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EBD 7500b EBD 7500f 
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Oi-Lam Ng 

Shearing and IPads: Exploring Geometry with 

Touchscreen and a Dynamic Geometry 

Environment 

Lyla Aslalim  
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Understand High School Mathematics Teachers’ 

Classroom Practice in Saudi Arabia 
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Ike Udevi-Aruevoru 

The Relationship Between Motivation, 
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And Mathematics Achievement 
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Effects of Inconsistent Definitions: Definition of 

Continuity 
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Sofya Kovalevskaya: Mathematics as 
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Masomeh Jamshid Nejad 

Influence Of  An Educator’s Rich Mathematics 
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Kevin Wells 
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A Case Study in Teacher Noticing 

1:50 – 2:25 

Sean Chorney 

Using Two Frameworks to Analyze Two 

Geometric Tasks: Semiotic Mediation and New 

Materialism 

Minnie Liu 

The Process of Rudimentary and Complex 

Mathematical Tasks 
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Session. 
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 6 

PROCEEDING MEDSC 2013                                        Department of Mathematics Education - SFU 

 

PLENARY SPEAKER  

 

From Talking the Talk to Walking the Walk: An Exploration of Data Using Tools from SFL 

Beth Herbel-Eisenmann 

 

In this talk, I share some theoretical and analytic tools from systemic functional 

linguistics (SFL) that I have used in my recent research in order to engage participants 

in exploring these tools with data. The data are transcripts that originate from a study 

group focused on mathematics classroom discourse with 9 secondary mathematics 

teachers. The particular idea we'll explore is how the study group talks about the 

"mathematics register" (Halliday, 1978) across the year. We'll explore the themes and 

shifts in the ways the teachers collectively made sense of the mathematics register, 

focusing on particular discourse practices they use and how they put words in 

relationship to one another. 
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ABSTRACTS: 

 

 

USING THE PATTERNS-OF-PARTICIPATION APPROACH TO 

UNDERSTAND HIGH SCHOOL MATHEMATICS TEACHERS’ 

CLASSROOM PRACTICE IN SAUDI ARABIA 

Lyla Alsalim 

 

My research goal is to gain a better understanding of how high school mathematics 

teachers in Saudi Arabia are coping with recent education reform including how their 

practices are changing in response to the changes that are happening in the education 

system in general, and specifically, to the introduction of the new mathematics 

textbooks. These reform initiatives call for more research in order to understand the 

role of the mathematics teachers’ classroom practices. In this paper, patterns-of-

participation theory serves as a lens to interpret and understand Saudi high school 

mathematics teachers’ practices during the current reform movement and the role the 

new textbooks play in influencing teachers practice. The data presented is about Nora, 

an experienced, high school mathematics teacher. 

 

CONFRONTING INFINITY VIA PAINTER’S PARADOX 

Chanakya Wijeratne 

In mathematics education research paradoxes of infinity have been used in the 

investigation of conceptions of infinity. In this study the Painter’s paradox is used to 

investigate how undergraduate students studying Calculus understand infinity. This 

study contributes to research on the use of paradoxes in mathematics education as a 

research tool and to research on understanding infinity.  

 

YOUNG CHILDREN’S THINKING ABOUT VARIOUS TYPES OF 

TRIANGLES USING DYNAMIC GEOMETRY TASKS 

Harpreet Kaur 

This paper will show preliminary results of how young children (age 7-8, grade 2/3) 

can exploit the potential of dynamic geometry environments to identify, classify and 
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define different types of triangles (scalene, isosceles, equilateral). This study is based 

on three-lesson classroom intervention, during which the children worked both in a 

whole classroom setting in which they could interact directly with Sketchpad on an 

interactive whiteboard as well as individual/pair work with paper-and-pencil. This 

paper reports on first lesson only. Using Sfard’s (2008) communicational approach, 

we extend the work of Battista (2008) to show how students developed a reified 

discourse on various types of triangles. Further, we show how the students used a 

dynamic language to describe the behaviour of various triangles in terms of 

invariances about how the sides and angles of these triangles would change under 

dragging. 

 

EFFECTS OF INCONSISTENT DEFINITIONS: DEFINITION OF 

CONTINUITY 

Gaya Jayakody 

This paper reports on a problematic situation that arises through certain definitions 

involving the concept of continuity. The paper mainly focuses on bringing out these 

problems in the context  of textbooks and other mathematical resources and in addition 

gives an instance to elaborate how this problem could create tensions and conflicts in 

students’ thinking processes. Sfard’s commognitve framework is used in the analysis 

of a student’s work on continuity. A potential remedy for this problem is presented in 

conclusion.  

     

EXPLORING CONSTRUCTS OF STATISTICAL VARIABILITY USING 

DYNAMIC GEOMETRY. 

George Ekol  

The qualitative study reported in this paper examines university statistics students’ 

aggregate reasoning with data using a semiotic mediation perspective. I focus on 

students’ understanding of the links among distribution, the mean and standard 

deviation in a data set. Participants in the study explored these concepts using a 

dynamic mathematics sketch designed in Sketchpad. Findings suggest that the dynamic 

sketch mediated the meaning of statistical variability during and after participants’ 

interactions with the sketch. However, some participants also showed mixed 

reasoning—a combination of elements of aggregate reasoning with some textbook 
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procedures—after they stopped using the dynamic sketch. Some implications for post-

secondary statistics curriculum are suggested. 

 

 

USING TWO FRAMEWORKS TO ANALYZE A GEOMETRIC TASK: 

SEMIOTIC MEDIATION AND NEW MATERIALISM 

Sean Chorney 

This study looks at a geometry situation on The Geometer’s Sketchpad and analyses 

the activity using two different theoretical frameworks.  Semiotic mediation which 

emerges from the Vygotskian school, and the more organic and emergent framework 

of Barad and Ingold.  The purpose is to identify what is highlighted by using different 

tools of analysis.  The finding is that the outcome of observation is dependent upon the 

framework; the results are completely different with little commonality. 

 

 

USE OF PHENOMENOLOGY THEORY PERSPECTIVE TO STUDY 

TEACHERS’ ENGAGEMENT IN THE READING OF MANUALS DURING A 

PROFESSIONAL DEVELOPMENT SESSION. 

Melania Alvarez 

The purpose of this phenomenological study is to provide a description of a 

professional development session which main purpose was to engage teachers to read 

and discuss the manual of a math program recently introduced in their school. 

 

 

PLAYING NUMBERS ON TOUCHCOUNTS 

Vajiheh(Mina) Sedaghat Jou 

This paper explores how young children build meaning through communicative, touch-

based activities involving talk, gesture and body engagement working with 

TouchCounts (Educational iPad app). The main goal of this paper is to show the 
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impact of touch-based interactions and finger counting on the development of 

children’s perception and motor understanding of numbers. In this study, 

Nemirovsky’s perceptuomotor integration approach theoretical framework revealed 

strong value of digital touch-based interaction and mathematics embodied in emergent 

numerical expertise by making and objectifying numbers.  

 

 

TRANSFORMATION IN MATHEMATICS TEACHING PRACTICE: A 

CASE STUDY IN TEACHER NOTICING 

Natasa Sirotic 

This case study focuses on the professional growth of an elementary teacher who 

participated in a practice based professional development initiative centred on the goal 

of creating a culture of mathematical thinking in the classroom. Through sustained 

inquiry, reflective practice, and collaboration with colleagues, which was  focused 

around the examination of the impact of mathematical lessons on the student thinking, 

learning and understanding, a gradual but significant transformation was achieved 

which transferred into her daily instructional  practice.  

 

 

SHEARING AND IPADS: EXPLORING GEOMETRY WITH DYNAMIC 

GEOMETRY AND TOUCHSCREEN TECHNOLOGY 

Oi-Lam Ng 

In this paper, we report on two lessons for teaching junior high school students to the 

idea of shearing in a dynamic geometry environment.  Through a classroom-based 

intervention involving the active use of a class set of touchscreen tablet devices, we 

analyse students’ evolving discourse about area.  The touchscreen tablet technology 

seemed to have supported the ways in which students talk about shearing as a temporal 

and continuous process and made the idea more tangible.  We highlight the specific 

roles of the teacher and digital technology in supporting the process of semiotic 

mediation through which the students learned about shearing. 
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SOLVING RUDIMENTARY AND COMPLEX MATHEMATICAL TASKS 

Minnie Liu 

Tasks are used in mathematics education for a variety of purposes – from delivering 

course material to developing students’ mathematical thinking skills. In this article, I 

present research on a type of task specifically designed to foster students' ability to 

flexibly apply their existing mathematical knowledge and skills in problem solving 

situations. In particular, I look at students’ problem solving processes when working 

collaboratively on such tasks. Results indicate that while the processes of solving 

these tasks are similar to those of modeling tasks, differences also exist. 

 

SOFYA KOVALEVSKAYA: MATHEMATICS AS FANTASY 

Veda Roodal Persad 

What do accounts by and about mathematicians of their involvement with mathematics 

tell us about the nature of the discipline and the attendant demands, costs, and 

rewards? Working from an autobiographical sketch and biographies of the first woman 

in the world to achieve a doctorate of mathematics, Sofya Kovalevskaya (1850-1891), 

and using the Lacanian notion of desire, I examine the forces that shape and influence 

engagement with mathematics. I contend that involvement with mathematics is 

impelled, fuelled, and sustained by desire. 

 

DESIGNING STUDENT ASSESSMENT TASKS IN A DYNAMIC 

GEOMETRY ENVIRONMENT 

Marta Venturini 

This paper explores the design of assessment tasks involving the use of Dynamic 

Geometry Environments (DGEs). I adapt the work of Laborde and the results of 

Sinclair, which focus on the design of DGE tasks, to the context of formative 

assessment. I provide an initial framework, along with illustrative examples, for 

different types of DGE-based assessment tasks that can be used in the classroom but 

also to study technology-based teacher practices. This research develops new 

directions in finding how to design suitable tasks for student mathematical assessment 

in a DGE. 
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WHO SHOULD TEACH PROSPECTIVE MATHEMATICS TEACHERS: 

MATHEMATICIANS WITH EDUCATION BACKGROUND OR ONLY 

EDUCATION EXPERTS? 

Masomeh  Jamshid Nejad 

Teachers’ knowledge plays a vital role in developing students’ academic achievements. 

Therefore, training prospective teachers for the purpose of developing their 

professional knowledge considers as one of the most important issues for teacher 

trainers. The question raises here is who should train prospective mathematics 

teachers, a mathematician who is an educator or an expert in education? In this 

research study, a mathematician who has experience of teaching prospective teachers 

had been interviewed to investigate how he tended to develop prospective teachers’ 

professional knowledge. 

 

MATHEMATICAL ABSTRACTION AND TEACHING CHALLENGES:  

TEACHING ACTIVITY THROUGH THE LENS OF REDUCING 

ABSTRACTION IN TEACHING (RAIT) 

Krishna Subedi 

Mathematics is an abstract subject. One of the most important challenges for 

mathematics teachers therefore involves the task of dealing with mathematical 

abstraction and figure out ways of translating them into understandable ideas for their 

students. By analysing teaching episodes through the lens of reducing abstraction in 

teaching (RAiT), this paper explores the notion of mathematical abstraction and 

illustrates various strategies and tendencies of teachers dealing with mathematical 

abstraction.  

 

THE RELATIONSHIP BETWEEN MOTIVATION, ACHIEVEMENT 

GOALS, ACHIEVEMENT VARIABLES AND MATHEMATICS 

ACHIEVEMENT 

Ike Udevi-Aruevoru  

The purpose of this study is to investigate the relationship between motivation, 

achievement goals, and achievement variables on academic achievement. Using the 

six variables from the motivation questionnaire (Glynn, et. al, 2009) and five other 
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variables associated with academic achievement namely, academic achievement 

emotions – hope and pride, academic interest, academic achievement goal, and the 

importance of mathematics to future career goal, this study will use multiple regression 

analysis and also, path analysis to determine which of these variables accounts for the 

most variance in student’s academic achievement.  

 

SUBJECTIVE PROBABILITY AS PRESENTED IN BC CURRICULUM AND 

TEACHER PREPARATION TEXTBOOKS 

Simin Chavoshi Jolfaee 

Abstract: Today, unlike the curriculum documents, among the practitioners of 

probability, subjective probability (Bayesian methods) is a known term. The Bayesian 

probabilistic models have been receiving considerable attention over the last few 

decades from the users of probability, i.e. scientists and engineers. In many fields 

including computer science, Biostatistics, cognitive science, medicine, and 

meteorology using Bayesian models are common practice. In this paper I have tried to 

identify and discuss various ways in which the subjective probability is implicated in 

K-12 mathematics education with respect to documents such as the BC mathematics 

education curriculum, and the mathematics education research literature. 

 

UNDERSTANDING MATHEMATICAL LEARNING DISABILITIES (MLD):  

DEFINITIONS AND COGNITIVE CHARACTERISTICS 

Peter Lee 

While the amount of research on reading disabilities far exceeds that of mathematical 

learning disabilities (MLD), research on MLD over the past decade has shown 

significant growth.  This paper examines some of this emerging research.  More 

specifically, this paper reveals the challenges of defining MLD and examines the 

cognitive deficits that characterize children with MLD. 
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USING THE PATTERNS-OF-PARTICIPATION APPROACH TO 

UNDERSTAND HIGH SCHOOL MATHEMATICS TEACHERS’ 

CLASSROOM PRACTICE IN SAUDI ARABIA 

Lyla Alsalim 

Simon Fraser University 

 

My research goal is to gain a better understanding of how high school mathematics 

teachers in Saudi Arabia are coping with recent education reform including how their 

practices are changing in response to the changes that are happening in the education 

system in general, and specifically, to the introduction of the new mathematics 

textbooks. These reform initiatives call for more research in order to understand the 

role of the mathematics teachers’ classroom practices. In this paper, patterns-of-

participation theory serves as a lens to interpret and understand Saudi high school 

mathematics teachers’ practices during the current reform movement and the role the 

new textbooks play in influencing teachers practice. The data presented is about Nora, 

an experienced, high school mathematics teacher. 

 

INTRODUCTION 

Teaching is generally considered a complex practice that involves the constant and 

dynamic interaction between the teacher, the students and the subject matter. One of 

the main goals of most education reform initiatives has been to change teachers’ 

classroom practices. In the past, educators viewed changing the curriculum as an 

endeavour to change the content of instruction more than the teacher’s classroom 

practices. However, most recent reform curricula focus on highlighting teacher 

practices that promote and evoke students’ understanding of mathematics alongside 

the changes in content (Tirosh  & Graeber, 2003). Changes to a teacher’s role that are 

included in the education reform movement call for more research in order to 

understand and theorise teachers’ classroom practices.  

The Saudi Arabian education system has undergone major changes in the past decade. 

Government agencies involved in education have introduced new policies, standards, 

programs, and curriculum with the expectation that teachers incorporate the changes 

seamlessly, without consideration of existing beliefs and practices. This reform 

movement has motivated me to study change in teachers’ practices. My research goal 

is to gain a better understanding of how high school mathematics teachers in Saudi 

Arabia are coping with recent education reform including how their practices are 

changing  in response to the changes that are happening in the education system in 
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general, and specifically, to the introduction of the new mathematics textbooks. These 

reform initiatives call for more research in order to understand the role of the 

mathematics teachers’ classroom practices. Patterns-of-participation approach will 

serve as a lens to interpret and understand Saudi high school mathematics teachers’ 

practices during the current reform movement and the role the new textbooks play in 

influencing teachers practice.  

 

Textbooks in mathematics classroom: 

For a long time, school mathematics has been associated with textbooks and curriculum 

material (Remillard, 2005). According to Trends in International Mathematics and 

Science Study (TIMSS),   textbooks and documents such as exercise resources for use 

in classrooms as teaching aids, remain important elements in mathematics classrooms 

in many countries. Textbooks play an important role in shaping the curriculum 

experiences of mathematics (TIMSS 2011; Valverde, Bianchi, Wolfe, Schmidt & 

Houang, 2002). This fact is especially true in Saudi Arabian high schools. They provide 

teachers with a basic outline for thinking about what mathematics should be taught, 

when, and how. In 2010, the Ministry of Education introduced new mathematics 

textbooks, the primary, and sometimes only, resource for teachers. The Ministry sees 

this initiative as a major step towards creating change in teaching practices 

In Saudi Arabia, one of the major reform initiatives directly addresses existing 

mathematics curriculum. In 2010, the Ministry of Education introduced new 

mathematics textbooks, the primary, and sometimes only, resource for teachers. The 

Ministry sees this initiative as a major step towards creating change in teaching 

practices.  The new approved mathematics textbooks in Saudi Arabia are based on the 

curricula published by McGraw Hill Education learning company. According to the 

ministry of education in Saudi Arabia, the new mathematics curriculum aims to (a)help 

students to develop higher-order mathematics thinking skills,  (b) develop ways of 

mastering these skills, (c)construct a strong conceptual foundation in mathematics that 

enable students to apply their knowledge, (d) make connections between related 

mathematical concepts and between mathematics and the real world, and(e) apply 

mathematics logically to solve problems from daily life (ministry of education 

website).  

In Saudi Arabia textbooks have official status clearly reflecting official curriculum. 

This textbook series is distributed for free by the Ministry of Education to be a 

classroom resource; each student would have his or her own textbook. The 

accompanying teacher’s guides tell teachers how to use the textbooks, lesson by lesson. 

The new textbook were gradually introduced in 2010 starting by grads one, four, seven 

and ten; by last yeas all grads in Saudi Arabia have been introduced to the new 

textbook. Each grade has two textbooks; semester one and semester two textbooks. In 
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high school, every textbook for every semester has four chapters; every chapter is 

divided into lessons.  All the six textbooks for high school have the same introduction 

which includes the same objectives of the textbooks that mentioned in the ministry of 

education website.  

Traditionally, curriculum materials or textbooks have been a center agent of policies 

to regulate mathematics practice in ways that parallel instruction with the reform 

perspective (Remillard, 2005). Textbooks are often the main resource for students and 

teachers in the classroom, offering the everyday materials of lessons and guiding the 

activities teachers and students do. As a result, educational policy makers use textbooks 

as an essential means to decide what students learn. Textbooks are an essential part of 

curriculum materials which are used for directing students’ acquisition of certain 

culturally appreciated concepts, procedures, intellectual dispositions, and ways of 

thinking (Battista & Clements, 2000). 

 

While effective student learning is one expected outcome of textbook use, the 

development of teachers’ techniques and practice is an additional desired outcome. 

Researchers have only recently started to shed the light on the impact of curriculum 

materials on teachers and how teachers use them (Davis and Krajcik, 2005; Remillard, 

Herbel-Eisenmann, & Lloyd, 2009.). The focus of how teachers interact with and use 

curriculum materials has not been always considered significant to studying 

curriculum. Historically, research about school curricula relied mainly on examining 

the textbooks to restructure the contents of classroom practice (Love & Pimm, 1996). 

Reform efforts in mathematics education are the product of curriculum development 

supported by standards adopted by the National Council of Mathematics Teachers 

(NCTM, 2000). Teachers face the demand of applying new curriculum materials, and 

adopt new conceptual and pedagogical approaches to teach new standards-based 

curriculum. Standard-based curriculum requires students to answer questions with high 

levels of cognitive demands that emphasize conceptual understanding and connection 

of many mathematical ideas rather than traditional procedural skills. As a result, 

Remillard (2005) calls for more research in order to understand teachers’ use of the 

reform based textbooks.   

Some studies suggest that using new curriculum materials do not necessarily lead to 

changes in teacher practices. Manouchehri and Goodman (2000) observed teachers’ 

reactions to the implementation of new standard-based mathematics textbooks and 

found that changes in teachers’ practices do not occur as a consequence to new 

textbooks and other materials. They came to the conclusion that teachers do not change 

their teaching practices merely from interaction with new materials.  

There are a variety of factors that influence the ways teachers interact with  curriculum 

materials  such as “their beliefs about mathematics teaching and learning, their beliefs 
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about the role of curriculum materials, their strategies and practices around the use of 

curriculum materials, and their capacity to competently use curriculum materials to 

enact particular forms of instruction” (Choppin,2011, p. 343). Remillard (1999) states 

teachers assign meaning to new textbooks based on the relationship between their 

beliefs and the features of the material; this meaning fits within the context of their 

teaching as a whole.. Drake and Sherin (2006) also indicate that teachers’ beliefs are 

essential to understanding their curriculum use and adaptation. “Teachers’ narrative 

identities as learners and teachers of mathematics frame the ways in which they use 

and adapt a reform-oriented mathematics curriculum” (p. 154). 

 

THEORETICAL FRAMEWORK 

Skott (2010, 2011, & 2013) introduced PoP as a promising framework which provides 

coherent and dynamic theoretical understandings of mathematics teacher practices. 

Skott’s (2009, 2010) main motivation in developing this framework was to overcome 

the conceptual and methodological problems of belief research. In his later work, Skott 

(2011, 2013) extended the use of the framework to include what is traditionally referred 

to as knowledge and identity in research on mathematics teachers.   

 

The challenges and complexity associated with beliefs research has led some 

researchers, such as Skott (2009, 2010, 2011, and 2013) and Gate (2006), to call for 

more social approaches to beliefs research. Gate (2006) indicates that there is a need 

to take a social approach when studying teacher belief systems because it will shift 

focus from cognitive constructs. A change toward sociological constructs will balance 

existing views about the nature and genesis of beliefs. Skott also supports this view 

indicating that taking a context – practice approach by adopting patterns-of-

participation framework provides more coherent and dynamic understandings of 

teaching practices. Furthermore, it will help in resolving some of the conceptual and 

methodological problems of a belief–practice approach while maintaining an interest 

in the meta-issues that constitute the field of beliefs. The PoP framework challenges 

dominant traditional belief research by questioning the very notion of beliefs and its 

acquisitionist theoretical foundation (Skott, 2010). 

 

PoP framework elaborates on the view that teachers’ practices in classrooms are not 

simple expressions of their desire and personal resources; it also views their practices 

as adaptations to social conditions in which they work. As noted by Skott (2013), 

“teacher contributes to classroom interaction by re-engaging in other past and present 

practices, possibly reinterpreting and transforming them in the process” (p. 548). The 

framework presents a useful tool to understand teachers’ position for emerging 
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classroom practices that takes into account the multiple perspectives of student learning 

in educational research.   

PoP is a theoretical framework developed in line with other several social approaches 

to research in mathematics education. It aims to develop a more coherent understanding 

of the teacher’s role for learning and life in mathematics classrooms.  This alternative 

framework emphasizes the emergent nature of classroom practices.   To a considerable 

degree, PoP adopts participationism as a metaphor for human functioning more than 

mainstream belief research. Therefore, PoP draws on the work of participationism 

researchers, specifically Vygotsky, Lave & Wenger, and Sfard.  

Skott initially developed the patterns-of-participation framework in relation to 

teachers’ beliefs. However, in order to develop a more coherent approach to understand 

teachers’ practices, Skott(2013) extended the framework to include knowledge and 

identity. Skott (2013) notes that research on teachers has mainly focused on studying 

three relatively distinct domains: teachers’ knowledge, beliefs, and identity. This leads 

to some incoherence that negatively influences the understanding of the teachers’ role 

in classrooms. Skott presents POP as a coherent, participatory framework that is 

capable of dealing with matters usually faced in the distinct fields of teachers’ 

knowledge, beliefs, and identity. 

In classrooms, students and teachers interact in several simultaneous practices.  Some 

of these practices are directly related to the teaching and learning of mathematics while 

others are not. Some of them are discourse related an explicit verbal feature, while 

others are not. And some of them relate to communities that are not actually present in 

the classroom or at the school. Understanding the teachers’ role in the classroom entails 

understanding the complex relationship between these simultaneous practices. PoP is 

a promising framework which aims to understand the complexity of teachers’ practices 

in classroom. 

 

In research of mathematics education, there is, to some extent, an unexpected 

disengagement between research on teachers’ beliefs, knowledge, and identity. This 

disconnect in research hinders the development of coherent understandings of the 

teachers’ role for classroom practice and for student learning. Researchers could use 

PoP as a coherent, participatory framework that has the potential to address issues 

usually faced with in the distinct fields of teachers’ knowledge, beliefs, and identity. 

However, PoP does not connect the analyses of teachers’ knowledge, beliefs, and 

identity by regulating the use of theoretical views across the acquisition–participation 

part. As an alternative, it employs a participatory approach and looks for patterns in 

individual teacher’s participation in different social practices. Therefore, PoP is a 

theory that could enrich research approach in mathematics education, especially the 

one that is interested in understanding and theorising mathematics teaching. 

 

 



 19 

PROCEEDING MEDSC 2013                                        Department of Mathematics Education - SFU 

 

METHODOLOGY  

The data presented are about Nora, an experienced, high school mathematics teacher. 

Nora has 13 years experience teaching mathematics in public and private middle and 

high school in Saudi Arabia. She graduated from university with Bachelor of Science 

with specialization in mathematics. She does not have a degree in education which 

means she has never taken any courses in education. After she graduated from 

university, she started teaching in private school. She worked in the private school for 

seven years where she taught different grades of elementary, middle and high school. 

After that she got an offer to tech in public high school. She has been teaching in the 

public high school for six years. When the new textbooks introduced three years ago, 

Nora was teaching grade ten, therefore, she was among teachers who used the 

textbooks the first year when the books introduced. During last year, Nora taught grads 

10 and 11 with 23 lessons per week. 

I conducted a semi-structured 60 minutes interview with Nora during the last summer. 

I invited Nora to reflect on her experiences with mathematics and its teaching and 

learning during her 13 years of experience. During the interview, I asked Nora to 

express her view about recent reform movement in Saudi Arabia. I also asked Nora to 

reflect on her experience teaching mathematics using the old and new textbooks. 

Interview was audio recorded and transcribed.  

Discussion and conclusion: 

Being a teacher in an era of educational reform: 

Nora indicted her deep personal commitment to current educational reform in Saudi 

Arabia. She believes that the pace of educational reform has been increasing at the 

global level and Saudi Arabia has to join the global movement of education reform.  

She emphasizes that the need to be reasonable and fair when we talk about recent 

reform efforts. “Reform is one of the controversial topics among people who are 

interested in educational issues in Saudi Arabia. I see that the government is making a 

noticeable effort to provide quality education in public school. But we have to admit 

the changing is difficult and complicated “. 

In the interviews, Nora indicates that success of reform movements depend, at least in 

part, on the degree of match between teachers’ perceptions of the teaching act and their 

role as teachers, and the demands of the reform movement. She states that “creating a 

positive change starts with creating a motivated teacher”. Although she believes her 

view of the role of teachers put great pressure on teachers, she indicates that not all 

teachers are able to carry out the interventions. “Most teachers work in schools with 

very bad conditions, classrooms are full with more than 40 students in every class 

...most teachers do not have the opportunity to join any professional development 

programs... and most of the available  professional development programs are not 

adequate”.  
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New mathematics textbooks impact:  

Nora expressed that before the introduction of the new textbooks she was very 

enthusiastic. She believes that the new textbooks are generally better than the old 

textbooks. She believes that the new textbook supports student learning and create 

more positive environment in the classrooms.  The new textbooks provide more 

opportunities for students’ engagement and participation. However, Nora indicated 

that she feels isolated and unsupported in her use of the new curriculum materials.  She 

feels that she needs more time and training to become familiar with the new textbook’s 

content. She states, “very often I have questions about the textbook, but I don’t know 

where I can’t find answers”.  She complains that the ministry of education did not put 

teachers’ preparation to the use of the new textbooks into account.  She indicates that 

the other resource she has other than the textbook is her communication with other 

mathematics teachers in her school. The conversation Nora has almost every day with 

other teachers provides support and rich resource for Nora’s practice.  

 

Nora commented about her teaching using the new textbooks; “Although I feel that the 

new textbook could offer better learning experience to the student.., I am not sure if I 

am using it effectively”. She indicated that the textbooks motivated her to reflect on 

her own teaching practice. She believes that using the new textbooks allows her to 

spend more time in the classroom listening to students’ explanation. However, Nora 

indicated that some of the activities presented in the textbook do not make sense. She 

feels that the textbook structure the lessons in a certain way which does not work all 

the time.  

What does it mean to do mathematics 

During the interview, Nora discussed the issues of classroom culture around what it 

means to “do math”. She believes that there is a common culture in school mathematics 

which view doing math as sitting quietly at a desk, completing a worksheet, using the 

textbook as a resource and turning in the completed assignment prior to class ending. 

The new textbooks in Nora’s view challenge this old lasting culture. The new textbooks 

encourage the use of collaborative learning and group work. However, it takes time for 

teachers and student to manage these activities. .  

Nora commented on the textbook presentation of situational problems which are 

connected with real life situations. She believes that the textbook surely make some 

positive transformations compared to old textbooks which simply delivered 

mathematical concepts in a very isolated manner. She also indicated that making the 

connection is not always easy. Students sometimes cannot see the connection since 

many of the questions are not realistic enough so students would be able to relate 

themselves to the questions. 

Nora’s practice as a high school mathematics teacher reveals patterns of distress and 

sense of obligation to improve her practice. Nora uses the new textbook as a tool for 
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self-directed professional development. She endorses students’ mathematical 

narratives. She emphasizes both concepts and procedures understanding by 

encouraging her students to share their understandings and discuss how the content 

relates to everyday life.  However, to have a better understanding of Nora’s practice as 

a mathematics teacher more data is needed. The use of multiple open interviews in 

combination with observations of classroom and staff-room interactions may allow 

some understanding of the meaning of teachers in classroom.  
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CONFRONTING INFINITY VIA PAINTER’S PARADOX 
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In mathematics education research paradoxes of infinity have been used in the 

investigation of conceptions of infinity. In this study the Painter’s paradox is used to 

investigate how undergraduate students studying Calculus understand infinity. This 

study contributes to research on the use of paradoxes in mathematics education as a 

research tool and to research on understanding infinity.  

Introduction 

Gabriel is an archangel, as the Bible tells us, who “used a horn to announce news that 

was sometimes heartening (e.g. the birth of Christ in Luke l) and sometimes fatalistic 

(e.g. Armageddon in Revelation 8-11)” (Fleron, 1991, p.1). The surface of revolution 

formed by rotating the curve 
x

y 1 for 1x about the x-axis is known as the Gabriel’s 

horn (Stewart, 2012). This surface and the resulting solid were discovered and studied 

by Evangelista Torricelli in 1641. It is not clear why this surface came to be known as 

Gabriel’s horn but if we go by what the bible says about Gabriel and his horn then we 

have to ask whether the discovery of this surface by Torricelli was good news or bad 

news for mathematics. The answer depends on the time period in which this question 

is asked and our views of infinity.  

At the time of the discovery of Gabriel’s horn in the 17th century the term infinity 

referred to unending processes.  The Greek mathematicians of antiquity, up to the time 

of Aristotle, used the term apeiron to refer to such processes as [endless] counting, 

successively halving a linear segment (as in Zeno’s paradoxes), and evaluating of an 

area by exhaustion. In the 4th century BC Aristotle explained the idea of infinity as an 

[endless] process (Kim et. al., 2012). He introduced the dichotomy of potential infinity 

and actual infinity as a means of dealing with paradoxes of the infinite that he believed 

could be resolved by refuting the existence of actual infinity. One can think of potential 

infinity as a process, which at every instant of time within a certain time interval is 

finite. Actual infinity describes a completed entity that encompasses what was 

potential. Aristotle’s potential/actual dichotomy dominated and influenced conceptions 

of infinity for centuries. Kant (1724–1804), for example, believed that we are finite 

beings in an infinite world. Therefore we cannot conceive the whole but only the partial 

and finite. Even more contemporary thinkers such as Poincaré (1854–1912) held 

largely Aristotelian views (Dubinsky et. al., 2005a). Then in 1851 Bolzano's work The 

Paradoxes of Infinity was a serious attempt to introduce infinity into mathematics as 

an object of study. Though Bolzano considered one-to-one correspondence as a 



 24 

PROCEEDING MEDSC 2013                                        Department of Mathematics Education - SFU 

 

criterion for comparing infinite sets he selected the part-whole relationship as the 

criterion. Then Cantor put forth a theory of infinity [infinite sets] using one-to-one 

correspondence as a criterion for comparing infinite sets. This was a turning point in 

the history of infinity as it established actual infinity as a mathematical object in 

mathematics (Moreno and Waldegg, 1991).  

Mancosu and Vailati (1991) point out that Gabriel’s horn is a solid that is consistent 

with the definition of a solid given in Euclid; a solid is that which has length, breadth, 

and depth. But it was counterintuitive to the early seventeenth-century geometer as it 

is not bounded on every side. Torricelli showed that the surface area of this solid is 

infinite but its volume is finite. The most striking feature of Gabriel’s horn is that, 

although finite in volume, it is actually, not just potentially, infinite in length. 

The result seemed so counterintuitive and astonishing that at first some of the leading 

mathematicians thought it impossible; even eighty years later Bernard de Fontenelle 

commented, "One apparently expected, and should have expected, to find [Torricelli's 

solid] infinite" in volume. (p. 1) 

So was the discovery of this solid by Torricelli in 1641 good or bad news for 

mathematics? According to Hilbert this heralded the very good news of actual infinity 

having a prominent place in mathematics three centuries later: "No one shall expel us 

from the paradise [theory of infinite sets] which Cantor created for us" (George Cantor; 

quoted in Kline, 1972, p. 1003), but not according to Poincaré: "Later generations will 

regard Mengenlehre [Cantor’s theory of infinite sets] as a disease from which one has 

recovered" (Henri Poincaré; quoted in ibid.).   

In mathematics education research paradoxes have been used as a lens on student 

learning. Movshovitz-Hadar and Hadass (1990 & 1991) investigated the role 

mathematical paradoxes can play in the pre-service education of high school 

mathematics teachers. They concluded that “a paradox puts the learner in an 

intellectually unbearable situation. The impulse to resolve the paradox is a powerful 

motivator for change of knowledge frameworks. For instance, a student who possesses 

a procedural understanding may experience a transition to the stage of relational 

understanding” (Movshovitz-Hadar and Hadass, 1991, p. 88). Sriraman (2008) used 

the Russell’s paradox in a 3-year study with 120 pre-service elementary teachers and 

studied their emotions, voices and struggles as they tried to unravel the paradox. 

Mamolo and Zazkis (2008) used the Hilbert’s Grand Hotel paradox and the Ping-Pong 

Ball Conundrum to explore the naive and emerging conceptions of infinity of two 

groups of university students with different mathematical backgrounds. Nunez (1994) 

used Zeno’s paradox, the Dichotomy, in a progressive manner to investigate how the 

idea of infinity in the small emerges in the minds of students aged 8, 10, 12, and 14. 

Nunez (1994) concluded that conceptions of infinity in the large and infinity in the 

small are very different, especially for young learners. For example, though 8 years 
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olds can conceive the notion of endless in their consensual world they cannot see 

“infinity in the small”.  

Painter’s Paradox 

The inner surface of the Gabriel’s horn is infinite; therefore an infinite amount of paint 

is needed to paint the inner surface. But the volume of the horn is finite ( ), so the 

inner surface can be painted by pouring a   amount of paint into the horn and then 

emptying it.  

The volume of the horn is given by 


1

21 )( dx
x

  where )( 2

1

x
 is the cross sectional area of 

the horn perpendicular to the x-axis. This improper integral evaluates to .  The surface 

area of the horn is given by dx
xx

21

1

1 )(1)(2 


  and this improper integral diverges.  

Theoretical considerations 

Several theoretical frameworks informed our investigation. We use APOS theory 

(Dubinsky, Weller, McDonald & Brown, 2005), reducing abstraction by Hazzan 

(1999), and platonic and contextual distinction by Chernoff (2011).  

APOS theory (Dubinsky et. al., 2005) suggests that an individual deals with a 

mathematical situation by using the mental mechanisms interiorization and 

encapsulation to build the cognitive structures actions, processes, objects and schemas 

that are applied to the situation.  A mathematical concept begins to form as one applies 

actions on objects to obtain other objects. As an individual repeats and reflects on the 

action, it may be interiorized into a mental process. A process is a mental structure that 

can perform the same operation as the action being interiorized in the mind of the 

individual that allows him or her to imagine performing the transformation without 

having to execute each step explicitly. If the individual can act on the process and 

transform it explicitly in his or her imagination, then the individual has encapsulated 

the process into a cognitive object. A mathematical topic may involve many actions, 

processes and objects that need to be organized and linked into a coherent framework 

called schema (Dubinsky et al., 2005).  

APOS theory clarifies the distinction between the potential infinity and the actual 

infinity. Potential infinity is the conception of the infinite as a process. This process is 

constructed by beginning with the first few steps (e.g., 1, 2, 3 in constructing the set N 

of natural numbers), which is an action conception. Repeating these steps (e.g., by 

adding 1 repeatedly) ad infinitum requires the interiorization of that action to a process. 

Actual infinity is the mental object obtained through encapsulation of that process 

(Dubinsky et al., 2005). Researchers have acknowledged the difficulty in transitioning 

from process to objects conceptions. Sfard suggested that this phenomenon “seems 

inherently so difficult that at certain levels it may remain practically out of reach for 

certain students” (p. 1). Moreover, Dubinsky, Arnon, & Weller (2013) noted “the 
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difficulty with this progression [from process to object] may be particularly strong for 

infinite processes” (p. 251). Focusing on this difficulty, Dubinsky et al. (2013) 

proposed the construct of ‘totality’, which is a stage in between the stages process and 

object. They also proposed the mechanism detemporalization “by which an individual 

moves from thinking of a process as a sequence of continuing steps to being able to 

imagine these steps all at once” (ibid.) to progress from process to totality. They 

observed that students who did not make the transition from process to object were 

often ‘stuck’ at the totality stage. 

Another theoretical framework we use is reducing abstraction by Hazzan (1999). 

According to Hazzan (1999) there are three ways in which abstraction level can be 

interpreted: (1) Abstraction level as the quality of the relationships between the object 

of thought and the thinking person, (2) Abstraction level as reflection of the process–

object duality, and (3) Abstraction level as the degree of complexity of the 

mathematical concept. As infinity is a complex process, it can be accessed by a learner 

at a lower level of abstraction that is required by a particular task.  

We also rely on the theoretical constructs introduced by Chernoff (2011) in 

distinguishing between platonic and contextualized situations. Chernoff distinguished 

between platonic and contextualized sequences in the relative likelihood tasks in 

probability. A platonic sequence is characterized by its idealism:  

For example, a sequence of coin flips derived from an ideal experiment (where an infinitely 

thin coin, which has the same probability of success as failure, is tossed repeatedly in 

perfect, independent, identical trials) would represent a platonic sequence (p. 4).  

But, a contextualized sequence is characterized by its pragmatism. For example, “the 

sequence of six numbers obtained when buying a (North American) lottery ticket (e.g., 

4, 8, 15, 16, 23, 42)” (p. 4) would represent a contextualized sequence. 

The StudyParticipants and the setting 

Participants in our study were 12 undergraduate students taking Calculus classes at 

Simon Fraser University. All of them volunteered to take part in this study outside their 

course work at the university. At the time of the study they all had done volume and 

surface integrals. They used the textbook Calculus by James Stewart (seventh edition). 

Gabriel’s horn is mentioned once in the book in a problem on page 574 under the 

section on area of a surface of revolution. In this problem they have to show that the 

surface area of the Gabriel’s horn is infinite. They show that the volume of the 

Gabriel’s horn is finite in a previous problem on page 552 under the section on 

improper integrals.  They were presented the Painter’s paradox with the following 

detailed mathematical justifications of computing the volume of the Gabriel’s horn and 

showing that its surface area is infinite, and asked to respond in writing what they 

thought of the paradox:  
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The volume of the Gabriel’s horn is given by  
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Later they were interviewed by the author and audio recorded. In this study we focus 

on two of the participants, Bruce and Bryan, because of their detailed responses to the 

written tasks and the page limitations of this paper.  

Results and analysis 

Mancosu and Vailati (1991) say that the Gabriel’s horn “is not merely potentially but 

actually infinite in length” (p. 57). But as “it is well known, potential infinity subsists 

within mathematics as the modus operandi which constitutes the operatory nucleus of 

standard calculus” (Moreno and Waldegg, 1991, p. 213). So how do Calculus students 

visualize Gabriel’s horn?  

