safe handling of biohazardous materials

Good microbiological practice (GMP) applies to all work with blood and OPIMs as these protect personnel and the environment.

6.3.1 Hand washing

Hand washing is the most important practice used to prevent transmission of bloodborne pathogens. Hands or other exposed skin should be thoroughly washed as soon as possible after:

- an exposure incident;
- removal of gloves;
- spill clean-up;
- handling of any biohazardous material;
SFU Bloodborne Pathogens Exposure Control Plan

- finishing a task and preparing to leave the work area/laboratory;

Know the location of the nearest handwashing facility. Laboratory sinks, public restrooms, janitor closets etc may be used for hand washing if they are supplied with soap. For work in an area without access to such facilities, use an alcohol based hand sanitizer. In these cases, hands should be washed with soap and running water as soon as possible.

6.3.2. Hygienic practices

The following best practices aim to eliminate or reduce occupational exposure to bloodborne pathogens in blood or in other potential infectious materials (OPIMs).

6.3.3. General work practices

General work practices beyond those already stated include:

- Separating dedicated paper/computer work stations from laboratory benches minimizes the risk of contamination;
- Containment zone doors to be kept closed;
- Training and refresher training to be documented and records to be kept on file;
- Biohazardous materials (e.g. blood/OPIMs, waste) to be placed in closed, labelled, and leakproof containers that have been surface decontaminated prior to transportation between labs;
- Centrifugation of infectious material where inhalation is the primary route of infection to be carried out in sealed safety cups (or rotors) that are unloaded in a BSC;
- Personnel to conduct regular visual monthly inspections of the laboratory and initiate corrective actions if deficiencies are found.

A complete list of Biosafety Containment Level 2 Operational Practices can be found here.
7. Decontamination and Spill response

7.1 Decontamination
All materials and equipment that are contaminated with blood and/or OPIMs must be decontaminated. Decontamination includes both sterilization and disinfection.

Sterilization is the complete destruction of ALL microorganisms, including bacterial spores. Sterilization of biohazardous waste, instruments and glassware can be accomplished by the use of an autoclave.

Disinfection is the destruction and removal of specific types of microorganisms. Chemical disinfectants such as household bleach, are used for the decontamination of surfaces and equipment that cannot be autoclaved. The effectiveness of a disinfectant is limited by a number of factors, including the presence of organic material, temperature, relative humidity, concentration, and contact time.

If household bleach is used, it must be disinfecting bleach with a 5.25% (52500 ppm) concentration of sodium hypochlorite (NaOCl). Please ensure that the bleach being used has the word “disinfecting” on the bottle.

If bleach is used for disinfectant baths, a 1:5 (20%) aqueous dilution of household bleach is suitable. If bleach is being used to sanitize surfaces, the surfaces should be cleaned with detergent and water first, then wiped with a 1:50 (2%) aqueous dilution of household bleach.

Please note that working dilutions of bleach must be prepared daily as aqueous solutions of bleach decompose rapidly. It is also important to note that organic matter such as tissue, blood, feces can inactivate bleach.

Since bleach is corrosive to metals, counters and metal surfaces can also be cleaned with mild detergent followed by disinfection with 70% alcohol.

7.2 Spill Response
Spills of biohazardous material such as blood and OPIMs must be cleaned up immediately. To clean up a blood spill, carefully cover the spill with paper towels soaked in 10% bleach. Don’t spray the spill directly with disinfectant as this will generate aerosols, rather soak paper towels in the disinfectant and place over the spill. Wait for the appropriate contact time (usually 10 mins).

Bleach corrodes metal so ensure the area is well rinsed after cleaning up a spill with bleach. Disinfect any non-disposable equipment that cannot be autoclaved.

A detailed spill response procedure is available here.
SFU Bloodborne Pathogens Exposure Control Plan

8. Waste Management

Blood and OPIMs may contain bloodborne pathogens and are treated as risk group 2 (RG2) material. RG2 biohazardous waste disposal protocols are specific to SFU and these were implemented to prevent adverse ecological and environmental impacts attributed to poor hazardous waste disposal practices, and to enhance personal safety. Biohazardous waste disposal is regulated at the municipal, provincial and federal level. Non-compliance with all disposal regulations can lead to financial penalties, the suspension of permits and/or the university license.

8.1 Solid Biohazardous waste

Biohazardous waste from RG2 material must be collected in orange autoclave bags that are placed in a labeled bag holder which can be either a metal rack or a sturdy plastic container labeled with a biohazard sign (see Figure 1). When 2/3 full, close bag loosely with tape marked “autoclave” and decontaminate the bag exterior with a suitable disinfectant. Take to the nearest autoclave room and autoclave on site. One autoclaved, place bags in the designated bins in each autoclave room for pick-up by the hazardous waste contractor.

