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MATHEMATICS EDUCATION DOCTORAL STUDENT 
CONFERENCE 2008  -  PROGRAM 

9:00 – 9:25 Welcome and coffee  

9:30 – 9:55 
Pedagogical content knowledge in mathematics for 
elementary teachers courses:  Two preliminary cases 

Susan Oesterle 

10:00 – 10:25 
Connecting patterns and that mumbo jumbo stuff we 
have to teach: A collaborative lesson design 

Paulino Preciado 

10:30 – 10:55 
An account of a lesson study on the parabola: Insights 
into building the effective practitioner 

Natasa Sirotic 

11:00 – 11:25 
Access to education for aboriginal students: 
Measurement of effectiveness of outreach programs 

Melania Alvarez 

11:25 – 11:45 Break  

11:50 – 12:15 
Inequalities in the history of mathematics: From 
peculiarities to a hard discipline 

Elena Halmaghi 

12:20 – 12:45 
Independent component analysis and its application to 
mathematics education research 

Olga Shipulina 

1:00 – 2:00 Lunch: Himalayan Peak Restaurant  

2:15 – 3:00 
Plenary: Mathematics education as an interdisciplinary 
endeavour: over thirty years of looking elsewhere 

David Pimm 

3:00 – 3:30 Break / Discussion Period  

3:30 – 4:00 Plenary Q&A  

4:05 – 4:30 
A functional role for the cerebellum: Implications for 
mathematics education 

Kerry Handscomb 

4:35 – 5:00 
Beyond static imagery: How mathematicians think 
about concepts dynamically 

Shiva Gol Tabaghi 

5:05 – 5:30 How to act? A question about encapsulating infinity Ami Mamolo 
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Plenary Session: 
 

MATHEMATICS EDUCATION AS AN INTERDISCIPLINARY   
ENDEAVOUR: OVER THIRTY YEARS OF LOOKING 

ELSEWHERE 
Dr. David Pimm 

University of Alberta 
David.Pimm@ualberta.ca 

 
Description: 
I have been working in mathematics education since switching out of a pure 
mathematics doctoral degree in algebraic topology in 1975. In my main work, 
examining mathematics and its classroom teaching at various levels, I have drawn on 
the fields of mathematics (especially its history and philosophy), linguistics and quite 
recently poetry and poetics. In this talk, I will describe how and why I see myself 
having worked interdisciplinarily, then illustrate my abiding interest in mathematics 
classroom language by means of thinking aloud about a short transcript before ending 
with some short comments about poetry. 

 
Speaker info: 
My main research is in exploring the inter-relationships between language and 
mathematics.  My work has focused both on analyses of mathematics classroom 
language and on producing theoretical accounts of linguistic aspects of mathematics 
itself. I am particularly interested in the roles of metaphor and metonymy in creative 
mathematical endeavour. My secondary research interest is in the potential influence 
of studies of the history and philosophy of mathematics on the teaching of 
mathematics. 
http://www.quasar.ualberta.ca/cpin/edstaffweb/davidpimm/ 
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Research Reports Abstracts: 
 

ACCESS TO EDUCATION FOR ABORIGINAL STUDENTS: 
MEASUREMENT OF EFFECTIVENESS OF OUTREACH 

PROGRAMS 
Melania Alvarez Adem 
Simon Fraser University 
melania@pims.math.ca 

My research problem consist in developing, implementing and assessing outreach 
activities that could help aboriginal students to improve their mathematical 
knowledge and access to a higher education and a better job. We started our outreach 
activities with a six-week summer camp for students entering high school, the key 
part of the camp was to provide intensive instruction in Mathematics and English: the 
initial goal of this program was to build a strong foundation for success in grade 8. It 
is our hypothesis that if we help students to feel more confident academically when 
they start high school then they will do better academically throughout their high 
school years, and they will have a better chance to graduate. 
 

 
 

BEYOND STATIC IMAGERY: HOW MATHEMATICIANS THINK 
ABOUT CONCEPTS DYNAMICALLY 

Shiva Gol Tabaghi and Nathalie Sinclair 
Simon Fraser University 

shivagol@gmail.com 
Researchers have emphasized the role of visualization, and visual thinking, in 
mathematics, both for mathematicians and for learners, especially in the context of 
problem solving (see Presmeg, 1992). In this paper, we examine the role that motion 
and time play in mathematicians’ conceptions of mathematical ideas, focusing on 
undergraduate concepts. In order to expand the traditional focus on (and distinction 
between) visual and analytic thinking (see Zazkis, Dubinsky, and Dautermann, 1996), 
we employ gesture studies, which have arisen from the more recent theories of 
embodied cognition. Expanding on Núñez’s (2006) work, we show how 
mathematicians’ gestures express dynamic modes of thinking that have been hitherto 
underrepresented. 
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INEQUALITIES IN THE HISTORY OF MATHEMATICS: FROM 
PECULIARITIES TO A HARD DISCIPLINE 

Elena Halmaghi 
Simon Fraser University 

ehalmagh@sfu.ca 
In this theoretical contribution history of inequalities is looked into in a search for an 
answer to the question: Why are inequalities hard to meaningfully manipulate and 
understand? Memorable dates in the development of inequalities and the symbols for 
representing inequalities are highlighted. Well known inequalities are presented and 
some novel proofs will be shown. Implications for the teaching of mathematics are 
identified. 
 

A FUNCTIONAL ROLE FOR THE CEREBELLUM: 
IMPLICATIONS FOR MATHEMATICS EDUCATION 

Kerry Handscomb 
Simon Fraser University 

khandsco@sfu.ca 
A characteristic of mathematical reasoning is a focus on the essential aspects of any 
given situation. Mason and Pimm (1984), in their seminal paper, refer to this as 
“seeing the general in the particular.” I will argue that activity of the cerebellum with 
respect to the cerebral cortex is the neural correlate for “seeing the general in the 
particular.” In other words, a functional role of the cerebellum is to facilitate the 
precise, focused reasoning that is necessary for mathematics. There are implications 
for mathematics education because of the structure of the cerebellum and its 
connections with the cerebral cortex. These are that repetition, decontextualization, 
and decomposition of concepts can play an important role in mathematical learning. 

 
HOW TO ACT? A QUESTION ABOUT ENCAPSULATING 

INFINITY 
Ami Mamolo 

Simon Fraser University 
amamolo@sfu.ca 

This report is part of a broader study that investigates the specific features involved in 
accommodating the idea of actual infinity. It focuses on the conceptions of two 
participants – a mathematics university student and graduate  – as manifested in their 
engagement with a well-known paradox: the ping-pong ball conundrum. The APOS 



Proceedings, MEDS-C — 2008 1- 6 

Theory was used as a framework to interpret their efforts to resolve the paradox and 
one of its variants. These two cases suggest there is more to encapsulating infinity 
than just the ability to ‘act’ on a completed object – rather, it is the manner in which 
objects are acted upon that is also significant. 
 

 

MULTI-LAYERS OF NUMERACY 
Paulino Preciado 

Simon Fraser University 
apreciad@sfu.ca 

Predicting students’ struggles and possible approaches in problem solving is part of 
Lesson Study strategy. In this paper a team of teachers, including the author, made 
use of previous experience, knowledge of current students, and some theoretical 
background from the literature in order to prepare suitable responses in advance to 
students' questions and thoughts in the designed tasks. While making such 
predictions, beliefs of mathematics and mathematics learning were discussed and 
negotiated, and we developed theoretical statements about students' learning process. 
In conclusion, I argue that predicting such possible students' struggles and approaches 
not only provides an arena to analyze and negotiate teachers' mathematical and 
pedagogical knowledge, but also is a critical factor contributing to the improvement 
to educational systems. 
 

 

 

PEDAGOGICAL CONTENT KNOWLEDGE IN MATHEMATICS 
FOR ELEMENTARY TEACHERS COURSES:  TWO 

PRELIMINARY CASES 
Susan Oesterle 

Simon Fraser University 

oesterles@douglas.bc.ca 

This paper offers some preliminary results of a qualitative research project whose aim 
is to study pedagogical content knowledge in the context of Mathematics for 
Elementary Teachers courses.  Grounded theory methodology is applied to interviews 
with two teachers of this course. Themes that emerge from analysis of the transcripts 
are identified and discussed, and implications for future directions of the project are 
considered. 
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INDEPENDENT COMPONENT ANALYSIS AND ITS 
APPLICATION TO MATHEMATICS EDUCATION RESEARCH 

Olga Shipulina 
Simon Fraser University 

oshipuli@sfu.ca 
Educational neuroscience in mathematics education research can provide better 
empirical ground for developing more accurate theories of mental processes during 
mathematical thinking and learning. Electroencephalography (EEG) is a technique 
for noninvasive measurement of electrical characteristics of brain function. Scalp 
measurements, nevertheless, include activities generated within a large brain area. 
This paper reports on the roles of independent component analysis (ICA) for analysis 
EEG data. ICA provides separation of different signals related to different brain 
activators. It also calculates relative projection strengths of the respective 
components at all scalp sensors. As such, ICA is shown to be a useful tool for 
imaging brain activity and isolating artifacts from EEG data. An overview of these 
application areas is provided in the study on the example of data set capturing an 
‘AHA moment’. 
 