Let us look at the calculation of the volume of the Gabriel’s horn given above. What 

kind of thought process is associated with the above calculation? First the volume of 

the horn truncated by the plane perpendicular to the x-axis containing the point )0,(a is 

computed. This volume is )1( 1
a

 . When one repeats this action for increasing values 

of a and reflects on it, this action of computing the volume of the truncated Gabriel’s 

horn can be interiorized into a process. For each increasing value of a there corresponds 

a truncated Gabriel’s horn with volume ).1( 1
a

  When one evaluates the limit of  

)1( 1
a

  as a tends to one sees the entire process as a totality. Further with more 

reflection, one may encapsulate the above process into the cognitive object of Gabriel’s 

horn with volume .  

Gabriel’s horn is a platonic object. It is formed by rotating a breathless infinitely long 

curve. To resolve Painter’s paradox one needs to decontextualize it from its apparent 

real life context. With real paint the horn cannot be painted by pouring a  amount of 

paint into the horn and then emptying it as the paint will not travel when the cross 

sectional area of the horn perpendicular to the x-axis becomes too small for the paint 

molecules. But if we can consider paint which can be thinned infinitely, let’s call such 

paint ‘ideal paint’, then the inner surface area of the horn can be painted in the above 

manner by disregarding the time it takes to fill the horn and assuming that ideal paint 

sticks to the surface. In this case the paint coat does not have a uniform thickness, and 



 28 

PROCEEDING MEDSC 2013                                        Department of Mathematics Education - SFU 

 

the thickness goes to zero fast enough for the amount used to be finite, this is the very 

same reason that guarantees that Gabriel’s horn has a finite volume. To paint an infinite 

surface area with a uniform thickness an infinite amount of paint is needed no matter 

how small the thickness is. 

All of the participants seemed experiencing a cognitive conflict in dealing with an 

infinitely long solid with a finite volume. Like the seventeenth century mathematicians 

they reacted in disbelief. For example Bruce said “It goes against something that really 

is intuitive. Like in our minds we all know that if something has a finite volume usually 

it has a finite surface area” What he added further is indicative his cognitive conflict:  

If the math is right which we are told that it is then … because often times arrive at a 

paradox so from my experience like dealing with stuff from Physics I know … I am not 

too foreign to the idea of something being one thing and at the same time another thing.  

Bryan seemed to be in a similar conflict. He wrote that this paradoxical situation is 

correct and that it reminded him of the paradoxical situation that arises in the 

summation of an infinite geometric series. For him a geometric series summing to a 

finite sum is a paradox. Again, this seems to be due to the counter intuitive aspect of 

infinitely many terms adding up to a finite number instead of infinity and this resonates 

with the ideas of Bruce.  

But to make sense of a finite volume having an infinite surface area Bryan reduced 

abstraction level of it by connecting it to familiar Silly Putty he used to play with. 

“What I most often do is roll the Silly Putty into a long cylindrical roll of Silly Putty 

and continue to do so until I had a very thin roll of Silly Putty” he wrote. He explained 

how a finite volume can have an infinite surface area:  

using a finite amount of silly putty, we could theoretically roll the silly putty to an infinitely 

thin thickness, and length (infinite surface area) […] Therefore, a finite amount of material 

can have an infinite surface area.  

By repeatedly thinning a fixed finite amount of Silly Putty its surface area can be made 

as large as possible. But extending this to seeing that a finite volume can have an 

infinite surface area requires one to see this repeatedly thinning process as a totality.  

Bryan seemed to unravel the paradox. In the interview conducted immediately after the 

written task he explained that as “surface area is increasing infinitely large however it 

is approaching zero” a finite amount of paint would be sufficient. But he added “it is 

not one billion square meters of wall that we are trying to paint”. When he was 

explained that the surface area is infinite means that it is bigger than any finite number 

he doubted that the horn can be painted with a finite amount of paint. He acknowledged 

that the mathematics is correct.  But he added that it does not make sense: “that is 

impossible! […] if you were to paint this room and it is growing infinitely large you 

know you have only 3.14 litres of paint it does not make sense”. The bold headed that 
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is impossible was in disbelief. Bryan seemed to be in an intellectually unbearable 

situation in spite of his earlier observation that a finite amount of material can have an 

infinite surface area.  

Bruce defined two kinds paint, one that occupies volume and one that covers surface 

area, in an attempt to resolve the paradox focussing on the dimensional difference 

between surface area and volume. Then he realized that some finite things can occupy 

infinite surface area in the same way Bryan did: 

let’s say I have a cube let’s say I squash with some kind of really strong plate so that no 

matter how thick it is it can always become thinner then the surface area yeah it would be 

finite volume but it would spread over an infinite surface area if you think of painting that 

way [...] what is thickness of an area it would have to be infinitely thin  

But finally Bruce seemed to have made a connection between his observation “some 

finite things can occupy infinite surface area” and painting the infinite surface area of 

the horn with a finite amount of paint. The above segment in the transcript happened 

at the very end of the half an hour interview and the bold headed yeah was emphatic.  

Both Bruce and Bryan used the words ‘infinitely thin’ in explaining how a finite 

volume can have infinite surface area, perhaps, experiencing the notion of infinitely 

small.  

Conclusion 

Paradoxes involving infinity provide a window to infinity. The cognitive conflict 

elicited by a paradox is difficult for a learner to resolve. Resolving this cognitive 

conflict requires the learner to make a cognitive leap from the intuitive to the formal 

or from the real world to the mathematical realm. Our participants struggled with the 

infinitely long Gabriel’s horn having a finite volume .  But they are used to calculating 

volumes and surface areas through limit processes and familiar with facts such as that 

the area under a curve over an infinite interval could be finite. For example, one of the 

results they are familiar with is that dxpx


1

1  is convergent if .1p  dxpx


1

1 is the area 

under the curve px
y 1 for .1x Yet, out of the twelve participants only two could 

intuitively see that the infinitely long Gabriel’s horn can have a finite volume.  

In resolving Painter’s paradox one has to confront infinity with a finite attribute which 

goes against the Aristotelian dictum that there is no proportion between the finite and 

the infinite. Also, one has to decontextualize it from its apparent real life context. This 

turned out to be difficult for some participants. One participant said the horn can never 

be filled as it will take forever to fill. Another said that it cannot be painted because at 

the atomic level you cannot see the surface. Our study shows that the Painter’s paradox 

can be used as a research tool to reveal the nature of conceptions of infinity including 

conceptions of infinitely small.    
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YOUNG CHILDREN’S THINKING ABOUT VARIOUS TYPES OF 

TRIANGLES USING DYNAMIC GEOMETRY TASKS 

Harpreet Kaur 

Simon Fraser University 

This paper will show preliminary results of how young children (age 7-8, grade 2/3) 

can exploit the potential of dynamic geometry environments to identify, classify and 

define different types of triangles (scalene, isosceles, equilateral). This study is based 

on three-lesson classroom intervention, during which the children worked both in a 

whole classroom setting in which they could interact directly with Sketchpad on an 

interactive whiteboard as well as individual/pair work with paper-and-pencil. This 

paper reports on first lesson only. Using Sfard’s (2008) communicational approach, 

we extend the work of Battista (2008) to show how students developed a reified 

discourse on various types of triangles. Further, we show how the students used a 

dynamic language to describe the behaviour of various triangles in terms of 

invariances about how the sides and angles of these triangles would change under 

dragging. 

 

INTRODUCTION 

Research shows that a majority of students in North America have an inadequate 

understanding of geometric concepts and poorly developed skills in geometric 

reasoning (e.g., Battista, 2009; Clements and Battista 1992). The primary cause for this 

poor performance is both what and how geometry is taught (Clements & Battista, 

1992). Most North American curricula consist of a collection of superficially covered 

topics with no systematic support for students’ progression to higher levels of 

geometric thinking. For example, in BC curriculum, children are expected to describe, 

construct and compare 2-D shapes including triangles, squares, rectangles and circles 

in grade 2, but the basic geometrical concepts like symmetry, angles etc. are introduced 

in grade 4 and 5 respectively. Children are taught to construct and compare triangles, 

including scalene, isosceles, equilateral in grade 6. 

We have been investigating many geometry-related concepts at early grades, using 

DGEs, including shape identification, parallel lines, symmetry and angles (Sinclair, 

Moss & Jones, 2010; Sinclair & Kaur, 2011, Kaur & Sinclair, 2012) and reported about 

children’s readiness and ability to develop these concepts. Further we aim to conduct 

studies to see if early development of these concepts helps students in developing better 

reasoning about various geometric shapes and their properties. In this paper, we report 

on an exploratory study conducted with a split class of grade 2/3 children (ages 7-8) 

working with various types of triangle sketches using The Geometer’s Sketchpad. The 
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focus of this paper is to study what kind of dynamic language children use, what kind 

of geometric properties they attend to, what kind of reasoning they provide to describe 

the behaviour of different types of triangles and to discuss the specific mediating role 

of the use of the software on this thinking. 

CHILDREN’S UNDERSTANDING OF CLASSIFICATION OF SHAPES 

Many researchers have shown that students are not very successful at identifying non-

prototypical triangles (Clements and Battista (1992). Research also indicates that 

children prefer to rely on a visual prototype rather than a verbal definition when 

classifying and identifying shapes (Gal & Linchevski, 2010). Specifically, when a child 

holds both a verbal definition and a visual prototype for a given geometric concept, the 

child often calls upon the visual prototype rather than, or in spite of, the verbal 

definition when assigning class membership. For example, Fischbein and Nachlieli 

(1998) note that although students could give the correct definition of a parallelogram, 

many relied on the visual prototype instead of applying their definition when 

identifying shapes. de Villiers (1994) suggests that classifying is closely related to 

defining (and vice versa) and classifications can be hierarchical (by using inclusive 

definitions, such as a trapezium or trapezoid is a quadrilateral with at least one pair of 

sides parallel – which means that a parallelogram is a special form of trapezium) or 

partitional (by using exclusive definitions, such as a trapezium is a quadrilateral with 

only one pair of sides parallel, which excludes parallelograms from being classified as 

a special form of trapezium) (p11-12). In general, in mathematics, inclusive definitions 

are preferred. A number of studies have reported about students’ problems with the 

hierarchical classification of quadrilaterals (Fuys, Geddes & Tischer, 1988; Clements 

& Battista (1992), Jones (2000)). Battista (2008) designed Shape Makers computer 

microworld that provides students with screen manipulable shape-making objects and 

helps to promote the development of mental models that student can use for reasoning 

about geometric shapes. For instance, the computer Parallelogram Maker can be used 

to make any desired parallelogram that fits on the computer screen, no matter what its 

shape, size, or orientation–but only parallelograms. On the similar lines, to facilitate 

the exploration of the concept of various types of triangles we developed Triangle 

ShapeMaker in Sketchpad for the present study.   

THEORETICAL PERSPECTIVE 

In previous research, we have found Sfard’s (2008) ‘commognition’ approach is 

suitable for analysing the geometric learning of students interacting with DGEs (see 

Sinclair, Moss & Jones, 2010; Sinclair & Kaur, 2011). For Sfard, thinking is a type of 

discursive activity. Sfard’s approach is based on a participationist vision of learning, 

in which learning mathematics involves initiation into the well-defined discourse of 

the mathematical community. The mathematical discourse has four characteristic 

features: word use (vocabulary), visual mediators (the visual means with which the 
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communication is mediated), routines (the meta-discursive rules that navigate the flow 

of communication) and narratives (any text that can be accepted as true such as axioms, 

definitions and theorems in mathematics). Learning geometry can thus be defined as 

the process through which a learner changes her ways of communicating through these 

four characteristic features. We are particularly interested in investigating how the 

students might move between different word uses and to examine the informal 

language they use to talk about different triangles.  

EXPLORING THE UNDERSTANDING OF DIFFERENT TYPES OF 

TRIANGLES 

Participants and data collection 

This teaching experiment is part of a larger project that involves the study of children’s 

geometric thinking in the primary grades. We worked with grade 2/3 split classroom 

children from a University Lab pre-K-6 school in an urban middle SES district. There 

were 24 children in the class from diverse ethnic backgrounds and with a wide range 

of academic abilities. We worked with the children on weekly basis on a variety of 

geometric concepts for seven months. Three lessons were conducted on the topic of 

triangles. Each lesson lasted approximately 40 minutes and was conducted with the 

children seated on a carpet in front of a screen. Two researchers, and the classroom 

teacher, were present for each lesson. My research associate took the role of the teacher 

and conducted the lessons. Lessons were videotaped and transcribed. This paper is 

focused on the first lesson on types of triangles. The children had previous lessons 

involving Sketchpad, where they had worked with symmetry and angles, but they had 

never received formal instruction related to types of triangles.  

Dynamic triangle sketches  

On the lines of work of Battista (2008), we developed the Triangle ShapeMakers 

sketches (fig. 1(a) and 1(b)) for different types of triangles (Scalene, isosceles, 

equilateral triangles, right triangle). Pink triangle is scalene, red triangle is equilateral, 

blue triangle is isosceles, and green triangle is right triangle by construction.  

        

    Fig. 1(a): DifferentTriangles sketch       Fig. 1(b): Triangle ShapeMaker sketch 
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Sketch shown in fig. 1(a) is termed as DifferentTriangles sketch and students were 

asked to explore the sameness and differences in the various coloured triangles. Sketch 

shown in 1 (b) is called Triangle ShapeMaker and students were asked to explore which 

coloured triangles could fit in the given empty triangles. In this paper, I will report only 

on students’ work with first sketch. They were asked to drag the vertices and report on 

the behaviour of different triangles of first sketch 

Working with DifferentTriangles sketch 

Students were presented with the DifferentTriangles sketch (figure 1 a). In the 

beginning all the three shapes were static on the screen and were appearing exactly 

same from a geometric point of view. Teacher asked about the ways in which the 

triangles are different. Students talked about difference in colors, thickness of the sides 

of the triangles. And then teacher asked about what’s same in the three shapes. 

Neriya: They are all triangles. 

Teacher: They are all triangles. Very good. Sometimes certain things are obvious but 

we have to say them anyway. Viktoria, what else is the same? 

Viktoria: They all have the three same angles. 

Teacher: They all have the three same angles. Wow, so you are noticing these angles 

right here. They all are the same in all of these triangles. Very nice. The 

angles are all the same. Anything else that you notice? 

Nick: They all have three sides and three edges. 

Neriya talked about all the three shapes being triangles. Viktoria’s use of words “They 

all have the three same angles” shows that she noticed the similarity of angles in all the 

three triangles. It is worth noting that she is noticing the angles in the static shapes. 

Nick noticed the same number of sides and edges in the triangles. The above excerpt 

shows that children’s description of sameness in static shapes in figure 1(a) was based 

on visual similarity and it moved from holistic (shape as a whole) similarity to the 

similarity among various parts of the triangles. Then, teacher appoints the three 

students to drag the three colored triangles pink, red and blue respectively and call them 

as drivers. Teacher asks the rest of the students to act as detectives and they have to 

describe what kinds of triangles can be made, what can change and what stays the same 

in each of the triangles while dragging. 

Comparing the dragging of scalene and equilateral triangle 

First a girl Neriya drags the pink (scalene) triangle into various sizes and orientations 

i.e. skinny and long, small and big triangles. Then Adil drags the red (equilateral) 

triangle and teacher asks if he can make it long and skinny. Observing the dragging 

patterns some students say no. 
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Teacher: Can I see some hands up? Why can’t Adil make it long and skinny? What 

is matter with this triangle that makes it difficult for him to make it long 

and skinny? (Pointing to one student) how come you can’t make it long 

and skinny? 

Evan: Because it’s different than that and I think it can only go by a perfect   

triangle 

Teacher: It can only… what do you mean by a perfect triangle? What’s a perfect 

triangle? (Okay Adil, thank you very much taking marker from him). 

What’s a perfect triangle? What do you mean? What’s Special about this 

triangle here? Why is he calling it perfect? Rafaela? 

Rafaela: Because the other triangle can move at a point but this one can move 

bigger or smaller differently 

Students started to notice the changes in red triangle as Adil dragged one of the 

vertices. Evan’s use of words “it’s different than that” shows that he started to notice 

the differences between red and pink triangle that appeared same in the beginning. 

In the statement “It can only go by a perfect triangle”, the use of words ‘go’, ‘only 

by perfect triangle’ shows Evan’s attention to the restrictive type of movement 

depicted by the red (equilateral) triangle upon dragging. Further in Rafaela’s 

description “other triangle can move at a point” shows that she is paying attention to 

the particular kind of movement regularity depicted by the scalene triangle, where 

dragging one vertex don’t move the other two vertices. The use of words “this one 

can move bigger or smaller differently” shows that she is noticing the different kind 

of size changing behaviour of equilateral as compared to scalene triangle. Thus, 

Evan’s routine of comparison seems geometrical whereas Rafaela’s comparing 

routine is based on the different movement regularity of the triangles, but both the 

routines are emerged as a result of potential of the dynamic environment. 

Teacher:       Why are you calling this a perfect triangle? Why do you think is he calling 

this a perfect triangle? What is that perfect about it?  That is different about 

this triangle (some noises)… Jack? 

Jack:              Everything moves with it except one point. 

Teacher:      Dragging the red triangle) even when it is getting bigger and smaller, is there 

anything that staying the same as I make it bigger and smaller? Neriya?  

Neriya:          The angles 

Teacher:     The angles are staying the same. Good. Anything else that is staying the same? 

(Pointing at one student) you are going to say angles as well or something 

else? Yeah.  

Explaining about the behaviour of perfect triangle, Jack’s use of words “everything 

moves with it except one point” shows that the he is shifting his attention from holistic 



 36 

PROCEEDING MEDSC 2013                                        Department of Mathematics Education - SFU 

 

movement regularity to partitive movement regularity and thus shifting his attention to 

consider interrelationships between different parts of the triangle. This kind of 

reasoning is associated with the use of the tool. As students noticed the change 

happening in the perfect triangle as a result of dragging, teacher asked about if there is 

anything that is staying the same. One girl Neriya suggested that ‘angles’ are staying 

the same under dragging. Jack abstracted a tool based movement regularity of 

equilateral triangle, but Neriya conceptualised the movement regularity with the 

complete precision by expressing it in terms of a traditional geometric property. 

Exploring the overlap of isosceles triangle on a fixed scalene triangle 

Teacher then gives a challenge to the students and asks them to figure out if they can 

overlap the blue (isosceles) triangle over the pink (scalene) triangle without touching 

the pink triangle. Rafaela first matches the two vertices of blue 

triangle to one side of the pink triangle and then try to drag it 

in the upward diagonal direction (see fig. 2) and concludes that 

she can’t overlap blue triangle over pink one. 

Teacher:     You think you can’t? How come you can’t?    

Rafaela:      Because I think if I move that one, that one also 

moves  

Teacher:    If you move this one here, this blue one, the other blue vertex moves too right? 

Actually if you move this vertex, it moves too. How come you can’t do it? 

How come you can’t put the blue one on the pink one? 

Dan:            Because the blue one can only move symmetrical 

Rafaela reasoning “I think if I move that one, that one also moves” shows that the she 

is paying attention to the partitive movement regularity between different parts of the 

triangle. She is noticing what other changes occur in the shape while dragging one part 

of it. While Dan’s use of words “it can only move symmetrical” shows that he is 

abstracting the dynamic movement regularity with precision by expressing it in terms 

of a geometric property of symmetry. The systematic dragging of the vertex of one of 

the longer sides of isosceles (blue) triangle by Rafaela acted as a visual mediator and 

helped Dan to see the property of symmetry. The teacher asked the other students’ if 

they agree with Dan’s statement. There was mixed response, then teacher asked Jordan 

about his thinking.  

Teacher:       Okay, Jordan what do you want to say?  

Jordan:          So, the one 

 

Fig. 2                                                                                            
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Teacher:      Shh… Listen to Jordan because it would be hard to agree or disagree if you 

don’t know what he is saying (to the students who are 

making noises)  

Jordan:      So, this one wherever you move it, then this one moves 

with this, so when you move, it will go that way 

(stretching his arms upwards along the two longer 

sides (fig. 3)  

                                                   

Jordan’s use of words “wherever you move it, then this one moves with this” and “so 

when you move, it will go that way” along with the stretching arms gesture shows that 

he is also talking about the simultaneous change in two arms of blue triangle. Teacher 

termed Dan’s argument as symmetry argument and Jordan’s argument (moving in 

same way) as stretching argument. Most of the students agreed with these arguments. 

Then teacher asked about the two sides of blue triangle. As the students already noticed 

the same angles in red (equilateral) triangle, upon teacher’s prompt they noticed the 

sides stay same in the red triangle. As students identified the properties of different 

sides staying same or changing length, teacher introduced the special names 

equilateral, isosceles and scalene for the red, blue and pink triangles respectively. 

Conclusion 

The discussion of above excerpts and preliminary analysis shows that during the 

exploration with dynamic sketches students’ routines moved from self-invented 

informal spatial structuring to formal powerful geometric structuring. In case of all the 

challenges given by the teacher, students’ reasoning started with describing the 

movement patterns like “Everything moves with it except one point”, “ If I move that 

one, that one also moves”, “wherever you move it, then this one moves with this” and 

then eventually moved to formal properties “angles are staying same”, “moves 

symmetrical”. Dragging the vertices acted as a visual mediator and helped students to 

develop the routine of looking at movement regularity and eventually shifting towards 

formal geometrical properties. This episode also provides initial evidence that the 

teaching of concepts like symmetry and angles in early years can lead to whole set of 

new possibilities of geometric reasoning about shape and space for young children. 

 

References 

Battista, M.T. (2009). Highlights of Research on Learning School Geometry. In (Eds.) T.V 

Craine and R. Rubenstein. Understanding geometry for a changing world: Seventy-first 

yearbook (pp 91 -108). Reston, VA: NCTM.   

Battista, M.T. (2008). Development of shapemakers geometry microworld. In Blume, G.W., 

Heid, M.K.(Eds.), Research on Technology and the Teaching and Learning of 

 

Fig. 3           

 



 38 

PROCEEDING MEDSC 2013                                        Department of Mathematics Education - SFU 

 

Mathematics Volume 2: Cases and Perspectives, 131-156, USA-Information Age 

Publishing Inc. 

Clements, D. H., & Battista, M.T. (1992). Geometry and spatial reasoning. In D.A. Grouws 

(Ed.), Handbook of research on mathematics teaching and learning (pp. 420-464). New 

York, NY: MacMillan. 

de Villiers, M. (1994). The role and function of a hierarchical classification of quadrilaterals, 

For the Learning of Mathematics, 14(1), 11–18. 

Fischbein, E., & Nachlieli, T.(1998). Concepts and figures in geometrical reasoning, 

International Journal of Science Education, 20(10), 1193- 1211. 

Fuys, D., Geddes, D., and Tischer, R. (1988). The van Hiele Model of thinking in geometry 

among adolescents, Reston, VA: NCTM.   

Gal, H. & Linchevski, L. (2010). To see or not to see: analyzing difficulties in geometry from 

the perspective of visual perception. Education Studies in Mathematics, 74, 163-183. 

Jones, K. (2000). Providing a foundation for deductive reasoning: students’ interpretations 

when using dynamic geometry software and their evolving mathematical explanations. 

Educational Studies in Mathematics, 44(55–85) 

Kaur, H. and Sinclair, N. (2012). Young children’s understanding of angle in a dynamic 

geometry environment. In Van Zoest, L. R., Lo, J.-J., & Kratky, J. L. (Eds.). (2012). 

Proceedings of the 34th annual meeting of the North American Chapter of the 

International Group for the Psychology of Mathematics Education (pp.1081-1089). 

Kalamazoo, MI: Western Michigan University. 

Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses 

and mathematizing. Cambridge, UK: Cambridge University Press. 

Sinclair, N., Moss, J. and Jones, K. (2010). Developing geometric discourse using DGS in K-

3. In Pinto M. M. F., Kawasaki T.F (Eds.). Proceedings of the 34th Conference of the 

International Group for the Psychology of Mathematics Education, (Vol. 4, pp. 185-192). 

Belo Horizonte, Brazil: PME.  

Sinclair, N. & Kaur, H. (2011). Young children’s understanding of reflectional symmetry in 

a dynamic geometry environment. In Ubuz, B. (Ed.) Proceedings of the 35th Conference 

of the International Group for the Psychology of Mathematics Education, (Vol.4, pp.193-

200).  Ankara, Turkey: PME 

 

  



 39 

PROCEEDING MEDSC 2013                                        Department of Mathematics Education - SFU 

 

EFFECTS OF INCONSISTENT DEFINITIONS: DEFINITION OF 

CONTINUITY 

Gaya Jayakody 

This paper reports on a problematic situation that arises through certain definitions 

involving the concept of continuity. The paper mainly focuses on bringing out these 

problems in the context  of textbooks and other mathematical resources and in 

addition gives an instance to elaborate how this problem could create tensions and 

conflicts in students’ thinking processes. Sfard’s commognitve framework is used in 

the analysis of a student’s work on continuity. A potential remedy for this problem is 

presented in conclusion.      

Continuity: two definitions 

The concept of continuity is an important concept in calculus and analysis. It is usually 

introduced in introductory calculus courses for students who specialize in mathematics 

as well as for students who do not specialize in mathematics but take calculus as part 

of their program requirements or their general interest. 

The role of definitions and its importance have been attended by many mathematics 

education researchers (Vinner, 1991; Edwards & Ward, 2008, Robinson, 1962). It is 

not at all unusual in the field of mathematics, be it among textbooks, mathematicians 

or teachers, to use different definitions for the same mathematical concept. Often these 

differences are superficial and nuanced. And more importantly, even if these 

definitions are superficially different, they are equivalent and consistent. They 

represent the ‘same’ concept and for the most part imply the same set of properties of 

that concept. For instance, the definition of a ‘function’ reads “A rule that assigns to 

each element in a set A one and only one element in a set B” in the text book “Applied 

Calculus” by Tan, Menz and Ashlock (2011), while it is presented in Wikipedia as “a 

set of ordered pairs where each first element only occurs once”. There is also the 

practice of introducing concepts using simpler versions of definitions at lower levels 

and then progressively advancing to more rigorous definitions at higher levels. For 

instance, if we look at the same concept of a ‘function’, it is often introduced 

metaphorically at lower levels as a machine that takes an input x  and returns a unique 

output ( )f x . 

Similarly, the concept of continuity is described and defined to suit different audiences 

in different levels: the intuitive description, informal definition, formal limit definition 

and the more rigorous epsilon-delta definition are examples.  

The aim of this paper firstly, is to point out two problematic situations that arise through 

certain definitions, or the lack of certain definitions, involving the concept of 
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continuity. These two issues are intertwined and one may see them as two 

manifestations of the same problem. The two problems are, the usage of the phrase 

‘continuous function’ despite the lack of an explicit definition for a ‘continuous 

function’ and the mathematically inharmonious and inconsistent ramifications 

resulting from some of such definitions when they are explicit but incoherent. These 

concerns can be seen to be present in textbooks, mathematical websites, or even 

arguably within classroom instruction and discourse.  

Secondly, a small piece of data is presented to serve as an example to elaborate how 

this situation can affect student’s thinking. Sfard’s discursive framework is used to 

analyze data. For the purpose of this paper, only the relevant part of the framework is 

briefly described which is used in the short analysis of data. Finally, in conclusion, 

acknowledging the importance of rigorous definitions in teaching and learning 

mathematics, I offer a potential remedy for the ‘problem of continuity’. 

Theoretical framework 

Sfard (2008) unifies thinking and communication as commognition. In the 

commognitive framework thinking is conceptualized as an individualized version of 

interpersonal communication. With the visioning of Mathematics as a discourse it is 

claimed to be an autopoetic system that creates the objects of its study. Hence 

mathematical objects are discursive objects and students personally construct these 

mathematical objects which can be represented as ‘realization trees’. A realization tree 

shows the different realizations of a particular signifier where a signifier is a word or 

symbol that acts as a noun in the mathematical discourse. A realization is a perceptually 

accessible thing so that narratives about the signifier can be translated into narratives 

about the realization. The main concern in this paper, definitions, belongs to the 

category of endorsed narratives which are sequences of utterances framed as 

descriptions of objects or relations between objects.  

Problem 1: Inconsistent definitions 

In the context of an introductory calculus course, and also in many other common 

resources, the definitions used for continuity related concepts are the limit definitions. 

There are two different limit definitions (that are labeled as D1 and D2 for reference in 

this paper) used for “continuity at a point” (and accordingly “discontinuity at a point”) 

on which the other related concepts of continuity can be based on. Below are the two 

definitions. 

D1 (e.g., Stewart, 2012; Tan, Menz & Ashlock 2011; Khuri, 2003; Neuhauser, 2010; 

Lial et al., 2011) 



 41 

PROCEEDING MEDSC 2013                                        Department of Mathematics Education - SFU 

 

A function f is said to be continuous at c if,  

1. ( )f x   is defined at  x c           

2. lim
x→c

  ( )f x  exists. 

3. lim
x→c

  ( )f x   is equal to ( )f c  

f is discontinuous if any of the above conditions are not satisfied. 1 

D2 (e.g., Stahl, 2011; Binmore, 1982; Brown, 1963; Strang, 1991; Begle & Williams, 

1954) 

A function f is said to be continuous at x c in its domain if, 

                  lim
x→c

  ( )f x =   ( )f c  

And f is discontinuous at x c in its domain if, 

                  lim
x→c

  ( )f x ≠   ( )f c  

 

The deciding factor that makes a definition consistent with either D1 or D2 is treatment 

of a point at which the function is not defined. According to D1, a function that is not 

defined at a point is discontinuous at that point, while according to D2 the question of 

continuity or discontinuity shouldn’t arise. Therefore the difference between D1 and 

D2 lies more in the way ‘discontinuity’ (at a point) is defined. It is, however, not the 

intention of this paper to go to mathematical lengths to investigate the accuracy or 

falsehood of these definitions, but to attend to and elaborate on the discrepancies and 

consequences of them. The problems discussed in this paper are hinged on these two 

definitions.  

Problem 2: Absence of a definition for ‘a continuous function’. 

I have examined several dozen of resources (textbooks, websites, mathematical 

dictionaries) seeking a definition for a ‘continuous function’. In most of the resources 

such a definition was not explicitly stated.  However, the phrase ‘continuous function’ 

is loosely used in many places.  

The topic of continuity starts off, in many textbooks and websites, with the definition 

of ‘continuity at a point’ (Stewart, 2012;  Lial, Greenwell, & Ritchey, 2011; Begle, 

1954; Begle & Williams, 1972). This definition is the leading definition and other 

related extensions to the concept of continuity of a function, each of which has its own 

                                                           
1 In some resources, (e.g., Mathworld.Wolfram) this part of the definition is implicit. 
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definition may follow (continuity on an interval, a discontinuity/a discontinuity at a 

point, types of discontinuities- removable, jump, infinite-, one-sided continuities).  

However, the heart of the second problem is that these definitions of 

continuity/discontinuity at a point are not followed by the definition of a continuous 

function (e.g.: Neuhauser , 2011, Stewart, 2012; Khuri, 2003). This situation leaves 

room for students, if not explained by the instructor, to intentionally or unintentionally 

‘construct’ a meaning for “continuous function”. Instinctively it is likely that this will 

be interpreted as “continuous everywhere” which yet again is problematic. 

‘Everywhere’ - where? Everywhere can mean ‘on the real number line’. In fact, some 

sources present this interpretation and this definition is consistent with D1: 

A function that is continuous on (-∞, +∞) is said to be continuous everywhere, 

or simply continuous.  (Anton, 1995,  p.105) 

A function is a continuous function if it is continuous at every real number. 

(Mathematics Harvey Mudd Collage, n.d.)  

However, ‘everywhere’ can also be interpreted as in every point of the function 

domain, which is consistent with D2 (e.g.: Strang, 1991; Bogley & Robson, 1996). 

Therefore this situation holds the potential to lead students to construct their own 

meaning for a ‘continuous function’, which could be in discord with the intended 

definition.  

Student confusions: an example 

It was found in the first stage of a current study that university first year students have 

difficulties in determining whether a function is continuous or not when there is a 

discontinuity on an interval in particular. What follows is an example taken from the 

on-going second stage of the study, that shows how the discrepancy between D1 and 

D2 affects students when they are engaged in a mathematical task.  In a questionnaire, 

student ‘J’, a university first year student who takes an introductory Calculus course, 

was first given a questionnaire where she was asked to give the definitions for 

“continuity at a point” (which she had learnt in the course) and “continuous function” 

(which she was not taught in the course) and then was given 6 functions in their 

graphical form to be identified as continuous or discontinuous. Then she was 

interviewed one on one to discuss her responses.   

A realization tree for ‘a continuous function’ for J was constructed based on her 

responses to the questionnaire and her utterances in the interview. Among other 

realizations, it was found that, J had the following two realizations for a continuous 

function. 
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A: For every point c in its domain, f(c) is defined and lim
x→c

  ( )f x =   ( )f c   [this is 

in accordance with D2] 

B: A function that does not have a hole or an asymptote [this is in accordance 

with D1] 

Following (Table 2) is an interpretive elaboration of an excerpt from the interview with 

J that illustrates this tension between these two realizations (a word that is stressed is 

indicated by bold letters). The first four graphs, which are discussed in the excerpt, are 

given in Table 1. Note that the domain for graph D was specified. 

A 

 

B C            D 

 

 

 

Domain = (- ,2)  (5, ) 

Table 1: The first four graphs in the questionnaire 

 

Utte

ranc

e no. 

Who 

said 

What is said What is done Interpretative elaboration 

118 G 

 

Umm, so here you refrain 

from saying that it is.. 

Here you said no, no, no 

 

But here you are just saying 

‘there is a discontinuity’  

Pointing to graph 

D 

G is pointing out that even though J 

has clearly classified graphs A, B and 

C as “not continuous”, she refrained 

from classifying graph d as “not 

continuous” but just stating the 

“discontinuities”. 

119 Pointing to 

graphs A, B & C 

120 Pointing back to 

graph D 

121 J Yeah   

122 G At x equals 2 and x equals 5  G stresses on ‘and’ because J did not 

classify the whole interval from 2-5 

as a discontinuity but only 2 and 5. 

123 J 

 

Yeah I wasn’t  J admits that she avoided this 

classification in graph D 

6 

 

 

3 

 

 
--3 9 -10 

5 2 
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124 G Can you explain that to me?  G actually is seeking for two 

explanations, why she could not come 

to a decision whether function d was 

continuous or not, and why she only 

specified points 2 and 5 as 

discontinuities. However, in G’s 

question it is not clear that she is 

expecting two explanations.    

125 J I wasn’t sure; I did this 

question for like three 

minutes… 

 J specifying three minutes for graph 

D implies that she took more time for 

it than she took to do each of the 

graphs A, B and C. By saying she 

took 3 minutes and admitting she 

wasn’t sure of this she’s implying that 

it was challenging to her. 

126 G Ohh   

127 J Because…and then I went 

back and looked at the 

definition and I saw that it 

was like within the domain 

that it’s given.. 

Pointing to the 

definition which 

is realization A 

This is the first graph for which she 

refers to the definition. She did the 

first three without referring to the 

definition. And now, she pays 

attention to the domain because now 

the domain is “given”.  And the 

definition mentions about the domain. 

128 G Hmmm?   

129 J And then I was like.. oh but 

there is like a.. open 

circles…it should be…..  

 J says “but there is like a.. open 

circles”. She uses ‘but’ because to her 

open circles, as in graphs b and c, 

mean ‘discontinuities’ (B) but she’s 

trying to say that they are not in the 

domain (A). In other words, this 

utterance could be reworded as “the 

function should be continuous 

according to the definition but since 

there are open circles the function has 

discontinuities” 

130 J 

 

… 

 

Thinking for 1 

second 

The pauses taken to think shows how 

much she is struggling to decide 

because there is a battle between two 

realizations she has for continuity. 
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131  

 

there is a…there is no.. umm.. 

 

 

 

 

 

… 

 

 

I don’t know because it’s not 

con… like within the 

domain.. it’s not a square 

bracket  

 The two utterances “there is a” and 

“there is no” that take place 

adjacently clearly shows the 

conflicting conclusions about 

continuity of function d resulted 

through the two different realizations.  

132 Does a thinking 

gesture 

 

133  J wants to say that the function is not 

continuous (‘not con…’) but she is 

stuck because the two points 2 and 5 

are not in the domain (‘not a square 

bracket’) 

134 G Yeah   

135 J So it’s not… Pauses J really wants to say it is not 

continuous and this shows that for 

her, realization B is stronger than A. 

136 G So    

137 J I don’t really know  J is utterly confused and gives up. She 

doesn’t seem to be aware that the 

confusion stems from two different 

realizations. 

Table 2: Interpretive elaboration for Jennifer’s utterances from 118 to 137 that 

elaborates a conflict between the realizations A and B for continuity 

The tension between the two realizations A and B which are based on the two 

inconsistent definitions D1 and D2 is clearly visible in J’s utterances. She had learnt 

D1 as the definition for ‘continuity at a point’ in her class. She did not have any 

problem in deciding the continuity of the first three graphs as these were familiar 

graphs to her that she had often come across in the class. And as she admitted in the 

interview she did not refer to the definition in deciding whether they were continuous 
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or not. This was an immediate realization (B) for the signifier ‘continuous function’ 

for her that included familiar features that she had seen in functions that were not 

‘continuous’; holes and asymptotes. The unfamiliarity of the graph D, one with a 

discontinuity on an interval, pushed her towards the realization A which is the 

definition she had taken from a website which is an endorsed narrative for a continuous 

function that is consistent with D2. The realization procedure for A, however, which 

was not an immediate one, required her to analyze the domain. At this point, J was torn 

between the two realizations as the two realizations would take her to different 

conclusions about the continuity of the graph which resulted in a constant conflict in 

her utterances. This is a commognitive conflict between two of her own realizations 

for the signifier ‘continuous funciton’. (However, Sfard reserves the term 

commognitive conflict for encountering “between two interlocuters who use the same 

signifiers in different ways or perform mathematical tasks according to different rules” 

(Sfard, 2008, p. 161).) 

 

As discussed in this paper, while there are inconsistencies in the way the continuity of 

a function at a point is defined there is both ambiguity and inconsistency in explaining, 

let alone defining, what ‘a continuous function’ is. Apparently, the problem is not a 

fresh one. It is interesting to see Gilbert Strang pointing out in 1991, that “it is amazing 

but true that the definition of "continuous function" is still debated” (p. 87). Over 

twenty years later, here we are, still grappling with a continuing problem about the 

definition of ‘a continuous function’! 

Table 3 is an attempt to show how D1 and D2, the two leading limit definitions 

for ‘continuity at a point’, may consistently build and derive the definition for a 

‘continuous function’.  

 D1 D2 

Continuity at a point A function f is said to be continuous 

at point c if, 

1. ( )f x   is defined at  x c         

2. lim
x→c

  ( )f x  exists. 

3. lim
x→c

  ( )f x   is equal to ( )f c  

Let c  be a point in the domain 

of the function f . Then f  is 

continuous at c  if, 

lim
x→c

  ( )f x =   ( )f c  

 

Discontinuity at a point If any of these three conditions fails, 

the function is discontinuous at x c  

f  is discontinuous at point c  

in its domain if, 

lim
x→c

  ( )f x    ( )f c  
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Continuous function A function is a continuous function if 

it is continuous at every real number.  

A function is a continuous 

function if it is continuous at 

every point in its domain. 

 

Example to illustrate the 

difference 

 

 

 

 

 

 

 

 

 

Function is not defined at 3. Therefore 

there is a discontinuity at 3. 

 

 

The function is not a continuous 

function because it has a discontinuity 

at 3. 

 

 

 

 

 

 

 

 

 

Function is not defined at 3. 

Therefore, the question of 

continuity or discontinuity 

does not arise at 3. 

 

The function is a continuous 

function because it is 

continuous at every point in its 

domain. 