![Figure 1. Orange autoclave bag and bag holder.](image)

8.2 Liquid Biohazardous Waste

Liquid biohazardous waste must be decontaminated before it is released into the municipal sewer system. Bleach waste, allow liquids to stand for appropriate contact time, then dispose of liquid down drain.

8.3 Sharps and needles

Sharps containers are designed to contain needles, scalpels, blades, razor blades, and similar items. All sharps and needles contaminated with blood or OPIMs must be placed in the appropriate red biohazard sharps container (see Figure 2). When the container is 2/3 full, take to the nearest autoclave room and autoclave on site. Before autoclaving, place autoclave tape on top of the sharps container. Do not cover
the hole at the top of the container. One autoclaved, place containers in the designated bins in each autoclave room for pick-up by the hazardous waste contractor.

![Red biohazard sharps container](image)

Figure 2. Red biohazard sharps container.

8.4 Broken Glassware

Broken glassware, glass tubes, vials, ampoules, Pasteur pipettes, microscope slides and microscope cover slips contaminated with blood or OPIMs should be autoclaved or bleached in a sturdy means of containment, then disposed of with regular broken glassware in the plastic liner of the glass waste cardboard container (provided by SFU janitorial services). If it’s not possible to safely decontaminate, dispose of the glass in the appropriate biohazardous red sharps containers (Figure 2).

Note: Never pick up broken glassware with bare hands. Use tongs, pliers or brush the material into a dustpan.

Non-broken glassware for disposal should also be placed in the in the plastic liner of the glass waste cardboard container (provided by SFU janitorial services).

More information on the SFU Biohazardous Waste Stream is available [here](link).

Hazard alert

- Custodians can be punctured or cut by improperly disposed needles and broken glass, exposing them to infectious material.
- Dispose of all sharps carefully to protect yourself and others!

***Note: Do not autoclave or otherwise dispose of radioactive material.
Contact EHS for assistance.***
9. Personal protective equipment (PPE)

To minimize occupational exposure to bloodborne pathogens in blood or in OPIMs as well as to reduce the risk of infection, should exposure occur, personal protective equipment (PPE), such as laboratory laboratory coats, gloves, safety glasses etc must be worn in the laboratory to create a barrier between personnel and potentially infectious material.

All PPE for bloodborne pathogens will be provided by SFU at no cost.

1. **Laboratory Coats.** These provide a layer of protection between personnel and the infectious material by preventing blood or other contaminated fluids from soaking through street clothing unto the skin.

2. **Gloves.** Use gloves made of latex, nitrile, rubber, or other water impervious materials. If glove material is thin or flimsy, double gloving can provide an additional layer of protection.

3. **Safety Glasses.** Bloodborne pathogens can be transmitted through the thin membranes of the eyes so it is important to protect them. Use safety glasses or goggles to protect the eyes when there is a risk of splashing, spraying or aerosolization of contaminated fluids. Splashing could occur while cleaning up a spill.

4. **Face shields.** May be worn in addition to safety glasses to provide additional face protection. A face shield will protect against splashes to the nose and mouth.

5. **N95 respirator.** Engineering controls such as biosafety cabinets are the first line of defense against infectious aerosols. If working inside a biosafety cabinet is not feasible, an N95 respirator might be able to minimize exposure. Contact EHS for more information.

Contaminated gloves, clothing, PPE, which is known, or suspected, to be contaminated must be successfully decontaminated before laundering or disposal.

Always remove PPE when leaving the laboratory area.
SFU Bloodborne Pathogens Exposure Control Plan

10. Medical Surveillance Program

Participation in SFU’s medical surveillance program is required when personnel work with controlled material such as human blood and OPIMs. Employees who will be working with a virus for which a vaccine is available are entitled to have the cost of the vaccination covered by their supervisor (i.e., the PI). There is a potential of contracting Hepatitis B from human blood or OPIMs and therefore all employees working with this material should be offered the Hepatitis B vaccination. Please note: If an employee is exposed to blood or OPIMs during the course of their duties and are not vaccinated, they may request a Hepatitis B vaccination at that time. **Note: If the vaccine is administered immediately after exposure it is extremely effective at preventing the disease.**

Tetanus vaccinations are also recommended for laboratory personnel who may be using sharps. A vaccination acknowledgement form must be signed (See Appendix B).

While vaccinations are the primary components of medical surveillance other considerations may also be relevant depending on the nature of the project. Individuals who:

- have compromised immune systems
- are, or plan to become, pregnant
- may require a pre-placement medical evaluation or serum screening (depending on which pathogen or materials you’re working with)
- have questions regarding required or recommended immunizations
- have specific health concerns pertaining to the biological materials they are required to handle as part of their duties

may wish to speak with an occupational medicine physician. Please contact EHS for more information.