 
AN ACCOUNT OF A LESSON STUDY ON THE PARABOLA: 

INSIGHTS INTO BUILDING THE EFFECTIVE PRACTITIONER 
Natasa Sirotic 

Simon Fraser University 
nsirotic@telus.net 

We report on how a group of practicing teachers experiences a school based 
professional development initiative by way of implementing lesson study, and how 
this process facilitates the development of teachers’ knowledge for teaching 
mathematics. The report presented here is taken from an ongoing study situated in a 
school based community of practice on how teachers’ key competences for teaching 
mathematics develop, refine, and even transform as a result of their participation in a 
collaborative enterprise of lesson study. Our focus is on the outcomes, taken here as 
teachers’ gains in their expertise in mathematics teaching, and which have the 
capacity to transform teachers’ everyday practice in the classroom. They are 
embodied in the knowledge, skill, attitude, and capability, both in the individuals and 
in the community as a whole. In this report we present these outcomes and the 
conditions in which they were achieved, through a particular account of the lesson 
study on the topic of parabolas. This lesson study has been the sixth lesson study 
implemented in the school since the inception of the initiative 18 months ago.    
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Research Reports: 

ACCESS TO EDUCATION FOR  ABORIGINAL STUDENTS: 
MEASUREMENT OF EFFECTIVENESS OF OUTREACH 

PROGRAMS 
Melania Alvarez 

Simon Fraser University 
 
My research problem consist in developing, implementing and assessing outreach 
activities that could help aboriginal students to improve their mathematical 
knowledge and access to a higher education and a better job.  We started our 
outreach activities with a six-week summer camp for students entering high school, 
the key part of the camp was to provide intensive instruction in Mathematics and 
English: the initial goal of this program was to build a strong foundation for success 
in grade 8. It is our hypothesis that if we help students to feel more confident 
academically when they start high school then they will do better academically 
throughout their high school years, and they will have a better chance to graduate. 
Introduction  
 Canada's Aboriginal population is growing faster than the general population, 
increasing by 20.1% from 2001 to 2006. This is due to a higher fertility rate among 
Aboriginal women than among other Canadian women. Population projections 
estimate that Aboriginal people could account for 4.1% of Canada's population by 
2017, but this proportion would be significantly larger in Saskatchewan (20.8%) and 
Manitoba (18.4%) (Statistics Canada). 
 Due to the fact that Aboriginals make up a growing portion of the student 
population, in the future they will become a substantial proportion of the population 
that should be participating in the workforce. If we do not address the great disparity 
in educational achievement of aboriginals compared with the rest of the population, 
the repercussions will be disastrous.  
 The mathematical skills of aboriginal students recorded in How are we doing?  
(http://www.bced.gov.bc.ca/abed/performance.htm), show that even thought there has 
been a slight improvement in the last years, aboriginal students in British Columbia 
still face great challenges. Most aboriginal students do not take Mathematics 12, and 
this usually means that they do not have access to scientific and technological 
careers; as a result there are very few aboriginal representatives in the technological 
sector. 
  It is generally known that skills obtained throughout K-12 play an essential 
role in determining access to college or university. Basic numeracy is essential to 
be able to obtain a job and function as a citizen in our modern society; as an 
adult one has to be able to balance budgets and know about percentages 
when dealing with taxes, shopping, etc, which are habitual activities in our 
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modern daily life. In addition, mathematics is the key that opens the door to 
careers in science and technology, and these disciplines are the keys to our 
industrialized society.  Advanced mathematical skills are essential for higher-
level jobs in research and development that are the key to economic 
progress. 
 The topic of my research is the study of outreach activities that could help 
address the transition from K-12 to post-secondary education in the Aboriginal 
community. The goal of these activities is to tackle key pipeline issues arising for 
students before entering high school, and throughout their high school years. 
 
Development  and Importance of Outreach Programs:  
 
 One of the first major studies that looked at the effectiveness of outreach 
programs was Gandara and Bial (2001). They found that in general the assessment of 
most programs was faulty, five years later Schultz and Mueller (2006) made a review 
of new programs and still found that most of them have problems in assessing their 
effectiveness.  
Some of the most common limitations of evidence are: 

• Most assessments do not use control groups (Gullatt and Jan, 2003) 
• Most programs do not mentioned the participants selection criteria (Gullatt 

and Jan, 2003; Swail and Perna, 2001) 
• Students who leave the program are usually not included in the evaluations 

(Gullatt and Jan, 2003; Swail and Perna, 2001) 
• Few programs have long term follow up assessment of effectiveness 

(Gandara and Bial 2001; Perna and Swail, 2002) 
• Program implementation varies from site to site and this variation is usually 

not address adequately in the evaluations. 
• Description of evaluation methodology is often incomplete 
• Statistical reports are usually incomplete. 
• Evidence is limited because programs are usually not widely spread. 
• Many times negative results are not reported.   
• In the survey done by Schultz and Mueller (2006) the analysis of the 

programs with the strongest evidence for effectiveness, was mainly   
statistical analysis (quantitative analysis), the researchers seems to avoid 
making any conclusions from qualitative data.   

These are issues that we should be careful to address to make any  
evidence meaningful in this project, and in any project related to outreach 
assessment.  
  According to Gandara and Bial (2001) there are five main impediments that 
low-income minorities of underrepresented youth face which hinder their access to 
higher education: 
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• Lack of access to information and resource networks 
• Lack of peer support 
• Segregation 
• Ineffective high school counselling 
• Low expectations and aspirations  

 In addition researchers show that social support (Perna 2000a, 2000b, 2000c; 
Hossler, Schmit and Vesper, 1999), strong social networks ( Cabrera and La Nasa, 
2001), mentorships (Levine and Nidiffer, 1996), parental involvement (Corwin et al 
2005), and in general a comprehensive long term support (Cabrera and La Nasa 2001; 
Perna and Swail, 2002; Gandara and Bial 2001, Hossler et al., 1989; Hossler et al., 
1999; Perna, 2000a) are key predictors of a successful access to college education. 
  One of the main consequences of low expectations is the low academic 
preparation of students. Researchers agree that it is essential to pay greater attention 
to outreach programs that would focus on improving academic knowledge and 
university readiness (Fenske, Geranios, Keller, & Moore, 1997),  and it is particularly 
important that students take rigorous math courses in high school, given that this was 
one of the greatest predictors of successful college completion (Adelman  1999; 
Horn, 1997; Perna, 2000c).  Cabrera and La Nasa (2001) indicate that in order for the 
students to even think about the possibility of having a choice they need to feel that 
they have an opportunity to become academically qualified to attend college and 
graduate from high school.  
  Early intervention programs are key to raise a better predisposition for college, 
most researchers recommend interventions before 9 grade (Corwin et al., 2005, Perna 
2002,  Levine and Nidiffer, 1996, Cabrera & La Nasa, 2000b, 2001, Cabrera and La 
Nasa, 2000c).   Cabrera and La Nasa (2000a) strongly recommend that precollege 
outreach programs should make sure that students and parents know during the sixth, 
seventh, and eighth grades what is required to go to college.  
 Studies made by Hossler et al. (1999 ) and Choy et al. (2000 ) point out that it 
is important for a project to focus on a particular school and work on connections 
between and among students given that students are more likely to plan to attend the 
university if their friends plan to attend as well.  
 