Effect on a point in a 

rational function where 

the function is not 

defined  

Is called a ‘removable discontinuity’ Is called a ‘(removable) 

singularity’ 2 

Table 3 : Consistent definitions of continuity 

                                                           
2 “If ( )f x  as 0x x , where 0 [ , ]x a b , then x0 is said to be a singularity of ( )f x .” (Khuri, 2003, p. 225).  

“The term removable discontinuity is sometimes used by abuse of terminology for cases in which the limits in both 

directions exist and are equal, while the function is undefined at the point. This use is abusive because continuity and 

discontinuity of a function are concepts defined only for points in the function's domain. Such a point not in the domain 

is properly named a removable singularity.” (“Classification of discontinuities”, 2013) 

 

3 
3 

http://en.wikipedia.org/wiki/Abuse_of_terminology
http://en.wikipedia.org/wiki/Defined_and_undefined
http://en.wikipedia.org/wiki/Continuous_function
http://en.wikipedia.org/wiki/Removable_singularity


 48 

PROCEEDING MEDSC 2013                                        Department of Mathematics Education - SFU 

 

 

This table is very far from ‘solving’ the problematic situation pointed out in the 

paper. However, I believe that part of the solution lies in identifying the problematic 

situations, which I attempted to do in this paper.  The table outlines the difference 

between D1 and D2 separating and placing them in two different contexts, in the hope 

that it will help learners to identify the context they are working on. 

In conclusion, I believe, apart from being aware of these problems that exist in 

electronic as well as in print resources that teachers and learners should have a clear 

picture of the issue and its roots so that they will at least be able to deal with ‘continuity’ 

problems according to the particular chosen definition. The study also gives evidence 

to the problematic situations that students are led to due to implied definitions that are 

not explicitly stated or taught. Hence, perhaps more importantly, what this study 

suggests in particular is that we also need to make a shift in our choices from a 

mathematical one to a pedagogical one when it comes to choosing definitions and 

making decisions about the kind of discourse we model in the classroom.  
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EXPLORING CONSTRUCTS OF STATISTICAL VARIABILITY 

USING DYNAMIC GEOMETRY. 

George Ekol  

Simon Fraser University 

The qualitative study reported in this paper examines university statistics students’ 

aggregate reasoning with data using a semiotic mediation perspective. I focus on 

students’ understanding of the links among distribution, the mean and standard 

deviation in a data set. Participants in the study explored these concepts using a 

dynamic mathematics sketch designed in Sketchpad. Findings suggest that the dynamic 

sketch mediated the meaning of statistical variability during and after participants’ 

interactions with the sketch. However, some participants also showed mixed 

reasoning—a combination of elements of aggregate reasoning with some textbook 

procedures—after they stopped using the dynamic sketch. Some implications for post-

secondary statistics curriculum are suggested. 

INTRODUCTION 

The concept variability applies across introductory statistics curriculum, including 

topics such as regression analysis, sampling distributions and tests of hypotheses. 

Understanding the connections among the measures of variability is therefore very 

important for students. This study takes statistical variability as how spread out or 

clustered the distribution of a data set is. Studies (see Garfield & Ben-Zvi, 2008) reveal 

that while students can calculate measures of variability such as the range, variance 

and standard deviation in a data set, they struggle with the meaning of those measures 

and rarely can connect them with other concepts that they learn in statistics. Building 

on the work of delMas and Liu (2005), I designed a dynamic mathematics sketch 

comprising of draggable data points with which students could explore connections 

among distribution, mean and standard deviation in a data set. Using the theory of 

semiotic mediation (elaborated by Falcade, Laborde & Mariotti, 2007), I analyse the 

students’ thinking about the changing signs on the sketch, for instance, the change in 

the size of a geometrical square in relation to the meaning of variance and standard 

deviation in a data set. I also use Wild and Pfannkuch’s (1999) elements of statistical 

thinking, in particular, aggregate reasoning with data. According to these authors, 

statistical thinking are the ways statisticians (and mathematicians) solve tasks, 

including being able to understand the underlying principles behind statistical 

processes. The purpose of this study is to explore post-secondary students’ thinking 

about variability through the notions of distribution, the mean, and standard deviation 

before, during and after the students have interacted with the dynamic sketch.  
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THEORETICAL FRAME 

As stated above, the study draws on two theoretical perspectives: The first perspective 

concerns students’ reasoning with data (Wild & Pfannkuch, 1999; Konold & Higgins, 

2003). Konold and Higgins propose four different ways that students may view data, 

from general to more elaborate views about data. They are: i) thinking about data as 

pointers—focusing on the general things such data collection processes; ii) seeing data 

as cases—focusing on the identity of individual data values such as the largest value 

in a data set; iii) data as classifiers—paying attention to the frequency of particular data 

values, for example, how many are above a certain fixed value and how many are 

below that value; and iv) data as aggregate—focusing on the overall characteristics of 

a data set including its shape, centre and the spread of values from the centre. The 

above researchers agree that aggregate consideration of data promotes students’ 

statistical reasoning and thinking.  

The second theoretical perspective concerns semiotic mediation—using tools and signs 

for learning concepts. According to Vygotsky (1978, elaborated by others e.g., Falcade, 

Laborde & Mariotti, 2007), artefacts—physical or non-physical tools—produce signs 

that can be used to mediate meanings of abstract mathematical concepts. Sketchpad’s 

Dragging tool was used to solve a mathematical task. The signs produced in the process 

of solving the task mediated the concept of statistical variability. This study explores 

the following research questions: i) What do students think about the measures of 

variability such distribution, mean and standard deviation in a data set presented in a 

static environment?; and ii) What do students think about the measures of variability 

during and after interacting with the dynamic mathematics sketch introduced above?  

DYNAMIC MATHEMATICS SKETCH 

The dynamic mathematics sketch (DyMS) was designed to offer learners an 

environment where they can drag data points on the number line using the Dragging 

tool and observe how the distribution, mean and standard deviation of data vary. The 

term “mobile” is used in connection with data points because they can be freely 

dragged on the horizontal axis to the left or right of the mean. In Figure 1a, six 

numerical data at points A, B, C, D, E and F are shown. For the purpose of this 

discussion, the data values are assumed to be drawn from a normally distributed 

population. A data point can be dragged on the horizontal axis by selecting it with a 

computer mouse pointer, holding the left button of the mouse down and dragging the 

point along the horizontal axis with the Dragging tool. As a data point is dragged 

horizontally to the left or to the right side of the centre, the numerical scales for the 

mean and standard deviation shown on the sketch change with the position of the data 

point on the horizontal axis.  
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In Figure 1a, the six )6( n data points are positioned at some distance id  ( 6,...,1i ) 

away from the mean. The perpendicular line passing through the mean, called the 

“mean-line”, provides a physical and more visual tracking of the mean as data points 

are dragged along the horizontal axis. A data point i  at distance id  from the mean-line 

forms a geometrical square with area 
2

id . Note that the mean-line and the horizontal 

axis touch two sides of each of the six squares. Lastly, the squares are named using 

their respective letters, for example square F is formed by the horizontal distance from 

the mean to point F, and the mean-line. 

 
(a) 

 
(b) 

 
(c) 

Figure 1: (a) Before dragging a data point on the horizontal axis; (b) Data point F on 

the far right is dragged slightly to the left; (c) Data point D closer to the centre on the 

right is dragged across the mean-line to the left side.  

The sum of the area of all the six squares (not shown in Fig. 1) gives the magnitude of 

the sample variance ))1/(1(2  ns 
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standard deviation ))1/(1[(  ns
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1
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i

i id  is the length of the resulting square. If the six 

data points are dragged far away from the mean-line, then the resulting square will be 

large, and the magnitudes of variance and standard deviation will both be large. The 

area of square was used to provide a sign for standard deviation and to show how it 

varies as data values vary on the horizontal axis. For instance, in Figure 1(b), point F 

on the far right of the mean-line has been dragged slightly to the left side toward the 

mean-line, reducing the magnitude of standard deviation from 1.30 to 1.19. In Figure 

1c, point D on the right side of the mean-line has been dragged across the mean-line to 

the left side and the magnitude of standard deviation reduces further from 1.19 to 1.18. 

In general, the sketches in Figure 1 provide two results: i) that standard deviation 

decreases as the square areas decrease and it increases with increase in the square areas; 

ii) variability in the data distribution decreases as data points are dragged toward the 

mean-line and increases as points are dragged away from the mean-line.  

Figure 2 provides a summary of the variability of the mean and standard deviation 

when dragging the data points on the horizontal line relative to the mean-line. Dragging 
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a point to the right side away from the mean-line increases the magnitudes of both 

standard deviation and the mean whereas dragging the same point toward the mean-

line from the right side decreases both parameters. If a point is dragged on the left side 

away from the mean-line, the standard deviation increases whereas the mean decreases. 

Lastly, selecting all the six data points and dragging them on the horizontal axis to the 

left or right of the mean-line does not change the magnitude of standard deviation; it 

just shifts the mean to the left or right. 

 

Figure 2: Changes in magnitude of standard deviation and the mean with the 

direction of dragging data points on the horizontal axis relative to the mean-line.  

METHODOLOGY 

The study took place in a North American University where five undergraduate 

students (F=3, M=2) enrolled in a 13-week introductory statistics course were 

interviewed. By the time of the interviews, participants in the study had covered all the 

topics that they needed including describing distributions with graphs; describing 

distribution with numbers; basic probability theory; the normal distribution curve and 

sampling distributions. The students were taught by instructors from the Department 

of Statistics. They also had drop-in tutorials five days in a week for the whole semester. 

I believe that participants took the interviews having adequate background information. 

However, my aim was not to assess how much participants had learned in their 

statistics classes. Rather, as stated above, this study aimed at exploring introductory 

students thinking about the meaning of variability before, during and after using the 

DyMS sketch. 

The DyMS sketch is designed with the “hide” and “show” buttons so that the numerical 

scales for the mean and the standard deviation can be “hidden” from participants during 

prediction stages and “shown” to them during checking predictions. I adapted the 

“predict, justify, and check prediction” (PJC) methodological approach from delMas 

and Liu’s (2005) study as well from a review of Garfield and Ben-Zvi’s (2008) book. 
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Direction of dragging
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The PJC approach asks participants to predict changes in the sketch as data points are 

dragged, briefly justify their predictions and then they check predictions using the 

Dragging tool. During checking prediction, the buttons for the numerical scales of the 

mean and standard deviation are turned on so that participants can confirm or refute 

their claims and hypotheses. This approach was chosen because it engages participants 

in the tasks and encourages them to use their own constructions of meanings rather 

than, for example, re-stating procedures from text books.  

One-on-one task-based interviews (Ginsburg 1981; diSessa, 2007) were used to collect 

data. The method was chosen because I wanted some rich data from students’ 

reflections about variability without and with the DyMS sketch that such interviews 

can generate. Each interview session lasted roughly 35 minutes and was divided into 

three segments. In the first segment (10 minutes), the first author asked participants in 

the study about the terms distribution, mean and standard deviation. This question was 

asked to enable a comparison of the participants’ thinking about the measures of 

variability before and after they interacted with the dynamic sketch. Participants used 

the second segment (15 minutes) to predict, justify and check their predictions with the 

sketch. In the third and last segment, with the computer shut down, participants were 

asked to reflect on the term standard deviation. I expected them to provide an aggregate 

view of standard deviation after interaction with the sketch in that standard deviation 

measures the spread of data from the centre or from the mean. In fact in this segment, 

participants were not asked to reflect separately on distribution and mean as it was the 

case at the beginning of the interviews because I assumed that they would reason in 

aggregate—include the mean and the distribution of data in their statements. 

RESULTS 

Data for three participants, Boris, Halen and Maya, were chosen because they are 

representative of the group. I present the data in two parts: The first part presents 

participants’ thinking about the terms distribution, mean and standard deviation in the 

static environment, that is, before they used the sketch. The second part presents 

participants’ interactions with the DyMS sketch in the computer environment, followed 

by their reflections about standard deviation at the end, with the computer shut down 

so that the dynamic sketch was no longer in use.  

Thinking about distribution, mean and standard deviation without the DyMS 

sketch. 

The first author (GE) asked Boris, Halen, and Maya “What do you think about” the 

terms “distribution, mean standard deviation?” Boris described distribution as the 

“observed frequency of some data.” Maya said distribution is “how things are 

distributed [...] evenly or randomly” and for Halen, “the first thing” about distribution 

would be “the normal distribution.” About the mean, Boris said the mean is the 

“average” and he did not say more. According to Maya, the “mean is the answer to a 
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formula where we add up all the values in a particular data set and divide by the number 

of values that are there, so mean is like a number [...] calculated out.” Halen seemed to 

share Maya’s thinking about the mean. She explained that “if you have a couple of 

numbers, you add them all up and then you divide by how many numbers there are, 

you get like the average or the mean.” Lastly, on standard deviation, Boris stated that 

it “measures variation of data from the mean”, whereas Halen sketched the standard 

normal curve and explained that “standard deviation […] is similar to deviation […] 

from the mean [...] one standard deviation is sixty eight percent […].” Maya stated that 

“[…] I see standard deviation in graphs […] there is like one, two […], then there is 

negative one, negative two […]. You can calculate standard deviation.” 

Interactions with the DyMS sketch and reflections at the end. 

Using the “predict, justify, and check” framework, GE asked Boris, Halen and Maya 

each to “predict how the squares [Fig. 1a] would vary if you drag any of the data points 

on the horizontal axis.” I expected participants to describe variation in the size of the 

squares with the magnitudes of standard deviation as data points were dragged on the 

horizontal axis. I used Figure 2 as a framework to track predictions but did not show 

to participants before predictions. Boris predicted and explained that, “if you move 

[data points] away from the centre, the square is getting bigger and bigger because the 

square is the distance from the centre. Later, as he checked his prediction by dragging 

data point F to the far right (Fig. 3a), he said, “yeah, yeah, they [the squares] are getting 

bigger, the boxes are just scales; they are actually just scales to see how the relative 

[distances] are.” For Boris, the size of the square seemed to be used as a sign for how 

far a data point was from the mean. Although Boris did not directly say that his “scales” 

were measuring the spread of data from the centre, his statement suggests such a 

meaning. After his task, with the computer closed, the GE asked Boris, “What do you 

think about standard deviation?” He was silent for about half a minute before he replied 

saying if all the “data points” were selected and dragged on the horizontal line “to the 

left or right” of the mean-line, that movement “just shifts the mean, but it won’t change 

the standard deviation.” 

(a) 
 

(b) 
 

(c) 

Figure 3: (a) Boris drags point F farther away to the right as he checks his prediction; 

(b) Halen drags data point A to the left side of mean-line; (c) Maya drags data point B 

farther to the left side of the mean-line.  
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Halen predicted that if a data point was dragged outward to the left of the mean-line, 

the square “[...] will become a bit narrow […] like skinnier” To her, the square seemed 

to be stretching into a rectangle, in that case the square was not functioning as a sign 

for the size of standard deviation. But we know that the shape of the square does not 

change with the magnitude of standard deviation. Halen checked her prediction by 

dragging a data point C slightly to the left side of mean-line (Fig. 3b) and as she noticed 

how the squares varied, she said, “Oh, I thought they [squares] would all go together 

[...] if I did this [drags a point to the left side] [...] but oh […] so.” Halen’s statement 

suggests that she noticed the signs in the squares, which signs were different than what 

she “thought.” She also seemed surprised at what she saw. However, Halen did not 

connect the signs in the squares with the change in the magnitude of standard deviation 

as Boris did. At the end, when asked “what do think about standard deviation?” Halen 

said, “If you change standard deviation, the mean is going to change. When I was 

looking at the graphs, I didn’t realize that.” Lastly, Maya correctly predicted and 

explained that “when I move the point to the left, the square will increase [...] because 

the farther away the point is from the centre, then the greater area it has” Although 

Maya’s prediction is much clearer than Halen’s, she did not directly link the changing 

area of the square with the magnitude of standard deviation. But as she checked on the 

sketch (Fig.3c) while dragging a point to the left side of the mean-line, she was able to 

confirm that “standard deviation increases [as] […] the mean decreases.” After her task 

on the computer, GE closed the computer and asked Maya, “What do you think about 

standard deviation?” Maya was silent for a moment and then she said, “Standard 

deviation is certain point away from the centre of a population […]. I have a picture of 

a normal distribution divided into sections which are called standard deviation […]. 

There is a formula, I forgot, but it’s like standard deviation equals the square root of 

variance.” 

DISCUSSION  

In the static environment, participants’ thinking about the terms distribution, mean, and 

standard did not show clear connections among the terms. For example, the mean was 

more likely to be used as a pointer (Konold & Higgins, 2003) to the “average” of data 

[Boris, Halen & Maya] whereas standard deviation suggested a pointer to the normal 

distribution curve [Halen & Maya]. Overall, participants’ thinking in the static 

environment did not show strikingly different results from what has been reported in 

the literature (e.g., Garfield and Ben-Zvi 2008; delMas &Liu, 2005). Garfield and Ben-

Zvi report that “while students can learn how to compute formal measures of 

variability” such as the range, variance and  standard deviation, “they rarely understand 

what the summary statistics represent […] and do not understand their connection to 

other statistical concepts” (p. 205). 
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When solving tasks on the DyMS, Boris and Maya correctly predicted the change in 

the area of the squares with the dragging of data points on the horizontal axis. Halen 

struggled in her predictions, particularly linking the area of the square with the 

movement of data points. But after checking her prediction, she “realized” that “if you 

change standard deviation, the mean is going to change too.” Halen’s statement ignores 

the fact that standard deviation may remain unchanged when the mean changes, a result 

that only Boris was able to obtain from the sketch. Nevertheless, Halen’s statement 

also shows more dynamic thinking about standard deviation, which is different than in 

the static environment. The dynamic thinking was possibly evoked by Halen’s 

interaction with the dynamic sketch, particularly the Dragging tool. The numerical 

scales for standard deviation and the mean enabled participants to check their 

predictions by dragging points on the horizontal axis and linking the signs in the 

squares with the magnitude of standard deviation and the mean. Maya, for instance was 

able to notice that by dragging a data point to the left side of the mean-line “standard 

deviation increases […] [as] the mean decreases.” 

Furthermore, Boris’ statement that dragging all the data points to the left or right “just 

shifts the mean, but it won’t change the standard deviation” was an important result 

that provides a clear example of aggregate reasoning with data (Wild & Pfannkuch, 

1999). His statement suggests that the signs (e.g., the numerical scales of the mean and 

the changing area of the squares) enabled him notice the functional connections 

between standard deviation and the distribution of data on the horizontal axis. I argue 

that the Dragging tool of Sketchpad was used as an instrument of semiotic mediation 

for the meaning of variability (Falcade, Laborde & Mariotti, 2007) of data. 

CONCLUSION 

Although my study findings may be restricted to a small sample of participants, and I 

can also add possible limitations imposed by the vagaries of an exploratory study such 

as asking students to “predict” change based on a new sketch to them, I believe that the 

study nevertheless provides some evidence that the dynamic sketch engaged 

participants and moved them away from focusing on textbook definitions and 

procedures at the beginning, to reasoning about the features of variability more 

qualitatively and in their own words at the end. The dynamic, physical, visual and 

tactile properties of the sketch seemed to mediate participants’ dynamic thinking of 

statistical variability. However, with the computer closed, Halen and in particular 

Maya, showed some “mixed reasoning”—aggregate reasoning combined with some 

textbook procedures. Only Boris showed more complete aggregate reasoning with 

data. It may be that Maya and Halen needed a longer time with the sketch than was 

possible in the interview. I propose that students are allowed more time with dynamic 

learning tools, e.g., in the Labs or Workshops, facilitated by their instructors.  
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USING TWO FRAMEWORKS TO ANALYZE A GEOMETRIC 

TASK: SEMIOTIC MEDIATION AND NEW MATERIALISM 

Sean Chorney 

Simon Fraser University 

This study looks at a geometry situation on The Geometer’s Sketchpad and analyses 

the activity using two different theoretical frameworks.  Semiotic mediation which 

emerges from the Vygotskian school, and the more organic and emergent framework 

of Barad and Ingold.  The purpose is to identify what is highlighted by using different 

tools of analysis.  The finding is that the outcome of observation is dependent upon the 

framework; the results are completely different with little commonality. 

INTRODUCTION 

Learning has typically been attributed to people.  In the field of education there has 

been and still is a profound focus on the individual.  Have they learned the material? 

Do they understand?  Can they use this new knowledge in innovative ways?  There is 

a common perception that knowledge is transmitted and stored in the mind.  And to be 

accessed later when needed.  This has been the sole focus of mass education.  Preparing 

the individual with knowledge needed for society and for themselves.  Education has 

become like an assembly line, where the students come to school and teachers tell them 

things they should know and students leave with that information.  This is, in a very 

crude form, the practice of learning in education.  

This study looks at two frameworks to look at the process of learning.   Semiotic 

mediation which has emerged from Vygotsky’s (1978) work and also, what I will term, 

new materialistic perspectives of Barad (2007) and Ingold (2013).  Both of these 

frameworks can be applied to the school culture where students participate in activities.  

Both framework value the process of activity and do not focus on the finality of an 

event.  Particularly for Barad and Ingold whereby process never ends; there is always 

a further becoming. 

The question for this study lies more in a description of events.  How do the process of 

events in a mathematical activity look when looking through two lenses? 

 

THEORETICAL FRAMEWORK 

The two frameworks of semiotic mediation and new materialism is outlined 

respectively: 

SEMIOTIC MEDIATION 
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Semiotic mediation emerges from two generations of activity theory.  Generation one 

includes Vygotsky (1978) and his central tenet of mediation as well as the move from 

the inter to the intra.  Generation 2 involves Leontiev (1978) who describes the 

essential aspect of object/motive in activity.  Semiotics are signs, these signs according 

to Vygotsky include language, signs,  as well as material objects.  So semiotic 

mediation involves the working with cultural tools and internalizes the function of 

these tools.  

The object and the tool present a double stimuli.  The psychological tool is the mental 

functioning that is involved in moving from seeing the object as a stimulus in which 

behaviour is directed to realizing the “psychological operations… necessary for the 

solution of the problem” (Vygotsky, 1930, p. 1).  Vygotsky calls this psychological 

development “the instrumental act.”  There is an external action and an analogous 

function occurs in the mental component of the mind.  In a mathematical learning 

situation one might consider that mathematical meanings are potentially contained in 

the artefacts.   If one were using a compass to draw a circle, the compass is used 

externally to draw the circle, this would be the external aspect to the activity but when 

the compass is used to find points that satisfy a given relationship it is internal 

(Bartolini, Bussi & Mariotti, 2008).   

Task choice is important.  The a priori analysis of the activity is an essential component 

for the teacher. What is to be mastered by the student must be orchestrated by the 

teacher.  Planning and design are major considerations in semiotic mediation.  

“…object/motive …gives sense to (learning) action” (p. 111), Roth and Radford (2011) 

goes to argue that no object/motive means no sense to the activity.  Leontiev (1978) 

introduced the idea of motive to activity in second-generation activity theory.  The 

object/motive is the highest level of the activity.  In a mathematical activity, an example 

of an object/motive would be the overall mathematical practice that the teacher has 

outlined.  For example, identifying the relationship between a circle’s tangent and its 

radius.   

NEW MATERIALISM 

Karen Barad (2007), a philosopher and physicist, adopts a post humanist perspective 

in analyzing Neils Bohr’s theories which emerged out of nuclear physics.  But she goes 

further than Pickering (1995) or ANT theorists in that she challenges the distinction of 

things a priori.  She challenges the boundaries drawn by traditional human knowledge 

and how it constructs our perception of differentiating things from one another.  For 

example, we recognize a human as a distinct creature that is unified, whole and that 

can move from context to context without changing.  We abstract this being, provide 

it with an identity, contemplate its abilities, but according to Barad this an assumption 

and she challenges the way we identify things and the way we construct our reality. 

Part of Barad’s post-humanism is that she refuses “to take the distinction between 
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human and non-human for granted” (p. 32).  The human is only defined within the 

context of activity. 

Barad describes that agency emerges from activity and in reflection of that activity, we 

choose, arbitrarily she claims, where the focus of attention is going to be placed and 

how boundaries are to be drawn.  One of the challenges some of the post-humanist 

writers have had is to refer to activity by way of verbs without necessary reference to 

nouns.  Ingold (2013) describes a problem with our language in that when we say the 

wind blows it is not the wind that is blowing but the blowing is the wind.  We abstract 

the idea of wind, we reify it and treat it like an object causing us to deal with things as 

opposed to process.  Benjamin Whorf, a linguist, writes:  

We dissect nature along lines laid down by our native languages.  The 

categories and types that we isolate from the world of phenomena we do not 

find there because they stare every observer in the face; on the contrary, the 

world is presented in a kaleidoscopic flux of impressions which has to be 

organized by our minds – and this means largely by the linguistic systems in 

our minds.    We cut nature up organize it into concepts, and ascribe 

significances as we do, largely because we are parties to an agreement to 

organize it in this way (p. 45)  

Ingold, an anthropologist, is similar to Barad in that he challenges the idea of 

predefined states. While Barad challenges the “belief that beings exist as individuals 

with inherent attributes, anterior to their representation is a metaphysical 

presupposition” (p. 46) which is similar to Caruso’s claim described earlier, Ingold 

offers an alternative when he describes his field of anthropology as “the study of human 

becomings as they unfold within the weave of the world” (p. 9).  With both writers 

there is an attempt to undo the belief that individuals are unified, whole beings before 

becoming or before acting.  This supports Caruso’s argument that if one were to accept 

the human as the “unmoved mover” (p. 65), the one who can change, or alter her world, 

this would lead to a belief that the self is an ontologically robust entity.  Pickering also 

refers to such a sentiment by arguing that “there is no especially informative pattern to 

be discovered about what changes and what does not…. We are stuck with the 

emergent posthumanism of the mangle” (p. 207).   

Ingold criticizes the use of agency arguing that because materials have been treated as 

inert and dead for so long there have been to revitalized with agency.  But I suggest 

that his phrases such as “interlaced meshwork” and “relational matrix” are very similar 

to Barad’s “assemblage of human and non-human agencies” (p. 103) In both cases the 

writers are arguing that distinction and finality should not precede interaction and that 

we, as humans, are defined in what we do with what we have.  

The reliance upon the mind as the principle focus of education is being challenged.  

What is the mind?  Does it really store information?  Can we think of it as an organic 
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computer?  The question that emerges from such inquiries is why are we only looking 

at the learner?  What about the resources?  What about the context?  The activity?  The 

tool?  This study challenges such anthropocentric perspectives and puts the centrality 

of the human aside.  New perspectives of materiality have acted similarly.  If one is to 

view the human as a thing, we might focus on a classroom activity as things interacting 

with other things.  The human is a construct.  It is a self imposed attribution of special 

qualities, separating itself from other things.  But this construct is self-referential.  That 

is, humans claim to be special and different but it is a claim couched in the fact that we 

can make such statements because we are special and different.  This circularity is 

problematic because it assumes too much.  The construct is faulty and challenging the 

assumptions implicit within the construct is an important component to a study in 

education. 

If the human is then to be set off with the other things one must realize that alongside 

of the human goes the construct of thinking, understanding, intending.  Although these 

words may still be used, the place or the space from where they emerge are different.  

The mind of the human is not necessarily the place from where intention begins.  This 

study positions itself alongside of Sinclair and de Freietas (in press) in understanding 

human constructs such as creativity, ingenuity, intentions to be context and or tool 

dependent.  That is, qualities or capabilities are not existing independent of context.  

They depend on things, one is not creative, they are creative with paint brush.  

Tool is not a conduit or a medium or a mediator or something beyond, something less 

concrete occurring in the head.  The tool is the thing that the human touches, engages, 

moves, while the tool is the thing that determines how the human touches, engages and 

moves it.  While some may call this a dialectic interaction, I argue that an interaction 

is often analyzed based on the coming together of predefined elements.  Autonomous 

things, defined, detailed in affordances but instead of once again looking at things with 

attributes one might be inclined to look at the new ways in which things interact which 

define or declare the new affordances.  The difficulty with affordances is that for many 

it defines  

Wolfe writes: “Fundamentally a prosthetic creature that has coevolved with various 

forms of technicity and materiality, forms that are radically “not-human” and yet have 

nevertheless made the human what it is” (p. xxv). 

This coevolving is not complete.  In schools, students are growing into and becoming 

practicing cultural active participants.  But they are not alone.  Material resources, 

including tools and practices, are as present as the human.  

METHODOLOGY 

The materiality in this study is manifested in a technological tool.  Papert (1993) 

describes this as an expressive technology and it is a way to see how technological and 
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social processes interact.  The agency of computers is particularly interesting, given its 

range of expressive possibilities and feedback.  It presents an environment where 

students can make choices giving them the freedom for expression and exercise their 

agency. 

This study also embraces the idea that observation is a form of participation.  I suggest 

that the act of teaching, researching and observing are interrelated and entangled 

agencies of the same process.   There is no distancing one-self to evaluate the act of 

teaching and/or learning.  The researcher is to be identified in action, not in an analysis 

of action, post priori. 

Working under the assumption that student, teacher and researcher are participants are 

not only entangled with mathematics learning but also each relation is entangled with 

each other.  As well that these distinctions are not pre defined nor understood a priori 

but become and emerge in activity.  I will study student engaging with tools, 

considering their activity, their constraints, demands, as well as analyze the similar 

relation between teacher-researcher and observation and action.  

 

PARTICIPANTS, DATA AND ANALYSIS 

The data collection took place in a Vancouver high school with some students who had 

been working in an environment using The Geometer’s Sketchpad (GSP). Data was 

collected by means of a software capturing software, SMRecorder as well as 

videotaping. 

The first task given to the students was in the form of a black box sketch.  Initially two 

points were visible and when the student dragged either point the other point would 

move in a deterministic path. The points were related by a mathematical relationship.  

The problem posed was to identify the relationship, either in words, or as an equation, 

between the two points. This activity was chosen for it was a challenging but accessible 

problem that related to previous curricular work on the topic of transformations.  

Initially these points, A and B, were visible on the screen. It was also written on the 

screen that it was recommended to have the points dragged trace their trajectory so as 

to have an image of paths travelled.  Joanne and Emily worked in class for 

approximately 20 minutes on this black box sketch. Near the end of their exploration 

Joanne drew a wavy line on the screen as shown in Fig1, Fig 2.  
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Fig. 1      Fig. 2 

Using a framework of semiotic mediation, one comes to the following description. 

Joanne has the goal to convince herself and her friend that there is an invisible 

reflection line.  She moves toward that goal by drawing a curved wave back and forth 

across the implicit line.  She had previously stated that she knows the line is there but 

her partner did not “see” it and was still not sure of its existence nor of its meaning.  

Joanne drew the wavy line.  But the intended object/motive to activity is not to draw a 

wavy line but to internalize the notion of what a reflection is about.   As Joanne is 

drawing, crossing line over line, weaving across the reflection line she is analogously 

internalizing the idea of equidistance from the reflect line.   The property of reflection 

was the motive/object and her external representation indicates this is so.  The repeated 

weave across the line is a method in “finding” the line.  This is a particular instance of 

the general object/motive materializes here in theory form.  The constructed curve 

exists as the relation of reflection properties and it subsequently exists in 

consciousness. 

From a framework of Ingold’s meshwork, one of the first things to identify is that the 

student and the computer are becoming together.  The initial acts of the student just 

before they draw the wave is not a formed a priori, the act is the forming and becoming 

of two entities. But it is challenging to think this way because it is not two entities.  As 

soon as we refer to two entities, it establishes a construction of two things.  Barad uses 

the term intra-action to indicate that it is not two things interacting but a construction 

of one entity where the human and the computer software are within each other.  It is 

a level below inter; here we have two things that are only defined within each other.  

Without each other there is nothing to comment within this context.  Two things are 

becoming.  So what does that tell us?  First of all, the computer software has agency, 

it acts and that act reconfigures the human.  If we cast aside the belief in intention and 

recognize that it is within the movement of the hand, repetitively moving back and 

forth across the reflection line, that is the mathematics.  There is no interiorization.  

The mathematics is the pattern of movement because that is what is traced out on the 

screen.  If we were able to move out and objectively look at the situation (which we 
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are not able to) we might see, if we choose, two things (human and computer) engaging 

in an activity, the output is the trace on the screen. 

Ingold draws upon a story of a person cutting wood to describe his understanding on 

activity and interaction.  He describes that initial acts of the person with the wood are 

to “guide work and not strictly determine it” (p. 53).  And that the “initial plan is not 

inside the head, it involves all kinds of decisions” (p. 55).  He also explains that the 

“hand (on the saw) is in what it makes or does, not in what it is, that the human hand 

comes into its own” (p.55).   

CONCLUSION 

Both semiotic mediation and new materialism look at process of activity.  The 

subtleties of activity are essential in analysis.  A single situation was analysed using 

both framework so as to get a glimpse into what emerges when the framework changes 

as well as to challenges anthropocentric assumptions.  Although semiotic mediation is 

a valuable and thoroughly enriching framework, the assumption of interiorization is 

questionable.  A new materialism perspective is more focused on the external but 

observation is a form of participation and an agentic decision so it is questionable as 

well.  But the overall analysis of the repetitive, organic move of the hand to construct 

a wavy line outlining a mathematical relationship is an enriching as we desire. 
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USE OF PHENOMENOLOGY THEORY PERSPECTIVE TO 

STUDY TEACHERS’ ENGAGEMENT IN THE READING OF 

MANUALS DURING A PROFESSIONAL DEVELOPMENT 

SESSION. 

Melania Alvarez 

Simon Fraser University 

The purpose of this phenomenological study is to provide a description of a 

professional development session which main purpose was to engage teachers to read 

and discuss the manual of a math program recently introduced in their school. 

 

INTRODUCTION 

A new curriculum or program many times requires changes in the focus of the 

practice as well as tending to a change in how we elicit conceptual thinking and 

understanding in students. Manuals are seen as one of the main artifacts that would 

engender change in teaching practices when a new program is implemented. Current 

teacher’s manuals/guides usually provide a variety of classroom activities for 

teachers to act out while teaching/introducing a mathematical idea; however 

researchers are finding out that in spite of how well written or how thorough the 

guides are, many teachers use the materials in ways not planned by the developers of 

these programs (Collopy, 2003; Remillard & Bryans, 2004).  

The purpose of this phenomenological study is to provide a description of a 

session whose main purpose was the introduction, reading and discussion of some 

lesson in the manual of the math program that was being implemented. I will describe 

different attempts on my part to better engage teachers in the process of reading the 

manuals, discussing the use of the materials, the lessons, and the mathematical ideas 

contained in the lessons.  

I will reflect on the “lived experience”of a professional development session 

by describing teachers behaviors, use of materials, level of activity interaction with 

resources, and so on.  

 

FRAMEWORK:  
This is phenomenological reflection on the behavior of teachers while learning 

and how through engagement they show their motivation. Motivation is a key factor 

for learning that is self-regulated. “Participants create meaning as they engage 

themselves in challenging learning activities. In engagement, the learners are active 

and might be searching, evaluating, constructing, creating, or organizing some kind 
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of learning material into new or better ideas, memories, skills, values, feelings, 

solutions, decisions” (Wlodkowski 1999:44)  

 

In order to analyze this process I am using a modified version of Remillard’s 

(2012) model, that she uses to analyze various ways curriculum developers apply to 

make their manuals and textbooks materials attractive to teachers. Remillard’s model 

is inspired by Ellsworth’s book Teaching Position based on analysis of film studies 

where assumptions about the audience background influences the structure of the 

film’s narrative in order to maximize their interaction or attention to the film; we find 

that the main goal is to position the audience in a way where interaction is possible 

and furthermore this is something that the audience wants to do of their own volition  

This model consists of four main parts:  

 

Mode of address: are ways of positioning an audience that are needed to initiate an 

interaction. In this case to position the teacher in a place where she can actively engage 

the resources of the program the way their developers envisioned it.  

 

Forms of address: artifacts to carry out a “goal-directed activity”, in this case the 

resources used by the instructor and that the teachers are expected to use.  

 

Modes of engagement: in this case I will expand Remillard’s model to include not only 

an analysis of engagement trough text forms, but to describe teachers’ engagement 

with the materials during the session.  

 

Forms of Engagement: how teachers engage and appropriate different aspects of the 

program, the ways the teachers re-source the resource, where I will use Adler’s 

“conceptualization of ‘resource’ as both a noun and a verb; as a verb “re-source” will 

connote to source again or differently, and “source” will denote origin (Adler 2000).  

 

The theoretical framework that guided this research is a phenomenological 

reflection on the behavior of teachers while learning, and the change in teachers 

through learning in the social context of professional development sessions, -- how 

new knowledge is incorporated into an existing schema and how can teachers 

participate in a discourse that extends their knowledge and system of beliefs if the 

professional development is effective in addressing its goals.  

 

METHODOLOGY:  

Several schools I have worked with have implemented this program, and it has 

always puzzled me how a substantial number of teachers who use it never even looked 

at the manual but they used the books and workbooks in a very traditional way. By 

traditional way, I mean providing students with examples of how to do a specific 
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calculation, teaching them the rules and procedures and supplementing from other 

sources because this program does not provided the great number of math exercises 

that other programs provide. This is mainly the rule and not the exception, research 

done at schools in North America showed that most teachers’ practices are  

 

procedural and that in fact teachers usually teach as they were taught as students 

and there was very little change on their part to teach in a way that will develop the 

kind of learning and understanding that we would like to see in students as new 

curriculum reforms require a deeper content and pedagogical knowledge (Hiebert, et 

al., 2005; Stigler & Hiebert, 2004; Stigler, Fernandez, & Yoshida, 1996).  

The participants in this study are the teachers involve in the professional 

development session and I, the professional developer. The professional developer is a 

participant because her reflections on teachers’ behaviors will be part of the study.  

My planned mode of address for the session was the following: During this 

session I asked teachers in the group to first tell me how they would start the year in 

their math class. I did this because we were going to look at the first 8 lessons in the 

year and I wanted for them to compare what they have been doing with what this 

program featured. I expected that there would be a discussion and after it I was to 

provide teachers with the first eight lessons in the textbook and workbook without the 

benefit of the manual, and teachers were asked how they would teach with those 

resources. Afterwards the manual was introduced with the goal of furthering 

discussions regarding the teaching of the eight lessons. I planned to ask teachers about 

additional ideas that were included in the manual, and how useful these ideas and 

activities were for their practice as they taught the concepts students found in the 

textbook and workbook. This was the plan and in the following section I will give a 

short description of what happened.  

It is important to point out that in this particular math program the textbooks and 

workbooks are geared towards students. The manuals are different in that for most 

grades, except for kindergarten, the teachers will not see a reproduction of the textbook 

and workbook pages in the manual. The manual presents the following information as 

they introduce a new concept: objectives, notes which inform teachers what ideas 

students have learned in the past which will help them introduce the new concept, how 

to introduce a new concept by using students previous knowledge (many times with 

activities that are not in the students materials), how to use the book in class to elicit 

students discussion and workbook for practice and assessment. I explained all of these 

details to all the teachers at a school wide meeting that took place before the session I 

describe below.  

 

PRELIMINARY RESULTS  
This is the description of a 75 minute session with 4 grade 1 teachers. I will call 

the teachers Mandy, Erika, Elisa and Monika (not their real names). The goal of this 
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session was to introduce them to the first 8 lessons in the program and for them to look 

at the manual to discuss any changes in their practice. The focus for the researcher was 

to find out how much they would look at the manual and to observe and participate (if 

necessary) in the discussion that would follow.  

First I explained to the teachers that I was there as a coach, not a person who 

would tell them what to do, and also I explained the goal of the session, which was to 

look at a portion of the manual, textbook and workbook carefully and to discuss the 

use and the ideas contained in these resources.  

 

I started by asking: How do you usually start your year in math?  The teachers 

immediately started to provide a list, most of them started mentioning concepts like: 

patterns, number facts, number formation, looking at the calendar, number songs, 

number families, counting by twos, fives and tens, that they will use the power of ten 

cards to get them counting. They did not explain how they taught all this, they 

mentioned that kids like patterns and that is why they like to start with this concept 

and some of them also mentioned that they also will mix several of these ideas in one 

session to make it more interesting.  