EHS is committed to protecting the privacy and confidentiality of any personal information, in accordance with SFU policies and the terms of SFU’s PHAC Biosafety Licences.

Hepatitis B vaccine

• Offered at no cost to workers who have or may have exposure to the Hepatitis B virus
11. Additional Information for Service Personnel

Service personnel (Facilities Services, Contractors, Janitors and Campus Safety & Security Services) may encounter: contaminated needles, broken glass, spilled blood/OPIMS or other contaminated laboratory materials during routine maintenance requests (plumbing fixtures, HVAC issues) or emergency situations (responding to floods or electrical issues). In addition to the safe work procedures discussed above, worksite-specific orientation, education and training must be provided to service personnel and must include:

- an explanation of the Department’s exposure control plan regarding bloodborne pathogens and where to access it;
- control procedures specific to the worksite (e.g. location of sharps disposal containers, wash facilities, access to and training for personal protective equipment, emergency protocols);
- offer of Hepatitis B immunization;
- annual refresher training regarding bloodborne pathogens and the exposure control plan.

***Note: For laboratory spaces, whether it be an emergency or non emergency situation, service personnel must follow the lab access protocol: make contact with the lab users to determine what hazards are present and ONLY enter a lab after lab occupant/emergency contact has given approval.
SFU Bloodborne Pathogens Exposure Control Plan
Appendix A- Exposure Health Management Procedures

The following exposure incidents are potentially harmful if:

- Skin is punctured with a contaminated sharp
- Mucous membranes (eyes, nose, mouth) are splashed with blood or OPIMs
- Non-intact skin is splashed with blood or OPIMs

1) Get first aid immediately
 - If the mucous membranes of the eyes, nose or mouth are affected, flush with lots of clean water at an emergency eyewash station for at least 15mins;
 - Sharps injury: Allow the wound to bleed freely. Then wash the area thoroughly with non-abrasive soap and water.
 - If non-intact skin is affected: Wash the area thoroughly with non-abrasive soap and water.
 - Get first aid immediately by calling Campus Security at 778-782-4500.

2) If required, seek medical attention immediately.
 - Depending on the hazards of the materials exposed to, and the nature of the incident, additional medical attention or follow up may be necessary;
 - Seek medical attention immediately within two hours at the closest hospital emergency room.
 - Bring information regarding what the material or pathogen was, if known and available.

3) Report incident
 - Report incident as soon as possible to your supervisor and EHS. Go to: http://www.sfu.ca/srs/ehs/safety-management/incident-reporting.html
 - For incidents requiring a visit to the doctor or resulting in missed time from work, the supervisor must complete a WorkSafeBC Form 7.

Note: Blood and body fluid contact with intact skin is not considered a risk for the spread of bloodborne pathogens. However, hands and other affected areas should be washed immediately with soap and water.
SFU Bloodborne Pathogens Exposure Control Plan

Appendix B- Medical Surveillance Vaccination Form

Some positions at SFU have been identified as having a potential risk for exposure to pathogens for which vaccinations are available. SFU employees/students in these positions are offered, at no cost to the employee/student, the relevant vaccination(s).

The vaccination offer will be made within 10 days of starting in the designated position. If the employee:

- chooses to refuse the vaccination, the refusal will be documented in this form;
- later changes their mind, the employee retains entitlement to the vaccination offer at a future date; and
- chooses to proceed with the vaccination, the vaccination details will be documented in this form.

Employee Name______________________________Department___________________________

VACCINATION ACCEPTANCE

I_________________________ (please print your name) agree to proceed with Vaccination.
Signature________________________________Date______________________

Vaccination:_________________________ Date Administered: ____________________
Vaccination:_________________________ Date Administered: ____________________
Vaccination:_________________________ Date Administered: ____________________

VACCINATION REFUSAL

I_____________________________ (please print your name) refuse to accept the offer for Vaccination at this time and retain the option of accepting the offer at a later date.
Signature________________________________Date_________________________

The information on this form is collected under the authority of the Freedom of Information and Protection of Privacy Act (R.S.B.C. 1996, c.165). It is related directly to and needed by the University so that SFU can be in compliance with the regulations mandated according to SFU’s Biosafety Policy (R 20.02), WorkSafe BC’s Occupational Health Regulation and the Canadian Biosafety Standard. This information will be used for record keeping and for administering the SFU Biosafety Program. If you have any questions about the collection, use and disclosure of this information please contact Monica Szczepina, Program Manager Biosafety and Laboratory Safety, 8888 University Drive, Burnaby B.C. V5A 1S6, 778.782. 6740.