Theoretical Framework and Methodology:  
 

The diverse realities in which children are situated,  as well as the various 
influences in their lives, not just from home but school, the neighborhood, television, 
etc.; make it necessary for us to use the combination of quantitative and qualitative 
analysis (James and Prout 1990;  Brooks-Gunn et al., 1993).  There is a dynamic 
between children being ‘participant agents’ in social relations and being able to 
change their circumstances and social structure, while at the same time there is a 
dependency on the adults, the community and in general the social structures that 
surround them (White, S. 2002:1103; Holland et al, 2006;  Mayall, 2002). Jones and 
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Summer (2007:3) summarized it well: children’s reaction are  "grounded in local 
cultural contexts and specificity of experience; emphasis in particular 'new' areas 
including autonomy, enjoyment/fun, relatedness and status."  
  Using a mixed methods approach means using both the quantitative method 
and qualitative method in our research. A key reason for using the mixed methods 
approach would be "to enrich or explain, or even contradict, rather than confirm or 
refute. It may even tell ‘different stories’ on the same subject because quantitative 
methods are good for specifying relationships (i.e. describing) and qualitative for 
explaining and understanding relationships" (Thomas and Johnson, 2002:1). 
 According to Brannen (2005:12) four good reasons for combining methods 
are: 

• Elaboration or expansion:  One can get a better understanding of data 
collected by one method, by using the other method.  

• Initiation: the use of one method can initiate a new hypotheses or research 
question from which we can get a better insight by using the other method. 

• Complementarity: by combining both methods one can arrive at a better 
understanding than if only one method were used.  

• Contradictions: if there seems to be a conflict between the qualitative data 
and quantitative findings, by exploring these contradictions one can simply 
juxtapose the contradictions for others to explore in further research.  

 
 I will use an embedded mixed method design where quantitative and 
qualitative data will be collected whenever possible, and both sets will support each 
other in helping to develop new outreach programs and in explaining results. 
We will compare both data sets, hoping to find some correlation between attitudes 
and marks, however qualitative data will be mainly use to help us design better 
programs. In the end the data that will have greatest priority will be the quantitative 
data which will include marks in tests, drop-out rates etc. This is what in the politics 
of life people use to determine success.  
 Being able to replicate results is another of the main arguments against the 
qualitative approach, especially for those who strongly believe in the scientific 
method; however for researchers working within a social context it is clear that social 
circumstances change, and we cannot always replicate them. On the other hand we 
can look at how some social variables affect quantitative results and how consistent 
these results are.  One of the ways we can observe this consistency is by analyzing 
how transferable our findings are in a different setting.  In our research we 
implemented summer camps at two locations, the Sk’elep School of Excellence, a 
First Nations School in Kamloops British Columbia, and at Britannia Secondary an 
urban school where 30% of its students are aboriginal. We will compare results in 
looking for consistencies and differences in academic achievement and in qualitative 
data.  
 How data sets are being collected: 
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• Students are evaluated at the beginning and at the end of the summer camp 
to determine their level of mathematical knowledge at these two points in 
time and to determine their level of improvement (quantitative data) 

• Teachers write diaries of their daily impressions while teaching in the 
summer camp, including change in children’s attitudes and goals (qualitative 
data). 

• Once students start high school we will try to find if students are taking 
mainstream courses in other areas besides mathematics. We will compare if 
there are any differences in choices made between students who took the 
summer camp and those who didn’t. (Qualitative data) 

• Students will be interviewed during their high school years about their 
impressions about the camp, and their career expectations and goals.  
(Qualitative data) 

• Reduction in the dropout rate (quantitative data). 
• We will monitor results of standardized Provincial tests and such 

(quantitative data). 
• We will follow the academic progress until they drop out or complete high 

school (quantitative data) 
  
 We will constantly compare both data sets, hoping to find some correlation 
between attitudes and marks, however qualitative data will be mainly use to help us 
design better programs. In the end the data that will have greatest priority will be the 
quantitative data which will include marks in tests, drop-out rates etc.  
 
Setting of our Research:  
 

The Pacific Institute for the Mathematical Sciences (PIMS) has been 
implementing various outreach activities in several First Nation schools and schools 
with a significant aboriginal population in British Columbia. Two years ago it started 
working with Britannia Secondary in Vancouver, looking for ways to improve the 
high school graduation rate of aboriginal students, as well as to increase the level of 
math preparation among these students. I have been working with PIMS in the 
development of these programs. 
 More than 30% of the students attending Britannia Secondary are aboriginal, 
and no one can recall at any time in the history of the school when an aboriginal 
student graduated having taken principles of math 12 or its equivalent.  
  Several outreach activities focusing mainly on acquisition of mathematical 
knowledge and understanding have been implemented by PIMS in order to improve 
aboriginal students’ access to the university and in particular to a science career. It is 
especially important that students take rigorous math courses in high school, given 
that this is one of the greatest predictors of successful college completion (Adelman, 
1999). By leaving behind the philosophy of reduced expectations, in introducing new 
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interesting and challenging programs and exciting ways to learn mathematics, 
researchers at PIMS hope to be able to provide aboriginal students with the tools they 
need to be able to make a career decision of their choice, including a career in 
science. 
  In general researchers recommend that the type of outreach programs, which 
PIMS is implementing, should begin by eighth grade or earlier and not later than 
ninth grade (Corwin et al., 2005, Perna 2002, Nidiffer, 1996). Conversations we had 
while working with aboriginal students at Britannia Secondary, the First Nations 
Secondary School at Lytton, and the Sk’elep School of Excellence in Kamloops 
transitioning into secondary school, seemed to confirm these findings. We found out 
that many of the “delinquent behaviors” in class or skipping class altogether started 
in 8th grade due to feelings of not being able to cope with the courses from the 
beginning, and not being able to foresee any possibilities of going to the university 
and getting an education which could provide them with a better future. 
 In general the transition from seventh to eighth grade is a difficult one for 
many children, however for aboriginal students it seems to be particularly harsh. For 
the first time children are streamed and in the case of most aboriginal students, they 
are placed in courses with the lowest academic expectations.  
 Aboriginal children are aware of the schools’ low expectations towards their 
group, and they also become aware that with the course load that has been assigned to 
them, after graduation they would not be able to enroll at the university or in trade 
programs that could interest them. As a result, they do not see why they should 
continue at school and by 10th grade most aboriginal students have stopped attending 
school on a regular basis. 
  After we became aware of these facts, we realized that one of the best uses 
of our resources was to support summer camps for students transitioning 
from elementary school to high school. We were  able  to  identify methods  and 
materials  that  seem  to  be  successful,  and  a  six  weeks  summer  camp  for 
aboriginal  children  transitioning  from  elementary  to  high  school  was 
implemented during the summer of 2008 at Britannia Secondary in Vancouver, 
and the Sk'elep School of Excellence in Kamloops.  
 Students took an intensive math course, with a ‘master’ teacher who fully 
understands the subject and enjoys teaching it, and complemented this camp with a 
an English and reading comprehension class, since many of these kids seem to need 
some extra instruction in this area as well. 
 In Vancouver the mathematics materials that were used were developed by Dr 
Rahael Jalan and Vicki Vidas, the head of the mathematics department at Britannia. 
Dr Jalan is a mathematician who for 2 years worked with teachers at Britannia 
Secondary in their classrooms observing the level of students’ knowledge and what 
was needed for students to better understand and achieve real success in mathematics. 
Dr Jalan and Vicki Vidas’ goal was to be able to prepare 8th graders with the 
necessary mathematical understanding to be able to take principles of math 10 in two 
years and succeed.  In the program they developed, mathematics is taught as a 
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universal language using numbers, the history and evolution of numbers, arithmetic 
and algebra with emphasis placed on the elements of the language of mathematics, 
rules of operations and relations. Foundation courses at the grade 8 and 9 level were 
designed to help students make a smooth transition back into the regular mathematics 
stream by grade 10.   
 In addition to the summer camps, mentorship programs are being implemented 
to help these students with their math courses throughout their high school years. 
 Two more initiatives are in the works: a) to provide scholarships throughout 
the year to students who attend school regularly and have good work ethics; b) work 
with teachers to improve their math knowledge as well as to develop better 
pedagogies, and to work with them to attain a better understanding of the needs of 
aboriginal students.   
 At Sk'elep a mathematician taught the math class supported by teachers, and 
one of the teachers at the school, a language specialist taught the English class.  
Rahael Jalan's materials were used, but supplemented with the Math Power 8 book, 
which is still one of the standard textbooks in grade 8. 
The format of the summer camps was a follows:  
The weekly schedule:�Monday – Friday�Morning:� 9:00am - 9:30am 
 Breakfast� 9:30 am - 11:00 pm Mathematics/English�11:00am -  
11:15 pm Snack�11:15am -  12:45 pm Mathematics/English�12:45pm 
-  1:30pm Lunch�Afternoon: �Four days a week from 1:30 to 4:00, 
students will participate in a variety of athletic activities and one day a week 
meeting with an elder.  