I asked how they will introduce the numerals and their representation.  Most of 

them responded that most kids had a very solid background from kindergarten and that 

they remembered how to write numbers, though one teacher (Monika) mentioned that 

some kids still have trouble writing their numbers. The three other teachers at this point 

they felt confident that a review in numeral formation was not really needed.  

Afterwards I provided copies of the first 15 pages in the book and the textbook 

without the manual. I asked them to take 10 minutes to look at the materials, and to 

think about how they would teach what was contained in those pages and that we would 

be having a discussion about this afterwards.  

Within a few seconds Mandy was the first to make a comment:  

“Oh they are counting backwards and forwards all at the same time, that is kind 

of neat, I like that. Personally I don't think I do a lot of counting backwards in 

the beginning.”  
 

Erika and Elisa thought that what was presented would be too easy for the kids 

and that parents would ask why they were not doing something more difficult or 

challenging.  

I explained that it was about making sure that they understood concepts that 

perhaps they were familiar with in kindergarten, but that it was important to make sure.  

Instead of commenting on how they would teach the material presented, teachers 

wanted to know how long it would take to teach those materials using this program and 

what to do with kids who would for any reason fall behind or with those who would be 

bored by such easy concepts. They asked if there were any additional resources for 

them. I mentioned some additional resources, they wrote this information down.  
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Since no comments were being made regarding how they would approach the 

given materials, I gave them the first 8 lessons in the manual and told them to take at 

least ten minutes to look them over and we could have a discussion afterwards about 

the activities, and what was different and the same about what they have been currently 

doing in their practice. I also pointed out that some of the questions that they were 

having would be answered by the manual, like objectives, and lesson timing.  

The part of the manual which I presented to them touched on the following: 

Mental image for digit 0 to 9, count within 10, match different representations of a 

number within 10, compare two numbers within ten, count from 0 to 10, count 

backwards from 0 to 10, arrange numbers 0 to 10 in order and applications.  

Within three minutes Mandy made a comment that started the conversation.  

Mandy: 

“Oh, this is, it is interesting. There is, there is a lot more explanation and      

talking and things and other concepts that are brought in, not just the 

numbeeeerssss. …Like when you read this, it is different, than just you saying 

this is what two looks like. It's more, it's more, …just… the teaching part of it is 

different than...”  
Elisa : 

“(is) get the amount right with the symbol. They put together form with the 

symbol and what it actually means”  
Mandy: “yeaaah.”  
 

I personally felt that that what Elisa pointed out was not what Mandy meant, 

however this conversation was interrupted by Erika, who was asking about cards that 

could be needed for the lessons.  

I told them where they could get them or that they could make them themselves 

and I immediately brought the conversation back to the manual, by pointing out how 

children have a difficult time remembering how to write some numbers. I was hoping 

to try to bring back Mandy’s train of thought. A thorough conversation followed about 

number formation, how to allow kids to familiarize themselves with the numeral 

symbols and to have fun doing it. To create a display with objects that look like a 

specific numeral could be helpful to help them remember. For example the number two 

looks like a swan and number 8 like a snow man. From here the conversation moved 

to a discussion about our numerical system and the use of only ten numerals and how 

the kids make sense of it and becoming really familiar with numbers is so important. 

Mandy and Elisa were leading the conversation.  

I thought that the conversation was thought provoking, and somewhat 

connected to the ideas presented in the manual and let it flow for a few minutes. After 

a while, I asked them to continue looking at the manual and the next lessons.  

Erika made a comment: I worry that this is so teacher focused.  
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At this point I realized that all the teachers were focused on the textbook and 

they would not look at the manual which is full of activities which are not teacher 

focused.  

This was the pattern followed the rest of the time.  

I wanted them to read the manual so I had to bring back the conversation to the 

lesson and activities. The only way I could do it was by reading the activities from the 

manual and asking about particular points that I thought were relevant to the lesson. 

Usually a short conversation would follow pertaining to the mathematical ideas in the 

activities contained in the manual and then it would deviate to a discussion of other 

math concepts, or clarifications about mathematical notation.  

Also, the mathematical discussion was many times interrupted by questions 

which would indicate what was important for teachers. Those questions were about 

logistic use of the materials which in most cases had been clarified before, or about 

additional resources, or about possible problems that they could encounter with 

students or parents. Teachers will not instinctively look at the manual, they worry much 

more about the book and textbook even though only two out of the eight lessons that 

we reviewed used any of the materials in the textbook and workbook.  

Here is a sample of the questions that usually would stop the conversation about 

the activities that we were analyzing and take us into discussing other things like 

additional resources, or problems with students or parents.  

 

Erika: “ is any of this material ready to use on a smart board?”  
Monika: “who is going to scan the textbook to use on the smart board?”  
Erika: “I can scan the pages, but I want to get rid of those lines and some of the    

pictures.”  
Elisa: “are there homework problems?”  
Monika: “is that book behind you also part of the resources that we can use?”  
Erika: “When do we finish with book 1A and start 1B?”  
Eliza: “How long will it take to teach all these lessons? Would you say that 

will be about a week and a half?”  
 

There were other questions or affirmations about lessons or ways of dealing with 

particular concepts that teachers wanted to continue as before, and it was reassuring 

for them to realize that many of their ideas would only enrich the process.  

Elisa: “I like to start with patterns, frankly when we are reviewing writing numbers 

sometimes it becomes too boring with letter formation.” 
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Erika: “I will still do my calendar from the beginning of the year.”  
Mandy: “I use tally marks for counting. Can I still do that or just count using 

dots like they are doing in the lesson about counting?” (this question was 

asked when we were reviewing arranging number from 0 to 10)  

 

And there were the comments which showed that in the end there was a 

possibly a shift:  

Mandy: “Kids have enormous problems with word problems so spending more 

t ime with all this in the beginning will help them.”  
 

And at the end of the session Erika changed her mind about the lessons being to 

teacher focused.  

Erika: “yes, they are (the lessons) very interactive.”  

 

Conclusion  
Of the teachers participating in this session, I had the sense that Mandy was the 

one who was looking more carefully at the mathematical content, context and 

sequence, her comments are very telling. However many times her train of thought was 

interrupted by questions from other teachers.  

There were comments like the one about the tally marks which came about two 

lessons after we discussed counting. This is an important point to make given that many 

times we are learning about an activity, and only afterwards when we have some time 

to reflect, we are able to see how new ideas can be in conflict or enrich what we are 

doing. These questions showed that teachers were reflecting on their practice, 

comparing with previous practices, and they were engaged.  

Before this session I had given a general overview to all the teachers in this 

school about the use of the manuals and textbooks and workbooks. Still many of 

them needed to review some of the things I had already explained.  

Some of the questions which according to me “interrupted” the process also tell 

about how teachers plan to re-source the resources. For example they planned to use 

smart boards instead of blackboard/white board which is not recommended by the 

program and there was also a discussion about they wanted to modify some of the 

pages in the textbook to use on the smart board. A teacher wanted to add tally counting, 

and another wanted to include patterns early on in the year, earlier than the program 

prescribed.  

The teachers were open to having discussions about math ideas, but classroom 

management was one of their main concerns.  

What was consistent was the subtle resistance to take a long and careful look at 

the manual and its activities. As I mentioned there were times when I had to read the 
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activity and then ask specific questions to make it possible to discuss what was in the 

manual, otherwise the conversation would have move to classroom management and 

resources.  

Was this mode of address successful? I think that it was, in that teachers were 

engaged, there was a lot of discussion about mathematical ideas that unfortunately I 

am not able to describe in this paper and also it allowed me to see a reality about the 

use of manuals. The truth is that if you ask around most people don’t read manuals. 

Why are we using manuals as one of the main artifacts for curriculum change?  
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PLAYING NUMBERS ON TOUCHCOUNTS 

Vajiheh(Mina) Sedaghat Jou 

Simon Fraser University 

 

This paper explores how young children build meaning through communicative, touch-

based activities involving talk, gesture and body engagement working with 

TouchCounts (Educational iPad app). The main goal of this paper is to show the 

impact of touch-based interactions and finger counting on the development of 

children’s perception and motor understanding of numbers. In this study, 

Nemirovsky’s perceptuomotor integration approach theoretical framework revealed 

strong value of digital touch-based interaction and mathematics embodied in emergent 

numerical expertise by making and objectifying numbers.  

 

Mathematical knowledge can be learned, based on previous constructed schema, by 

the formation of a real-world-grounded chain of cognitive metaphors that at each stage 

provide an understanding of the new, in terms of what is already familiar (Von 

Glasersfeld, 1995). Later, this mathematical knowledge expands in a similar way that 

we learn to play musical instruments such as a guitar. First, just by following the rules 

with little comprehension, then, with practice and finally archiving the level of play 

where meaning and expertise emerge (Nemirovsky, Kelton, & Rhodehamel, 2013).  

NUMBERS AND FINGERS: NEURO-FUNCTIONAL AND CULTURAL 

LINK 

There is a neuro-functional link between fingers and number processing. For instance, 

Butterworth (1999, 2005) has hypothesized that numerical representations, and 

processes are supported by three abilities: Subitizing: the innate ability to recognize 

small number of spots without counting; Fine motor ability: such as finger tapping; 

and Finger gnosis: the ability to mentally represent one’s fingers. He writes: “Without 

the ability to attach number of representations to the neural representations of fingers 

and hands in their normal locations, the numbers themselves will never have a normal 

representation in the brain” (pp. 249-250, Butterworth, 1999).  Butterworth argues that 

via our fingers, we construct concrete and abstract representations of numbers, number 

words, and number symbols. In addition, he believes finger gnosis is intrinsically 

linked to numerical representations as in all cultures, fingers represent numerosities 

with different pattern. Moreover, fingers are always available, and they can also be 

used as an aid in calculations, and therefore, they can work as a bridge between 

concrete and abstract representations of the notions of quantity and operations. 

Accordingly, using certain fingers for counting or constructing numbers can be related 
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to method of counting by a five-finger system across different cultures (Butterworth, 

1999). 

In Penner-Wilger’s (2007) study, those three component abilities (Subitizing, Fine 

motor ability and Finger gnosis) were found as a significant unique predictor of number 

system knowledge, which in turn was related to calculation skill. Noël has obtained 

consistent results in this regard (2005), and she has also demonstrated how consistent 

use of fingers positively affects the formation of number sense and thus also the 

development of calculation skills (Gracia-Bafalluy & Noël, 2008). Along this line, 

other researchers have suggested that finger-based counting may facilitate the 

establishment of number practices (Andres, Seron, & Olivier, 2007). 

It is possible that these results could be explained through the hypothesis that part of 

the neural circuitry supporting finger gnosis is also part of the neural circuitry 

supporting certain mathematical abilities. As a case in point, a functional circuit 

originally evolved for finger representation has since been redeployed in support of 

magnitude representation, and now serves both functions (Anderson, 2007). However 

this discussion goes beyond the scope of this paper. 

Based on the evidence from the fields of psychology, neuroscience and mathematics 

education, it can be claimed that use of fingers and appropriate gestures in early 

arithmetic facilitated by digital technology will help to develop number sense and 

mental calculation strategies. In particular, number representation with finger symbols 

is related to the nonverbal-symbolical form of representation (Moeller et al., 2011). In 

addition, Butterworth in his book “The Mathematical Brain” notes that developmental 

and cross-cultural studies have shown that children use their fingers early in life while 

learning basic arithmetic operations and the conventional sequence of counting words, 

fingers contribute to:  

“(a) giving an iconic representation of numbers (b) keeping track of the number words 

uttered while counting up or down at the numerable chain level (c) prompting the 

understanding that every symbolic number is a sum and/or a multiple of 10 (the base 

10 numerical system) and that 10 is equal to 2 × 5 (the sub-base 5 system), (d) 

sustaining the induction of the one-to-one correspondence principle by helping 

children to coordinate the act of tagging the object with saying the number word, and 

(e) sustaining the assimilation of the stable-order principle by sup- porting the 

emergence of a routine to link fingers to objects in a sequential culture-specific stable 

or- der.” (Butterworth, 1999, as cited in Crollen, Mahe, Collignon, & Seron, 2011, p. 

526). 

Multi-touch technology supports the substantial role of body engagement and senses 

in education. It opens new windows up to the realm of teaching and learning. Having 

indicated the important role of body and fingers for numerosity, we postulate that using 

fingers to create numbers when it is supported by auditory and visual modes of 
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perception will support and augment cardinal and ordinal understandings of numbers. 

TouchCountas an educational iPad application, benefits form multi-touch 

features/gestures of iPad. It provides users to manipulate numbers in a digital space 

and offers visual and vocal provisions in two sub-applications, namely Counting and 

Adding worlds. In this paper, both interviews conducted in Counting World (Crollen 

et al., 2011; Sinclair & Sedaghat Jou, 2013).  

THEORETICAL  FRAMEWORK 

In our point of view, learning is situated in practice. This approach is participationistic 

and accounts for sociocultural aspects of learning, which have been widely used over 

the past years since Vygotsky’s time. From an embodied cognition perspective, 

concepts may be formed in the minds of individual learners through social practice and 

activities or through the individuals’ bodily-based metaphors. Vergnaud (2009), 

addresses five principles necessary for mathematical numerical abilities identified by 

Gelman and Gallistel (1978). He argues that understanding cardinality implies more 

than knowing that the last number-word of the counting sequence applied to a set of 

objects represents the numerosity of the set. Understanding cardinality also means 

being capable of using numbers and operations, and in particular, being able to use 

strategies like “counting on.”  

Various theoretical views, such as instrumentalism, sociocultural theory, semiotic 

mediation, and Nermirovsky’s perceptuomotor integration approach (Nemirovsky, 

Kelton, Rhodehamel, 2013) emphasise the role of body in mathematical practice. 

These theories foc about us specifically on ways that mathematical expertise develops 

through a “systematic interpenetration of perceptual and motor aspects of playing 

mathematical instruments” (Nemivosky et al., 2013). On the other hand, there is still 

an ongoing debate on whether children should be encouraged to use fingers in early 

arithmetic. 

Nemirovsky et al. (2013) in relating their theory to sociocultural factors suggest that, 

“while perceptuomotor integration constitutes a transformation that is experienced by 

an individual, it is (a) shaped by relatively local social interaction and relatively global 

cultural factors and (b) socially consequential because one’s degree of instrumental 

fluency has bearing on one’s membership to various social groups” (p. 381).This 

approach shares many similarities with the emerging body of work in mathematics 

education that moves away from a mentalist focus on structures and schemas toward a 

description of lived experiences in which learners’ activities are at once bodily, 

emotional and interpersonal (Radford, 2008). The perceptuomotor integration 

approach refers to achievement of intertwined perceptual and motor aspects of tool 

fluency. It assumes that mathematical thinking is centrally constituted by bodily 

activity, which may be more or less overt, and that mathematical learning occurs 

through a transformation in the lived bodily engagement of a learner in a particular 



 78 

PROCEEDING MEDSC 2013                                        Department of Mathematics Education - SFU 

 

mathematical practice. This approach takes a strong stance toward embodiment, seeing 

it not just as a precursor or underpinning of mathematical thinking, thereby further 

promoting a mind/body dualism. Instead, mathematics learning entails transformations 

in the lived body experience, not just at the primary school age when children interact 

with physical manipulatives, but for learners of all ages. 

In this paper, we are exploring how particular aspects of numerical abilities can be 

developed through TouchCounts and the impact of touch-based interactions in the 

development of children’s perception and motor understanding of numbers. 

METHODOLOGY 

This study is part of an ongoing project of Dr. Sinclair’s “Tangible Mathematics 

Learning” in Canada. After reviewing related literature and launching the first version 

of TouchCounts, the first stage of the study involves an exploratory pilot study to see 

how young children use TouchCounts, what they are interested in doing with the tool 

(“app”) and how they learn with it. During one academic year, several sessions lasting 

between 20 to 50 minutes were conducted in a kindergarten in Northern Canada, on a 

monthly basis. The study took place in the participants’ regular day care time. The 

setting for two focal episodes from these sessions of concern to us here was one of the 

classrooms, where children (aged 3 to 6) could freely join or disjoin the event.  

RESULTS AND DISCUSSION 

About eight students are sitting around the interviewer in the classroom. Rodrigo and 

Mike are singing a song and laughing while they are sitting in the left side of the 

interviewer. Rodrigo has already played with the app, although for Mike TouchCounts 

is totally new. 3 Interviewer asks all children to sit in crisscross position. TouchCounts 

is running on the “Counting World” while gravity and bar-line functions are off. Square 

brackets include descriptive commentary of nonverbal participations in transcriptions. 

First Episode: Counting World, Without Gravity And Bar Line 

20 I:   OK, can you show us how to make four all at once?[ Interviewer to 

Amanda who had already played with app] 

21 [Amanda taps on screen by her four right fingers.] (Figure 1-a) 

22 iPad:  Four 

23 I Very nice. [Interviewer to the next child, Sarah] OK. You wanna 

take a turn? 

Child looks at interview’s eyes and smiles. 

                                                           
3 For details on TouchCounts please see  (Sinclair & Sedaghat Jou, 2013) 
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24 I Can you count up to five? 

Sarah bends on screen and taps on iPad. She makes numbers from one to five in a line 

pattern (Figure 1-b). 

25 iPad one, two, three, four, five. 

Sarah looks at interviewer and smiles. 

A B 

  

C D 

  

E F 

  

Figure 1: Making 3 and 4 all at once 
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26 I Can you make three all at once? “three” all at once. [Interviewer 

stresses on three] 

Sarah makes three using her index, middle and ring fingers while her palm also touches 

the screen.  

27 iPad Four  

Another child press reset key and Sarah tries again. 

28 iPad Three (Figure 1-c) 

28 I Good job! 

Then, interviewer asks Kate to make four, all at once. Nonetheless, she makes four one 

by one using her index finger. 

29 iPad One, two, three, Four (Figure 1-d). 

29 I Do you hear one, two, three, four. Do you think you can make four 

all at once? 

Mike is new in the classroom and had not a chance to play with the app before. He was 

sitting beside the interviewer and laughing with Rodrigo until this moment. Suddenly 

he looks at interviewer and says 

40 Mike Like this? [Shows his four fingers to interviewer](Figure1-e) 

51 I Like that? [Meanwhile Kate makes a four after watching Mike hand 

gesture and doing the same] (Figure 1-f). 

Children actively participate in this scenario, some act as newcomers and some “old 

timers” [experts] (Lave & Wenger, 1991). Looking at the figures 1-d,1-e, and1-f; 

illustrates how this community comforts Kate’s emergence of instrumental and 

mathematical expertise (as well as others in a following episode). At this point, 

responses to the interviewer’s questions are more gestural than vocal (20-24). This 

episode indicates a high level of body engagement emphasizing numbers and 

corresponding fingers. The children are actively engaged in processes that are far from 

just being mental, with the task of exploring [making/doing] numbers in a sensuous 

manner (Radford, 2012).  

We view this episode as an illustration of the relatively early stages of perceptuomotor 

learning. At this moment, Kate and Mike’s attempt to make/show four all at once is 

primarily motor, consisting of Kate’s manipulation on the iPad. Mike’s action is also 

predominantly perceptual, consisting of representing numbers by fingers (by Mike) 

following by creating them on the iPad (by Kate). 
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Second Episode: Counting world, with Bar line 

In this world, numbers fall down unless child put them on the bar line. Mike put 

fourteen on the bar line successfully. 

130 Mike Next time I’ll put 19 on the bar [he smiles, presses reset and adjusts 

the bar line. Then, he continues tapping by his right index finger on the screen] 

133 iPad 1, 2 ,3, 4, 5, 6,..10, 12 [Mike raises head, smiles and look at 

interviewer. It seems he noticed that he skipped 11]  

134 iPad  13, 14,..18(falls), 19 (on the bar) 

135 I WOW [smiles and expresses her wonder], I didn’t think you could 

do it. [pauses. Looks into Mike’s eyes]. You did it. Do you think you could get 

to the nineteen a little faster? How you can get there a little faster? 

Mike taps by his index finger on screen faster to reach to nineteen. Interviewer repeats 

her question in a different way: 

140 I  I wanna see if you can get to 20 with using more than one finger. 

 

Figure 2: Mike counts by five to reach 20 faster using 5 fingers. 

Mike starts uses his five right fingers (Figure 2) following by counting one by one. 

150 Ipad  5,10,15…27,28,29,…31,32. 

151 Mike That’s how old is my daddy. [Smiles while rolling on floor] 

Comparing these two episodes, where Mike was involved, reveals the emergence of 

Mike’s expertise that has developed gradually as his body engagements/actions 

integrate relatively more precise, faster and rhythmic. For example, faster finger 

movements, using more than one finger at the moment (150), choosing arbitrary 

number by himself and taking his own way of counting. He showed a high level of 

shifts in bodily and mathematically engagements from using one finger to more than 

one or changing the bar position. Mike’s trained eyes and ears, noticed that he skipped 

counting eleven, which is another evidence of tool fluency (133). 
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Also, we have seen in all the occasions as well as pervious episodes, children use the 

exact fingers gesture as finger counting while dealing with numbers on TouchCounts. 

These observations well support Butterworth’s arguments.  

CONCUSSION AND REMARKS 

In this paper, we addressed a number of literature reviews that argue the importance of 

fingers counting and body engagement in early childhood for further numerosity 

advancement. Also, we discussed ways in which theTouchCounts app takes advantage 

of a multi-touch device and make those engagement confront digitally. Analysing two 

short episodes indicates how touch-based interactions with TouchCounts can support 

development of young children’s numerical perception and motor understanding in 

general and counting in particular. Social and individual interactions where observed 

via children’s bodily gestures and actions. We found TouchCounts has excellent 

potential in providing visual, vocal and tactile supports, encouraging children’s finger 

counting and movement. Moreover, our findings reveal that children become fluent 

with this mathematical instrument via manipulating, picking up and creating given 

numbers.  

Further longitudinal studies with a greater number of children and iPads, in an actual 

classroom setting can reveal how interacting with TouchCounts might facilitate the 

development of children’s number sense over a long term.   
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TRANSFORMATION IN MATHEMATICS TEACHING 

PRACTICE: A CASE STUDY IN TEACHER NOTICING 

Natasa Sirotic 

Simon Fraser University 

 

This case study focuses on the professional growth of an elementary teacher who 

participated in a practice based professional development initiative centred on the goal 

of creating a culture of mathematical thinking in the classroom. Through sustained 

inquiry, reflective practice, and collaboration with colleagues, which was  focused 

around the examination of the impact of mathematical lessons on the student thinking, 

learning and understanding, a gradual but significant transformation was achieved 

which transferred into her daily instructional  practice.  

 

INTRODUCTION 

In my research I look at the professional development through teaching, and so I begin 

from what teachers do in the classroom. Teaching, however, is complex, situated, and 

integrated, as well as culturally based, and therefore believed to be difficult to change. 

I facilitate professional development of teachers and I research the effects of these 

efforts on their practice. My work in this area is based on the assumptions that teachers 

are the key to improving student learning, professional learning must relate directly to 

the classroom, and teachers should have opportunities to observe other teachers in 

action and collectively reflect upon their practice in order to improve upon it.  

This report comes from an ongoing study of in-service teachers at an independent, co-

educational, university preparatory school in British Columbia, West Coast Academy 

(pseudonym), who participated in a situated professional development practice 

(Chazan, Ben-Chaim, & Gormas, 1998) known as “lesson study”. Lesson study is a 

well-defined process for ongoing professional development of teachers that originated 

in Japan over 50 years ago, but it first gained attention in North America with the 

publication of The Teaching Gap (Stigler & Hiebert, 1999), and has since been 

documented and researched across various implementations in local settings 

(Fernandez & Yoshida, 2004, Fernandez, 2005, Lewis, 2006). In the traditions of 

“lesson study” and “community of inquiry” (Jaworski, 1998), the teachers at WCA 

worked together as a professional learning community (Wenger, 2007), engaging in 

considerable shared planning, observation, and discussion of lessons, also called 

“research lessons”. Initially, for the first two years a pilot study was implemented with 

one group of teachers only. At that time, the data was not being collected and the 

purpose was only to introduce teachers to the methods and potential benefits of lesson 
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study. In the following school year, the actual field study and data collection took place 

in a school-wide implementation whereby all 16 teachers who taught mathematics in 

the K-12 grades voluntarily participated in this “practice based professional 

development” process in a research setting.   

METHODOLOGY 

Typically, in each lesson study cycle, a team of teachers who taught the same or 

neighbouring grade levels collaboratively designed a mathematics lesson to challenge 

a difficult topic or to learn about an aspect of students’ ways of thinking. Next, the 

lesson was taught by one of the teachers in the team while the other team members 

observed and documented students’ learning; then, the teachers collectively reflected 

upon, discussed and analysed the lesson and its effect on students’ learning. Typically 

a cycle would span over three to four weeks.  

One of the main features of lesson study as a professional development process is the 

articulation of an overarching goal stated as an inquiry into how to build a culture of 

mathematical thinking in the classroom. This goal was common for all teacher teams 

and it acted as a compass during the entire period of the study. It remained fixed for all 

lessons study cycles. Teachers were not expected to depart from the usual content of 

their instruction; therefore, the specific student learning goals of the lessons were still 

entirely curriculum based. Teachers would teach what they would normally teach and 

when they would normally teach it, according to their programs; however, they were 

encouraged to select for their research lessons mathematical contents that they 

considered students had difficulty understanding. The planning stage involved creating 

or selecting the mathematical tasks, anticipating student responses, working on and 

considering variations of the task to gain personal mathematical experience with the 

content they were planning to teach, and engaging in a deep analysis of the 

mathematical and pedagogical affordances embedded in the task (Liljedahl, Chernoff, 

& Zazkis, 2007). This report draws from a single lesson enactment in a class of 15 

Grade 2 students, where the specific lesson goal was to apply and extend the students’ 

idea of fraction using a task called “A Pattern to Colour”.  

The main source of the data is from the collaboration and discussions (audio taped and 

transcribed), the lesson implementation (videotaped and transcribed), and the artefacts 

that were created during the process (lesson plan, instructional materials, and student 

work), and a semi-structured interview with the teacher teaching the lesson. Sam 

(pseudonym) was then in her 12th year of teaching elementary students. She was part 

of a five-member early-elementary teacher team (Grade K-3), and this particular lesson 

took place close to the end of the school year, so in the more mature stage of the lesson 

study activity, when all the teachers in the team had already taken at least one turn in 

teaching a research lesson in their own classroom while being observed by the other 

members of the team. Since the lesson was co-created, the focus was not on the teacher 
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teaching the lesson but rather on the lesson itself and its impact on the student thinking, 

learning, and understanding. There was a shared understanding that the effectiveness 

of the post-lesson discussion would depend on the quality of observation and data 

collected by each participant during the implementation of the lesson. In turn, the 

quality of observation and subsequent systematic reflection will be affected by what 

teachers notice and how they notice as the lesson unfolds.  

THEORETICAL FRAMEWORK 

Teacher noticing as a theoretical construct has been gaining attention in the recent 

educational literature on professional development of teachers. Mathematics educators 

have used the noticing construct to understand how teachers make sense of complex 

classroom situations where they attend to certain things while ignoring others from the 

backdrop of myriad of stimuli in their work environment depending on their current 

instructional purpose. Professional noticing is closely linked to teachers’ in-the-

moment decision making (Jacobs, Lamb, & Philipp, 2010), and so expanding the 

spectrum of what teachers notice can lead to greater instructional choices. Teachers 

must also integrate what they notice with their knowledge of how students learn and 

with their own knowledge of the content that they are teaching.  

The most extensive body of literature on this topic comes from van Es and Sherin 

(2002) who defined noticing as having the following three components: 

(a) identifying what is important or noteworthy about a classroom situation; (b) making 

connections between the specifics of classroom interactions and the broader principles 

of teaching and learning they represent; and (c) using what one knows about the context 

to reason about classroom events. 

For the purpose of this report, I draw upon the specialized type of mathematics teacher 

noticing known in the literature as professional noticing of children’s mathematical 

thinking, which is conceptualized as an expertise in three interrelated skills: (a) 

attending to children’s strategies, (b) interpreting children’s understandings, and (c) 

deciding how to respond on the basis of children’s understanding (Jacobs et al., 2010).   

“… before the teachers respond, the three component skills of professional noticing of 

children’s mathematical thinking – attending, interpreting, and deciding how to respond – 

happen in the background, almost simultaneously, as if constituting a single, integrated 

teaching move. Thus, our conceptualization of the construct on professional noticing of 

children’s mathematical thinking makes explicit the three component skills but also 

identifies them as an integrated set that provides the foundation for teachers’ responses”    

These authors aimed to unpack the in-the-moment decision making in a cross-sectional 

study of prospective and practicing teachers who had different amounts of experience 

with children’s mathematical thinking, in order to characterize what this expertise 

entails. They provided snapshots of varied levels of this expertise, and they concluded 

that this expertise can be learned. It is important to note that in their conceptualization 
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of teacher noticing these researchers did not include the execution of the teacher 

response (because the study was based on teacher focus groups where the participants 

examined video clips of teaching interactions, not in the classroom) but rather focused 

on the intended response of the participants in their study. Other researchers also used 

videos of teaching situations to study professional noticing of teachers and its growth 

over time (Sherin and van Es, 2005; Hannah, 2012). Van Es (2011) developed a 

framework for learning to notice student mathematical thinking, where she articulated 

two central features of noticing related to what teachers notice and how teachers 

notice, and proposed a four level trajectory of development in these two dimensions 

(Baseline, Mixed, Focused, to Extended Noticing). While in all these studies teachers’ 

noticing skills were reported to have improved over time, these studies do not report 

on the effects of these improvements on day to day practice. One of the studies (Star 

& Srtickland, 2008) on teacher noticing found that the teacher noticing expertise 

improved in some categories (noticing classroom features and the ways teachers 

manage their classroom) but not so much in others (for example noticing features of 

mathematical content, tasks, and communication), and the authors questioned why 

might teachers show improvement in their abilities to notice but still struggle to notice 

important classroom events.   

DISCUSSION 

In the authentic setting of her own classroom of 15 Grade 2 students, Sam set her 

students to work in small groups of two or three on the “A Pattern to Colour” task, 

while being observed by the other teachers from the team. Sam circulated the class, 

scaffolding student learning and encouraging students to discuss their strategies before 

beginning to colour the pattern. In the post lesson discussion, she made explicit the 

similarities and differences in children’s strategies that she observed, displaying an 

extended level of noticing as defined in van Es’ framework.  Extended level of noticing 

in the dimension of what teachers notice is characterized by teacher’s noticing of the 

particular students’ strategies and then connecting these to her pedagogical moves. For 

example, Sam noticed a student who after colouring half of the large square proceeded 
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to find 1/3 of the rest. She pointed him in the right direction saying it had to be 1/3 of 

the entire square. This was also one of the anticipated student difficulties which 

teachers discussed during the planning stage of the lesson.  

Figure 1: “A Pattern to Colour” problem 

The idea of how teachers notice captures the analytic stance and the depth of analysis 

of what teachers notice. Sam went well beyond providing descriptive and evaluative 

comments by referring to specific events and interactions as evidence and she 

elaborated and made connections between events and principles of teaching and 

learning. Sam shared with the teachers in the post lesson discussion that her own 

approach would be to take the smallest unit, in this case the smallest isosceles right 

triangle, and determine that the entire diagram is made up of 36 equal units. Next by 

means of computation ½ of 36 = 18 of them would be shaded red, 1/3 of 36 =12 would 

be green, and the rest yellow. Since 36 – (18+12)=6 it means that 6/36 or 1/6 of the 

entire figure is to be coloured yellow. She considered this to be the most sensible and 

efficient solution strategy, but also recognized it as a trained response, and admitted 

that in the past she would have been compelled to teach her own solution process to 

her students right away. She no longer felt the need to impose her personal solution 

strategy on her students, but instead rather listened and appreciated the students’ ways 

of thinking about the problem, granting them the opportunity to experience the thrill of 

solving a difficult problem on their own. She was sensitive enough and attuned to the 

ways the students were approaching the task. She also recognized that dividing 36 by 

even such small numbers as 2 and 3 was outside of what students have experienced 

before and would add an unnecessary level of computational demand with which 

students were unfamiliar (up to this time they had only studied multiplication tables of 

2, 3, and 5 up to 10, and many of them had not even grasped that yet).  

(a) 

 

 

 

 

 

 

 

(b) 
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(d) 

Table 1: Students’ work and Sam’s explanation 
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A number of student approaches emerged, and Sam was by this time skilled enough in 

her noticing to be able to reconstruct each group’s thinking process from the 

observation of students’ communication and work. She followed closely in terms of 

what units the students were paying attention to (large square, small square, half the 

small square, or the little triangle) and how they shifted their attention to different units 

as they proceeded in their solution path, and whether they were using the idea of ratio 

or the idea of the “part of something”.  

In relation to student work displayed in Figure 1, Sam reported this: 

Sam: When I asked and I said ok how did you figure that out? And it's just like 

she's going, "Well look, here's a 3rd. Here's another 3rd here's another 3rd. 

so this has got to be 3 squares. So I'm just gonna color 3 squares." 

With the other four artefacts displayed in Table 1, she offered specific interpretations 

of the students’ thinking strategies, for example: 

Sam: Student M chugs along. She looks and she says to herself, ok, 1/2 well here's 

4, I'm gonna colour half of that. Here's another 4, I'm gonna color half of 

that. She's the one that figured that out. And notice, none of the other groups 

did that (commenting on student strategy c).  

The most difficult part for the students was to figure out was “what fraction is yellow”, 

which is something that Sam wanted to challenge her students with, and was not part 

of the original problem. She wanted the students to discover that they could form 

another, even less obvious unit, made up of one and a half small squares, or 6 small 

triangles and that in doing so, the entire square would then break up into 6 such units 

of equal size leading to a conclusion that 1/6 of the entire square is yellow.    

Sam: They knew this is a 3rd, 3 squares are a 3rd. So one and a half squares must 

be half of a 3rd. But this is interesting because it's the switching of the unit. 

What is a unit? Unit could be the triangles or it could be the squares.  

Most students recorded 6/36 as the fraction of the square that is yellow, and one student 

wrote “half of a third”. Sam did not pick up on the student reasoning behind this 

conclusion during the lesson, but had clarified it to herself afterwards, during the 

briefing with her colleagues. In the final stage of the lesson the students displayed their 

work and were invited to share their different thinking strategies, but the “half of a 

third” was not discussed. To conclude, Sam outlined the 6 congruent trapezoids in one 

of the groups’ work with a thick black marker (figure (d) in Table 1) to display the idea 

that 6/36 can also be seen as 1/6 (and as “half of a third” as one student noticed); 

however, she did not explicitly mention that the parts needed to be of equal size 

whenever there is the idea of fraction. 

Sam was both surprised and impressed with the variety of students’ approaches. She 

had come to see her students as much more capable than she thought before. She also 
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shared her thoughts about the changes she had made in her instruction on fractions. At 

the Grade 2 level, the instruction on fractions begins with recognizing simple fractions. 

In prior years, Sam would explain the fraction notation, show some examples, and then 

proceed with having students fill out many worksheets where they would be asked to 

respond to two kinds of questions, one to shade the given fraction of a figure such as a 

square or a circle, and the other to write down what fraction of the figure is shaded. 

Instead, she now focuses on developing the meaning of fraction, asking students to 

provide their own examples, and broadening the interpretations of fraction in her 

instruction (part of a set, part of a figure, fraction as a ratio). 

My first lesson was, seriously, I thought it was stupid. You know how the book says 

"recognise 1/2", well you know what? This is what a fraction is. Like, I wrote it on the 

board and I said this is one half. So I threw it back at them. I said, "This is one half. What 

do you think each of these numbers mean?" So it's like I said ok, if I ask you to share a 

cookie and each person gets 1/2, and they go, "we break it in half, I get this half, and the 

other person gets this half." And I said, "Well this is how you write down 1/2. What do 

you think each of these numbers mean, in 1/2?" so I wanted them to think about what each 

of the numbers meant. 

Sam’s instructional and problem posing practices changed dramatically in comparison 

to her earlier ones. Instead of offering traditional single step and computational 

problems that involve a single answer, she ventured into posing problems that were 

cognitively more complex, had multiple approaches and solutions, and were open-

ended and exploratory. Early on in the study, she felt compelled to adapt mathematical 

tasks in ways that made students' work easier by leading them through a series of steps, 

essentially breaking down the problem into small, easily executable computational 

exercises which narrowed the mathematical scope of the problem. She was also 

concerned about being observed by peers, and wanted to ensure that students 

succeeded. She experienced great tension between trying out tasks that would engage 

students in meaningful, authentic mathematical thinking and reasoning and risking 

student failure. This prompted her to start experimenting with her teaching practice and 

expecting more autonomy from the students.  

As she continually reflected upon, “What are we trying to achieve here?” in the context 

of the professional development setting, and continued to ask herself, “Who is doing 

the thinking?”, her practices have gradually shifted. She has become less leading and 

less focused on avoiding students' errors. Posing problems to an authentic audience, 

engaging in collaborative professional development practice centred on developing 

student mathematical thinking and reasoning, and having opportunities to explore new 

kinds of problems are highlighted as important factors in promoting and supporting the 

reported changes. 
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CONCLUSION 

The overarching goal of the professional development was for teachers to learn how 

children think about and develop understandings in particular mathematical domains 

and how teachers can elicit and respond to children’s ideas in ways that support these 

understandings. This report documents how one teacher developed the expertise of 

attending to the subtle details in individual student strategies – details that reflected 

mathematically relevant differences in the understandings children bring to their 

problem solving. The teacher kept returning to this overarching goal when reflecting 

upon her practice and the practices of other teachers in the team. 

Sam’s professional development trajectory can be viewed as passing through three 

levels. It begun with a specific but distant goal - the technical concern of how to create 

a culture of mathematical thinking in her classroom. How to attain this specific 

practical goal was the dominant concern, which then moved inwards towards 

sensitizing herself (with the aid of colleagues) to notice situations in which alternative 

actions are possible, until finally she was able to change practices by choosing to act 

differently (Mason, 2002).  
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SHEARING AND IPADS: EXPLORING GEOMETRY WITH 

DYNAMIC GEOMETRY AND TOUCHSCREEN TECHNOLOGY 

Oi-Lam Ng 

Simon Fraser University 

In this paper, we report on two lessons for teaching junior highschool students to the 

idea of shearing in a dynamic geometry environment.  Through a classroom-based 

intervention involving the active use of a class set of touchscreen tablet devices, we 

analyse students’ evolving discourse about area.  The touchscreen tablet technology 

seemed to have supported the ways in which students talk about shearing as a temporal 

and continuous process and made the idea more tangible.  We highlight the specific 

roles of the teacher and digital technology in supporting the process of semiotic 

mediation through which the students learned about shearing. 

INTRODUCTION 

Geometry has traditionally been taught as a study of static theorems and properties 

about shapes and space. In their book, Sinclair, Pimm, and Skelin (2012) argued that 

this calculation and formula-driven approach to teaching geometry is the very root of 

students’ struggle to grasp the “big ideas” in the learning of high school geometry, 

especially in terms of the measurement strand. In our experience, teachers spend little 

time on exploring or proving the geometric relations and invariances that support 

measurement formulas, and instead focus on the numerical or algebraic manipulations 

involves in applying these formulas. There are two main geometric approaches to 

working with area: decomposition/rearrangement and shearing. While the former is 

often used to introduce area at the elementary school level, the method of shearing—

which Euclid used to prove the Pythagorean Theorem—is more rarely used (Fischman 

and McMurran, 2011). Shearing is a continuous and temporal geometrical 

transformation that preserves area and can be extended in the case of the Cavalieri's 

principle (Pimm and Proulx, 2008). It is difficult to exemplify through the static 

medium of paper, but perfectly suited for dynamic geometry environments, which 

produce “a seemingly limitless series of continuously-related examples, and in so 

doing, to represent visually the entire phase-space or configuration potential of an 

underlying mathematical construction” (Jackiw and Sinclair, 2009, p. 414).  

The purpose of the current study is to explore the potential for dynamic geometry 

environments (DGEs) to mediate the learning of shearing in the junior highschool 

level.  Through a teaching experiment involving the design of two lessons 

incorporating pair-work activities on students’ iPads, I investigated the evolving 
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discourse of students in terms of the way they communicated about area and shearing, 

and how this communication was supported by a DGE and touchscreen technology.   

THEORETICAL PERSPECTIVES 

As mentioned, shearing is a continuous and temporal – dynamic – geometrical 

transformation.  For this reason, the use of DGEs evokes the idea of shearing more 

readily than static diagrams.   In this section, we briefly describe the theory of semiotic 

mediation as a theoretical framework to explain the complex process through which a 

tool (such as DGE) produces signs through which meaning making occurs.  

Vygotsky (1978) distinguishes the dialectical relationship between signs and tools as 

follows: practical tools are those used in the labour, whereas signs are symbolic tools 

used in the psychological operation. Externally-oriented tools may be transformed into 

internally-oriented ones through the process of internalisation. Internalisation is 

directed by semiotic processes and rests on a system of signs involved in the social 

activity, i.e. signs such as words, drawings and gestures (Wertsch and Addison Stone, 

1985). These signs generated by the use of a tool, through the complex process of 

internalization accomplished after social interchange, may shape new meanings. 

Therefore, semiotic mediation is a process of meaning making through internalising 

the signs that are produced from an external, intrapersonal activity.   

An external, goal-oriented activity such as “dragging” and “tracing” in a dynamic 

sketch can be internalised to shape personal meanings. The teacher’s role is to exploit 

such opportunities by facilitating a meaningful social exchange during the use of the 

corresponding tools. This perspective is shared by Falcade, Laborde, and Mariotti 

(2007) in their teaching experiment with high school students on functions. They 

suggest that the internalisation of the Dragging and Trace tools may contribute to 

introducing function as covariance and the notions of domain and range. They argued 

that the role of the teacher is crucial in this process, as she promotes of different 

semiotic activities related to the use of the Dragging and Trace tools, and later 

facilitates a class discussion in order to guide students to mediate mathematical 

meaning upon the activities.  Moreover, signs can be interpreted at different levels, 

from artefact to mathematical.  This means that in a classroom community or 

discussion, certain words, gestures and uses of visual mediators can be interpreted as 

instrumental to the use of the artefact or mathematical. In an educational context, the 

goal of the teacher is to orchestrate a transformation from artefact signs to 

mathematical signs in a path that students can follow. This can be accomplished when 

the teacher tunes with the students' semiotic resources and uses them to guide the 

evolution of mathematical meanings.  
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Within this theoretical perspective, we designed two lessons incorporating dynamic 

sketches with particular tools that were intended to serve as instruments for semiotic 

mediation in the learning of shearing and comparing area geometrically (as opposed 

to, for example, numerically or algebraically).  In the sections below, we describe the 

participants involved in the study, followed by the design of the lessons and sketches 

that were used in the lessons. 

THE TEACHING EXPERIMENT 

The current teaching experiment involved two consecutive lessons taught in a 

secondary school in Western Canada.  Each lesson lasted approximately 75 minutes 

and included some iPad-based activities followed by paper-and-pencil activities. 

Students worked in pairs and were asked to explore, through the guidance of the 

teacher, the dynamic sketches that were presented in the multitouch application 

SketchExplorer (Jackiw, 2011).  Then, during the last 20 minutes of each lesson, all 

students were asked to reflect on their learning by opening the last page of the sketch 

to answer some assessment questions on paper. The students were encouraged to 

discuss in pairs, but they were asked to do the write-ups individually. One of the co-

authors, who was also a teacher at the school, took on the role of a guest-teacher in an 

8th grade mathematics classroom, while the other co-author observed the lessons as a 

visitor of the school. The regular classroom teacher was present in each lesson and 

helped manage various aspects of the lesson.  He did not undertake any work on 

shearing with the students, nor did he use iPad-based activities outside of the 

intervention.  

Design of Lessons and Sketches 

The main goal of this first lesson is to introduce shearing. We chose to begin with the 

shearing of quadrilaterals. The teacher began by asking students to write down what 

“they knew about area” and to look at an introductory problem, the “problem of Eda 

and Azusa” (Stigler et al., 1999), in which a new border has to be drawn between Eda 

and Azusa’s land in such a way as to not change the amount of land each has (Figure 

1a). The students were invited to think about possible ways of doing this. Then, the 

teacher opened a sketch with a page initially showing four quadrilaterals (Figure 1b). 

To the left of the page was a rectangle coloured yellow, and to its right were three 

parallelograms with different slants and colours. The teacher asked the students to 

explore this page in pairs, asking them to compare the base, height and area of the 

shapes and to explain how they made these comparisons. The students showed that the 

base and height of all the shapes were the same by dragging one parallelogram on top 

of another, one at a time.  Furthermore, some students explained how each 

parallelogram could be “cut off” at one end and be “put” on the other in order to form 
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a rectangle whose area is equivalent to the yellow one.  At this point, the teacher offered 

the word “dissecting” as a name describing this process of comparing shapes.   

(a) 

 

 (b) 

  
Figure 1(a). The problem of Eda and Asuza. (b) Comparing areas of parallelograms. 

The teacher then pressed the “Show Super Parallelogram” button on the same page and 

explained that the newly shown, grey “Super Parallelogram”, which has a draggable 

vertex, can be transformed into any configurations of parallelogram with the same base 

and height. In fact, the draggable vertex is constructed to be on the line parallel to the 

base of the parallelogram so it can move along that line only. She dragged the vertex 

horizontally back and forth, arrived at a very “skinny” parallelogram (see Figure 2b), 

and asked if the method of dissecting was feasible for comparing the area of the grey 

parallelogram with that of the rectangle.  Upon interacting with the sketch, some 

students proposed that the two areas were the same, but they were not able to explain 

how they knew that nor to justify by the method of dissecting. 

The teacher then turned to the next page in the sketch, which showed the same two 

shapes as on the previous page, the yellow rectangle and the grey parallelogram. The 

students were asked to press the “Show Triangles” button (Figure 3a) and to drag the 

two overlapping right triangles in order to make inferences about whether the two 

original shapes had the same area.  The teacher emphasised that simply saying that they 

were or were not the same was not “enough”; she stated that in geometry, they had to 

show their reasoning. After a good ten minutes of interacting with the sketch, a student 

volunteered to explain what he did on his iPad.  He moved the red triangles and the 

yellow rectangle directly below the composite figure to show that the areas of the two 

composite figures were the same (see Figure 2b). The teacher pressed the “Show Point 

to Shear Parallelogram” button on her sketch and dragged the movable vertex 

horizontally to “resize” the parallelogram. She explained that the area of the grey 

parallelogram continues to be the same as the area of the yellow rectangle.  While she 

was dragging the vertex of the parallelogram, she said, “I’m shearing the 

parallelogram”. 
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(a)

 

(b)  

Figure 2(a) and (b).  A page that was used to compare the area of the yellow rectangle 

and the grey parallelogram.   

The assessment task at the end of this lesson consisted of four questions. Of particular 

interest is Question 4, which involved comparing the areas of four shapes and relating 

the areas using symbols “+” and “=”.  Since the question was presented on the iPads, 

all of the shapes, except for Shape C, which was a rectangle, had a draggable vertex 

and therefore could be sheared through onscreen dragging (see Figure 3). 

 

Figure 3. An assessment question at the end of Lesson 1. 

Building on the previous day’s work, Lesson 2 was focused on shearing triangles. Two 

sketches similar to those in Lesson 1 were used to introduce both dissection and 

shearing of triangles. The teacher then introduced four problems to the students, one 

of which was the “Eda and Azusa” problem from Lesson 1 to try solving on their iPads. 

RESULTS OF THE TEACHING EXPERIMENT 

The students were asked to write down what they knew about “area” in the beginning 

of Lesson 1.  They were also asked to try to solve the problem of “Eda and Asuza” as 

an introductory problem about area. Our data show that students’ initial discourse was 

dominated by numerical and algebraic approaches to area. This can be observed 

through their talk of area as a quantity upon calculations and applying some formulae, 

as exemplified in the typical response shown in Figure 4a.  In this response, the student 

reflected on area as a “measurement” that is assigned a certain “unit” (cm2, m2, etc.) 

and is associated with some formulae.  Note that the student had said nothing about 

what exactly is being measured.  As predicted in the literature, we observe that only 6 

out of a class of 26 students communicated the very meaning of area as the space 
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enclosed by a 2-dimensional figure, while all students have mentioned in this part of 

their assessments at least one formula for computing area, such as A = l*w, A = b*h, 

A = πr2 etc. 

(a)  

 

(b)  

 

Figure 4.  A student reflecting on area at the start (a) and at the end (b) of Lesson 1. 

 We observe an evolution in students’ thinking about area at the end of Lesson 1.  For 

example, all students communicated the idea that area can be compared, “without using 

numbers,” by the method of dissecting and/or shearing.  Furthermore, they were also 

able to explain what dissecting and shearing meant.  In Figure 4b, the student 

mentioned two important concepts about area: 1) area can be conserved, and 2) 

shearing and dissecting conserve area.  This student also justified that shearing and 

dissecting both conserve area with two diagrams, each with an arrow conveying the 

temporal transformation of one shape into another.  The curved arrow conveys 

dissecting and moving a shape to the other side, whereas the straight arrow conveys 

the continuous process of shearing. Both Figures 5a and 5b were done by the same 

student, and the differences between the two ways of thinking about area are quite 

striking.  

At the end of Lesson 1, the students were also asked to describe shearing, which was a 

new word for them. As shown in the table below, the students talked about shearing as 

a temporal and continuous process (see Lines 3-6) and as a method for conserving area 

(see Lines 7-10). Recall that the teacher never defined shearing in the lesson; instead, 

she introduced the idea of shearing in the act of dragging a vertex of a parallelogram. 

In light of students not explicitly given a mathematical definition, our finding is 

interesting because most students were able to describe at least two important 

characteristics of shearing: a temporal and continuous process that conserves area.   

On the question, “I think shearing means…” [Lesson 1] 

Shearing as a temporal and continuous process Shearing as conserving area 

3 … moving the parallelogram into the 

square or rectangle without dissecting. 

7 … to change the look of a shape but keeping 

the same area. 
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4 … moving the shape so that the base and 

height match up to the other. 

8 … being able to change the shape while 

keeping the area the same. 

5 … to re-shape a shape. 

 

9 … to change the look of any shape, but not 

change its area. 

6 … stretching the shape. 10 … changing the shape of a parallelogram 

without changing its area 

Lastly, there is a change in the way the students talked about the problem of Eda and 

Asuza between the beginning of Lesson 1 and the end of Lesson 2.  When attempting 

to solve the problem in Lesson 1, the students found they could only partially solve the 

problem by drawing a straight line border so that both Eda and Asuza would 

“supposedly” not gain or lose any land (Figure 5a).  This solution involved estimation, 

and did not compare the base and height of the portions of land being added or lost. In 

contrast, the students communicated the solution of the problem in a dynamic sense at 

the end of Lesson 2.  Although not all students were able to provide a full solution, 

most students did use shearing.   

(a)  

 

(b) 

 

Figure 5. Solutions to the problem of Eda and Asuza in Lesson 1 (a) and in Lesson 2 (b). 

As seen in Figure 5b, one student solved the problem at the end of Lesson 2 by first 

constructing a line in order to form a triangle and then another line parallel to the base 

of the triangle, and then shearing the vertex of the triangle along the parallel line until 

it reached the edge of the land.  

DISCUSSION 

The use of technology was instrumental for developing students’ working definition of 

shearing and assisting with students’ problem solving.  Some students commented on 

the enhanced ability to drag or move objects around on the iPads to visualise the 

process of shearing more effectively, while others explained that the iPads made it 

easier for them to communicate their learning.  Both of these aspects were captured in 

Figure 6, where a student wrote that he “sheared the shapes and found that they have 

the same area” and drew diagrams below his written explanation in his solution of 

Question 4 from Lesson 1.  The use of past tense in “sheared” and “found” suggests 

that the student had been interacting with an iPad first before formally writing his 

solution down.  Also, some of the vertices in his diagram were bolded exactly like they 

were in the sketch, further suggesting that he was referring to the shapes as seen on his 
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iPad. Hence, it is very likely that the drawings reflected what the student saw and acted 

upon before and after the shapes were sheared on the iPad.  In addition to students’ 

consistent use of past tense in problems solving, we found evidence that students were 

making sense of shearing using the colour-coding of points as designed in the sketches. 

In solving the problems posed in Lesson 2, several students labelled vertices as “blue” 

points or “red” points in their diagrams.  This shows that the way the student 

communicated about shearing was highly influenced by the design of the sketch. 

 
Figure 6. A student’s written explanation and diagrams for Question 4 of Lesson 1. 

In the lens of semiotic mediation, the colour-coding of points not only served as signs 

that enabled learners to make reference to the points more easily but also mediate the 

meaning of the respective coloured points as independent (initial vertices of a shape) 

and dependent (vertices after the shape is sheared) objects in the sketch.  Furthermore, 

the dragging tool was exploited in two pages of the sketch for introducing “dissecting” 

and “shearing”.  This was exploited by dragging one shape to overlap with another to 

convey dissecting as well as dragging one vertex along the line parallel to the base to 

convey shearing.  The fact that the students seemed to have drawn what looked like 

screenshots suggests that they have made use of the signs produced by the DGE to 

internalise their thinking. 

In conclusion, findings from this teaching experiment were especially encouraging in 

terms of the students’ ability to describe shearing based on their interactions with the 

sketches and in relation to their enriched conceptions of area.  Despite having had no 

prior experience working with DGEs, the students easily grasped the function of the 

Dragging Tool for exploring the sketches for learning dissecting and shearing, which 

helped them communicate mathematically during the paper-and-pencil part of the 

lessons. In particular, students communicated effectively through words and diagrams 

using paper-and-pencil, even though they had been solely working with iPads during 

the exploratory and problem solving activities.  They seemed to have interacted with 

the iPads in a profound way, which allowed them to communicate their ideas later by 

drawing what looked like screenshots of the iPads.  This finding points to the 

possibilities for DGEs, presented on multitouch devices, to explore dynamic 

geometrical relationships and the compatibility of also using paper-and-pencil tasks as 

assessments of learning at the end of the interactions with DGEs. 
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Indeed, as a result of the teaching experiment, several of the students described 

shearing as a way of doing “area without number”. Because of the design of the 

teaching experiment, we were not able to see how students might connect the notion 

of shearing with measurement formulas, and this process of combining the geometric 

with the algebraic could form the basis for fruitful future research. 
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SOLVING RUDIMENTARY AND COMPLEX MATHEMATICAL 

TASKS 

Minnie Liu 

Simon Fraser University 

 

Tasks are used in mathematics education for a variety of purposes – from delivering 

course material to developing students’ mathematical thinking skills. In this article, I 

present research on a type of task specifically designed to foster students' ability to 

flexibly apply their existing mathematical knowledge and skills in problem solving 

situations. In particular, I look at students’ problem solving processes when working 

collaboratively on such tasks. Results indicate that while the processes of solving 

these tasks are similar to those of modeling tasks, differences also exist. 

 

Mathematics educators use a variety of tasks for a number of goals. These goals can 

range from delivering new curriculum to promoting students’ mathematical thinking 

skills (Kaiser & Sriraman, 2006).  One class of tasks used for these purposes are 

modeling tasks.  

MODELING TASKS 

Modeling tasks can be loosely defined as “authentic, complex and open problems 

which relate to reality” (Maaβ, 2006, p.115). These tasks demand students to do a 

substantial amount of mathematical modeling, or to make transitions between reality 

and the world of mathematics (Blum & Borromeo Ferri, 2009).   

Researchers describe the processes of solving modeling tasks in terms of modeling 

cycles. While differences exist between researchers’ descriptions of modeling cycles, 

a general structure exists.  Modeling cycles begin with a real situation in reality. 

Students then create a real world model to describe the situation based on their 

understanding and the data provided. Afterwards, students mathematize the real world 

model to create a mathematical model, which is used to generate mathematical results. 

Finally, students validate these mathematical results by comparing them to data given 

in the real situation (Borromeo Ferri, 2006).  
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Figure 1: Modeling Cycle proposed by Kaiser (1995) and Blum (1996) (Borromeo 

Ferri, 2006, p.88)  

Modeling tasks can be classified under the major goals for their use: (1) to deliver 

curriculum, (2) to become responsible and engaging citizens, (3) to develop students’ 

critical thinking skills, and (4) to promote students’ ability to use their mathematical 

knowledge to problem solve (Kaiser & Sriraman, 2006). The last two of these purposes 

can be achieved through the use of a specific subset of modeling tasks that I have come 

to call ‘rudimentary and complex mathematical tasks’ (RCMTs). These tasks are 

specifically designed to foster students' ability to flexibly apply their existing 

mathematical knowledge to problem solve. 

RUDIMENTARY AND COMPLEX MATHEMATICAL TASKS (RCMTs) 

Rudimentary and Complex Mathematical Tasks (RCMTs) are tasks that require the 

sophisticated use of rudimentary mathematics to solve complex problems. Like 

modeling tasks, RCMTs can be loosely defined as messy open-ended novel problem 

solving questions situated in reality, where the contexts of these tasks are engaging and 

relevant to students’ lives. Students need to make sense of the situation to not only 

generate possible solutions, but also to present these solutions in a mathematical way. 

Students may also need to draw upon their non-mathematical knowledge and 

experiences in order to problem solve. Unlike the more common types of modeling 

tasks, however, RCMTs  

…require a lot of mathematical thinking without relying on a lot of mathematical 
knowledge. … These tasks really do allow for a great deal of mathematical 
activity and discussion without relying heavily on specific pre-requisite 
knowledge (Liljedahl, 2010). 

In general, RCMTs aim to promote students’ ability to flexibly use their EXISTING 

mathematical knowledge to problem solve, to engage students in thinking critically 

about real life situations in mathematical ways, to improve their communication skills 

by giving students the opportunity to work in teams, and to engage students in problem 
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solving situations (Liljedahl, 2010). This study aims to investigate students’ problem 

solving processes when working collaboratively on RCMTs using modeling cycles as 

a framework.  

RCMTS AND MODELING TASKS  

As previously discussed, RCMTs can be classified as a subset of modeling tasks due 

to the common goals they share, and modeling tasks can be described using modeling 

cycles.  As such, modeling cycles are used as a framework for analysis in this study to 

describe students’ behaviours during RCMTs. However, while RCMTs can be 

described as a subset of modeling tasks, RCMTs also carry some unique 

characteristics. For example, RCMTs focus on the flexible use of rudimentary 

mathematics to solve problems. On the other hand, some modeling tasks may require 

modelers with a strong mathematics background to use specific and academic 

mathematical tools to create predictive models. 

This leads to another subtle difference between the function of solutions of these tasks. 

A general function of models is to make predictions about situations.  Therefore, the 

solutions to modeling tasks (the models) should also be predictive in nature (Howison, 

2005). On the other hand, the primary function of RCMT solutions is to provide 

solutions to the situation, which are not necessarily predictive in nature. The solution 

of a RCMT can simply be an answer to the problem.   

While students with different RCMT experiences and ability levels may exhibit 

different behaviours during the RCMT process, a general RCMT process should exist. 

In order to paint a detailed picture of the RCMT process, I first investigate and describe 

the steps a particular group of students take to solve a RCMT, and compare these 

processes to Kaiser’s modeling cycle pictured in figure one (Borromeo Ferri, 2006).  

PARTICIPANTS AND METHODS 

Although the larger study looks at the RCMTs across a wide range of grade and ability 

levels, for the research presented here the participants are grade 9 (age 13-14) 

mathematics students (n = 29) enrolled in a high school in a middle class neighborhood 

in western Canada. At the time of this study, these students have just over a year of 

RCMT experiences. 

Students were assigned RCMTs to be completed in groups of two to three. All students 

were asked to pay attention to their thoughts and approaches used as they worked on 

the problem in order to help them accurately describe their RCMT processes. Data 

includes in class observations, field notes, and class discussions and impromptu 

interviews that focus on their actions taken to solve the task.  The class discussions and 

impromptu interviews were transcribed immediately as these conversations happened. 
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The RCMT task chosen for this pilot study is “Trader Joe’s vs. Private Joe’s”. The task 

is based on a current event in Vancouver, B.C., where a Canadian was sued for 

purchasing groceries from a U.S. chain grocery store at retail price and reselling these 

products in Canada (see http://www.theglobeandmail.com/news/national/trader-joes-

lawsuit-against-bcs-pirate-joes-dismissed-by-us-judge/article14712590/ for more 

details). Students were asked to determine the amount of markup required for the 

Canadian to break even. I chose this task because it is relevant to students’ lives, as 

many of their families shop in the U.S.. Students were given newspaper excerpts that 

describe the situation. The following is a summary of the task: 

Trader Joe’s is a popular grocery store in the United States that is known for its 
good quality and low prices. The closest Trader Joe’s from Vancouver is in 
Bellingham, W.A.. A Canadian believes that many Vancouverites are not willing 
to go shopping at Trader Joe’s in the U.S., but there is a market for their products 
in Vancouver. Therefore, he purchases Trader Joe’s products in the U.S. at retail 
price, imports the products back to Vancouver, and opens a store in Vancouver 
calls Private Joe’s and sells Trader Joe’s products. How much markup is needed 
for this Canadian to break even? 

The mathematics required for this task are rudimentary. On the other hand, the planning 

for this task is complicated. Students need to estimate the cost required to run a 

company, including the cost of products, transportation for products, import taxes, rent, 

salary, etc.  

Given the close association between RCMTs and modeling tasks, I will present the 

results of the analysis as it fits into Kaiser’s modeling cycle (Borromeo Ferri, 2006) 

described above and exemplified with excerpts from the data. 

RESULTS 

Results indicate that students’ RCMT process in this study parallels Kaiser’s modeling 

cycle in general (Borromeo Ferri, 2006). Students’ immediate reaction to the task was 

to create a real model that leads them to the solution. However, as soon as they began, 

they realized they haven’t fully understood the question yet and went back to re-read 

the information provided for them. 

As students reread the newspaper excerpts, they defined various terms, such as markup 

and break even. As they gained a better understanding of the context, they identified 

important information given in the newspaper excerpts and reflected on variables that 

might play a role in the solution. This is similar to the first step of the modeling cycle: 

understand the problem. 

After collecting sufficient information to get started on the problem, students created a 

real model to represent the situation by organizing the information into categories and 

supplementary factors contributing to these categories. For example, under the 

category fuel cost, students considered fuel price, fuel efficiency, driving distance, type 

http://www.theglobeandmail.com/news/national/trader-joes-lawsuit-against-bcs-pirate-joes-dismissed-by-us-judge/article14712590/
http://www.theglobeandmail.com/news/national/trader-joes-lawsuit-against-bcs-pirate-joes-dismissed-by-us-judge/article14712590/
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of vehicles, weight of driver and products, etc. as its supplementary factors. At this 

point, students also tried to simplify the problem by eliminating variables. Some took 

advantage of the ambiguities in the question and attempted to avoid or minimize cost.   

 S1: So do we need to consider rent? 

 S2: What if he owns? 

Although these are ways for students to eliminate variables, none of the groups actually 

eliminated these variables at the end, because they were not able to support these 

approaches and none of their group members approved of eliminating these variables. 

I believe these “attempts” to eliminate variables served as ways for students to release 

their frustration and ways for students to become unstuck. However, further interviews 

are needed to clarify the reasons behind these statements students made.   

As students considered the categories and their supplementary factors, they also began 

to represent these factors using mathematical language and calculated the cost involved 

in the category. This led them to the next stage in the modeling cycle – 

mathematization. At the beginning of mathematization, students seemed to be 

overwhelmed by the number of factors involved in the calculations. Therefore, they 

focused on specific factors and left out other ones.  

 S3: Are they all part-time? Or full-time? 

 S4: Full time.  Assume three people per shift per week, so then three people 
times minimum wage, then… 

 S5: What about the cash register, and the stock… 

 S4: Aaargh!  Leave that out for now! 

As students carried on with the mathematization process, they become more 

comfortable with additional factors and eventually mathematized all relevant 

categories and its supplementary factors in their solutions.  

Finally, students brought all the relevant results together and determined the final 

markup to report their solutions. At this final stage, students listed only the categories 

and excluded the factors and calculations used to determine the cost of the categories. 

Students presented a clean solution to the problem which does not provide a clear 

picture of their thinking process. 

A DISCUSSION ON STUDENTS’ RCMT PROCESS 

In general, the RCMT processes parallel Kaiser’s modeling cycle. However, while 

the modeling cycle is useful in providing us with a general structure of the RCMT 

process, it does not account for all that happened during the task.  As such, further 

descriptions are needed to explain and exemplify the processes that are specific to 

RCMTs. The following highlights the differences between the two processes. 
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Validation of Ideas  

Due to the ambiguous nature of RCMTs, students raised questions and made 

assumptions during the RCMT process. For example, as students attempted to 

represent the situation using a real model, they realized the many ambiguities in the 

task and raised questions regarding the situation, such as the location of the closest 

Trader Joe’s from Vancouver, the type of vehicle the owner drives, the cost for rent 

and salary, etc. They then quickly realized not all the information they wanted was 

provided in the question. 

S6: There is not enough info here… 

As students became stuck with insufficient information, they attempted to find out 

more about the situation. However, students also know and are used to that the teacher 

never gives them direct answers during RCMTs. As a result, most of them used their 

smart phones to look up what they believed to be relevant information online, such as 

fuel price, fuel efficiency, border hours, etc.   

 S7:  Is the border 24-7? 

 R:  I dunno. 

 S7:  I don’t think so.  (after using his smart phone to look up information) It’s 
like 6 to 2 in the morning. So not 24-7…  

As students looked up relevant information, they also made assumptions and clarified 

ambiguities based on their interpretations of the situation.   

 S8: I don’t understand gas… So assuming he’s paying for gas in Canada, and 
he has to drive back, I don’t know… (looked up and with a loud voice) 
What kind of car does he have? 

 R: I dunno. 

 S8: I’m going to assume he has a truck. 

The classroom was very noisy at this stage. Students constantly looked up information, 

raised questions, explained and clarified their ideas and approaches, provided reasons 

for their assumptions, and drew upon experiences outside of mathematics class to 

support their ideas. I consider this an active evaluation and validation process, where 

students actively argued for and against various ideas based on their experiences and 

their understanding and interpretation of the problem. These episodes of active 

evaluation and validation are different from what literature describes during modeling 

tasks. Literature suggests that while expert modelers are likely to constantly validate 

their models, many modelers validate their mathematical model after they obtain 

mathematical results towards the end of the modeling cycle. Furthermore, novice 

modelers often do not bother to validate their mathematical models (Galbraith & 

Stillman, 2006; Blum & Leiβ, 2006). I believe the difference in validation and 
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evaluation can be attributed to the embedded ambiguities in RCMTs. The ambiguities 

in RCMTs require students to consciously make assumptions and provide reasons for 

their assumptions, which is an active evaluation process. This happens mostly as 

students made assumptions about the situations and investigated the relevant factors to 

build the real model. 

Real Model and Mathematization 

Literature describes real model and mathematization as two distinctive stages in 

modeling cycles. In this study, however, results indicate that mathematization began 

as students were creating a real model for the task.  In other words, students began the 

mathematization process prior to the completion of a real model.  For example, students 

started to calculate the amount of gasoline required for a round trip based on the 

distance and fuel efficiency before they considered fuel price and other factors under 

fuel cost. 

Difficulty and Focus 

The second difference between these tasks is the difficulties students experience during 

the tasks. Similar to modeling tasks, a major difficulty students experienced in this 

study is understand the problem context (Galbraith & Stillman, 2006). Students in this 

study spent most of their time and energy on understanding the context and finding 

relevant information to solve the task. Another most challenging transition in the 

modeling process is mathematization. However, this is not the case in this study. 

Students did not seem to experience much difficultly in transitioning between reality 

and the mathematical world. This difference makes sense because while RCMTs are 

complicated, the mathematics required to solve RCMTs are rudimentary. The difficulty 

of RCMTs lies in understanding and making sense of the problem, determining the 

relevant variables involved in the solution, making suitable assumptions, and making 

appropriate evaluation and validation of approaches instead of mathematization. 

Intergroup Communication 

Other than the validation of ideas and difficulties students experienced, this study also 

notices interesting conversations between the groups. Since students worked in close 

proximity within each other, it was impossible to not overhear the conversations in 

other groups.  Therefore, the ideas from one group easily spread to other groups like 

wildfire. However, the spreading of ideas was not the surprising element here. What 

was surprising was while students constantly provided reasons to support their own 

ideas and calculations, they did not validate the ideas and calculations from other 

groups. For example, when one group decided the cost of gas for a round trip was 

roughly $16, a few other groups blindly followed and decided that the cost of gas was 
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also $16.  Students seem to put a lot of trust in their friends and rely on them to validate 

the information prior to sharing the information with them. 

In summary, while data in this study shows that the RCMT process parallels modeling 

cycles in general, modeling cycles do not exemplify all that happened during RCMTs. 

Based on the results and the analysis, I propose the following RCMT process: 

 

Figure 2: A proposed RCMT process 

Compared to the modeling cycles found in the literature, the proposed RCMT process 

emphasizes understanding the context and active validation and evaluation of ideas. 

Also, the process of creating a real model and mathematization are not distinctive 

stages but overlap each other. Furthermore, since RCMTs focus on the flexible use of 

rudimentary mathematics, mathematization and the resulting mathematical models are 

downplayed in the process.  

CONCLUSION 

In this study, I investigated students’ RCMT process using modeling cycles as a 

framework.  While some similarities exist, there are also differences.  Compared to 

what is suggested in the modeling literature, students spent more time and energy to 

understand the situation and to investigate factors involved in the solution, and less 

time in mathematization during RCMTs.  Also, students validated their own ideas very 

often during RCMTs, except when the ideas come from their peers.  Finally, this study 

proposes a RCMT process to describe students’ behaviors during the task. 

References: 

Ferrucci, B., & Carter, J. (2003). Technology-active Mathematical Modelling. International 
Journal of Mathematical Education in Science and Technology, 34(5), 663-670. 

Blum, W., & Borromeo Ferri, R. (2009). Mathematical Modelling: Can it be Taught and 
Learnt? Journal of Mathematical Modelling and Application, 1(1), 45-58. 



 
11
0 

PROCEEDING MEDSC 2013                                        Department of Mathematics Education - SFU 

 

Blum, W., & Leiβ, D. (2006). How do Students and Teachers deal with Modelling Problems? 
In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical Modeling 
(ICTMA 12): Education, Engineering and Economics (pp. 222-231). 

Borromeo Ferri, R. (2006). Theoretical and Empirical Differentiations of Phases in the 
Modelling Process. ZDM, 38(2), 86-95. 

Galbraith, P., & Stillman, G. (2006). A Framework for Identifying Student Blockages during 

Transitions in the Modelling Process. ZDM, 38(2), 143-162. 

Howison, S. (2005). Practical Applied Mathematics: Modelling, Analysis, Approximation. 

Cambridge University Press. 

Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on 

modelling in mathematics education. ZDM, 38(3), 302-310. 

Lesh, R., & Doerr, H. (2003). Foundations of a Models and Modeling Perspective on 

Mathematics Teaching, Learning, and Problem Solving. In R. Lesh, & H. Doerr, 

Beyond Constructivism: Models and Modeling Perspectives on Mathematics Problem 

Solving, Learning, and Teaching (pp. 3-33). Mahwah: Lawrence Erlbaum Associates. 

Liljedahl, P. (2010, October 12). Numeracy Task Details. Retrieved November 22, 2012, from 

http://www.peterliljedahl.com/teachers/numeracy-tasks/numeracy-task-details 

Maaβ, K. (2006). What are Modelling Competencies? The International Journal on 

Mathematics Education, 38(2), 113-142. 

 

 

  



 
11
1 

PROCEEDING MEDSC 2013                                        Department of Mathematics Education - SFU 

 

SOFYA KOVALEVSKAYA: MATHEMATICS AS FANTASY 

Veda Roodal Persad 

Simon Fraser University 

 

What do accounts by and about mathematicians of their involvement with mathematics 

tell us about the nature of the discipline and the attendant demands, costs, and 

rewards? Working from an autobiographical sketch and biographies of the first woman 

in the world to achieve a doctorate of mathematics, Sofya Kovalevskaya (1850-1891), 

and using the Lacanian notion of desire, I examine the forces that shape and influence 

engagement with mathematics. I contend that involvement with mathematics is 

impelled, fuelled, and sustained by desire. 

 

Accounts by and about mathematicians regarding their journeys in mathematics have 

long been neglected as a source of knowledge about the discipline.  My study, in 

general, focuses on finding out what can be learned from these accounts about the 

discipline of mathematics, and seeing what they tell us about the mathematical subject, 

the person who mathematics calls us to be in order to engage with it. In this paper, I 

examine the journey of Sofya Kovalevskaya (1850-191), the first woman in the world 

to achieve a doctorate in mathematics.  I use the Lacanian notions of the subject, 

subjectivity, and desire in order to see what impels involvement and achievement in 

mathematics. 

Lacanian theory has been used by researchers in mathematics education such as 

Baldino and Cabral (1999; 2005; 2006; 2008), Brown (2008; 2011), Cabral (2004), and 

Walshaw (2004), to describe the constitution of the mathematical subject and the 

pedagogic transference that takes place in teaching. This is a recognition of the view 

that while the usual considerations of students, teachers, tasks, technology, and 

classrooms are important in the endeavour of teaching and learning mathematics, the 

root of the engagement lies with the subject, the person or individual confronting the 

discipline.   

In his theory of the subject, Lacan posits three psychic registers or orders of experience: 

the Imaginary, the Symbolic, and the Real. These registers are not to be understood as 

developmental stages as they obtain at every sphere of human activity. The Imaginary 

is the realm of “images, conscious or unconscious, perceived or imagined” (Lacan, 

1973/1981, p. 279) of the people and objects in the world present to us. These idealized 

images are formed in childhood and persist even into adulthood.  One’s sense of ‘self’ 

starts from the mirror-stage, that is, from the child seeing its specular image in a mirror 
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or in beholding another child. This marks the beginning of a méconnaissance or 

misrecognition of ‘self’ as the child imagines the image to be whole and coherent while 

perceiving itself as fragmented. The Symbolic, derived from the “laws” of the wider 

world in its structure and organization, disturbs the shaping or the interpellating (Latin: 

inter/between, within, pellere/push) of the subject. The Symbolic is enabled by 

language as it is language that gives us the structures for the signifiers for the “I” and 

the Other, for loss, lack, and absence, for the misidentification of the self with the 

Other, and for the formation and experience of desire. The Real is the unmarked 

backdrop against which the Imaginary (image-based) and the Symbolic (word-based) 

come into play, the screen on which images and words unfold and move.  

For Lacan, desire is to be distinguished from need and demand. Examples of need are 

hunger and thirst in that they can be satisfied. Greater than need is the subject’s demand 

in its dawning recognition and search of self in relation to others and the Symbolic 

order. In Lacanian arithmetic, desire is what remains when need is subtracted from 

demand. “[I]t is this irreducible ‘beyond’ of the demand that constitutes desire” 

(Homer, 2005, p. 77). Desire is a manifestation of a lack in the subject as the subject 

seeks to separate itself from the Other and to differentiate her desire from the Other’s 

desire.  Against this framework, I consider Kovalevskaya as a mathematical subject 

and demonstrate her desire in her mathematical journey. 

FINDING KOVALEVSKAYA 

I did not know of Kovalevskaya as a mathematician despite all my years of learning 

and teaching mathematics.  I came upon her serendipitously from a collection of stories 

by Alice Munro (2009), Too much happiness.  Munro had been looking for something 

else when she came upon Kovalevskaya, and was struck by the unusual combination 

of mathematician and novelist.  I soon found that there was much more material on 

her; indeed there is a small industry on her life and work among historians of 

mathematics and science and a few mathematicians.  I found her memoir, A Russian 

childhood, which includes an autobiographical sketch.  There were several biographies 

which gave different perspectives on her life and the myths that have been created 

around her.  One review of three biographies of her in Physics today is titled A 

divergence of biographies: Kovalevskaya and her expositors (Grabiner, 1984); this is 

a play on the title of one biography, A convergence of lives; Sofia Kovalevskaia, 

scientist, writer, revolutionary (Koblitz, 1983), a title which is, if anything, overblown.  

Besides the biographies, there are many other secondary sources of books, reviews, 

and journal articles.  A second challenge was that of translation into English and a 

related matter, citation.  Much of the primary source material about Kovalevskaya is 

in other languages (Russian, French, and German) and the English translations are not 

uniform.  Different translations give different words with different meanings and 

nuances (one example is the word, imagination, in place of fantasy).  
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I begin by describing Kovalevskaya as a mathematical subject with the various subject 

positions (attitudes, ideals, values, beliefs) that are involved in taking up and doing 

mathematics.  Then I study the refrains of desire as they manifest in her engagement 

with mathematics, while noting the various other factors in her life and times that 

interacted with and shaped her desire with respect to mathematics.   

HER CONSTITUTION AS A MATHEMATICAL SUBJECT 

In the autobiographical sketch that Kovalevskaya has provided, the first indication of 

a stirring of intellectual ideas comes from her father’s brother, Pyotr Vasilievich 

Korvin-Krukovsky.  She writes that “[her] love of mathematics first showed itself” 

(Kovalevskaya, 1889/1978, p.213) in the stories he told and in their conversations 

about the things that he had taught himself from reading widely: 

It was during such conversations that I first had occasion to hear about certain mathematics 

concepts which made a very powerful impression upon me.  Uncle spoke about “squaring 

the circle,” about the asymptote – that straight line which the curve constantly approaches 

without ever reaching it – and many other things which were quite unintelligible to me and 

yet seemed mysterious and at the same time deeply attractive.  And to all this, reinforcing 

even more strongly the impact of these mathematical terms, fate added another and quite 

accidental event.  (Kovalevskaya, 1889/1978, p. 214)   

The accidental event occurred when she was eleven years old; the family moved to the 

country and the new wallpaper that had been ordered proved insufficient for all the 

rooms.  The one room left over, the nursery, was papered with the pages of lecture 

notes of a course in differential and integral calculus.  This was a course which her 

father had taken in his training as an Army officer and was given by the Academician 

Ostrogradsky, member of the Petersburg Academy of Sciences.  Kovalevskaya spent 

hours with the wallpaper: 

As I  looked at the nursery walls one day, I noticed that certain things were shown on them 

which I had already heard mentioned by Uncle … It amused me to examine these sheets, 

yellowed by time, all speckled over with some kind of hieroglyphics whose meaning 

escaped me completely but which, I felt, must signify something very wise and interesting.  

And I would stand by the wall for hours on end, reading and rereading what was written 

there.  I have to admit that I could make no sense of any of it at all then, and yet something 

seemed to lure me on toward this occupation.  As a result of my sustained scrutiny I learned 

many of the writings by heart, and some of the formulas (in their purely external form) 

stayed in my memory and left a deep trace there.  I remember particularly that on the sheet 

of paper which happened to be on the most prominent place of the wall, there was an 

explanation of the concepts of infinitely small quantities and of limit.  (Kovalevskaya, 

1889/1978, pp. 215-216)   

Later, when she was presented with the subject by her professor in Petersburg, it was 

all familiar to her: “You have understood them as though you knew them in advance” 
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(p. 216).  That Kovalevskaya held the symbols and “hieroglyphics” in her mind without 

any understanding of what they represented shows that the Symbolic is deeply 

important to her.  Later I will discuss the significance of the Symbolic to her and her 

attempt to reconcile the various aspects of herself with respect to the registers of the 

Imaginary, the Symbolic, and the Real.  

Besides the fascination with mathematics and the world of mathematics, Kovalevskaya 

brought deep concentration to her study of mathematics.  She was intensely absorbed 

when doing mathematics.  She refused activities with her friends to work on 

mathematics: ‘Now I am sitting at my writing desk in bathrobe and slippers, deeply 

absorbed in mathematical thoughts, without the slightest desire to take part in your 

excursion.’  (Kennedy, 1983, p. 36)  Mathematics required complete absorption and 

concentration in a world that Kovalevskaya kept to herself; she did not share her 

thoughts with her close friend, Julia Lermontova (the first woman to obtain a doctorate 

in chemistry) with whom she lived, presumably because Julia was not engaged in the 

mathematical endeavour.  While Kovalevskaya could lose herself in the mathematics, 

she had to return to the struggles of the real world.   