 We are following the development of these children through their high school 
years, and during this time we will develop and implement new programs to improve 
their chances of graduation and success. 
  A key component of my research is to be able to being constant contact with 
students, teachers and administrators in order to become aware of where a 
problem exists and to develop possible solutions that will bring all these parts 
together towards their common goal, the academic success of these children.  
 
Preliminary Results and Conclusions: 
 20 students participated in the Summer Camp at Britannia Secondary and 19 
finished the six weeks,  at Sk'elep 10 children started in the camp and only 5 finished.  
We found that the long day was not a good setting for Sk'elep whereas for Britannia 
parents were happy to have their kids taken care of for the whole day. At Sk'elep 
parents complained that the evening activities interfered with traditional summer 
ceremonies, and the six weeks commitment interfered with family travelling. We 
paid $50 a week to each child for perfect attendance and hard work, however this was 
not enough enticement for the most of the kids at Sk'elep. We realised that different 
settings need to be looked at more carefully, activities need to be tailored for each 
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location.  If we do this activity again at Sk'elep we will seek  more support on behalf 
of the Shuswap, and Chuachua Band and possibly just run it for half a day. 
 At Britannia the preliminary results have been encouraging. We gave students 
a test on the first day of the camp and a test on the last day, testing similar 
mathematical operations: addition, subtraction, multiplication, division, knowledge 
about integer, primes, fractions, problem solving, etc. From comparing the results on 
these tests we can see a significant improvement in most kids. There was also a 
second test on the first day of class based on the MCAT test, unfortunately the 
teacher did not give this test to all the students again at the end of the camp and we 
cannot compare.  The tests from which we have consistent results are close to what 
teachers in Britannia Secondary  use to evaluate students in mathematics when they 
enter grade 8.  We give a detailed list of the marks that children got in the first and 
final test as wells as the overall marks students got, two children did not take the final 
exam because of a death in the family. Overall we saw significant improvement in 
most students. 

Child 
Overall 
Marks 

Final Test 
Prelimina

ry Test 
Child 

Overall 
Marks 

Final Test 
Prelimina

ry Test  

1 93.00% 95.00% 57.00% 11 66.00% 50.00% 20.00%

2 92.00% 92.00% 47.00% 12 63.00% 60.00% 23.00%

3 92.00% 88.00% 50.00% 13 60.00% 30.00% 20.00%

4 90.00% 87.00% 33.00% 14 40.00% 11.00% 0.00%

5 89.00% 89.00% 50.00% 15 35.00% 18.00% 23.00%

6 82.00% 82.00% 37.00% 16 27.00% 17.00% 0.00%

7 82.00% 68.00% 53.00% 17 17.00% 12.00% 0.00%

8 81.00% 80.00% 37.00% 18 90.00% 47.00%

9 69.00% 71.00% 40.00% 19 70.00% 43.00%

10 68.00% 51.00% 37.00%    

 Out of these 19 students, 10 are currently going to Britannia and they are doing 
well. Three of these students are now in the Venture program in Britannia Secondary, 
taking grade 9 math instead of  grade 8, and they are in line to go to the IB program. 
This is the first time in the history of Britannia that these many aboriginal children 
are immediately and so far successfully inducted in this program.  
 So far we have anecdotal data from teachers and some parents stating that the 
students are doing well, that they work hard and do not get easily distracted in class.  
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They are enjoying the school and the friendships they started in the summer have 
continued.  
 We also underestimated the English component of the camp. The teacher who 
took care of the English component was extraordinary. She introduced the book 
Touching Spirit Bear by Ben Mikaelsen and in the beginning most students were not 
interested in reading it at all. This change within a few weeks, and by the end of the 
camp the students were anxiously waiting for the sequel, which they intended to buy 
with their own money.  Some students commented that finally they understood why 
reading could be  fun.    
 We will have to wait for a real proof of success, as we follow  their progress 
throughout high school.  
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BEYOND STATIC IMAGERY: HOW MATHEMATICIANS THINK 
ABOUT CONCEPTS DYNAMICALLY  
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Abstract: Researchers have emphasized the role of visualization, and visual thinking, 
in mathematics, both for mathematicians and for learners, especially in the context of 
problem solving (see Presmeg, 1992). In this paper, we examine the role that motion 
and time play in mathematicians’ conceptions of mathematical ideas. In order to 
expand the traditional focus on (and distinction between) visual and analytic thinking 
(see Zazkis, Dubinsky, and Dautermann, 1996), we employ gesture studies, which 
have arisen from the more recent theories of embodied cognition. Expanding on 
Núñez’s (2006) work, we show how mathematicians’ gestures express dynamic 
modes of thinking that have been hitherto underrepresented. 
INTRODUCTION 
There has been a growing body of research on students’ ways of thinking in problem 
solving situations since the 1970s. While researchers initially identified two different 
modes of thinking (visual and analytic), they later became more concerned with the 
interrelationships between these modes. Zazkis, Dubinsky, and Dautermann’s (1996) 
study, in particular, argues the two modes of thinking are not dichotomous. They 
draw specific attention to the visualization of dynamic objects and processes, and 
argue that perceiving dynamic processes and objects creates more complex mental 
images than perceiving static objects. Their study motivated us to further probe the 
interaction between analytic and visual thinking. We also draw on theories of 
embodied cognition to suggest that dynamic thinking is potentially a bridge between 
visual and analytic thinking. In this paper, we first present a brief overview of 
research on the different modes of thinking, and connect this research to emerging 
theories and methodologies from embodied cognition. We then present the analysis 
of mathematicians’ verbal and non-verbal expressions in describing two concepts: 
quadratic functions and eigenvectors. Finally, we present a discussion about our 
findings, and offer suggestions regarding the use of gestures in teaching mathematics.  
BACKGROUND 
In mathematics education literature on students’ mathematical thinking, researchers 
have proposed distinct modes of thinking. Krutetskii (1976) distinguishes 
verbal/logical thinking from visual/pictorial thinking. The former is an indicator of 
level of mathematical abilities whereas the latter indicates a type of mathematical 
giftedness. Krutetskii’s work led mathematics educators to inquire further about the 
visual/pictorial mode of thinking, and to emphasise its importance in mathematical 
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thinking (see Bishop, 1989, Eisenberg and Dreyfus, 1986 and 1991, Presmeg, 1992; 
Zimmermann and Cunningham, 1991). In her study of mathematicians’ ways of 
coming to know mathematics, Burton (2004) interviews seventy mathematicians 
working in different fields of mathematics. She identifies three primary modes of 
thinking: visual/pictorial, analytic/symbolic and conceptual.  
While many researchers have distinguished the visual from the analytic, as two 
modes of thinking (see Clement, 1982), Zazkis et al. (1996) focus on the relationships 
between the visual and the analytic modes of thinking. They argue that these two 
modes of thinking are not dichotomous, and propose the Visualization/Analysis (VA) 
model to describe students’ ways of thinking in problem solving. In defining the 
visual category, Zazkis et al. draw attention to the sometimes dynamic nature of 
visual imagery, something that Burton (2004) also does, in describing her 
visual/pictorial category as “often dynamic.” According to Zazkis et al., perceiving 
dynamic processes and objects creates more complex mental images than perceiving 
static objects. Further, the very act of perceiving static objects involves dynamic 
actions, as the eye moves across the visual field to build the static objet (Piaget, 
1969). Although both Burton and Zazkis et al. recognise the presence of dynamic 
visual imagery, they do not offer many examples of such imagery, nor do their 
models of mathematical thinking accord it a primordial role.  
More recent research, drawing on theories of embodied cognition (see Lakoff and 
Núñez, 2000), suggests that dynamic thinking (and not just image-based dynamic 
thinking) plays an important role in conceptual development. For example, Núñez  
(2006) argues that mathematical ideas and concepts are ultimately embodied in the 
nature of human bodies, language and cognition. He has shown that static objects can 
be unconsciously conceived in dynamic terms through a fundamental embodied 
cognitive mechanism called ‘fictive motion;’ he illustrates this mechanism using the 
concepts of limits, curves and continuity.  
In addition to studying mathematicians’ linguistic expressions, Núñez broadens the 
methodological scope by including analyses of mathematicians’ metaphors and 
gestures, which are key to revealing more dynamic thinking processes. As such, 
Núñez’s approach differs from that taken by the researchers cited above, who focus 
mainly on linguistic expression, and who minimize the role of dynamic thinking in 
their models of mathematical thinking. We note that the inattention to (and 
sometimes ignorance of) the role of time and motion in mathematical thinking has 
strong historic roots: not only does mathematics tend to detemporalise mathematical 
processes (Balacheff, 1988; Pimm, 2006), but several mathematicians have expressed 
discomfort at the idea of moving objects (see Frege, 1970).  
Núñez writes that gestures have been “a forgotten dimension of thought and 
language” (p. 174). Recent research, however, has shown that speech and gesture are 
two facets of the same cognitive linguistic reality. In particular, research claims that 
gestures provide complementary content to speech content (Kendon, 2000) and that 
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gestures are co-produced with abstract metaphorical thinking (McNeill, 1992). This 
research supports our methodological approach in this paper, which is to analyse both 
speech and gesture in describing mathematical thinking. In particular, given the 
motion aspect of gesturing, we hypothesis that analysing gestures will provide more 
insight into the dynamical thinking process of mathematicians. 
RESEARCH CONTEXT AND PARTICIPANTS 
In our larger study, we extend Núñez’s work to explore concepts other than limits 
and continuity. This paper focuses on concepts relating to functions, matrices and 
eigenvectors. While Núñez studied mathematicians as they gave lectures, we chose to 
adopt the approach of Burton (2004), who used interviews to examine the nature of 
mathematical thinking. We designed our interviews using a set of questions aimed at 
eliciting mathematicians’ concept imagery around a variety of mathematical 
concepts, spanning K-12 and undergraduate mathematics. We interviewed four 
mathematicians whose interests were in both pure and applied mathematics, and who 
were all members of a medim-sized mathematics department in Canada. Each 
interview lasted between 1 and 1.5 hours. Interviews were videotaped and 
transcribed. We reviewed the video clips and selected to analyse their speech, 
gestures, analytic and visual thinking about quadratic function and eigenvector.  
ANALYSIS OF STUDY 
We refer to Núñez’s framework, conceptual metaphor and fictive motion to analyse 
mathematicians’ linguistic and non-linguistic expressions. We also use McNeill’s 
gesture classification and transcription to analyse the movements of the 
mathematicians’ hand and arm as they described mathematical concepts. Verbal and 
gestural excerpts from interviews follow.  
ANALYSIS OF SPEECH AND GESTURES: QUADRATIC FUNCTION  
In our first analysis, we illustrate the way in which linguistic expression by itself can 
include evidence of dynamic thinking. In response to our prompt about quadratic 
function, LG first says: “Well I guess I see, I picture a parabola, right, a parabola 
which is, um, or a conic section if it’s a quadratic function of two variables.” In 
addition to the visual image of a graph of a parabola, he also talks about variables, 
which point to more analytic/symbolic thinking. It seems that his thinking moves 
flexibly between visual and analytic thinking which supports the VA model.  
LG then continues to say: “I don’t think I picture just one. […] I know that there’s 
only one parabola up to scaling. If you took any two parabolas, you can always rotate 
it, put them side by side, zoom in on one and it will look just like the other.” LG not 
only visualizes the graph of a parabola, but also thinks about the graph in motion, as 
he translates it, rotates it, and zooms in on it. He conceives a static entity (the 
parabola, the equation of the parabola) in dynamic terms, as illustrated by the verbs 
translate, rotate, zoom. In other words, his concept of quadratic function doesn’t 
include just the graph, or the equation, but the parabola in motion: in the language of 
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Sfard (2008), he uses the dynamic aspect of the parabola as a “saming” technique, to 
make all the parabolas, whatever their shape, size, orientation, be one single object; 
as he later says “there’s only one quadratic function really.”  
In our next example, we show how the linguistic expression and the non-linguistic 
expression can illustrate different aspects of mathematical thinking. Once again, in 
response to our prompt of quadratic function, NN begins by referring to a real object: 
“Something like a goblet, yeah so both a parabola and a goblet.” She uses the goblet 
metaphorically to describe the shape of a parabola. While both ‘parabola’ and 
‘goblet’ evoke visual images, instead of dynamic ones, her speech coincidences with 
a set of gestures. In Figure 1 below, her right hand is cupped under, with fingers 
pointed upward, as if holding the goblet. Then, she uses her index finger to trace out 
a parabola starting from left to right and then returning from right to left (see Figure 
2). In MacNeill’s scheme, this is a metaphoric gesture, which ‘points’ to an abstract 
object. Note that in this gesture, the finger is moving, as if tracing a curve, or drawing 
a parabola; it is not a static gesture, as the one used to accompany the word “goblet.”  