REFRAINS OF DESIRE 

I now examine the refrains and reverberations relating to her desire.  I have chosen the 

words, refrains and reverberations, deliberately for their acoustic connotation because, 

it seems to me that as I read the various sources on Kovalevskaya, I was listening for 

the resonances and themes relating to her desire.  I discuss four refrains which 

contribute to what Freud calls the melody of the drive.  I then show how the leitmotif 

of her life can be seen as asymptotic desire.  The refrains relating to desire that stand 

out in Kovalevskaya’s life are absorption, substitutes, fake, and fantasy.   

Absorption refers to the process of taking in or being taken by, leading to both an 

inward and an outward captivation.  An early instance of absorption can be seen in her 

childhood passion of staring at the wallpaper in the nursery.  This was no passing 

attraction; she spent hours every day absorbed in and by the mathematical 

hieroglyphics.  Kovalevskaya’s time in front of the wall was well-spent in that it 

produced a subliminal, unconscious understanding.  Later when she was introduced to 

the mathematics depicted, “the concept of limit appeared to me as an old friend”.  

Also, as a young woman studying mathematics, she spent long hours by herself 

engrossed in the mathematics; she willingly gave up social activities with her friends 

to spend time with the mathematics on which she was working.  Further, there was an 

outward absorption in her strong identification with the style and spirit of her teacher, 

Weierstrass.  By fashioning herself along his principles, she came close to losing her 

mathematical self in her relationship with him, to the extent that she left herself open 
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to the Klein’s charge of it being impossible to tell what was her work and what was 

that of Weierstrass. 

The second refrain in Kovalevskaya’s life is that of substitutes, in that the essential 

supports of her life from beginning to end were gratified by substitutes.  To begin, she 

was not a boy.  The eldest child in the family was a girl, Anyuta.  Kovalevskaya was 

the second child and unwelcome as her parents were hoping for a boy.  Cooke (1983, 

p. 7) describes her as having “a dark complexion with a very intense and serious 

personality.”  Her mother preferred her first and third, Anyuta with her blonde curls 

and pleasing manner and Fedor because he was a boy.  Besides this, by engaging in a 

fictitious marriage, Kovalevskaya assumed a substitute husband, Vladimir 

Kovalevsky.  Their relationship was fraught with tension as Kovalevsky was 

supposedly no more than a convenience to her.  Another substitute is in her life is seen 

in her relation with Weierstrass; he was a substitute father to her.   

Closely tied to substitutes is the third refrain of fake.  In a letter to Anyuta dated 1868, 

Kovalevskaya writes: “In my present life, despite its seeming logic and completeness, 

there is a certain false note that I cannot determine, by which I feel nonetheless” 

(Kochina, 1981/1095, p. 51).  It is to her credit that she noted the inauthenticity of her 

life but how could it have been otherwise?  Both her experience of being parented and 

her marriage were fake, thereby leaving her with a desire to be desired.  Her marriage, 

after many tensions and misunderstandings, was not consummated until after eight 

years or so.  She had found it difficult to keep up the fiction to her parents and to deal 

with the inauthenticity of a pretend marriage and a pretend life. 

On the other hand, her life was full of fantasy.  In a letter from Weierstrass to her:   

“How fine it would be were we both here.  You with your soul full of fantasy, and I, excited 

and refreshed by your enthusiasm.  We could dream and think here about the many 

problems that we have to solve: of finite and infinite spaces, of the stability of the world 

systems, and about all the other great problems of mathematics and physics.  But long ago 

I resigned myself to the fact that not every wonderful dream is realized” (Kochina, 

1981/1985, p. 75).  

Her fantasies were broad and wide-ranging as seen in her literary pursuits but with 

respect to mathematics, she was trying to find herself in it.  This is one of the universal 

fantasies of mathematics, that we can find ourselves in it and that it will give us back 

ourselves but the sad truth is that it cannot and does not.  The other realization is that 

to seek to possess mathematics is to undertake a journey towards it.  It requires special 

effort and does not yield its secrets too easily.  She learned of her mathematics from 

staring at the wall and from the stories the uncle told; her life was a journey in search 

of the fascination it portended.  In some sense, mathematics is the place of the things 

that she wanted to be true and to come true.  The fantasy of mathematics for 
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Kovalevskaya is that it is the place of truth.  Indeed, the ultimate fantasy of 

mathematics is that it gives us a false sense of power.  Ah yes, but that is what 

mathematics is about, power!  

The leitmotif of her life: Asymptotic desire 

These refrains underpin the central theme of asymptotic desire in Kovalevskaya’s life.  

Lacan had used the notion of the asymptote to describe desire, always approaching but 

never attaining an object because there is no object of desire, only an object-cause of 

desire.  Grosz (1990), in her feminist introduction to Lacan, elaborates the origin, 

nature, and path of desire: 

Lurking beneath the demands for recognition uttered by the cogito (this is Hegel's 'solution' 

to the problem of the solipsism of the cogito), by the subject (to the other) and by the 

masculine subject (to an unknowable femininity) is a disavowed, repressed or unspoken 

desire.  Desire is a movement, a trajectory that asymptotically approaches its object but 

never attains it.  Desire, as unconscious, belies and subverts the subject's conscious 

demands; it attests to the irruptive power of the 'other scene', the archaic unconscious 

discourse within all rational discourses, the open-endedness of all human goals, ideals, 

aspirations, and objects.  (Grosz, 1990, p. 188, original emphasis) 

 

This is a powerful evocation of desire as it points out the unconscious, unknown, and 

unacknowledged aspects of desire.  Desire is not only asymptotic; it is ever-circling.  

As Žižek explains, it is not the goal but the aim (the path towards the goal) that gives 

enjoyment.  For Lacan, the subject is constituted by its lack which gives rise to desire.  

Kovalevskaya’s desire arose out of various sense of lack, the sense of not being male, 

of not being allowed to take her place as a mathematician, and of not being complete 

as a mathematician.   

That she was not allowed to take her place as a mathematician is seen in her not being 

able to get a teaching position in Russia or Paris as she desired (Paris being the centre 

of cultural and political activity).  In her desire to be desired, she was trying to find a 

place where she was wanted (“[t]ake away your savage, she is not wanted here” from 

her mother to her nurse); to some extent mathematics did not want her either.  Keen 

(1986, p. ix) writes: “Sonya Kovalevskaya was a distinguished mathematician who was 

considered among the best of her generation by her contemporaries”, but this was not 

enough to have given her a position that she wanted.  

Finally, Kovalevskaya did not feel complete as a mathematician in that she had other 

aspirations pertaining to writing.  Her writing included theatre reviews, poetry (for 

herself), plays, an autobiographical memoir, and a novel.  Mostly she was influenced 

by the quotation attributed to Weierstrass, of not being a complete mathematician 

without having the soul of a poet.  She yearned to be both.  Kovalevskaya yearned for 
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more out of life, more involvement in social, political and cultural dimensions, perhaps 

to her detriment.  In responding to the che vuoi (what do You want?) of the Other, she 

seemed to be always looking for another mountain to climb.  Her friend, Julia, writes 

that she set herself difficult goals but “I never saw her so dismal and depressed as when 

she reached her goal” (Kochina, 1981/1985, p. 88).  

CONCLUSION 

In a letter to a young Russian woman writer, Kovalevskaya writes: 

 I understand your surprise that I can work at the same time with literature and 

mathematics.  Many who have never had an opportunity of knowing any more about 

mathematics, confound it with arithmetic and consider it an arid science.  In reality 

however, it is a science which requires a great amount of fantasy, and one of the leading 

mathematicians of our century states the case quite correctly when he says that it is 

impossible to be a mathematician without being a poet in soul … one must renounce the 

ancient prejudice that a poet must invent something that does not exist, that fantasy and 

invention are identical.  It seems to me that the poet has only to perceive that which others 

do not perceive, to look deeper than others look.  And the mathematician must do the same 

thing.  (Kovalevsky, 1889/1978, p. 316) 

One might ask, why does she say mathematics requires great fantasy and not intuition 

or imagination, say?  She worked with partial differential equations, rotations of a rigid 

body, and elliptic integrals, all constructs and concepts which require more than a leap 

of intuition or imagination.  There is little in the accounts that help with understanding 

of her use of the word, fantasy, but it may be an effect of the translation as, in another 

translation, the word imagination is used.  Earlier I pointed to the quote from Julia who 

wrote that after long hours immersed in her work, Kovalevskaya appeared transported 

to another world (‘carried by fantasy’) that she could not or chose not to express in 

words but could only find release in rapid walking back and forth.  Generally we see a 

fantasy as a product of caprice and fiction.  For Lacan, a fantasy is how we stage our 

desire in pursuit of fulfillment of our desire.  So in this sense mathematics was fantasy 

to Kovalevskaya.   

Why does Kovalevskaya distinguish fantasy and invention and go on to say that we 

must abandon the notion that fantasy and invention are the same?  Both fantasy and 

invention are creative acts in all fields, not just mathematics.  In both, there is the 

bringing forth of thoughts and ideas that had not existed before.  Perhaps, she means 

to indicate that they have different ends and that fantasy must not be associated with 

any use-value.  The final thought in the quote is helpful in showing her position that 

mathematics requires a depth of looking, of looking deeper than others.  She writes:  
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It is the philosophical aspect of mathematics which has attracted me all through life.  

Mathematics has always seemed to me a science which opens up completely new horizons/ 

(Kovalevsky, 1889/1978, p. 216). 

At every turn, Kovalevskaya’s life and work were dominated by the signifiers of 

‘woman’, ‘Russian’ and ‘mathematician’.  None of these would have come up as an 

issue of struggle in a given society or community.  Only when her desire was hemmed 

in by these that they became forces by which she was buffeted.  There was little 

possibility that the society in which she found herself could acclimate or integrate her 

desire.  Besides mathematics, she looked to other avenues such as literature and a 

second marriage in which she hoped for love.  In another time and another place, her 

desire of taking a place in mathematics (in the positions and situations that she hope 

for, suitable to her talents and abilities) may have been possible and may have led to 

great fulfillment as a subject. 

Looking back on Kovalevskaya’s life, it seems to me that the distance from the place 

of mathematics as fantasy that she accessed through her mathematical work to the 

reality of her life in the circles in which she moved was too great.  The metric needed 

to conceptualize that distance would take a century and more of social upheaval.  The 

costs were too inordinate to bear and the cold realization is that mathematics is indeed, 

even with the gifts of genius and charm, not for the faint of heart.  Kovalevskaya could 

do mathematics but she could not be a mathematician as she had hoped.  She was 

capable in the doing of mathematics, in her research work and in her teaching of 

mathematics and science but she was constrained by the symbolic order of being a 

mathematician in that time and that society.  She could not take her place with the other 

mathematicians in the positions and institutions of the time – the highest position to 

which she could aspire was to teach in schools for girls and women. 

In the end, she was unable to realize her dreams to the extent that she desired.  She had 

started with quadratures and asymptotes.  Her life was an ode to her attempts of 

squaring the circle amid the trajectory of asymptotic desire in search of her old friend 

and lost object, the limit.  
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DESIGNING STUDENT ASSESSMENT TASKS IN A DYNAMIC 

GEOMETRY ENVIRONMENT 

Marta Venturini 

Simon Fraser University & University of Bologna 

 

This paper explores the design of assessment tasks involving the use of Dynamic 

Geometry Environments (DGEs). I adapt the work of Laborde and the results of 

Sinclair, which focus on the design of DGE tasks, to the context of formative 

assessment. I provide an initial framework, along with illustrative examples, for 

different types of DGE-based assessment tasks that can be used in the classroom but 

also to study technology-based teacher practices. This research develops new 

directions in finding how to design suitable tasks for student mathematical assessment 

in a DGE. 

INTRODUCTION 

While many institutions and teachers have introduced the use of digital technology into 

the teaching and learning of mathematics, nobody seems to know how to evaluate the 

mathematical learning developed through the use of technology: “The use of 

technology in assessment continues to be a complex issue across Canada” (Caron & 

Steinke, 2005). My goal in this paper is not to list and explain all the challenges about 

the integration of technology in the assessment of mathematics. Instead, I want to prove 

that it is possible to design suitable tasks in a DGE to evaluate students, although 

technology asks for rethinking assessment in mathematics. According to Heidenberg 

& Huber (2006): “what you test is what you get”, which means that if digital 

technology is never part of the mathematical tasks, students (and perhaps even 

teachers) will not see how to effectively use it in mathematics as a learning goal. 

Why using digital technology to assess students? 

I summarize the main issues on digital technology use in assessment as follows: 

Teachers Students 

teachers can see student reasoning 

through the “actions” that they do in the 

technology environment 

technology helps students in expressing 

and communicating their ideas 

teachers have the opportunity to design 

tasks that enable certain mathematical 

thinking that is not accessible with 

paper-and-pencil tasks 

technology offers students the possibility 

to show different kinds of abilities and 

knowledge 



 
12
1 

PROCEEDING MEDSC 2013                                        Department of Mathematics Education - SFU 

 

technology helps teachers in recognizing 

student misconceptions 

technology allows students to continue 

learning while they are taking a test 

Table 1: Digital technology in student assessment. 

Technology allows new opportunities to capture and replay student work: “By studying 

a student’s script, a teacher can infer ways that the student is thinking about the object 

or procedure” (Wilson, 2008). Moreover, Laborde et al. (2006) indicate that feedback 

through technology offers a great deal of opportunity for new ways of understanding 

mathematics. Feedback from student interactions with technology can have a strong 

impact on their mathematical understandings and practices: 

“Even without sophisticated constructions, a student’s simple action of manipulating a 

dynamic figure can already be a meaningful mode to demonstrate their understanding of 

geometric concepts” (Sangwin et al., 2010, p. 235). 

What roles does the technology play in the assessment of mathematics? 

Technology offers new ways of doing mathematics, which means that it is possible to 

design new and different tasks for student assessment. However, the content of the 

assessment has to change, in order to include questions that students are not able to 

solve in a paper-and-pencil context, like Caron and Steinke (2005, p. 3) state: 

“We must also look at what mathematical problems could now be tackled by students with 

the use of technology, what concepts and techniques (“new” and “old”) would be 

mobilized in solving these problems and how the solving of such problems could 

contribute to the development of a creative, powerful and rigorous mathematical practice.” 

The main affordances of digital technology use relevant to the design of innovative 

tasks for assessment are summarised below: 

1. Answer recording: explaining the answer using tools like screenshot, script, and 

recording voice or video; 

2. Validation/verification: interpreting an answer or a non-answer from a machine; 

3. Illustration/visualization: observing objects and phenomena, and making 

deductions or inferences about them; 

4. Dragging objects: exploring a domain in order to find relationships among 

objects, or the laws that drive a certain environment; 

5. Construction: creating objects, and ideating examples and counter-examples; 

6. Simulation and Measure: observing and modelling a real life phenomena; 

7. Solving Problems: putting forward a conjecture; 

8. Motion: moving objects to obtain a result, or to solve a situation; 
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9. Symbolic computation and Numerical computation: focusing on the concept, 

leaving the calculation to the machine; 

10.  Collaboration: communicating mathematical concepts among students. 

Using these points it is possible to assess student understanding on content and process 

in mathematics, and, in particular, the reasoning process, because “technology can be 

designed in such a way as to enhance the implementation of didactical principles” 

(Mackrell, Maschietto & Soury-Lavergne, 2013, p. 79). 

THEORETICAL FRAMEWORK 

Mackrell, Maschietto and Soury-Lavergne (2013) state that “both the design of tasks 

and the design of technology have been identified as important factors in the effective 

use of technology-based tasks in the classroom”. 

Laborde (2001) describes a case study on teachers designing tasks for a DGE, it 

analyses every task considering the place in the mathematics curriculum, the role that 

teachers assigned to the technology, and the degree of change of the designed task for 

the DGE compared to the paper-and-pencil context. It came up with four different 

categories that were used to drive the teachers’ tasks: 

Category Description Characteristics 

Tasks in which the 

DGE facilitates the 

material aspects of 

the task. 

The task is not changing 

conceptually, it is only 

facilitated by some drawing 

tools of the DGE. 

The solution strategies of 

both tasks do not differ 

deeply. 

Tasks in which the 

DGE facilitates the 

mathematical task. 

The DGE is supposed to 

facilitate the mathematical task 

that is considered as 

unchanged. 

The DGE is used as a visual 

amplifier in the task of 

identifying properties. 

Tasks modified 

when given in a 

DGE. 

The DGE is supposed to 

modify the solving strategies of 

the task due to the use of some 

tools and to the chance that the 

task might be rendered more 

difficult. 

The task in the DGE 

requires more mathematical 

knowledge, which students 

find difficult to put into 

action. 

Tasks only existing 

in a DGE: 

- “black box” 

- prediction 

The task itself takes its meaning 

or its “raison d’être” from the 

DGE. It requires reasoning and 

knowledge. 

Such tasks require 

identifying geometrical 

properties as spatial 

invariants in the drag mode 

and possibly performing 
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experiments with the tools 

of the DGE on the diagram. 

Table 2: Laborde’s categories. 

Sinclair (2003, p. 313) points out that: 

“Pre-constructed dynamic sketches are central elements of the learning activity, and 

therefore, decisions about their design have the potential to support or impede the 

development of exploration strategies and geometric thinking skills.” 

I decided to use a DGE to design my sketches, in order to show some of the advantages 

in using this environment for the assessment. In (Sinclair, 2003) I found some 

interesting suggestion for the characteristics that a task designed in a DGE should have 

depending on the aim of the task. She provided some hints to design the sketches in 

order to address the questions and the instructions: 

Aim of the Task Characteristics of the Sketch 

focus student attention visual stimulus (color, motion, markings…) 

prompts action (drag, 

observe, deduce…) 

provide affordances so that students can take the required 

steps 

exploration provide options and alternate paths 

surprise 

it must be flexible enough to help students examine cases 

for further exploration and experimentation, but 

constrained enough to prevent frustration 

check understanding 
the sketch can aid peer-interactions by providing a shared 

image for students to consider and discuss 

Table 3: Characteristics for sketch design in (Sinclair, 2003). 

METHODOLOGY 

Sinclair (2003, p. 293) observes: “In the case of pre-constructed sketches, the task also 

includes the sketch itself, together with any special investigative software tools created 

by the designer”. Teachers can include details and already assembled objects in order 

to check student understanding on specific properties. Moreover, designing the tasks 

for the iPad allows teachers to give students a “restricted environment” for the 

assessment, where students can explore certain objects/situations under set conditions, 

and use only the tools provided by the teacher. 

I designed some tasks to assess student knowledge on Circle Geometry. Clearly, some 

mathematical topics are more suitable to be assessed in a DGE, in particular geometry, 

because students can drag objects, construct figures, and explore a domain. The BC 
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Curriculum on Mathematics grade 9 describes the competence on Circle Geometry 

that students are expected to have: they need to know some specific properties of the 

circle, and they have to achieve some learning outcomes, like providing examples, 

solving problems, measuring, and explaining relationships. 

Some tasks come from the textbooks, the web, and game-competitions in mathematics. 

I adapted them to be designed in Sketchpad, and I invented other tasks. It is interesting 

to notice that some textbooks contain a technology based lesson plan in a DGE, but no 

examples of assessment with technology are provided. I used (Laborde, 2001) as 

framework to design the tasks, and (Sinclair, 2003) to implement the sketches in 

Sketchpad. 

DESCRIPTION OF SKETCHES 

I’m describing some of the sketches that I designed in Sketchpad for student 

assessment on Circle Geometry, one for each category of (Laborde, 2001). 

First category 

If you think this statement is true, make a drawing to represent it; if you think it’s not, 

create a counterexample: The centre of any circle is the intersection of the perpendicular 

bisectors of any two chords in the circle. 

This task is particularly subtle, because there is only one case in which the statement 

is not true: when the two chords are parallel. 

 

Figure 1: The Counter-example. 

In this task, Sketchpad facilitates the material aspects of the task in making the drawing. 

The task isn’t changed conceptually compared with a paper-and-pencil environment. 

The solution strategies of both tasks do not differ deeply: the only difference could be 

that students can move the chords all around the circle, and they can trip over the case 

in which the two chords are parallel. 
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Second category 

 
Figure 2: The Dog 

In this sketch students can explore the situation by dragging the dog around the screen. 

Sketchpad allows them to see where the dog can go within the constraints set by the 

rope and offers visual cues into the problem’s solution that would be difficult to obtain 

through paper and pencil alone.  
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       Figure 3: Tracing the rope.                                     Figure 4: Using the circles. 

To gain a better sense of the bounds imposed by the rope, students can press the button 

“tracing the rope”, so that the rope leaves behind a trace of all its locations as they drag 

the dog. Pressing the buttons “circle1”, “circle2”, and “circle3” students view three 

circles, whose location and size they can change simply by dragging them. Thinking 

about the radii of the circles and their placement may help students determine the area 

where the dog can roam. The mathematical task is considered unchanged, but the DGE 

facilitates it: Sketchpad is used as a visual amplifier in the task of solving the problem. 

Third category 

 
Figure 5: The Right Triangle. 

In this sketch students don’t have the measure tool for the angles, they have to explain 

how to obtain a right triangle inscribed in a circle depending on the position of the points. 

The task is modified in Sketchpad, compared to a paper-and-pencil context. The solving 

strategy is different, because students have to drag the points on the circle so that the 

triangle ABC is right. Students need to know that in a right triangle inscribed in a circle 

the hypotenuse is the diameter, but the task in Sketchpad actually requires more 

mathematical knowledge: students can move the third point around the circle, thus they 

have to know that wherever they decide to place it, the triangle will be right, and this is 

something that students usually find difficult to put into action. 
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Fourth category 

 
Figure 6: The Ball. 

In this sketch students are supposed to explore the situation pressing the button “Rotate 

the ball”, and observing what happens. They have to find the right initial position for the 

stick, so that the ball hits the tree after one rotation of the stick. It is quite easy to predict 

that students will try to rotate the ball until they find the solution, but then they need to 

explain why that one is the right position. At this point students will use the tools, and 

they will find that the trajectory of the ball is the tangent to the circle whose centre is the 

point “you”, and radius is the length of the stick. 

 
Figure 7: The trajectory of the ball. 

This task can exist only in a DGE, and it takes its meaning from it. Students have to guess 

where the ball is going when the stick stops, and they can check their answer with the 

button. Then, they have to find the “hidden construction” of the situation. This task 

requires reasoning and knowledge: students need to know that a tangent to a circle is 

perpendicular to the radius at the point of tangency. They have to identify the geometrical 

properties as spatial invariants in the drag mode, because as long as they drag the stick, 

the trajectory of the ball is always tangent to the radius of the circle, and they can perform 

experiments with the provided tools on the diagram. The identification of the underlying 
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property that the trajectory of the ball is the tangent isn’t easy and constitutes the 

question. 

An exploratory problem can be included in student assessment, because the goal is to see 

if students know how to use technology in mathematics to solve problems and make 

conjectures. Following (Heidenberg & Huber, 2006) taking a test can be an opportunity 

for learning, so that students continue to learn during the assessment. 

CONCLUSIONS 

I investigated the ways in which the opportunities that technology offers can be used to 

design assessment tasks for the evaluation of student mathematical learning in a DGE. 

In the sketches I exploited the affordances of digital technologies (DGEs in particular) 

in order to assess students in a different way, including questions that cannot be asked in 

a paper-and-pencil environment. Laborde (2001) suggests it is easier for teachers to adapt 

paper-and-pencil tasks for a DGE, but much more difficult to create novel technological 

tasks different in nature from what one might do with paper-and-pencil. My research is 

driven by the wish to identify which kinds of tasks teachers might be more willing or 

interested in using. In particular, I will investigate whether they confirm Laborde’s 

conclusion or whether exposure to different types of tasks involving pre-made sketches 

might change their approach to technology-based assessment. 
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STUDENTS’ USE OF GESTURE AND POSTURE MIMICRY IN 

DEVELOPING MUTUAL UNDERSTANDING 

Kevin J. Wells 

Simon Fraser University 

In this paper I focus on observations made regarding students mimicking of each other’s 

gestures in face-to-face conversation while problem solving. The data supports the idea 

that the students may use such gestures to subconsciously signal acceptance. Through 

talk, gesture, prosody, and intonation, combined with context, the interlocutors may 

develop a better connection with each other, enabling a belief in having achieved a 

shared understanding of each other’s contribution. In so doing, they are positioned to 

develop their understanding of the problem. In addition, recordings of students working 

together on problem solving show evidence of posture mimicking during times of effective 

collaborative. The results suggest that teachers’ recognition of such mimicry may help 

in knowing when to successfully intervene. 

INTRODUCTION 

In this report I address the question of what clues a teacher can look for as indicators of 

when to intervene in student group work. My consideration of the use of mimicked 

gestures arose on reviewing recordings of students engaged in mathematical problem 

solving. While not initially looking for such gestures it stood out that the students 

demonstrated mimicry of both gesture and posture, prompting deeper analysis. My initial 

question, arising from recognition of this phenomenon, was whether or not there seemed 

to be any relation between such gesturing and the students’ ability to progress with the 

problem. If so, could this be an indicator of the group’s progress? The evidence presented 

here indicates that a teacher can look for gesture and posture mimicry as guides to 

appropriate intervention timing. 

BACKGROUND 

The reform-based shift towards a sociocultural approach in mathematics teaching, 

associated with the Vygotskian school of thought, takes a view of human thinking as 

being essentially social. There has been a push to replace the traditional classrooms 

featuring an outspoken teacher and silent students with small groups of learners talking 

to each other and expressing their opinions in whole class settings (Sfard, Forman, & 

Kieran, 2001). The need for a teacher to carefully facilitate the discourse in these 

situations has been noted by many researchers (e.g. Sfard et. al, 1998; Jaworski, 2004). 

While there is much research on how a teacher can successfully intervene (e.g. Ding et 

al. 2007), knowing when to intervene has been a less discussed but is an equally 

important aspect of such facilitation. The close presence of a teacher can stymy the flow 

of the group, while at other times the teacher needs to intervene in order to encourage 

and give critical feedback.     
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When students engage in mathematical problem solving in a group situation, there is a 

clear need for good communication to occur within the group if all participants are to 

gain from the collective experience. In everyday talk, gestures have been considered to 

be an integral part of communication (e.g. McNeil, 2005), and linked to speech in a 

semantic and temporal way. Radford (2009) notes that ‘thinking does not occur solely in 

the head but also in and through a sophisticated semiotic coordination of speech, body, 

gestures, symbols and tools’ (p.111). Sfard (2009) also considers gestures to be ‘crucial 

to the effectiveness of mathematical communication (...) to ensure that all the 

interlocutors speak about the same mathematical object’ (p. 197). Other researchers (e.g. 

Goodwin, 2000) have examined the role of gesture on the sequential organization of 

conversation. Clark and Wilkes-Gibbs (1986) argue that interlocutors in a conversation 

create meaning jointly, with the aim of creating mutual understanding. The process is 

considered to be in constant need of attention since, at best, the interlocutors can only 

believe that they have understood what each other meant. Such a belief, however, may 

be sufficient to allow the dialogue to continue based on the situation. The impression, 

then, of students working together on a problem, is one of a continuous need to repair 

meaning and make connections to each other. If we hold the view that learning 

mathematics is akin to developing a special type of discourse (Sfard, 2001) then 

observing students participating in such discourses is important. If, in addition, the 

important feature of group problem solving is in the activity rather than the end result, 

then being aware of that activity is a more important outcome than viewing the final 

answers. If we are interested in the unfolding understanding within the group then we 

‘must focus on the various forms of signs that speakers make available to others as well 

as themselves. These signs comprise words, gestures, body positions, prosody, and so 

on’ (Roth & Radford, 2011, p. 55). With this in mind, students taking on, or mimicking, 

each other’s words and gestures may be an important and visible part of the process.  

There is evidence that people mimic a wide range of behaviours, including postures and 

mannerisms (Chartrand & Bargh, 1999). The occurrence of mimicry in physical 

behaviour during mathematics group work has been noted by Gordon-Calvert (2001). 

Holler and Wilkin (2011) found that mimicry in co-speech gestures does occur and 

concluded that ‘mimicked gestures play an important role in creating mutually shared 

understanding’ (p. 148). Holler and Wilkin also found that mimicked gestures were used 

to express acceptance of group members, suggesting that such gestures were an important 

part of the conversational structure, even when such acceptance was not expressed 

verbally. Gestures were also found to be important in signalling incremental 

understanding, something the authors paraphrased as ‘I am following what you are 

saying in an effort to reach shared understanding with you’ (p. 145). This view supports 

that of Roth (2000) who notes that ‘the human body maintains an essential rationality 

and provides others with the interpretive resources they need for building  common 

ground and mutual intelligibility’ (p. 1685).  
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A limitation of many gesture studies, however, is that they are focussed on tangible 

objects that one party is attempting to describe to another (e.g. in Holler and Wilkin case 

it is abstract shapes with figure like qualities). A similar limitation can be seen in the 

work of McNeil (2005), wherein participants are asked to recall scenes from a cartoon 

they have watched. Students working in a classroom are generally describing or talking 

about mathematics that is not a recollection of an action but rather an ongoing action. 

Some of the actions involved may be hard for a student to put an image to in quite such 

a dynamic way as McNeil’s subjects. As a result, it might be expected that the gestures 

can often be more subtle, especially in the early stages of working together. In the case 

of mathematical problem solving the participants in the dialogue are trying to create a 

solution without one member having a privileged informational position (such as would 

occur if a teacher was present). In addition, any power relations within the group may 

lead to a particular student being granted a dominant starting position. Mimicked gestures 

may be an attempt by a student to reflect the mannerisms of his/her interlocutor with the 

aim of acceptance.  

METHODOLOGY 

The video clips were taken from a larger study in a school in which two classes of grade 

5 students (aged 10-11 years) were videoed over the course of an academic year. A 

camera was set up and left unattended with the intent that neither researcher nor the 

classroom teacher was a direct part of, or influence on, the conversation. The school is 

located just outside of a large city in Canada and reflects a very multicultural population, 

with several ESL students. Economic background is not considered to be an obvious 

factor in the school. Recordings were made weekly while the students were engaged in 

problem solving and transcribed using a framework of Conversation Analysis. A second 

viewing was made paying attention to gestures and body language. As part of the 

transcription process the occurrence of mimicked gestures became apparent, and led to 

this reported study. Going through a collection of clips looking for a particular but 

different event can bring out common features that were not seen as significant on initial 

observation. On becoming aware of this mimicry in more obvious cases, a random 

selection of 20 of the recordings was re-examined explicitly for mimicked gestures and 

posture. The clips discussed here were selected as exemplary of different forms of 

observed mimicked gesturing and posture.  For the purposes of this report, only clear 

cases of mimicry were included, where a hand gesture or body position was mimicked 

either collectively or within two turns at talk. A deeper analysis of smaller gestures over 

the period of the discourse may prove interesting, but in this case I focussed on what 

might be seen by a teacher in a classroom setting observing several groups from a 

distance.  

RESULTS 

Table 1 illustrates a conversation between Gina and Susan. The problem concerns the 

change in area of a desk reduced to half its length but doubled in width. This example 
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matches several recorded in this lesson and is of interest because, while gestures used 

differed between groups, there was evidence of gesture mimicry between interlocutors 

when the students were able to make progress. In examples where the students were 

unable to make progress, there was no clear evidence of gesture matching. In this 

example Gina initiated by describing the desk using large gestures. Susan, in her adjacent 

turn, mimicked the dynamic gesturing of Gina in describing the table. 

  
 

1.You’re taking it in half  2. (..) and then …. 3. doubling one side, right? 

   

4. You take some of it off 5. and you add it to  6. the other side (0.5) 

Table 1: Gina and Susan describe the same process 

 

Table 2 also shows another example of gesture mimicry between two girls working in a 

group on a problem where they were asked to estimate the size of a bag required to hold 

a million dollars in $100 dollar notes. Panel 2 shows one girl, Jasmine, making an initial 

gesture which is then mimicked by Gina (panel 3) as they engaged in conversation. As 

the conversation develops Jasmine moved gradually closer to Gina until their gesture 

space became shared. They continued to mimic each other’s gestures as they did so. 

During this time, the conversation was rich, and led to a clear progression in the 

problem’s solution.  

Table 2 also shows the group engaging in posture mimicry. The three girls adopted an 

almost identical posture once they started to work on the problem together. The male 

member of the group, Jason, seemed to be shut out by this common posture and found it 

very difficult to gain attention (panel 1) until he adopted a similar posture (panel 3). A 
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male-female dynamic or other social situation, may account for this early barrier to 

Jason’s inclusion, and he may not be aware of his own change in posture during the 

process, but in order to participate he appears to need to connect through posture first. 

  
 

1. Common posture 2. Initial gesture 3. Gesture mimic 

   

4. Repeated gesture 5. Adjacent gesturing 6. Closing gesture space 

Table 2: An example of gesture mimicry within a group 

 

The group shown in Table 3 also showed signs of gestural mimicry, but in this case it 

was rare. Panel 5 illustrates the only clear mimicked gesture, a cutting motion used in 

conjunction with talk of division. A common deictic gesture, as shown in panel 3, seemed 

to serve the similar purpose of connecting the group while talking. While there were 

other gestures which were repeated by different members of the group, such as the spread 

fingers shown by the girl on the left side of panel 5, these may or may not be mimicked 

gestures since they occurred more than two turns after the initial gesture.  

A second example of posture mimicry is illustrated in table 3. Panels 1 and 2 show three 

of the group have adopted a pose while the fourth student has become disengaged, 

initially standing while the others leaned, and then a different student sitting while the 

others stood. Throughout this problem session the group came together in this way, either 

in pairs, as a threesome, or all together whenever they were successfully sharing 

something about the problem (as indicated by the conversation transcript). The common 

posture varied, as shown between panel 1 and 2, but was generally shared by the members 

of the group. There were occasions when a student stepped back from this shared gesture 

space, as illustrated in panel 4. This was followed by a return to the group posture, 

perhaps when the student felt they had something to share, or had given up on an idea. 
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1. Posture mimicry 2. Participation involves mimicry 3. Deictic gestures 

    

4. Independent thinking? 5. Mimicking a cutting gestures related to division 

Table 3: 

 

SUMMARY 

Of twenty recordings analysed there were twenty-one clear incidents of gesture mimicry 

where students reproduced a given gesture exactly within two turns at talk. In four of the 

twenty recordings no clear gesture mimicry was observed. Only two recordings 

demonstrated no posture or gesture mimicry and in both of these recordings the students 

made little progress with the problem. In all cases gesture mimicry accompanied 

conversational adjacent pairs rather than an isolated utterance. Groups generally 

demonstrated several adoptions of posture mimicry and, in all but one case, this coincided 

with on-task work and resulted in progress with the problem. Gesture mimicry tended to 

be associated with actions, such as the description of shapes or objects, or mathematical 

operations such as divide, increase and counting. Very little mimicry was associated with 

student activities centred on calculating. In seven of the recordings the students were 

standing and in these recordings gesture mimicry was seen in six cases. These tended to 

involve a larger gesture space than when the students were seated. There was only one 

case involving three students mimicking gestures in succession. Generally, only pairs of 

students mimicked gestures whereas posture mimicking tended to involve more members 

of the group. 

Overall, mimicked gestures clearly occurred but were not seen to be used extensively 

while students were working on the mathematical processes. Gesture mimicking was 

predominantly used, and seemed important, in establishing the situation in which the 

mathematics was framed. When gesture mimicking was observed as related to the actual 
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mathematics, the gestures were seen to represent ‘cutting’ (as in division), ‘framing’ (as 

in framing a shape such as a circle), ‘counting’ (particularly the action of skip counting 

using a bouncing motion) and a ‘this-and-that’ gesture where the flat hand was rotated at 

the wrist in a back and forth motion (as in referring to two cases). The predominant 

gesture seen during discussion about mathematical processes was deictic, with students 

pointing to the pages being working on. While these gestures often looked similar, there 

is not enough evidence to suggest mimicking, given the limited variations of pointing. 

Table 3, panel 3, illustrates this type of gesture.   

This study indicates that posture imitation is an important part of group work. When 

students were working productively on a problem, or exploring an idea together, they 

tended to imitate each other’s posture, whether standing or sitting. These common 

postures shifted throughout the working session and demonstrated enough variation to 

indicate that it was not merely coincidental. When a student opted out of the common 

posture they rarely added to the thinking of the group, or their attempted contribution 

was less well-received. In some cases it appeared that a student removed themselves from 

the group so that they could think through a situation independently as in these cases the 

student self-gestured (table 3 panel 4) before re-joining the group. In just over half of 

such cases the students made a positive contribution to the group. In other situations a 

student moved out of the group and showed no signs of thinking independently about the 

problem (i.e. using some kind of self-gesturing or facial expression); in none of these 

cases did the student return to offer anything new.  

The study suggests that mimicked gestures can play a role in creating a mutually shared 

understanding of the situation within which the problem is set. The mimicked gestures 

may help to coordinate a mathematical process amongst the group so that mathematic 

actions are seen to be agreed upon. This communication of acceptance in a process has 

been seen as a core step in the process of reaching a shared understanding in dialogue 

(Clark and Wilkes-Gibb, 1986). While gesture-mimicking may not be significant in 

advancing the mathematical process itself, it may be seen by the interlocutors as an 

acceptance that the speaker is understood and seen to be making progress. Gesture 

mimicry is part of the collaborative process but relies on the belief of the interlocutors 

that they have interpreted each other’s’ intent in the same way. It must also be noted that 

such gesturing may be subject to interpersonal relationship issues. Students with a strong 

rapport with each other may be more likely to mimic gestures.  

In conclusion, analysis of the recordings of student work provides evidence that students 

mimic each other’s posture when being collaborative, and also mimic each other’s 

gestures as a means to establish a common process. As such, mimicked gestures may 

play an important part in helping to establish a shared understanding amongst the 

interlocutors and assist in progression of the collaborative effort. Given this possibility, 

there is an opportunity for teachers’ observing from afar to recognise good opportunities 

to intervene in order to best facilitate the group’s progress. When a group is seen to mimic 
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each other’s posture or gestures then this may be an indication to stay away from the 

group and allow them to continue to develop their ideas. If there is no evidence of such 

mimicry then that may indicate a good time to offer support to the group. This result may 

also tie in with the findings of Gerofsky (2008), in being another observable feature that 

students who are more confident of their ideas tend to use larger gestures.  
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TEACHERS: MATHEMATICIANS WITH EDUCATION 

BACKGROUND OR ONLY EDUCATION EXPERTS? 
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Teachers’ knowledge plays a vital role in developing students’ academic achievements. 

Therefore, training prospective teachers for the purpose of developing their professional 

knowledge considers as one of the most important issues for teacher trainers. The 

question raises here is who should train prospective mathematics teachers, a 

mathematician who is an educator or an expert in education? In this research study, a 

mathematician who has experience of teaching prospective teachers had been 

interviewed to investigate how he tended to develop prospective teachers’ professional 

knowledge. 

 

 INTRODUCTION  

Teachers’ knowledge has been the main focus of many educational researchers for more 

than twenty years. For some researchers, what is described as teachers’ knowledge is 

dissimilar to what other educational researchers describe. In other words, researchers 

have looked at teachers’ knowledge from different angles. For instance, Shulman (1986) 

(who is the main focus of this paper) divided teachers’ knowledge into three groups: 

subject matter content knowledge, pedagogical content knowledge and curricular 

knowledge.  

Since introduction of Shulman’s model, many research studies focused on teachers’ 

knowledge (especially content knowledge) and its influence on teaching and learning.  

For example, a number of researchers (such as Ball, 1991, Berenson et al., 1997, Hill, 

Rowan and Ball, 2005, Baumert and Kunter, 2010, Mullens, Murnane and Willett, 1996, 

Sherman, 1992 and Simon, 1993) investigated the ways of developing subject matter 

content knowledge of teachers and its impact on teaching and learning. On the other 

hand, other research studies (such as Hill, Rowan, and Ball, 2005, and Mullens et al. 