   

Figure 1. shows NN’s right hand which 
depicts a parabola 

Figure 2. shows NN’s index figure 
while tracing out a parabolic curve  

In our third case, instead of producing the gesture along with the speech, the 
mathematician replaces speech by gesture. Again, in response to our prompt, JJ says: 
“initially I thought of algebraically, then I thought of [index figure depicts a concave 
down parabola] one of these [index figure depicts a concave up parabola] one of 
these.” His gesture resembles that of NN, but differs also in several ways: he draws 
two different parabola, one concave and one convex, and also, draws them right in 
front of his body, at chest level. In contrast, NN goes back and forth along one 
parabola, and draws her in a region above, and to the right or her head. For both NN 
and JJ, the gestures are metaphorical, referring as they do to abstract objects. 
However, whereas NN evoked the metaphor of the goblet and the visual imagery of 
the parabola, JJ speaks first about the algebraic interpretation of the quadratic 
function, signalling an initial analytic—and very static—conception. 
Our fourth and final case PT, combines various aspects of the first three, but in 
slightly different ways. His thinking is analytic/symbolic, while he says “this would 
be a function that is ay ex squared plus bee ex plus cee, and then, you could represent 
that by a parabola.” But, he uses a set of gestures (see Figure 3) to actually write out 
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the symbols ax2+bx+c. He then draws out a very big parabola (see Figure 4), in his 
upper left spatial field, with his index finger, and says “going like that.” His gesture 
points to an abstract object. He then says “of course, in that you can include a line, 
you can imagine a line in there, […] though a line is technically a quadratic 
function.” In his accompanying gesture, his whole hand moves from left to right, 
fingers extended, as if cutting out a plane (see Figure 5). That he sees the parabola 
becoming a line (as the parabola flattens out), it also appears that he sees the parabola 
moving continuously from a curved line to a straight one—whereas LG saw the 
parabola move continuously across transformations.  

   

 

 

Figure 3. PT gestures the 
quadratic equation.  

Figure 4. PT draws a 
parabola.  

Figure 5. PT’s gestures 
line as parabola.  

ANALYSIS OF SPEECH AND GESTURES: EIGENVECTORS   
In response to our prompt about eigenvectors, LG first says: “I guess eigenvector 
might be a resonance so if you are in a big tunnel and you start singing and hit the 
right note it starts to go really loud resonating your ears.” He uses resonance 
metaphorically to describe abstract objects, eigenvectors. He evokes a visual image 
and conceives it in dynamic terms, as he uses the verb to go. LG’s linguistic 
expression alone reveals the presence of dynamic thinking. Unlike the examples 
above, LG’s dynamic thinking is not necessarily image-based; rather, the dynamism 
is in the echo, which starts to “go really loud.” 
In our next example, we analyse NN’s linguistic and non-linguistic expressions to 
illustrate dynamic aspects of her mathematical thinking. In response to our prompt 
about eigenvectors, she says: “stresses, so if I am thinking about a plate being pulled 
out so it’s gonna move along principles.” She uses ‘stresses’ as a metaphor that refers 
to eigenvectors. She evokes a visual image of a plate and uses motion, as illustrates 
by the verb pull out, to describe her concept image of eigenvectors. Her speech 
coincidences with a set of gestures: Figure 6 shows how she embodies a dynamic 
imagine of eigenvector in the context of a real world example, “a plate being pulled 
out.” She clenches her hands and moves her arms back and forth, as if holding a 
horizontal steering wheel, to accompany her verbal expression. This is another 
metaphoric gesture.  
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Figure 6. Shows NN’s hand and arm movements in describing 
eigenvector. 

Our third case, JJ, first says “one idea is, you have the idea of matrix as a linear 
transformation and, um, so you take a vector and you map it to something else.” This 
seems to describe a visual image of mapping on vector to another, though his 
description “matrix as a linear transformation” also indicates a more analytic 
conception of eigenvector. He then continues to say that “you set the matrix up by 
some inputs, they’re gonna come inside and then obviously you say what is the 
important direction when the two line up of course. So, that is one idea that I use to 
say that there is something special about that direction.” Here, he uses his hands to 
demonstrate a vector and its transformations: with his index fingers (on both hands) 
he rotates one finger toward the other (see Figures 7 and 8). His hand movements, 
which coincidence with the verbal description quoted above, show how he conceives 
the process of transformation dynamically, as something coming together in the same 
“direction.”  
 

  

Figure 7. Shows JJ’s use of hands to 
depict a vector and its linear 

transformation.  

Figure 8. Shows how JJ’s line up a vector 
and its transformation to illustrate the 

concept of eigenvector.  
 
Our fourth and final case PT, in response to our prompt, says “I think of a matrix, I 
think of applying the matrix to the vector, and then what you get out is another vector 
that’s in the same direction but either stretched or shrunk.” Again, his linguistic 
expression reveals the presence of fictive motion in his conception of an eigenvector, 
which he describes as something you “get out,” that is “stretched or shrunk.” His 
speech coincidences with arm and hand movements that are similar to NN’s gesture: 
starting with his hands and arms extended (as in Figure 9), he brings them toward 
each other as he says “same direction” and moves them away again when he says 
“stretched or shrunk.” Unlike NN, who is referring to plates and stresses, PT seems to 
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be thinking about the vectors themselves, and also using metaphorical gestures in 
describing them.  

 

Figure 9. Shows PT’s arm movements in illustrating result 
of transformation, stretched or shrunk in eigenvector. 

DISCUSSION AND REFLECTIONS 
The results of our analysis indicate that: first, the mathematicians use gestures and 
metaphors to express their thinking about concepts. Second, their linguistic and non-
linguistic expressions comprise a dynamic component. However, while sometimes 
this dynamic component is visual in nature, other times it is no. This would suggest 
that some forms of dynamic thinking are non-visual, and more time-based. In fact, in 
Thurston’s (1994) categorisation of the different “facilities of mind,” he includes both 
a “vision, spatial, kinaesthetic (motion) sense” category and a “Process and time” 
category, where the latter refers to a facility for thinking about processes or 
sequences of actions.  
As Núñez (2006) points out, the dynamic component of gestures and metaphors 
promote understanding mathematical concepts (Núñez, 2006). Following Zazkis et 
al.’s (1996) work, which draws attention to the important interaction between the 
visual and the analytic, we hypothesise that dynamic thinking is potentially a bridge 
between visual and analytic thinking: further research on this hypothesis seems 
warranted. 
On a final note, turning now to the teaching and learning of mathematics: we suggest 
that the instructional use of gestures warrants further study. Cook, Mitchell and 
Goldin-Meadow (2008) reported that requiring students to gesture while learning a 
new concept helped to retain the knowledge they had gained during instruction. It 
seems reasonable to assume that not all gestures will work in this way; however, 
drawing on the gestures that mathematicians use to think about concepts may well 
provide guidance to educators looking to identify productive gestures for instruction. 
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INEQUALITIES IN THE HISTORY OF MATHEMATICS: FROM 
PECULIARITIES TO A DIFFICULT DISCIPLINE 

Elena Halmaghi 
Simon Fraser University 

 

In this theoretical contribution history of inequalities is looked into in a search for an 
answer to the question: Why are inequalities hard to meaningfully manipulate and 
understand? Memorable dates in the development of inequalities and the symbols for 
representing inequalities are highlighted. Well known inequalities are presented and 
some novel proofs are shown. Implications for the teaching of mathematics are 
identified. 
WHY ARE MATHEMATICS EDUCATORS LOOKING AT THE HISTORY 
OF A CONCEPT? 
A valid question that someone could ask is why do researchers in mathematics 
education involve in the study of the history of mathematics? We are not historians 
and the lens that we are using when checking a history book are not those of qualified 
historians. Moreover, we are looking not into historical documents, but into 
secondary sources of history. Radford (1997) argues that mathematics educators first 
look into history of mathematics in a naïve way; to find anecdotes to make class more 
interesting and to motivate study. Naïve is considered as well the search for old 
problems to be solved in class when introducing a concept. What approach to the 
history of mathematics can be considered less naïve? 
The history of mathematics could be viewed as an “epistemological laboratory in 
which to explore the development of mathematical knowledge” (Radford, 1997, p.1). 
In this type of research lab, informing about the evolution of a concept, the history of 
mathematics can inform about the epistemological obstacles. A parallel could be 
drawn between the obstacles encountered in the historical development of a concept 
and the problems nowadays students have in understanding that concept (Sfard, 
1995). Historical studies of the origins of a mathematical concept can inform 
curriculum designers, teachers and instructors as well as the epistemological theorists 
(Dennis, 2000).  
 
The special case of checking the history of inequalities: were to look 
“Researchers witnessed students’ and teachers’ frustration with the difficulties 
encountered when dealing with inequalities” (Tsamir & Bazzini, 2002, p.2). Research 
on inequalities reports mostly on students’ misconceptions on inequalities or on 
obstacles in understanding inequalities (Linchevski & Sfard, 1991; Bazzini & Tsamir, 
2002, 2003; Tsamir, Tirosh & Tiano, 2004; Boero & Bazzini, 2004; Sackur, 2004; 
Vaiyavutjamai & Clements, 2006). With a concept prone to misconceptions and 
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misunderstanding, between many lenses one could use to find a cause, or possibly a 
solution for problems, history of inequalities seems a promising one.  
Checking the history of inequalities for periods of hardship to inform why the 
concept is difficult as a school subject is not an easy task. Why? The answer resides 
first in the difficulty to find references for this task. Even though a web search brings 
almost fifty thousand results on history of mathematical inequalities, there are only a 
few that could help the journey. What about searching for books in the library? In 
school mathematics inequalities are placed under Algebra. In undergrad mathematics 
as well, there is a section on inequalities in the algebra preview of Precalculus. In 
Calculus, inequalities have no special treatment; they are tools for proving limits or 
analysing functions. So, a first attempt to find references was looking for inequalities 
in history of algebra books.  
 
Is Algebra a good place to search for the history of inequalities? 
The material about inequalities in the history of algebra is scarce. What is Algebra? 
Using a simple definition, Algebra is the science of generalized computation (Garcia 
and Piaget, as in Sfard, 1995).  
In the history of algebra three developmental stages are identified: rhetorical algebra, 
syncopated algebra, and symbolic algebra. This division is due to Nesselmann, based 
on the notion of mathematical abstraction (Radford, 1997). Rhetorical algebra is the 
algebra of words. Syncopated algebra uses a mixture of words and symbols to 
express generalities. This is the algebra of Pacioli, Cardan, and Diophantus. It is 
Francois Viete who introduced the species and made the distinction between a given 
quantity, which is constant but represented by a letter in equation and the variables; 
he was the first one who could solve parametric equations (Bagni, 2005; Sfard, 
1995). Before Viete, algebra was at an operational level. After that the equations 
became objects of higher order processes. Viete purified algebra from all the noise of 
words and presented it in abstract form, the encapsulation of a pure mathematics idea 
(Radford, 1997). From Viete on, it was time to talk about structural algebra. The 
structure in algebra influenced geometry. The works of Descartes and Fermat, on the 
shoulders of Viete, helped geometry capture generality and express operational ideas. 
In early years algebra needed geometry for reification and verification, now geometry 
will be using algebra for new reifications and development (Sfard, 1995).    
Before the invention of symbols, algebra was a verbal interpretation of computational 
processes. Could inequalities emerge from rhetoric or syncopated algebra? What if 
inequalities are originally of a different essence than algebra? It is possible that the 
invention of a symbol for inequalities to help the manipulation of the known 
inequalities, but it took more than the symbol to help the rise of a discipline of 
inequalities. It took the initiative of a great mathematician, Hardy, in the 20th century, 
to carefully look into the subject, collect, prove and publish inequalities. The volume 
Inequalities published in 1934 was the first monograph of inequalities. The apparition 
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of the Journal of the London Mathematics Society marks the most important date in 
the history of inequalities. The dates marked by Hardy, Polya and Littlewood in the 
history of inequalities are very recent, compared to the history of mathematics. Can 
we trace somehow inequalities in older mathematics text? Were inequalities 
forewings to Ancient mathematicians? (Fink, 2000). Let’s have a closer look into the 
old history of mathematics.  
 