1996) focused on the influence of teachers’ content knowledge on students’ learning and 

their mathematics achievements.  

Besides the effect  teachers’ content knowledge had on pupils’ math scores,  Baumert, et 

al. (2010), Borgen (2010), Charalambous (2010), Hill, & Ball (2009) and Hill, Blunk, 

Lewis, Phelps, Sleep, and Ball (2008) investigated its influence on the quality of 

teachers’ teaching methods and instructions. In other words, research has shown that 

those teachers who have more mathematical knowledge would have different and more 
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effective teaching styles than those who do not have enough mathematical content 

knowledge. The question raised here is “how teachers’ knowledge could be developed 

and what role educators might play in developing teachers’ knowledge.” 

There are some researches (e.g. Ball, 2008) indicated that the number of university 

courses teachers taking during university would directly influence teachers’ knowledge 

development. However, there is no research available to investigate how educators are 

often teaching prospective mathematics teachers and whether it is important that 

mathematics prospective teachers have been trained by educational educators, 

mathematicians or educational educators who are mathematicians too. To figure it out, 

the initial step is investigating the influence of rich mathematics knowledge of teacher 

trainers on developing prospective teachers’ professional knowledge. As such, in this 

research, a teacher trainer who is a mathematician has been interviewed to investigate 

the main objectives he often pursues while teaching prospective teachers.  

Methodology  

A mathematician, who has experience of teaching prospective teachers for more than a 

decade in a large Canadian university, is the only subject of this research. He has been 

selected since he often applies his rich mathematical ideas when teaching prospective 

mathematics teachers and also because he is the only mathematician educator at 

education department. In a two hours interview, he had been asked about his ultimate 

goals of using his mathematics background during teaching practice. The main focus of 

interview questions were around teaching trigonometry as some research (e.g. Orhun, 

2011 and Weber, 2005) indicated that this topic is a challenging concept for teachers and 

students as well. To analyse the data, I listened carefully to the audio recordings and then 

I transcribed them. I noticed several themes the participant emphasized on and, then, I 

assign a section for each theme in this paper. My reflections on the themes and their 

relationship with literature review which is related to mathematics teachers' knowledge 

will be described in each part. 

Theoretical framework 

A theoretical framework for this paper is related to Shulman’s classification of teacher’s 

knowledge. Shulman (1986) divided teachers’ knowledge into three groups: subject 

matter content knowledge, pedagogical content knowledge and curricular knowledge. 

Shulman (1986) defined subject matter content knowledge as “knowledge of discipline, 

facts, concepts, principles, structures and ways in which they are developed.” In other 

words, he indicated that not only do teachers need to know the concepts but also that 

teaching requires going beyond knowledge of facts and concepts.   

The second category of teachers’ knowledge is Pedagogical content knowledge. Shulman 

referred to pedagogical content knowledge as “the ways of representing and formulating 

the subject that make it comprehensible to others” (1986, p. 9) including …the most 

useful forms of representation of those ideas, the most powerful analogies, illustrations, 
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examples, explanations, and demonstrations—in a word, the most useful ways of 

representing and formulating the subject that make it comprehensible to others. . . . 

Pedagogical content knowledge also includes an understanding of what makes the 

learning of specific topics easy or difficult: the conceptions and preconceptions that 

students of different ages and backgrounds bring with them to the learning of those most 

frequently taught topics and lessons” (p. 9).  In other words, Shulman’s definition of 

pedagogical content knowledge is a combination of both content knowledge and 

pedagogy knowledge.  

The third type of knowledge that Shulman (1986) defined is curriculum knowledge. He 

indicated that curriculum knowledge is knowledge of available instructional material 

such as textbooks and curriculum as well as knowledge of the topics taught and how they 

were addressed in the previous years’ books so as to incorporate this into the following 

years (Rowland & Ruthwen, 2011). 

 

Designing appropriate mathematics tasks 

Mathematics tasks play a big role in learning mathematics, so that teachers are 

responsible for designing appropriate tasks for students of different level of interest and 

need (Crespo, 2003). During the interview, the participant mentioned that his current 

prospective teachers need opportunities to improve their sense of being mathematics 

teachers since they are still students the transition from students to teachers is difficult. 

He indicated that, therefore, one of the important responsibilities of every educator is 

making them familiar with their teaching duties. The participant continued that every 

successful mathematics teacher needs to know how to adapt and generate mathematics 

tasks. He added that: 

 

Elizabeth: .... I like tasks that have a number of ways of being approached, so there are 

not automatic solutions. So in this course, I choose tasks for students to work 

on themselves and then I talk about what I see as mathematics in those tasks. 

...for example, working on square grid dot papers. I might talk about the 

question of what is a circle on this grid, how many points can you get on a 

circle, which is a question that has no meaning.    

 

It is noticed from the above excerpts that the participant tend to improve prospective 

teachers’ sense of being a teachers through engaging them in open-ended mathematics 

tasks followed by a discussion about the mathematics facts embedded in the given tasks. 

It appears that the participant interested to develop prospective teachers’ pedagogical 

content knowledge (designing appropriate mathematics tasks) when applying his rich 

content knowledge during the discussions (Shulman, 1986). 
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Furthermore, it is believed that teachers besides being teachers, they are always learners 

who need to update their knowledge. In other words, as Garmston and Wellman (1998) 

argued teachers are influenced by the extent of their repertoire of teaching methodologies 

and their ability to experiment with their own practice, by working through a learning 

cycle of: activity, reflection and evaluation, extracting meaning from this review, and 

planning how to use the learning in future. In particular, when teachers plan for students’ 

learning, their “bag of tricks” includes tasks and processes to promote active learning, 

collaborative learning, learner responsibility and learning about learning, and skills 

related to handling relationships.  

In this particular study and during the interview, the participant expressed that 

prospective teachers often have the lack of situating themselves as learners. He 

continued, therefore, prospective teachers need to participate in activities focused on 

posing mathematics tasks. 

 

Interviewer: What do you think teachers do not know and you wish them to know?  

 

Elizabeth: They come from mathematics departments and I think with a range of 

technical knowledge but often with no strong sense of mathematical learners. 

One of the things I do is work on mathematics together to give them a better 

sense of mathematics knowledge. I have them write up both a mathematical 

task to explore mathematics and also what they notice about themselves as a 

learner, where they are stuck, what they notice when working on problems. 

 

From the above excerpt, it is noted here again that the participant’s background 

knowledge as a mathematician and a mathematics educator helped him to design an 

educational course to benefit prospective teachers. He, in fact, was interested to invite 

his prospective teachers to “write up a mathematical task” and then as a whole group 

have a discussion about it in order to not only develop their content knowledge as still 

learners (to better sense of mathematics knowledge) but also to explore any difficulties 

they students may face. In other words, the participated mathematician employed his rich 

mathematics/educational background to develop his prospective teachers’ content 

knowledge as well as pedagogical knowledge (exploring pupils’ difficulties is a 

pedagogical matter according to Shulman’ category). 

 

Broadening prospective teachers' horizon about mathematics  

It is indicated that prospective teachers require developing the skills of widening their 

view about the variety of ways through which mathematics facts could be proved rather 

than following those written in mathematics textbooks. This is the case since ability to 
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re-think about mathematics concepts from different angles would benefit students 

because it would provide pupils with different abilities and interest with opportunities to 

learn through the ways are more understandable for them. In other words, teachers cannot 

teach students by focusing on the same strategy for all students.  

In order to extend prospective teachers' learning and developing this skill, the 

participated mathematician added that: 

 

Elizabeth: To show them how the mathematical results that are usually in the sellubes 

are tools for solving problems and not end-points themselves....., asking 

them to discuss about the formula of the area of triangle….....during the 

class discussion, one of the students, for example, came up with the idea of 

looking at a triangle with all three heights drawn in and then showing how 

each height divided the area of the triangle into three right angle triangles... 

The participant was eager to provide prospective teachers with opportunities of being 

involved in a rich class discussion through which they could look at mathematics with 

different lenses. It is believed that leading a rich discussion often requires a leader with 

strong related knowledge. If leaders have lack of knowledge in the area, the classroom 

conversations would not end with learning. In other words, the participant’s higher 

mathematics knowledge enabled him to lead his prospective teachers properly and, as it 

is clear from the last excerpt, the conversation wrapped up with a great strategy to prove 

the formula of the area of triangle. He not only used his mathematics training to increase 

his prospective teachers' content knowledge, which agrees with the results of Watson and 

Harel (2013) (teachers who have advanced mathematical knowledge have more 

successful students), he also developed their knowledge of teaching that is under the 

category of pedagogical content knowledge too (Ball et al., 2008). 

Furthermore, re-thinking about mathematics concepts and the order in which they should 

be taught could enhance prospective teachers’ capacity to take appropriate decision 

making. When the participant was asked about how he teaches trigonometry, which is 

described as one of the most challenging topics for teaching (Weber, 2005), he expressed: 

 

Elizabeth: ...In my course, I was using trigonometry as an example to show them how 

you do not have to teach the school curriculum in the way it has been 

traditionally taught. I like them to be flexible about curricular order… I am 

interested to the quality of discussion of sin and cos..., before getting a 

numerically ac curate graph.... . You could just read it of this triangle and 

another place to start is with the unit circle especially if students know where 

tangent line is…One figure is always twice the area of the other. 

It seems from the above excerpt that the participant was interested to develop prospective 

teachers’ curricular knowledge (one of the knowledge classification of Sulman) since he 
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found teaching trigonometry based upon following curriculum order a challenging topic 

for undergraduate students based on his mathematics teaching experience at 

undergraduate level, he wanted to give the examples of the flexibility a teacher could 

have in teaching trigonometry. 

Final marks 

In analysis of the interview with the participant, who is a mathematician and has teaching 

experience of teaching educational courses in a large university in Canada, I noticed 

several themes in which he used his rich background knowledge. Analyze of the data 

illustrate that the mathematician participated in this study applied both his rich 

mathematics and educational knowledge to develop their pedagogical, curricular and 

content knowledge.  

 To enhance his prospective teachers’ skills of generating appropriate mathematics, he 

gave them a set of mathematical tasks that could be solved through various ways (he 

called them open-ended mathematical tasks). He expressed that it is a proper way of 

developing prospective teacher’s sense of being mathematics teachers since ability to 

design mathematics tasks is an important skill all teachers required to have.  It seems that 

the participant implemented his mathematics knowledge to improve his prospective 

teachers' content knowledge as according to Shulman (1998) teaching knowledge model, 

asking for reasoning and posing open-ended mathematics tasks are the special skills for 

teachers.  

He also stated that often mathematics teachers are graduate students from the 

mathematics department who do not have a strong sense of being mathematical learners. 

He indicated that having this sense is important because teachers need to experience how 

a mathematics task could be solved and the challenges they may face. To do so, he asked 

them to generate a mathematics task and asked them to think deeply about the 

mathematics embedded in the task and the way it could be solved. In fact, he applied his 

background knowledge to improve the pedagogical content knowledge (knowledge of 

teaching) of his students.   

Furthermore, increasing prospective teachers' opportunities for rich mathematics 

discussion is another theme I noticed that the participant used his knowledge for. He 

expressed that how giving the prospective teachers a formula (e.g. area of triangle) and 

asking them to discuss and prove it through other ways than those mentioned in the 

textbooks would result in a great conclusion. Again, his knowledge let him to generate 

appropriate mathematics facts and to lead his prospective teachers' discussion, because a 

good discussion requires an expert leader (in mathematics). As it is clear, the participant 

was eager to develop prospective teachers’ pedagogical knowledge through this activity. 

From the interview, I also found that the participant rich knowledge of mathematics and 

teaching provided him with occasions to enhance his prospective teachers' decision- 

making opportunities. In other words, he gave prospective teachers different examples 
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of teaching a particular concept of trigonometry to show them how flexible they need to 

be while making decisions in their classrooms. He wanted to show them that they need 

to know different ways of proposing a particular topic to be ready for unanticipated 

situations. 

In this study, the participant who was a mathematician and had experience of teaching 

prospective teachers for many years tended to develop prospective teachers’ content 

knowledge, pedagogical content knowledge as well as curriculum knowledge by 

applying his background knowledge. Future research is needed to investigate how 

educators (in general) who are not mathematicians could enhance prospective teachers’ 

knowledge. Also, it would be interesting to investigate how educators (in general) could 

develop prospective teachers’ knowledge compared with mathematicians who have 

expertise in education. 
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Mathematics is an abstract subject. One of the most important challenges for 

mathematics teachers therefore involves the task of dealing with mathematical 

abstraction and figure out ways of translating them into understandable ideas for their 

students. By analysing teaching episodes through the lens of reducing abstraction in 

teaching (RAiT), this paper explores the notion of mathematical abstraction and 

illustrates various strategies and tendencies of teachers dealing with mathematical 

abstraction.  

 

1. INTRODUCTION 

Abstraction has been an object of discussion across several discipline. Particularly in 

philosophy and in philosophy of mathematics, it has been the central topic of intense 

inquiry from the days of Plato and Aristotle.  As Hershkowitz, Schwarz &  Dreyfus ( 

2001) put it, “not only did Plato and his followers see in abstraction a way to reach 

"eternal truths," but modern philosophers such as Russell (1926) characterized 

abstraction as one of the highest human achievements” (p.196).  In this paper, rather than 

providing the detail review of research on abstraction in philosophy and other discipline, 

I focus on the notion of abstraction as used in mathematics education and its implication 

in teaching and learning.  I then provide a brief overview of theoretical framework of 

Reducing Abstraction in Teaching (RAiT) followed by methodology. Finally, the result 

and discussion are presented. 

1.1 Abstraction in mathematics education and the teaching challenges 

Abstraction in the mathematics education has long been discussed by educators and 

researchers (e.g. Piaget 1970; Dienes, 1989).  Piaget (1970) observed that abstraction is 

the skills required for learning elementary through advanced mathematical concept.   

Ferrari (2003) also noted the role of abstraction in mathematics learning and stated that 

“abstraction has been recognized as one of the most important features of mathematics 

from a cognitive viewpoint as well as one of the main reasons for failure in mathematics 

learning” (p. 1225).  As such, the issue related mathematical abstraction in teaching and 



 

 148 

learning mathematics has long been the topic of discussion among researchers and 

mathematics educators.  

Since mathematical concepts are abstract in nature as commonly understood, the debate 

on what is the effective way of teaching mathematics- whether proceed from abstract to 

concrete or the other way around has been an important topic of discussion in 

mathematics education. The abstract- concrete order of learning seems to rely on two 

assumptions.  The first is a Platonic philosophy in which mathematics is viewed as an 

objective reality existing in the platonic realms, which is not accessible to our senses but 

can be revealed by good teaching (Ernest, 1991).  The second is based on the assumption 

that "knowledge acquired in ‘context-free’ circumstances is supposed to be available for 

general application in all contexts" (Lave, 1988, p. 9).  However this view of teaching as 

the transfer of abstract, decontextualized mathematical concept has proven to be 

ineffective and “much of what is taught turns out to be almost useless in practice” 

(Brown, Collins & Duguid 1989, p. 32).  

What is the effective way of teaching mathematics then?  Should we proceed from 

abstract to concrete or the other way around?  Davydov’s (1990) dialectical materialistic 

account of abstraction offers a way of resolving the debate revolving around the 

trajectory of how to teach abstract mathematical concept.  Davydov (1990) thought that 

the concrete is correlated with the abstract and learning does not follow the trajectory 

from concrete to abstract but a dialectical, two way relationships between the concrete 

and the abstract.  In his view, abstraction process results in the discovery of the essence 

which ultimately needs to ascend back to the concrete.   

In Wilensky’s (1991) account of abstraction, the debate on the teaching trajectory of 

abstract- concrete or concrete -abstract order as commonly understood collapsed and 

takes a different turn. Instead of locating the assessment of abstraction solely in the 

object, he redefined abstraction as the relationship between the person and object of 

thought thereby promoting a more subjective conception of abstraction.  According to 

Wilensky (1991), mathematical concepts are neither more nor less abstracts in their own 

right; it depends on the internal connection of the learner’s with the concepts.  He further 

said, “concepts that were hopelessly abstract at one time can become concrete for us if 

we get into the ‘right relationship’ with them” (Wilensky, 1991).  

2.  LITERATURE AND THEORETICAL FRAMEWORK 

Much has been written about abstraction in mathematics education and how mathematics 

can be taught well and poorly, particularly in school level. However the study that aimed 

to examine the mental process of learners while dealing with abstraction in learning new 

mathematical concepts is slim.  Most notable study in this camp is carried out by 

researchers such as Hazzan (1999), Raychaudhuri, ( 2013), Hazzan & Zazkis (2005).  

These researchers examined learners’ mental tendency with regard to dealing with 

mathematical abstraction and found that learners have a mental tendency of reducing 
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level of abstraction of a task or concept while learning new a concept. There is however 

no study found in my literature review which aimed to look specifically at how teachers 

deal with abstraction in teaching.  

Having reviewed the literature, I was convinced that both students and teachers reduce 

abstraction level in learning and teaching respectively, but for different reasons. Hazzan 

(1999) for example, found that since learners do not have sufficient mental resources “to 

hang on” to cope up with the same level of new mathematical concept as intended by 

authorities (such as teacher, textbook), they tend to reduce the abstraction level to make 

it mentally more accessible which often happens unconsciously.  In contrast, reducing 

abstraction in teaching is a conscious and intended act. From teachers perspective, the 

choice of the words and phrases such as ‘unconscious’, ‘lacks of the mental construct’, 

‘to hang on to’ are problematic.  The assumption here is that teachers are the experts and 

usually have sufficient mental resources to deal with the abstraction of a mathematical 

concept in the same or even higher level as given in the textbook.  So, the assumption 

here is that teacher reduces abstraction appropriately in contrast to their students and 

therefore reducing abstraction in teaching has pedagogical value.   

This shift in perspective necessitated a different interpretation of reducing abstraction in 

teaching.  Hence, taking the ideas from literature, particularly the ideas from Hazzan’s 

(1999), Wilensky (1991) and Sfard (1991) in to account; the notion of reducing 

abstraction was redefined and reinterpreted from teacher’s perspective. In so doing, a 

modified framework of reducing abstraction emerged which I call Reducing Abstraction 

in Teaching (RAiT).  Detail discussion of RAiT framework is out of the scope of this 

paper. I however provide a brief overview of the framework.  

The thematic categories and subcategories of the framework of”Reducing Abstraction in 

Teaching” ( RAiT) are given below:   

Category 1: Abstraction level as the quality of the relationships between the 

mathematical concept and the learner 

Teachers task implementation behaviour in which teacher makes an attempt to establish 

a right relationship (in the sense Wilensky, 1991) between the students and the abstract 

mathematical concepts.  

Subcategories:  

1a) Reducing abstraction by connecting unfamiliar mathematical concept to real- life 

situations 

1 b) Reducing Abstraction by Experiment and Simulation 

1 c) Reducing abstraction by Storytelling 

1d) Reducing abstraction by using familiar but informal language rather than 

 formal mathematical language 
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1e) Reducing abstraction by the use of pedagogical tools (such as model, 

 manipulative, metaphor, analogy, gesture etc.)   

Category 2: Abstraction level as reflection of the process-object duality 

Teachers’ task implementation behaviour in which teacher shifts the emphasis to a 

process or correctness of the answer rather than the concept itself is considered as 

reducing abstraction in this category. 

Subcategory:  

2a) Teacher reducing abstraction by shifting the focus on procedure 

2b)  Reducing abstraction by shifting the focus on end-product (answer).  

Category 3: Abstraction level as degree of complexity of mathematical 

 problem/concept 

Here abstraction is determined by the degree of complexity.  Hence, teacher’s task 

implementation activity in which teacher attempt to reduce the complexity of the problem 

in various ways was considered as reducing abstraction in this category.  

3a) Reducing abstraction by shifting focus on particular rather than general   

3b)  Reducing abstraction by stating the concepts rather than developing it. 

3c) Reducing abstraction by giving away the answer in the question or provide 

 more hints than necessary (Topaze effect- See Brousseau, 1987) 

Although I considered the three interpretation of abstraction from Hazzan (1999), I 

would like to emphasise that these three categories of reducing abstraction in RAiT are 

defined from different perspectives than found in Hazzan’s work.  In Hazzan’s work 

reducing abstraction is concerned with students’ mental action and their coping strategies 

where as RAiT focuses on teachers’ action with regard to dealing with abstraction in 

teaching. 

3. METHODOLOGY 

While selecting the research methodology appropriate to the aim of this study, I 

considered Bogdan and Biklen (1998) suggestion that if a study aims to “better 

understand human behaviour and experience” (p. 38) quantitative positivist approach is 

of little help.   Since this study also involves human and social phenomena, I began to 

investigate qualitative research methodology which led me to modified analytical 

induction.  Modified analytic inductions is a methodology that allows for the researcher 

to begin with her/his pre-held theoretical perspectives (often emerged from the literature) 

and test the theoretical frameworks with empirical cases and thus amend and improve 

the theory (Bogdan & Biklen 2007).  

This paper reports a part of the preliminary result of  the larger study for which the 

strategy for gathering data consisted of my observation of nine college preparatory 
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classes  (each lasted about an hour and half) taught by three different instructors , who 

were well experienced, and professionally trained mathematics educators. I attended the 

classes, audio taped all the classroom interaction and then transcribed. As much as 

possible, I also noted down all the phrases, statements or sentences the instructors used 

to explain the concepts including some observable behaviour such as ‘gestures’ and 

students’ responses that I found relevant for my study. Due to the risk of influencing the 

natural classroom situation, I avoided the video recording.  I now present one 

representative example with analysis and interpretation using (RAiT) framework. 

4. RESULT AND DISCUSSION 

 

The Box Problem:  

The objectives of the lesson was to introduce the concept of polynomial function of 

degree three or greater and sketch their graphs using leading coefficient, x- intercepts 

and the multiplicity of the zeros. The class began with a very brief review of quadratic 

function. The teacher then put up the following box problem in the board and instructed 

students to work in a group of three or four and try to find the equation to model the 

volume of the box. Because of the space limitation, I illustrate only few tendencies of 

teacher’s reducing abstraction while implementing the box problem. 

Question: Suppose that you are a manager of a packaging company that manufactures 

identical rectangular boxes from square sheets of card board each sheet having the 

dimension 8 inches by 8 inches.  To save money, you want to manufacture boxes of 

maximum volume by cutting out a square of 𝑥 inches by 𝑥 inches from each corners of a 

sheet and then folding their sides up to make an open toped box. What length should you 

select for 𝑥 in order for the maximum possible volume of the box?   

Polynomials in a box: 

All the students were discussing with their neighbours.  Each group seemed to agree on 

the fact that the height of the box would be 𝑥. The debate was however on the dimension 

of the bases of the box, particularly on whether each dimension of base of the box would 

be 8 − 𝑥 or   8 –  2𝑥.  After about two minutes or so, while students were still working 

on the problem, the teacher handed out a card board, a pair of scissors and a masking 

tape to each group.  Each group cut the square corner and folded the side to make a box.  

At this point everyone seemed to be convinced that each dimension of the base of the 

box is actually  8 −  2𝑥 and hence the function representing the volume of the box is 

given by: Volume(𝑉) =   length x width x height =  (8 − 2𝑥). (8 − 2𝑥). 𝑥 =  4𝑥3 −
 32𝑥2 +  64𝑥  (RAiT-1d). 

The teacher then put the following figure on the board . 
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The teacher then moved to the idea of the polynomial function and its degree.  She wrote 

the definition of the general form of polynomial functions in the board as follows:  

Let n be a nonnegative integer and let 𝑎𝑛, 𝑎𝑛−1 , 𝑎𝑛−2  …  𝑎2, 𝑎1 , 𝑎0 be real number 

with    𝑎𝑛  ≠ 0.  The function defined by   

𝑃(𝑥) =  𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + … + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 

is called a polynomial function of 𝑥 of degree 𝑛.  

She mentioned that the function V(x) is also a polynomial function of degree 3. At this 

moment, there was a realization among students that the polynomial functions are not an 

abstract entity but something that relates to the real world situation- Polynomial in a box. 

(RAiT-1a).   

Leader, attitude and the shape of the graph of polynomial 

After briefly discussion on theoretical and practical domains of the polynomial in this 

context, the teacher then shifted the focus to the concept of leading term, relationship 

between leading term and the end behaviour of the graph. Considering the function 

f(𝑥) = 4𝑥3 −  32𝑥2 +  64𝑥 , she told that the term with highest degree is called the 

leading term and hence in this example the leading term is 4𝑥3 and the leading coefficient 

is 4. She explained that end behaviour of the graph as the nature of the graph (goes up or 

down) of a function to the far right as 𝑥 → ∞  and to the far left as  𝑥 → −∞. The 

dialogue continues: 

T:  OK guys, as you have seen in the last example (pointing to the function  𝑉(𝑥) = 

 4𝑥3 −  32𝑥2 +  64𝑥  that the graph of third degree polynomial is like this (left  

 hand up and right hand down). I will tell you one thing right now. To find the end 

 behaviour of the graph, what  you need is just the leading term, ok, the term with 

 highest degree.  In this  function (pointing to 𝑉(𝑥)) what we need to look at is just 

 the leading term 4𝑥3. We don’t care about the other terms.  Ok.  

S:  Ms. I don’t get it.  Why you don’t care the other terms?  

T:  I mean, when x goes to positive or negative infinity ( 𝑤𝑟𝑖𝑡𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑜𝑎𝑟𝑑,  

         𝑥 → ∞  or  as  𝑥 → −∞) the function 𝑉(𝑥) = 4𝑥3 −  32𝑥2 +  64𝑥  and the function 

         𝑓(𝑥) = 4𝑥3  behave the same way.  There is a theorem that tells that (she writes in 

 the board) if 𝑃(𝑥) =  𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 +  … +  𝑎2𝑥2 +  𝑎1𝑥 +  𝑎0 is an 𝑛 degree 

 polynomial function of 𝑥,  then the “end behavior” of P(x) is the same as that of 
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 𝑦 =  𝑎𝑛𝑥𝑛. Ok.  

T:  Now I will tell you how to figure out the shape or the end behaviour of different  

 type of polynomial functions.  If the degree is odd, then think of "odd" as meaning 

 "different".  OK.  That means the end part of the graph on the left and the right must 

 go in the different directions like this or like this (with hand gesture) .OK.  

T:  Now if the degree is even, think of "even" as meaning "the same" . For example, if  

 two players are "even", in a game, what would you think?  They have the same score, 

  right. This will help you to remember that if n is even, both ends of the graph must 

  go in the same direction like this (both hands up) or this (both hands down).    

S:  But how to find which one is which?  

In response to the students question, the instructor  explained by using her hand gesture 

and the odd and even metaphor that the direction of the end part of the graph can be 

determined just by looking at the degree ( odd or even) and the  sign (+ or - ) of leading 

coefficient. The class seemed to be really interesting as everyone was actively 

participating in modelling the end behaviour of the graph using their hands. However, 

the later discussion shows that some of the students still struggling in grasping the 

concept.  

 The teacher wrote the following two functions in the board:  1) 𝑓(𝑥) =  2𝑥3 +  2𝑥 − 3 

and 2) 𝑔(𝑥) =  3 𝑥5 −  4 𝑥2 +  6  and goes near to one group:   

T:  Ben, can you tell me what is the end behaviour of the first function?  

Ben:  It’s like this (gesture)           Oh, wait a minute, it’s like this            Umh.., I forgot, I 
really don’t get it.  

When she realized that students were still struggling to remember the end behaviour, she 

used another strategy to explain it:  

T:  alright guys, think this way. Your leading term is the leader or manager of  

 company, OK.  If the leader of a company is positive or say has a positive attitude, 

 the business finally goes up even though it was down before, right. And If the leader 

 is negative or say, has a negative attitude, the business goes down even though it was 

 up earlier, right.  

SS:  Oh, I see!   

T:  Alright. Ben, do you want to try the second function?  

Ben:  Ok. so the leading term is  3 𝑥5. So, 5 is odd and 3 is negative.  so the guy (the guy, 
he meant the leader or manager) has negative attitude. So, the business finally 
goes up . The graph is like this ( gesture)           ,  right?  

T:  Yes Ben, you are absolutely right.  

Ben:  Oh, I get it! 

T:  Remember guys, that the positive and negative leader metaphor works for even 
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 degree of function as well. OK. If the leading coefficient is positive, uhmm.., both 

 ends go up like this (raised her both hands up) and if the leading  coefficient is  

 negative, both ends go down like this (raised down her both hands). Ok, now let’s try 

 few more functions.  

The teacher writes few more functions with odd degree and even degree and with both 

positive and negative leading coefficient. Every student seemed to be able to answer end 

behaviour of the functions correctly. In fact, the teacher’s use of leader of a company as 

a leading term of a polynomial metaphor, and her gesture reduced the abstraction of the 

unfamiliar and abstract concept of end behaviour of polynomial functions thereby 

making it a familiar hand motion idea ((RAiT – 1d). Then the teacher moved to the 

concept of zeros and multiplicity discussion of which is not presented in this paper 

because of the space limitation.   

One of the points to note however is that in response to the students query regarding the 

end behaviour of polynomial and the end behaviour of leading term, she did not 

developed the concept but stated it (RAiT-3b) by saying that if 𝑃(𝑥) =  𝑎𝑛𝑥𝑛 +
𝑎𝑛−1𝑥𝑛−1 + … +  𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0   is an 𝑛 degree polynomial function of x then the 

“end behaviour” of P(x) is the same as that of  𝑦 =  𝑎𝑛𝑥𝑛. As a result, some of the 

students developed rather vague and inappropriate rule as I observed in one of the 

students work who was sitting next to me . To my query to his work with regards to the 

function 𝑓(𝑥) =  3 𝑥5 −  4 𝑥2 +  6, he mentioned his approach for this rule is the 

following: 𝑎𝑠 𝑥 → ∞,  𝑔(∞) =  3 ∞5 −  4 ∞2 +  6 becomes positive infinity because 

any positive quantity to the power odd becomes positive and the first term has bigger 

infinitive.  Therefore 𝑥 → ∞, 𝑔(𝑥) equals positive infinity.  Similar reason was given for 

g(x) as 𝑥 → −∞,  and he concluded that 𝑥 → −∞, , 𝑔(𝑥) negative infinity.  In fact, if x 

tends to some finite value, say, 𝑥 → 2, the functional value of g(2) can be found by 

plugging in 2 for x in the function such  𝑔(2) =  3 (2)5 −  4 (2)2 +  6 = 86 . But for 

𝑥 → ∞,  we know that 3𝑥5 → ∞ 𝑎𝑛𝑑 4 𝑥2  → ∞ . However, we cannot simply add these 

two limits together to find the limit of g(x), since limits of the form   (∞ −  ∞)   is 

indeterminate.  

This misconception could have been possibly avoided if the concept was developed 

instead of stated. For example, the polynomial function 𝑃(𝑥) =  𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 +
 … + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0   could be shown to equal 𝑎𝑛𝑥𝑛    easily for very large |𝑥|  by 

using simple algebra as follows: 

 𝑃(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎2𝑥2 + 𝑎1𝑥 +  𝑎0  can be rewritten as  

  For very large 𝑥 , 𝑃(𝑥) =  𝑎𝑛𝑥𝑛 ( 1 + 
 𝑎𝑛−1

𝑎𝑛
 
1

𝑥
+

 𝑎𝑛−2

𝑎𝑛
 

1

𝑥2
 +  …  +   

 𝑎0

𝑎𝑛
 

1

𝑥𝑛)  = 𝑎𝑛𝑥𝑛,  

(since 
1

𝑥𝑘 
 → 0 𝑤ℎ𝑒𝑛 𝑥 is very large)  .  Similar results hold for 𝑥 → −∞. Hence for 

large |𝑥|, 𝑃(𝑥) ≈ 𝑎𝑛𝑥𝑛    
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To understand the reason for stating the concept rather than developing, I decided to talk 

to the teacher after the lesson.  This informal interview shed some lights on this issue:  

 You know, the time allotted for this course is too short.  I have to cover so many 

 things and I always run out of time.  So, I decided not to go in  detail of that 

 concept.  Moreover, the theorem that you are referring, the proof  involves 

 the limit concept and they do not have that concept yet.  The limit  concept 

 generally introduced in calculus courses.  If I had imposed the concept on 

 them, many of them would find it too difficult to understand and lose their 

 interest.  I did not want them to develop any anxiety for the rest of the class just 

 because of that theorem.  After all, I told them that they won’t be tested on  the 

 proof of the theorem in the exam. So, it was not that important to dig deep in 

 to that concept.  

 Her views regarding reducing abstraction in this subcategory was that the time allotted 

for the course was too short and could not work on the concept in detail.  Further, the 

concept was a complex or difficult one for the student at this level.  She also pointed out 

the fact that student would not be tested on the proof of the theory behind it. This result 

supports the finding of other studies. Doyle (1988), for example found that high level 

tasks were perceived by the teachers (and students) as risky and ambiguous and therefore 

there was a tendency of reducing the complexity of the task so as to manage the 

accompanying anxiety.  

5. CONCLUSION 

The findings of this study suggest that while dealing mathematical abstraction in 

teaching, teachers often reduce abstraction level of the problem or concept whose main 

goal is to make the concept mentally accessible to their students.  As a result, it is 

expected that such tendency of task implementation would enhance learning.  However, 

the findings also suggest that reducing abstraction in teaching may not necessarily 

promote learning. Thus, the results emphasize the importance of paying attention to how 

the abstraction is reduced during task implementation as it is closely related to the 

students learning opportunity and nature of understanding and possible misconceptions. 

Reference 

Bogdan, R. C., & Biklen, S. K. (1998). Qualitative research in education: An introduction to 

theory  and methods (3rd ed.). Needham Heights, MA: Allyn & Bacon. 

Bogdan, R.C., & Biklen, S.K. (2007). Qualitative research for education: An introduction to 

theories and methods (5th ed.). Boston: Pearson Education 

Brousseau, G. (1987). Theory of Didactical situations in mathematics 1970-1990. Translation 

from French M. Cooper, N. Balacheff, R. Sutherland & V. Warfield. Kluwer Academic 

Publishers, 304 p 



 

 156 

Danesi, M. (2007). A conceptual metaphor framework for the teaching of mathematics.  Studies 

in Philosophy and Education, 26 (3), 225-236 

Davidov, V. V. (1990). Types of generalisation in instruction: Logical and psychological 

problems in the structuring of school curricula (Soviet studies in mathematics education, Vol. 

2; J. Kilpatrick, Ed., J. Teller, Trans.). Reston, VA: National Council of Teachers of 

Mathematics. (Original work published 1972) 

Doyle, W.  (1988). Work in mathematics classes:  The context of students' thinking during 

instruction.  Educational Psychologist, 23, 167-180. 

Ferrari P.L. (2003). Abstraction in mathematics. Philosophical Transactions of the Royal 

 Society London B 358, 1225-1230. 

Hazzan, O. (1999). Reducing abstraction level when learning abstract algebra concepts. 

Educational Studies in Mathematics 40 (1), 71–90. 

Hazzan, O. & Zazkis, R. (2005). Reducing abstraction: the case of school mathematics. 

Educational Studies in Mathematics, 58, 101–119 

Hershkowitz, R., Schwarz, B.B. and Dreyfus, T. (2001). Abstraction in context: Epistemic 

Actions.  Journal for Research in Mathematics Education 32, 195–222. 

Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday 

life. Cambridge: The University Press 

Piaget, J. (1970). Genetic epistemology. New York: W. W. Norton and Company. 

Raychaudhuri, D. (2013). Adaptation and extension of the framework of reducing abstraction 

in the case of differential equations. International Journal of Mathematical Education in 

Science and Technology, (ahead-of-print), 1-23.. 

Sfard, A. (1991).  On the dual nature of mathematical conceptions: Reflections on processes  

 and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1–

36. 

Wilensky, U. (1991). Abstract meditations on the concrete and concrete implications for  

mathematical education. In I. Harel, and S. Papert (eds.), Constructionism, Ablex Publishing 

Corporation, Norwood, NJ, 193-203. 



 

 157 

THE RELATIONSHIP BETWEEN MOTIVATION, ACHIEVEMENT 

GOALS, ACHIEVEMENT VARIABLES AND MATHEMATICS 

ACHIEVEMENT 
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The purpose of this study is to investigate the relationship between motivation, 

achievement goals, and achievement variables on academic achievement. Using the six 

variables from the motivation questionnaire (Glynn, et. al, 2009) and five other variables 

associated with academic achievement namely, academic achievement emotions – hope 

and pride, academic interest, academic achievement goal, and the importance of 

mathematics to future career goal, this study will use multiple regression analysis and 

also, path analysis to determine which of these variables accounts for the most variance 

in student’s academic achievement.  

 

Introduction 

The connection between a person’s level of education, income, social status, and the 

overall health and wellbeing of his/her family is transparently evident across all cultures. 

Education has become a vehicle for upward social mobility and perhaps, the quickest 

way of lifting families out of poverty within just a few decades. While many scholars 

may see education as a social activity, for many students, education is an economic 

activity; an investment by them for themselves. It is for this investment that many 

students travel thousands of miles to distant lands to pursue a good education.  It is also 

for this reason that one’s program of study is usually, not an arbitrary decision, but one 

made in consultation with friends, family and often, with career counsellors.  

 

Quantitative research on the variables that impact student’s academic achievement is 

currently pursued through two research frameworks. One through the relationship 

between a student’s motivation and his/her academic achievement. This research is 

generally conducted using motivation questionnaires (Bryan, Glynn & Kittleson, 2011). 

Other studies have focused on the impact of academic achievement goals, academic 

achievement emotions, and other achievement variables on academic achievement. The 

variables most frequently referenced in these studies are student’s perceived self-efficacy 

belief (Pajares, & Miller, 1994), academic achievement emotions – hope and pride 

(Pekrun, et.al, 2011), student’s academic interest and academic achievement goals 

(Harackiewicz, J., M., et. al, 2008), and the importance of the subject of study (here, 

mathematics) to one’s future career goals.  
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The research on motivation and academic achievement 

The research on motivation and academic achievement centers on the premise that we 

can understand, describe and even predict a student’s academic achievement based on 

her academic motivation as determined usually, through self-report questionnaires. For 

example, Bryan, et. al (2011) investigated the motivation of 288 public high school 

students (14-16 years old) to learn science using a three component motivation 

questionnaire on self-determination, self-efficacy belief, and intrinsic motivation; 

student essays about their motivation and also, an interview of a sample of the students. 

The student’s academic achievement was accessed through their final grades in the 

assigned courses. In their findings they report that the correlation between self-

determination, intrinsic motivation, and self-efficacy belief, with the students’ academic 

achievement were 0.31, 0.37, and 0.56 respectively. They concluded that since self-

efficacy belief has the highest correlation, that it was the most influential factor in 

determining academic achievement (p. 1060).  

 

In a similar study, Kim, et. al (2012) investigated the factors that might impact student’s 

achievement in mathematics courses offered online. They used self-report questionnaires 

on student’s motivation that consists of self-efficacy belief and intrinsic motivation 

(Pintrich, & DeGroot, 1990), and academic achievement emotions (Pekrun, Goetz, & 

Frenzel, 2007). Student’s academic achievement was accessed using their final grades in 

the assigned course. They used a multistep regression analysis to determine how each of 

these factors impacts student achievement. From their results, they report that initially, 

motivation accounted for about 13% of the variance in academic achievement with self-

efficacy belief as a significant contributor. However, when achievement emotions were 

added to the analysis, they accounted for 37% of the variance and, self-efficacy belief 

was no longer a significant contributor. They wrote:  

“Self-efficacy was not a predictor any more once achievement emotions were taken into 

account. Achievement emotions were useful in explaining student motivation and 

performance in online learning environments” (p. 2). 