Inequalities in Antiquity 
The ancient mathematicians knew “the triangle inequality as a geometric fact” (Fink, 
2000). They also knew the arithmetic-geometric mean inequality as well as the 
“isoperimetric inequality in the plane” (Fink, 2000). Euclid used words like ‘alike 
exceed’, ‘alike fall short’ or ‘alike in excess of’ to compare magnitudes (Kline, 1972, 
p.69). The contemporary translation of Euclid’s words uses the inequality symbols to 
help the reader understand the old text, but those symbols were foreign to Euclid. In 
the Pickering version of Euclid’s Elements the symbols introduced by Oughtred are 
used to write geometric inequalities. Working on π and on calculations for 
approximating square roots of numbers, Archimedes was in fact manipulating 
inequalities arithmetically (Fink, 2000).  

Using inequalities to measure awkward quantities dates back to Euclid and beyond. 
Archimedes in particular was skilled in using inequalities to deduce equalities, and after 
translating his method into algebra, such proofs were used by Fermat (1636) and are 
accessible to undergraduates today (Burn, 2005, p.271). 

 
Inequalities in Geometry 
Thus, for noticing inequalities in a history of old mathematics book, one needs the awareness of what 
should be looking for: Inequalities could not emerge from rhetorical algebra, but are to be found embodied 
in Geometry. How do inequalities look like in old geometry texts? The following figures represent 
inequalities well known in antiquity. Figure 1 is a picture of one page form Byrne’s (1847) The First Six 
Books of the Elements of Euclid. In this edition of Euclid’s works Byrne used colours to make the book 
attractive and appealing to students. The proofs were presented as pictures. Figure 1a) represents 
Proposition XXI from Book one. In plain language, the proposition reads:  

If from the ends of one of the sides of a triangle two straight lines are constructed 
meeting within the triangle, then the sum of the straight lines so constructed is less than 
the sum of the remaining two sides of the triangle, but the constructed straight lines 
contain a greater angle than the angle contained by the remaining two sides (Joyce, 1996-
1998).  

Figure 1b) is the pictorial proof of proposition 21 from Euclid’s Book 1. For 
inequalities, Oughtred’s symbols were used to supply the pictures with inequality 
meaning without using too many words. 
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Fig 1a) Fig 1b)           (Byrne, 1847, p.21) 

 
Another proof without words or a geometrical proof of the inequality of the means,

2
baab +

≤ , can be seen in Fig2, which represents a right triangle inscribed in a 

circle. The proof of the inequality is based on the result that the hight of a right 
triangle is the geometric mean of the segments that it divides the hypotenuse into. 
This proof of the inequality of the means as looks as Euclid could have imagined 
(Steele, 2004). 

  

Fig 2a) 
The height of the right triangle is the 
geometric mean of the projections of the 
legs over the hypotenuse: abh =  

Fig 2b) 
The radius of the circle is the arithmetic 
mean of the projections of the legs over 

the hypotenuse: 
2

baab +
≤  (Steele, 

2004) 

From the second picture can be seen the radius ⎟
⎠
⎞

⎜
⎝
⎛ +

2
ba

 as being the highest of the all 

projections from points on the circle over the diameter, which proves the inequality 

2
baab +

≤ . 

  



Proceedings, MEDS-C — 2008 1- 33 

Inequalities in Artefacts 
Nelson claims that he saw the proof of the famous Cauchy-Swartz inequality on the 
tiling found in The Courtyard of a House in Delft, a painting by Pieter de Hooch. 
When painting, was the painter aware of this inequality as well? When arranging the 
tiles, was the tilling artist aware of the mathematics we can see in his work? 
Changing the size of the tiles, Nelsen created a new tiling where he shows the proof 
of the famous inequality of the means. Also, using the fact that a parallelogram has 
an area smaller than the area of a rectangle whose sides are equal with the sides of the 
parallelogram, Nelsen proves without words the Cauchy-Swartz inequality (Nelsen, 
1997). Figure 3a) represents Nelsen’s tiling. Figure 3b) shows the proof of the second 
one of the two simultaneous inequalities comprising the Cauchy-Swartz inequality: 

( )( )2222|||||||||| yxbaybxabyax ++≤+≤+ . The first inequality can be proved 
using triangle’s inequality and the properties of absolute value: 

|||||||||||||| ybxabyaxbyax +≤+≤+ . 

 

  

Fig 3a) 
The tilling as seen in the painting. 

Fig 3b)                (Nelsen, 1997, p.8) 
The decomposition of the tiling and the 
composition of the Cauchy-Swartz 
inequality. 

 
The history of the Inequality symbol(s) 

“It may be hard to believe, but for two millennia, up to the 16th century, mathematicians 
got by without a symbol for equality” (Lakoff & Núñez, 2000, p.376). 

The symbols < and > were first introduced in mathematics related texts by Thomas 
Harriot (1631). He was a mathematician who worked for Sir Walter Raleigh as the 
cartographer of Virginia, North Carolina now. Harriot is considered to be the founder 
of “the English School of Algebraists” (Howard, 1983, p. 249). An anecdote says that 
Harriot got inspired from the symbol   seen on the arm of a Native American to get 
the symbols for inequalities (Johnson, p.144).   
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The mathematics community did not adopt Harriot’s symbols immediately, because 
exactly at the same time, in 1631, Oughtred suggested    for greater than and  

   for less than. Oughtred's Clavis Mathematicae was more popular than Artis 
Analyticae Praxis ad Aequationes Algebraicas Resolvendas (The Analytical Arts 
Applied to Solving Algebraic Equations), Harriot’s posthumously published work 
(Howard, 1983). In 1734, the French geodesist Pierre Bouguer invented the symbols 
≤ and ≥. These new symbols were used to represent inequalities, on the continent 
(Smith, 1976, p.413).  
I wonder how the 17th-18th centuries symbols for inequalities would had managed the 
differences acknowledged nowadays when using for example < or  ≤.  More 
precisely, the < symbol is used to represent quantities that are different, the first one 
being less than the second one. The ≤ symbol incorporates the equality as well; it 
allows the first magnitude to be equal with the second one. The ≤ symbol recognizes 
that the absolute extrema one quantity could touch in the solution as well.  
In conclusion, the inequality symbol allowed for compression and aesthetic 
presentation of many old inequalities and permeated the development of a concept 
from a peculiarity. 
Why this section dedicated to the history of the inequality symbol? It is well known 
that way before the aparition of the symbolic algebra people were writing all 
arguments in longhand. There were no symbols to represent the unknowns and there 
were no symbols to represent the relationship between unknowns as well. That was 
before Diophantus, during the ‘Rhetorical algebra’ stage (Harper, 1987). There is 
noting wrong in writing mathematical statements in plain language, but it is well 
known that it may take several pages to describe a statement when in mathematical 
symbols the same job could be done, possibly, in one line. The use of symbols allow 
for more work to be performed in a shorter time. To the best of my knowledge, I am 
not aware of any research that would argue that even when symbols are well known 
and the best way to represent some piece of mathematics, one would use, written or 
verbal plain language to describe the same idea. Is getting meaning of a formal 
mathematical statement associated with symbolic notation, or to be able to reason 
about a mathematical statement, someone should ‘read it’ in plain language as well?  
It is my perception that the symbol < is more easily assimilable than  to represent 
less than. Comparatively looking at the two symbols, one can associate a metaphor 
with <. Or is this only a cultural perception or habituation with the symbol that is not 
foreign to us? Is the symbol  counterintuitive? I wonder how Oughtred 
explained the choice for this symbol. What about < as well? Does this symbol allude 
to action or contemplation? Is the symbol getting in the way of creating good 
metaphors that could help understanding inequalities?  
Is there a discipline of Inequalities? 
Geometry, Arithmetic, or Number Theory were well established disciplines from 
Antiquity. With the stage of symbolic algebra, new mathematical discipline, as 



Proceedings, MEDS-C — 2008 1- 35 

Algebraic Geometry, evolved. Sfard (1995) argues that geometry helped reification 
of heavy computations in algebra, and then algebra helped geometry evolve and 
answer many of the problems that were posed and unsolved from Antiquity. Initially, 
inequalities did not have a special status in mathematics; they were considered either 
mathematics peculiarities or tools for developing other theories. Two millennia and 
personal action changed the status of inequalities form support for some mathematics 
to inequalities as a discipline of study. Fink (2000) acknowledged that the history of 
inequalities had been written when Hardy et al. wrote the 300 pages of inequalities 
and their proofs. Moreover, today there are two journals of inequalities – JIA1 and 
JIPAM2 – as well as many other mathematics publications that print papers “whose 
sole purpose is to prove an inequality” (Fink, 2000).  
Implications for mathematics education  
When teaching, learning, or understanding a concept encounters problems, there is a 
tradition in research in mathematics education to turn the search for the solution of 
the problem toward the history of the concept (Cornu, 1991). In the development of 
the concept one may find information about periods of slow development. There 
could be an indication somewhere that the concept had been created problems to 
mathematicians first. As is well known, Hippasus died for discovering the irrational 
numbers. Even if mathematicians of his time experienced incommensurability, they 
had problems accepting it. Such an incident informs about epistemological obstacle 
associated with that concept. Teaching a concept linked to epistemological obstacles 
and being aware of that, the educator could plan when and how would be more 
appropriate to introduce it to the students to avoid, if possible students’ cognitive 
conflicts.  
At a shallow search into the waters of history of inequalities, no apparent 
epistemological obstacles were encountered. But it is recorded and documented that 
inequalities are not easy concepts to manipulate. Even Hardy, the man who can be 
called the father of inequalities, confessed:  

There are, however, plenty of inequalities which are hard to prove; Littlewood and I have 
had any amount of practice during the last few years, and we have found quite a number 
of which there seems to be no really easy proof. It has been our unvarying experience 
that the real crux, the real difficulty of idea, is encountered at the very beginning (Hardy, 
1928).  