 

The research on achievement goals, emotions, and achievement variables 

At the heart of the control-value theory of achievement emotions is how one answers two 

fundamental questions associated with academic achievement. The first is an appraisal 

of control; one’s ability to control activities that determine achievement outcomes. The 

second question is that of value and significance. It is the diversity of how different 

students might answer these questions that accounts for the diversity of the emotions and 

motivations that many students bring to the same academic activity (Lazarus, 1991). 
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The research on self-efficacy belief 

At the core of self-efficacy theory is the agency perspective; that people know what they 

can or cannot do. That a belief in oneself is not only a requirement to engage in any 

serious endeavor, but also that it provides the necessary staying power that allows one to 

persevere in the face of difficulties. (Bandura, 1997). Pajares & Miller (1994) used the 

agency perspective to investigate the impact of self-efficacy belief on mathematics 

achievement. They used path analysis to explore the causal relationship between 

mathematics self-efficacy belief, self-concept belief, and mathematical achievement. 

From their findings, they wrote the following:  

 

Of all path coefficients from the independent variables to performance, only those from 

math self-efficacy ( = .545, t = 10.87, p < 0.0001), math self-concept ( = .163, t = 3.07, 

p <  .005), and high school level ( = .099, t = 2.22, p < 0.05) were significant. The 

magnitude of the self-efficacy/performance path coefficient is such, however, that the 

answer to the substantive question of study is readily apparent (p. 198). 

 

In a related study, Beghetto & Baxter (2012) also used path analysis to investigate the 

relationship between mathematics self-efficacy beliefs, and science efficacy beliefs of 

270 students from twelve elementary schools, and their academic achievement. Student’s 

data were collected using self-report questionnaires while their academic achievement 

was based on their teacher’s assessment of their performance. On the significance of self-

efficacy belief to academic achievement, they wrote the following:   

“ability alone is not sufficient. Students who otherwise have the ability to be successful 

in learning science and math, yet believe they are not capable of success, likely give up 

in the face of challenge, under perform, and ultimately, focus their effort and attention 

on other pursuits and endeavours. Put simply: ‘student’s beliefs matter’ “(p. 942).  

 

The research on academic interests/perceived usefulness of subject of study 

 

Koller, et. al. (2001) described academic interest “as a person-object relation that is 

characterized by value commitment and positive emotional valences” (p. 449) and argued 

that student’s academic interests and their educational outcomes are positively 

correlated. They tested their hypothesis using a longitudinal study of German high school 

students. Data was collected from the students at the ends of Grade 7, Grade 10, and in 

the middle of Grade 12. Each time, the students completed standardized tests for many 

subjects including mathematics and also completed intelligence tests. The students’ 

interest in mathematics was measured using a questionnaire. They hypothesized that 

male students will express higher levels of interests in mathematics than female students 
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by opting to take more advanced mathematics courses and, that in the end, they will 

outperform the female students in standardized tests.  

 

The results of their study show that of the proportion of students who selected advanced 

mathematics courses, male students were twice as likely to do so as female students. On 

mathematics achievement, their results show that while all students gained in 

mathematical knowledge over time, the gain was more for those students who selected 

advanced courses in mathematics. They report that male students outperformed the 

female students at each measurement point with a gap that increased from 8 points in 

Grade 7 to more than 24 points in Grade 12. They observed that interest in mathematics 

decreased for those students who took basic mathematics courses as they progressed from 

Grades 7 to 10, while for those who opted for more advanced courses, their interests 

remain stable during the same period. Overall, the male students showed a higher level 

of interest in mathematics than female students and it increased over time. Using path 

analysis, they traced the causal paths from these variables to academic achievement. 

From their results, they wrote:  

 
Of particular importance here are the paths leading from interest to achievement. Whereas 

the path from interest in Grade 7 to achievement in Grade 10 fails to reach significance, the 

picture changes from Grade 10 to Grade 12, where the path (0.30) is significant. As expected, 

the transition to upper secondary school involves institutional structures in which the role of 

academic interest becomes important for learning mathematics. (p. 459).  

They argued that all direct paths to achievement support their hypothesis that interest 

initiates the learning activities that ultimately leads to academic achievement, and that 

their findings are not consistent with claims of prior achievement as a driver for interest. 

(p. 459)  

 

The research on the importance of subject of study to a student’s career goals 

Hull-Blanks, et. al (2005) from their review of research data observed that about 50% of 

first year students do not complete their degree programs, and that about 32% of them 

quit after or during their first year of studies. They argued that career goals are important 

retention factors for college students because attrition rates are directly associated with 

the absence of career goals. Also, that career goals are associated with academic interests, 

persistence, motivation, self-esteem, and self-efficacy belief and for female students, are 

predictors of their career aspirations (p. 17). They identified four types of career goals 

namely: job related, value related, school related and unknown. Using this classification, 

they hypothesized the following relationships between student’s career goals, academic 

achievement, and school retention rates: 

 

Hypothesis 1: That first year students with differences in their career goals would also 

differ in their academic persistence decisions and continued enrolment in school.  
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Hypothesis 2: That first year students with differences in their career goals would also 

differ in their academic performance, school and career commitment, and self-belief.  

Hypothesis 3: There would be no difference amongst male and female first year students 

in their career aspirations. (p. 19) 

 

They tested their hypothesis using a sample of 433 first semester first year students and 

using their career goals, gender, and continued enrollment as explanatory variables. The 

dependent variables were students’ academic performance (GPA), academic persistence, 

self-esteem, educational self-efficacy, and commitment to school and career. From an 

analysis of their data, they observed that first year students with unknown career goals 

were less persistent in those decisions that might positively impact their achievement 

than other students. They argued that without an identified goal, students have very little 

incentive to persist in their decision-making. They also report that the differences they 

expected amongst students in their academic performance, school and career 

commitment, and self-efficacy belief based on differences in their career goals were not 

found in this study (hypothesis 2). They noted that previous studies had reported such 

differences and its absence in their study might be because such difference takes a longer 

time to emerge than they had in their study. Also, their hypothesis of no difference 

amongst the male and female students in their career choices (hypothesis 3) was not 

supported by their results. Their results show that the female students had more job 

related and fewer value related goals than they hypothesized, while the male students had 

more value related and fewer job related goals than they expected. (p. 25) 

 

The research on achievement goals and academic achievement emotions 

Pekrun, Maier, & Elliot (2006) used the control value theory of academic achievement 

to argue that a student’s emotions can impede or facilitate how she regulates her learning 

activity. They defined a goal as a cognitive representation of a future outcome that a 

student commits to (p. 585). They argued that students through their academic goals 

regulate their achievement related thoughts and actions. That it is with their goal in mind 

that students appraise a learning activity with respect to its value and significance to their 

future goals. They argued that when a person has control over achievement activities 

associated with a valued outcome, that this fosters positive outcome emotions. However, 

a lack of control over achievement activities for a valued outcome might foster negative 

outcome emotions.  

Why this study and positioning the research questions 

The research on the relationship between motivation, achievement goals, and 

achievement variables on academic achievement usually centers on eleven explanatory 

variables. So far, there is no clear distinction in the literature as to the specific role of 

each of these variables in a student’s academic achievement. However, a closer scrutiny 

of these variables shows that they have different properties. They are different 
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conceptually and functionally and thus expected to play different roles in academic 

achievement. To advance our understanding of their impact on academic achievement, 

we need a better understanding of the role that each variable plays in a student’s academic 

achievement.  

Also, intrinsic and extrinsic motivations are frequent components of motivation 

questionnaires. There appears to be a suggestion in the literature albeit implicit, that one 

form of orientation is more preferable than the other and ought to be desired or pursued. 

For example, it is frequently stated in the literature that through intrinsic motivation a 

student learns more and retains more information overtime than a student who engaged 

a learning activity using extrinsic motivation (Vansteenkiste, et. al, 2005). The literature 

is however silent on how and why a student makes the determination to be intrinsically 

or extrinsically motivated with regards to a learning activity; e.g., is a learning orientation 

an attribute of the learner where learner A is intrinsically motivated where as learner B 

is extrinsically motivated? Or is it the case that some students are unaware of the benefits 

of the various learning orientations? Or is it the case that a learning orientation is a wilful 

decision made by each student with full knowledge of its pros and cons? The suggestion 

been advanced here is that one may not separate how knowledge is acquired from its 

intended use. Also, Glynn, et. al, (2009), Bryan, et. al, (2011), & Kim, et. al, (2012) all 

used different number and composition of motivation elements in their motivation 

questionnaires. Thus, the question of how and why one makes a determination of how to 

constitute the motivation elements remains an important research question. Finally, the 

inconsistencies in the results reported in the literature, e.g., Pajares & Miller, (1994), 

Kim, et. al, (2012), and the strong correlation of these variables with each other, suggests 

that a full and accurate understanding of their collective and separate impacts on 

academic achievement requires that all of them be investigated together.   

 

Research goals 

The purpose of this study is to: Using multiple regression analysis (model selection), 

determine an optimal set of these variables that accounts for the most variance in 

academic achievement, and the contribution of each variable.  

Using PLS SEM, determine which of these variables has a causal path to academic 

achievement, the strength of each path. 

 

Research hypothesis 

Following Lazarus (1991, p. 94), we argue that academic emotions and motivations are 

derived through one’s wants and needs. That through want and needs, a person may be 

compelled to take action to pursue a desired goal. The stronger they are, the more likely 

that one would take action to achieve the desired goal. With respect to this study, we 

hypothesize as follows: 

Hypothesis 1: The causal variables of academic achievements are: personal relevance of 

learning mathematics, academic achievement emotions (hope, pride), anxiety about 
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mathematics learning, academic interest, academic achievement goals, and the 

importance of mathematics to one’s career goals. These variables inherently, can induce 

both an outcome and also, differences in outcomes. 

Hypothesis 2: The moderator variables of academic achievement are derived from one’s 

academic abilities (potentials). With respect to this study, they are: self-determination 

and mathematics self-efficacy belief. These variables can predict differences in outcome 

however, they cannot by themselves, induce an outcome. They are static potentials and 

must be activated in order to generate the expected differences in academic outcomes.  

Hypothesis 3: Another variable of academic achievement are those that describe how one 

engages a learning activity. With respect to this study, they are: intrinsic and extrinsic 

motivation. Also, while these variables can predict differences in outcome, they cannot 

by themselves induce an outcome, Also, they have nominal properties. They are called 

mediators of academic achievement in this study. 

Data collection methods 

The data for this study will be collected from university students enrolled in a 

mathematics course. The students would be required to complete a total of 51 survey 

questions online. The questions are from the Science Motivation Questionnaire (Glynn, 

et. al., 2009); Academic Achievement Emotions Questionnaire (Pekrun, et. al, (2011), 

Academic Interest and Academic Achievement Goals Questionnaires (Harackiewicz, et. 

al, 2008). One-item question on the importance of mathematics to a student’s career goal. 

The students’ academic achievement will be accessed through their final grades in their 

assigned mathematics course.  

Data analysis 

The data from this study would be analysed using exploratory data analysis, multiple 

regression methods and structural equation modelling.  

Results/Discussion/Conclusion 

The variables in this study only estimate the portion of the variance in academic 

achievement that the students could accomplish by themselves. The quality of the teacher 

in the classroom also impacts academic achievement. For a full picture, the impact of 

teachers has to be part of the model.     
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SUBJECTIVE PROBABILITY AS PRESENTED IN BC 

CURRICULUM AND TEACHER PREPARATION TEXTBOOKS 
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Abstract: Today, unlike the curriculum documents, among the practitioners of 

probability, subjective probability (Bayesian methods) is a known term. The Bayesian 

probabilistic models have been receiving considerable attention over the last few 

decades from the users of probability, i.e. scientists and engineers. In many fields 

including computer science, Biostatistics, cognitive science, medicine, and meteorology 

using Bayesian models are common practice. In this paper I have tried to identify and 

discuss various ways in which the subjective probability is implicated in K-12 

mathematics education with respect to documents such as the BC mathematics education 

curriculum, and the mathematics education research literature. 

 

METHOD: 

 I have looked into the BC curriculum documents (IRP’s 1-12), two teacher-training 

textbooks, and into some research in mathematics education literature looking for 

definitions, examples, tasks, and learning outcomes addressing subjective probability. 

BC mathematics curriculum: In BC mathematics IRP’s chance is described as a 

communication tool which addresses the “predictability of the occurrence of an 

outcome” and mathematical probability is defined as a tool that describes “the degree of 

uncertainty more accurately” (IRP, p.14). Later the same curriculum document states 

probability as an aspect of constancy: “the theoretical probability of getting head with a 

coin is constantly 0.5” (IRP, p.14). 

What follows is a brief overview of what K-12 IRP’s prescribe as learning outcomes for 

probability and statistics: 

 

Grade level 

 

Probability and Statistics Prescribed learning outcome 

Grade 2 Gather and record data about self and others. Construct and interpret 

concrete graphs and pictographs to solve problems. 

Grade 3 Collect first-hand data and organize it. Construct, label and interpret bar 

graphs to solve problems. 

Grade 4 Demonstrate an understanding of many-to-one correspondence. 

Construct and interpret pictographs and bar graphs involving many-to-

one correspondence to draw conclusions. 
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Grade 5 Differentiate between first-hand & second-hand data. Construct and 

interpret double bar graphs. 

Grade 6 Create, label, and interpret line Graphs. Select, justify, and use 

appropriate methods of data collection. Graph collected data and 

analyze the graph to solve problems.  Demonstrate an understanding of 

probability by identifying all possible outcomes of a probability 

experiment, differentiating between experimental and theoretical 

probability, determining the theoretical probability of outcomes in a 

probability experiment, comparing experimental results with the 

theoretical probability for an experiment. 

Grade 7 Demonstrate an understanding of central tendency, outliers & range. 

Determine the most appropriate measures of central tendency to report 

findings. Determine the effect on the mean, median, and mode when an 

outlier is included in a data set. Construct, label, and interpret circle 

graphs. Express probabilities as ratios, fractions, & percents. Identify 

the sample space (where the combined sample space has 36 or fewer 

elements) for a probability experiment involving two independent 

events. Conduct a probability experiment to compare the theoretical 

probability (determined using a tree diagram, table or another graphic 

organizer) and experimental probability of two independent events. 

Grade 8 Critique ways in which data is presented. Solve problems involving the 

independent events. 

Grade 9 Describe the effect of bias, language, ethics, cost, time, privacy, and 

cultural sensitivity on the collection of data. Select and defend the 

choice of using either a population or a sample of a population to answer 

a question. Develop and implement a project plan for the collection, 

display, and analysis of data. 

 Demonstrate an understanding of the role of probability in society, 

explain, using examples, how decisions based on probability may be a 

combination of theoretical probability, experimental probability, and 

subjective judgment 

Grade 11 

Foundations 

Demonstrate an understanding of normal distribution including standard 

deviation and z-scores, Interpret statistical data, using confidence 

intervals, confidence levels, and margin of error. 

Grade 12 Interpret and assess the validity of odds and probability statements. 

Solve problems about probability of two dependent /independent, 

mutually exclusive and non-mutually exclusive events. Solve problems 
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that involve fundamental counting principle, permutations and 

combinations. 

Grade 12 

app-work 

Solve problems that involve measures of central tendency. Analyze and 

describe percentiles. Analyze and interpret problems that involve 

probability. Describe and explain the applications of probability. 

Calculate the probability of an event based on a data set. Express a given 

probability as a fraction, decimal and percent and in a statement. 

Determine the probability of an event, given the odds for or against. 

Explain, using examples, how decisions may be based on a combination 

of theoretical probability calculations, experimental results and 

subjective judgments. 

DISCUSSION OF PROBABILITY PORTRAYED BY BC CURRICULUM 

DOCUMENTS:  

Based on the above table, the curriculum suggests two avenues to teach and learn 

probability: classical (theoretical in IRP’s words) and frequentist (experimental), and 

both in a very objective sense. It (the curriculum document) also believes in the idea of 

an underlying and knowable probability in a deterministic way: “the theoretical 

probability of getting head with a coin is constantly 0.5” (IRP, p.14). 

However believing in the notion of a True and Knowable probability makes probability 

easy to teach and learn, but it cannot go unnoticed that even when calculating the most 

typical examples of classical probabilities related to objects such as a die, the physical 

probability cannot be measured free of subjective considerations including the fairness 

of die, fairness of flipping process, and the fairness of observing and reporting the 

outcomes. Moreover, additional subjectivity arises because of our ignorance of the 

precise initial conditions of the mechanical systems, the die in this example. 

The curriculum does not very much attend to such subjective considerations that are 

inevitable from either of frequentist or classical standpoints. There are very few cases 

that the curriculum brings up the subjective aspect of decision making in uncertain 

situations, here is one example: in the suggested achievement indicator of grade 9 and 

grade 12 foundations, the students are expected to “explain, using examples, how 

decisions based on probability may be a combination of theoretical probability, 

experimental probability, and subjective judgments” (grade 9 math IRP p.86). No further 

discussion of these “subjective judgments” and the ways in which the students are 

supposed to develop reliable ideas about them is provided. One thing is apparent though; 

the curriculum is referring to subjective aspects of decision-making based on 

probabilities and not to the probability itself.  
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SUBJECTIVE PROBABILITY AS REFLECTED BY TEACHER TRAINING 

TEXTBOOKS 

I have looked into probability chapters of two textbooks used for teacher training at SFU: 

1) Elementary and Middle School Mathematics by Van de Walle, the textbook for 

Designs for Teaching Elementary Mathematics Course.  

2) Reconceptualizing Mathematics for elementary school teachers by Judith and Larry 

Sowder and Susan Nickers, the textbook for Principles of Mathematics for Teachers 

course. 

Prospective teachers take both of the courses mentioned above as a required part of their 

training program. 

On page 473 of the Van de Walle (2011) book where the authors lay the big ideas of the 

whole probability chapter, they say: “The probability of an event occurring is a number 

between 0 and 1. It is a measure of the chance that the given event will occur ... The 

relative frequency of outcomes of an event (from experiments) can be used as an estimate 

of the exact probability of an event  (my italics)... For some events, the exact probability 

(my italics) can be determined by an analysis of the event itself. A probability determined 

in this manner is called a theoretical probability”. In Sowder book, probability is defined 

as a feature of an event: “An event is an outcome or a set of outcomes of a designated 

type. The probability of an event is the fraction of the times the event will occur when 

some process is repeated a large number of times” (p614). This frequentist approach is 

later supplemented by a possibility of skipping the repeated experiments if some theory 

of the likelihoods arisen by situation is at hand: 

“A probability that can be arrived at by knowledge based on a theory of what is likely to 

occur in a situation, such as when a fair coin is tossed, is a theoretical probability” (p. 

617). 

Both textbooks put forward examples and tasks that involve probability calculation via 

coin flipping, spinner spinning, and like. Similar to the curriculum documents the idea in 

these books is that there exists a True probability and we either determine it based on the 

physical features of the experiment (e.g.: a square divided by into four equal parts each 

colored differently) or we achieve a good estimate by repeating the experiment patiently.  

In Sowder book there is a section on conditional probability and Bayes’ formula in which 

I hoped to come across some ideas related to subjective probability. The book instructs 

the students on how to use the Bayes’ formula to calculate certain probabilities given 

certain set of occurrences. What seems to be missing to me in this chapter is any 

awareness of the fact that the important nuance offered by subjective probability as 

captured by Bayes formula is that after each intake of new evidence, the decision maker 

(the person who is assigning probability to an event) decides whether this new 

observation or evidence changes the initial arrangement of the possibilities and the 
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already assigned distributions and based on that modifies and changes the probabilities. 

With no mention of prior probabilities, evidence-based probability assignment, re-

defining initial distributions after each occurrence, and posterior probabilities Bayes’ 

formula seems very out of context and miss represented. 

IN PROBABILITY EDUCATION RESEARCH LITERATURE (PRE): 

Subjective probability in the mathematics education research literature is strongly 

associated with fallacious personal beliefs and incorrect reasoning about probability. 

Here is an example: statements such as: “the next ball drawn from the urn is going to be 

red because it is my favorite color” (Jones4, 2005 p. 132)-my underlines-, and “the next 

role of the die will be a three because I just know it’s going to happen” (p. 474 van de 

wall) –my underlines- are typical examples of subjective probabilistic ideas of students 

presented in research in probability education literature. In some instances the term 

subjective probability is associated with the probability assignment to the events without 

any formal calculations, sometimes referred to as probability estimation. 

 Chernoff in his PhD disquisition presents a detailed account of the lack of a unified 

definition for subjective probability and the polysemic nature of this term and later in his 

2008 work he offers distinctive terminologies that enable the researchers bring new 

nuances into the vocabulary of the subjective probability as well as into the philosophical 

underpinnings of the probability.  

Subjective randomness: 

In looking for subjective probability in curriculum documents and PRE, another term I 

kept an eye for was subjective randomness. The notion of randomness is a basis for 

probabilistic modeling, and mathematicians have taken painstaking efforts to identify it 

through solid mathematical terms. Also, perceived randomness versus true randomness 

has been investigated by practitioners of probability (and not for educational purposes). 

I was hoping that by looking for randomness in curriculum and PRE documents to find 

more evidence of treatment of subjective probability. 

My findings are that to IRP’s, randomness is either assumed obvious or unimportant. No 

definition of either objective or subjective randomness is hinted at the textbooks and 

curriculum documents that I have looked at. I was very glad to find that some research is 

done on how students conceptualize randomness, some examples are included here: 

Bognar & Nemetz (1977) long before the probability appears in the curriculum, express 

a need to get the children acquainted with the notion of randomness. They contend that 

it is very essential that the students must get some ideas about random phenomena and 

they suggest that this goal can be achieved by letting the students meet numerous 

practical situations having simple random structure such as games. Kahneman & Tversky 
                                                           
4 In Jones (2005) Exploring Probability in Schools there are around 80-90 instances of the word subjective 
probability/judgment/assessment/etc, nearly almost all of them referring to the situations that correspond to wrong 
answers, assessments that are done without any reasonable explanation, fallacious ideas, and misconceptions. 
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(1972), in an attempt to explain the decision making behavior in uncertain situations 

suggested that two general properties namely irregularity and local representativeness, 

seem to capture the intuitive notion of randomness. 

Pratt and Noss (2002) observed 10-11 year old children using four separable resources 

for articulating randomness:  unsteerability, irregularity, unpredictability, and fairness. 

Burril (cited in Bennete 1990) finds that the idea of fairness is an important intuitive in 

children’s notion of randomness. When asked by psychologists why they used counting-

out games, such as one potato/two potato, ninety percent of the time children responded 

that counting out gave them an equal chance of being selected. Soon enough children 

will discover that chance is not as fair as it seems first. For example a random selection 

of a particular child for some privilege may seem fair at first but it is possible that one 

person might be selected more than once while another kid is never selected. Falk & 

Konold (1998) investigate the subjective aspects of randomness through tasks in which 

people are asked to simulate a series of outcomes of a typical random process such as 

tossing a coin (known as generating task) or to rate the degree of randomness of several 

sequences (known as perception tasks). Their findings say that perceived randomness has 

several subjective aspects that are more directly reflected in perception tasks. Batanero 

& Serrano (1999) identify students’ thinking about randomness as initially deterministic 

in nature and propose that the intuitions about randomness develop through experience 

and instruction.  

Fischbein & Schnarch (1997) point out that the learners’ personal beliefs pertaining to 

real-life context accompanies them for a very long time and hence it is a significant 

challenge to lay out a gradual process in which students’ subjective intuition builds up 

appropriately.  I would propose that the task of overcoming this challenge would be aided 

by introducing the subjective randomness inherent to the sequences of outcomes 

generated by randomizers at the early stages of probability education. 

Why subjective probability is as important as the other two? 

Shafer (1992) discusses in detail that both belief type probability and frequency type of 

probability share the common grounds of mathematical probability. In other words they 

both satisfy Kolomogorov’s axioms and there is a transition from one to another and each 

one of the three takes of frequency, belief, or support can be taken as a starting point for 

the mathematical theory of probability. He also draws links between the three frequency-

classical and subjective probabilities by giving examples of the shortcomings of each 

approach that another approach can overcome. For instance he claims that the frequency 

interpretation is less widely applicable than the belief interpretation.  For example a 

person can hold beliefs about any event, but the frequency interpretation applies only 

when a well-defined experiment can be repeated and the ratio always converges to the 

same number. Many events for which we would like to have probabilities clearly do not 

have probabilities in the frequency and classic sense.  There is also a need to 

acknowledge the subjective aspects of the frequency story.  A full account of a frequentist 
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probability must go beyond the existence of frequencies since the randomness of the 

sequence of the outcomes is not an objective fact about the sequence in itself.  It is a fact 

about the relation between the sequence and the knowledge of a person, contends Shaffer 

(1992). 

In a frequency based setting of probability, events with probability zero can never occur 

and events with probability one have to occur all the times. Therefore the nature of 

experiment plays a more significant role than the outcome of the experiment. As for the 

classic probability one can easily see that such events do not entertain a meaningful 

classical probability, for example consider the most commonly believed sure event 

according to the participants of a study  (described in response for the third question), in 

which several participants presented the “I will die” example for an event with 100% 

probability of happening. Let’s try to assign a classical probability to this event: we first 

need to define a sample space consisting of equiprobable events, count the number of 

events in which “I will die” and divide it by the total number of the events in the sample 

space. The inherent difficulty in doing so may lie in the idea that equiprobability bears a 

connotation of speaking about more than one thing, and in this example there is no more 

than one outcome (unless we have pre-determined the probability) and therefore it is not 

very meaningful to assign classical probabilities to such events. 

Shaffer adds: when teaching probability it is a subtle and crucial task to adopt a practice 

that appeals to all the aspects of probability. We need to appeal to frequency in order to 

explain why probabilities add and in order to attend to the concepts such as random 

variable and expected value. At the same time we need ties to belief type of probability 

in order to mediate conditional probabilities and statistical inference in data analysis. 

Concluding remarks: 

Looking into BC curriculum documents shows that subjective probability is not yet 

acknowledged and defined in the curriculum. Also most of the research in probability 

education that have taken to themselves to address subjectivity, don’t seem to recognize 

subjective probability as a possible form of independent approach to probability suitable 

for K-12 students The present situation reflects that Subjective Probability framework 

through the works of Bayes, De Finetti, Ramsey, Keynes and others have not met the 

same acceptance and enthusiasm as the objective probabilities from the people in the 

mathematics education field to the extent to be found worth distilling in the curriculum. 

Instead, several researchers acknowledge the importance of subjective considerations 

about the whole continuum of probabilistic notions in the role they play in building a 

sound intuition that can account for objective probabilities both in mathematics and real-

life context probabilities. It is true that subjective probability as an independent approach 

to probability is more of a mathematical construct with a set of certain axioms and 

assumptions (in its game-theoretic and betting behavior form) and is wrapped up with 

complex calculus (in its Bayesian form) that makes it difficult to enter the K-12 
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curriculum. Notwithstanding, the subjective aspects and considerations of frequentist and 

classical probabilities are both easy and essential to implement into the curriculum.  

Finally I wish to add that in the same way that no one no longer believes that the exact 

measure of physical quantities is attainable (or even exist), when measuring uncertainty 

(a commonly used term to describe probability e.g.: NCTM standards), it is only fair to 

have the same awareness of if the uncertainty measure sought after exists and whether it 

is obtainable. At any rate if the idea of teaching and learning probability is to train human 

mind to measure and weight uncertainty and make probabilistic decisions that matter, 

then the personal and subjective issues will be inseparable parts of it.  

 

I here end with a quote from Shaffer (1992, p.18): 

“The ways in which probabilities are used, in statistical inference and elsewhere, are 

varied, and they are always open to criticism.  We should guard, however, against the 

idea that a correct understanding of probability can tell us which of these applications are 

correct and which are misguided.  It is easy to become a strict frequentist—or a strict 

Bayesian—and to denounce the stumbling practical efforts of statisticians of a different 

persuasion.  But our students deserve a fair look at all the applications of probability”. 
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UNDERSTANDING MATHEMATICAL LEARNING DISABILITIES 

(MLD):  DEFINITIONS AND COGNITIVE CHARACTERISTICS 

Peter Lee 

Simon Fraser University 

 

While the amount of research on reading disabilities far exceeds that of mathematical 

learning disabilities (MLD), research on MLD over the past decade has shown 

significant growth.  This paper examines some of this emerging research.  More 

specifically, this paper reveals the challenges of defining MLD and examines the 

cognitive deficits that characterize children with MLD. 

INTRODUCTION 

This paper is a modest attempt to understand some of the emerging research on 

mathematical learning disabilities (MLD).  While the amount of research on reading 

disabilities far exceeds that of MLD, research on MLD over the past decade has shown 

significant growth.  This is a heartening trend as there is a growing awareness of the 

importance of quantitative literacy in everyday life.  To keep the discussion focused, this 

paper critiques articles from the book Why is Math So Hard for Some Children?: The 

Nature and Origins of Mathematical Learning Difficulties and Disabilities.  This book, 

edited by Daniel Berch and Michèle Mazzocco, gives a good introduction and overview 

of the field of MLD research.  Of course, the scope of MLD research is too vast to be 

contained in any one book.  But the articles in this book provide a beginning for us to 

understand some of the challenges and complexities in the field, and the reference list to 

each article gives the reader further opportunities to explore the topic. 

The following questions will be addressed in this paper:  How do we define and recognize 

MLD?  How does MLD differ from dyscalculia? How do we make a distinction between 

a student who is just having difficulties with math and a student with an actual disability?  

What are the behavioral characteristics of MLD and how do they originate? What are the 

different pathways to understanding MLD?  That is, what different methodological 

approaches are used to get at the construct of MLD?  How can findings from research 

with children with MLD help us better understand the mathematical thinking of typically 

achieving students?   

DEFINING MATHEMATICAL LEARNING DISABILITIES 

Defining MLD is not easy, and neither is sorting through its variously related—and often 

inconsistent—terminology:  acalculia, the aforementioned dyscalculia, arithmetic 

disorder, and specific learning disabilities in mathematics are some examples.  Gersten, 

Clarke and Mazzocco (2007) suggest that these inconsistencies in terminology are due 

in part to the complex history of MLD research.  While relatively short, this history draws 
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upon the histories of medicine (neurology specifically), developmental psychology, 

cognitive science, mathematics education, special education, and even law—each of 

these fields contributing their own unique terms, definitions and perspectives to MLD 

research.  The lack of communication between these disciplines creates just such 

inconsistencies in contemporary terminology.  These authors argue, however, that it is 

through this type of multidisciplinary work major gains are made in MLD research. 

Despite these challenges in terminology, Mazzocco (2007) argues correctly that, in order 

to make substantial progress in the field of MLD research—including efforts to develop 

and test appropriate interventions—a consensus definition using standardized criteria 

will be helpful.  Towards this end, she makes an important distinction between the terms 

MLD and mathematical difficulties (MD).  MLD suggests a biologically based disorder 

characterized by specific cognitive deficits.  As such, Mazzocco uses the terms MLD and 

dyscalculia to refer to the same population, “as both imply an inherent disability rather 

than one caused predominantly by environmental factors” (p. 30).  (By “environmental 

factors,” she means things such as poor mathematics instruction or socioeconomic 

factors.)  Similarly, MLD would subsume the terms arithmetic disorder, specific learning 

disabilities in mathematics, and mathematical disability.   

Mazzocco (2007) uses the term MD to refer to children with low average performance 

in math (operationalized as a standardized math achievement test score that falls below 

a cutoff point of approximately the 35th percentile).  This is a much broader population 

than children with MLD, as many children with low average performance do not have 

MLD whereas children with MLD often do exhibit poor mathematics achievement (the 

prevalence rate for MLD is approximately 6% of the general population).  An advantage 

of having the less strict criterion in MD is to enable researchers to study a larger group 

of children who struggle with mathematics.   

Moreover, drawing a distinction between MLD and MD is useful in unpacking any 

studies that treat both populations as the same when in fact only one of the populations 

is the implied target of interest (often the MLD one).  Mazzocco (2007) notes that the 

degree to which combining both MLD and MD is problematic depends on the extent of 

overlap—which can be small—between the two groups.  For instance, students with 

MLD, may, despite their cognitive impairment, perform above the 35th percentile on a 

standardized mathematics test through sheer effort and hard work.  On the other end of 

the spectrum, the poor achievement of students with MD may be the result of low socio-

economic status rather than any inherent disability in mathematics.   

Thus, the danger in combining the two groups is that the target of interest (the MLD 

population) may be missed entirely and so will the degree to which they struggle with 

mathematics and the reasons for the struggle.  The main distinction between MD and 

MLD is that MLD is biologically based, and attending to this distinction is crucial when 

attempting to study or establish any definition of MLD.  Mazzocco’s dissociation of MD 

from MLD can act as a small step towards reconciling the inconsistencies of some of the 
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terminology used across disciplines.  Later in the paper, I will discuss how the category 

MLD itself can be broken down into further subtypes. 

It is curious that Mazzocco does not mention the oft-used term acalculia (a term which 

preceded dyscalculia by nearly 50 years) in her discussion of MLD and MD.  Acalculia 

is often used in the cognitive psychological literature to indicate an acquired 

mathematical disability as a result of a brain injury.  This is in contrast to a disability 

with genetic or developmental origins (sometimes referred to as developmental 

dyscalculia for this reason, with dyscalculia referring to a general difficulty in 

understanding arithmetic whether biological or environmental in nature).  Using 

Mazzocco’s classification, I assume that acalculia would fall under the category of MLD 

as it refers to a disability of the brain.   

But whatever one thinks of Mazzocco’s taxonomy, this section acts as a caution to all 

MLD researchers to be wary of the terminology used when reading a research study on 

mathematics learning disabilities and be clear on exactly what the study sample is and 

how inclusive it is. Moreover, inconsistencies in terminology do not only pose challenges 

when comparing study results across disciplines or developing and testing appropriate 

interventions, they have a significant effect on establishing accurate prevalence rates of 

MLD as they vary as a function of the definitions used to classify children with MLD 

(Shalev, 2007).  For instance, is the threshold for MLD set at the 6th percentile on 

standardized achievement tests or 25th percentile?  Or is a discrepancy model used to 

determine MLD?  That is, how low must a child’s mathematics ability be compared to 

his general intelligence (i.e. IQ) before a child is to be classified as having MLD?  The 

answers to these questions may mean a high or low prevalence rate of MLD. 

COGNITIVE DEFICITS ASSOCIATED WITH MATHEMATICAL LEARNING 

DISABILITIES 

We move now from a discussion about the terminology and semantics used to describe 

MLD to a discussion of the actual cognitive deficits that characterize those with MLD.  

While MLD has biological origins, there is no consensus as to what those biological 

markers are (although cognitive neuroscience has recently made good inroads in this area 

(see Simon and Rivera (2007)).  MLD, therefore, needs to be behaviorally defined, and 

much research has been focused on identifying those core deficits that characterize 

children with MLD (e.g. working memory functioning, phonological processing, 

visuospatial thinking, or processing speed).   

As we will discover, however, researchers have been unable to isolate the cognitive 

variables that underlie MLD due to many confounding factors.  For instance, difficulties 

in math and reading acquisition are often attributed to the same cognitive processes 

(phonological in nature).  Some consensus exists, however, that children with MLD have 

difficulty efficiently accessing math facts (Swanson, 2007).  As a result of these 

confounding factors, current definitions of MLD do not share a common single core 
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deficit, although children with MLD may share many cognitive and behavioral 

characteristics.  We now turn our attention further to some of these characteristics. 

Butterworth and Reigosa (2007) explore what are the basic information processing 

impairments of children with developmental dyscalculia (DD) compared to typically 

achieving children.  They first ask themselves a fundamental question:  Are these 

impairments domain general or domain specific?  In other words, are the cognitive tools 

that children use to learn arithmetic specific to arithmetic, or are these tools the same 

ones children use to learn most other school subjects?  This is an important 

methodological question and suggests that if impairments are domain specific, it is 

possible for a child to excel at all school subjects except for math.  If impairments are 

domain general, a child’s poor arithmetic performance may be the result of poor language 

skills (including dyslexia), low IQ, or anxiety as arithmetic often requires the use of a 

diverse skill set:  good memory, strategy use, focus, or conceptual understanding to name 

a few. 

Butterworth and Reigosa’s (2007) review of the evidence favors a domain specific 

interpretation of DD where the cognitive deficit is at a very basic level: 

The individuals with DD described here are not only poor in school arithmetic and 

on standardized tests of arithmetic, they are slower and less efficient at recognizing 

the numerosities of displays of objects (typically dots) and/or at comparing 

numerosities in a variety of number comparison tasks.  (p. 78) 

These authors note, also, that is it unclear whether the impairment in detecting and 

comparing numerosities is an isolated impairment or whether the impairment interacts 

with other cognitive deficits to create a possible subtype of dyscalculia.  Moreover, their 

analysis does not preclude the possibility that there may exist other domain specific 

information processing impairments yet to be identified.  Nevertheless, this important 

finding regarding numerosities suggests that strengthening their recognition in children 

with MLD may serve as part of an intervention before any subsequent understanding of 

numbers and arithmetic can be made. 

Geary, Hoard, Nugent, and Byrd-Craven (2007) conclude instead that deficiencies in 

working memory of children with MLD interfere with their ability to learn more complex 

mathematics.  By examining the strategies and procedures that children use to solve 

simple and complex addition problems, typically achieving students in the elementary 

years shift from using counting procedures (such as finger counting) to the recalling of 

arithmetic facts.  A defining feature of children with MLD, on the other hand, is a 

continued reliance on finger counting and a difficulty in accessing arithmetic facts from 

memory. 

Using a different approach to getting at the cognitive deficits of MLD, Jordan (2007) 

examines the connections between mathematics and reading difficulties.  Jordan reviews 

the literature of past authors that have suggested that MLD is related to language and that 
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there is a commonality between math and reading.  She takes particular issue, however, 

with the claim that problems with number and fact retrieval may be related to a 

phonological processing difficulty.  When asked to retrieve arithmetic facts quickly, her 

own research shows that children with just reading difficulties (RD) perform better than 

students with math difficulties (MD) and those with both math and reading difficulties 

(RD+MD).  In general, she argues that both MD and RD+MD groups show similar 

functional profiles in number processing:  they show difficulty in counting procedures, 

mathematical operations, and computational fluency.  She also concludes that children 

with MD perform better than both the RD and RD+MD groups at complex word 

problems because their verbal strengths compensate for their weaknesses in number 

processing. 

Jordan’s research illustrates a common theme in much of the MLD literature:  there is 

little consensus as to the underlying cognitive mechanisms of MLD other than a general 

difficulty in accessing math facts accurately and efficiently.  Indeed, further questions 

are raised:  Are difficulties in recognizing numerosities a primary or secondary deficit of 

children with MLD?  How important a role is working memory in comparison to basic 

information processing?  Can we truly separate language ability from math fact retrieval?  

Compounding these problems in isolating the key cognitive mechanisms in MLD is the 

aforementioned diversity that researchers use in defining their study sample across 

disciplines.   

These studies also illustrate how researchers differ in their choice of behaviors to 

examine when looking for key cognitive deficits in MLD.  Should researchers of MLD 

place the emphasis on conceptual or procedural understanding?  Should they focus their 

attention on the speed and accuracy of child performance or the quality of strategy use?  

The answers to these methodological questions will strongly impact the study results.  

Thus, establishing non-arbitrary criteria for defining and examining MLD remains a 

challenge. 

CONCLUSION 

MLD research is clearly an emerging field.  This is exemplified by the lack of consistency 

in terminology across disciplines, the lack of consensus as to the core cognitive deficits 

of MLD, and the sometimes contradictory findings of MLD research.  Although it is a 

challenge to state exactly what MLD is, researchers are beginning to define some of its 

boundaries.  Mazzocco has made a small but important step in this direction by making 

a distinction between MLD and MD. 

Future research may bring in more theory from math education and its theories of 

mathematical cognition.  What does Anna Sfard and her notion of commognition have 

to say about MLD?  What are the implications of embodied mathematics for MLD 

research?  Since definitions of MLD must reflect stability as a trait, more longitudinal 

studies of both children and adults with MLD need to be done.  What are the differences 
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between children with MLD and adults with MLD?  Is it easier for still developing 

children to recover from MLD?  What are the implications of neuroplasticity for adults 

recovering from brain injury?  Finally, while most studies on MLD focus on arithmetic 

performance, more studies are needed on the influence of MLD on higher levels of 

mathematics such as algebra or even calculus.  There have been studies of students who 

overcome their MLD to perform mathematics at high levels.  Indeed, this is the goal that 

educators and MLD researchers should have for all their students. 
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