Research on inequalities reports mostly on students’ misconceptions on inequalities. 
Students encounter problems in their process manipulation, as well as at the level of 
interpretation of what an inequality is and what does a solution of an inequality 
represent. Are inequalities hard to manipulate? The answer to this question resides in 

                                                            
1Journal of Inequalities and Applications issued the first volume in 1997. JIA is a multi-disciplinary forum of discussion 
in mathematics and its applications in which inequalities are highlighted. 
2 Journal of Inequalities in Pure and Applied Mathematics, founded in 1999 by the Victoria University members of the 
Research Group in Mathematical Inequalities and Applications (RGMIA). 
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the history of inequalities. However, there is still at least another important question 
whose answer is nor in the history of inequalities neither in the research on 
inequalities: Why are inequalities hard to meaningfully manipulate? Inequalities are 
the back bones of many concepts and mathematical areas, therefore is worth the 
effort of doing more research for clarifying what makes them hard to process.  
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A FUNCTIONAL ROLE FOR THE CEREBELLUM: 
IMPLICATIONS FOR MATHEMATICS EDUCATION 

Kerry Handscomb 
Simon Fraser University 

A characteristic of mathematical reasoning is a focus on the essential aspects of any 
given situation. Mason and Pimm (1984), in their seminal paper, refer to this as 
“seeing the general in the particular.” I will argue that activity of the cerebellum 
with respect to the cerebral cortex is the neural correlate for “seeing the general in 
the particular.” In other words, a functional role of the cerebellum is to facilitate the 
precise, focused reasoning that is necessary for mathematics. There are implications 
for mathematics education because of the structure of the cerebellum and its 
connections with the cerebral cortex. These are that repetition, decontextualization, 
and decomposition of concepts can play an important role in mathematical learning. 
OBJECTIVE 
A peculiar characteristic of mathematical reasoning is perception of the general in the 
particular. A particular triangle, in other words, is viewed schematically, so that any 
of its properties that are perceived in this light are true of any triangle. The question 
for mathematics educators is how to foster this kind of reasoning in children. The 
technique I have used to answer this question is to identify the brain structures and 
activities that correspond, or correlate, to schematic reasoning. I argue that the 
cerebellum and its connections with the parietal lobe of the cerebral cortex play a 
major role in this respect. If this is the case, then there are significant implications for 
mathematics education. Curiously, these implications recall methods of mathematics 
education in which mathematical situations are decontextualized and decomposed, 
and learning is accomplished by repeated attention to similar problems. This paper is 
the précis of a doctoral dissertation. Of necessity, the full argument has been curtailed 
for reasons of space. 
THEORETICAL FRAMEWORK 
The investigation needs a theoretical framework that permits correlation of subjective 
cognitive functioning with objective neurophysiological activity. The classical 
solution is the neutral monism of Spinoza’s Ethics, in which the substance of the 
world has two attributes by which it may be known, thought and extension. These 
two epistemological categories are subjective knowledge of mind and objective 
knowledge of materiality. 
The notion that first-person cognition is embodied in physical activity was 
investigated in some depth in Varela, Thompson, and Rosch (1991). Campbell (2001) 
extended the ideas of Varela et al. in the formulation of a radical embodied 
cognition. The philosophical father of embodied cognition is Merleau-Ponty, and 
Campbell suggests that Merleau-Ponty’s neutral monism of flesh is an appropriate 
metaphysical foundation for embodied cognition. This strategy produces a theory that 
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is remarkably close to the neutral monism of Spinoza (Handscomb, 2007). According 
to Spinoza, the “order and connection of ideas is the same as the order and 
connection of things” (E2, P7). In other words, within a radical understanding of 
embodied cognition, the structure of subjective cognition mirrors the structure of 
neurophysiological activity. 
Neurophysiological activity in the cerebral cortex, particularly electrical activity, is 
especially relevant for examining higher cognitive functions (e.g., Varela, Lachaux, 
Rodriguez, & Martinerie, 2001). Fuster’s (2006) cognitive network theory correlates 
certain aspects of the structure of electrical activity in the cerebral cortex with certain 
aspects of subjective cognition. 
According to Fuster’s (2006) analysis, the Rolandic and Sylvan fissures separate the 
cerebral cortex into an anterior hemisphere and posterior hemisphere. Brain activity 
in the anterior hemisphere is correlative to action; brain activity in the posterior 
hemisphere is correlative to perception. Consider the posterior hemisphere. For 
example, activity of a specific cognitive network is the neural correlate of a triangle 
percept. Activity of another cognitive network, at a higher level, a “network of 
networks” would be correlative to the concept of triangle. Each level in the hierarchy 
of cognitive networks is localized to the specific region of the posterior cortex that 
contains the highest-level connections. The top level in the hierarchy of the posterior 
hemisphere is localized to the association cortex at the confluence of parietal and 
temporal lobes. At the lowest level of a cognitive network are patterns of activity in 
the primary sensory cortex (Hubel, 1988), and these are referred to as properties. 
An analogous hierarchical structure pertains in the anterior hemisphere, in which the 
cognitive networks for acts are networked together to form the cognitive networks for 
procedures. The lowest level of the cognitive network system in the anterior 
hemisphere consists of patterns of activity in the primary motor cortex. The highest 
level of the anterior hierarchy is localized to the prefrontal cortex. Most of my 
argument refers to the posterior hemisphere, although the anterior hemisphere is 
important for a broader discussion of mathematical reasoning. 
Of the many possible kinds of cognitive networks, those correlative to concepts, 
percepts, and properties in the posterior hemisphere, and to a lesser extent their 
analogues in the anterior hemisphere, are the only types of cognitive networks of 
relevance for this dissertation. 
Reciprocal neural connections join analogous hierarchical levels in the anterior 
hemisphere and posterior hemisphere. At the lowest level, percepts and acts are 
linked through movement and sensation in the perception-action loop (Fuster, 2006). 
Higher-level links between the two hemispheres are also perception-action loops, 
although they do not circle through the external world. 
Cognitive network theory correlates certain aspects of the structure of neural activity 
to certain aspects of the structure of cognition. An alternative approach is Brown’s 
(1988, 2002) microgenetic theory. Microgenesis utilizes the knowledge of large-scale 
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brain structure, brain phylogenesis, and data concerning the cognitive effect of brain 
lesions to develop a theory of cognition. Microgenetic theory and cognitive network 
theory are synergistic. Microgenesis refers to the linear evolution of a cognitive state 
from the potential of a concept to the actuality of a percept. 
Bergson’s (1889/1960) duration concerns the subjective aspect of cognition, without 
reference to neural correlates. The philosophy of duration inspired microgenetic 
theory. Bergson’s (1896/1991) metaphor of the cone describes the emergence of 
concepts from deep duration and their surge toward actuality as percepts. 
An alternative approach to duration, inspired by cognitive network theory, converts 
the cone to a cylinder. Concepts and percepts share the same extent, in that properties 
of percepts correspond on a one-to one basis with potential properties of concepts. 
Concepts at one end of the cylinder emerge as percepts at the other end, with 
properties running like fibers the length of the cylinder. This metaphor is valuable in 
that a particular cognitive ability facilitates a narrowing of the cylinder, focusing 
cognition, as it were. Identification of the neural correlate of this cognitive ability is 
one of my main goals. 
If an object is recognized, then a specific cognitive network has been activated. This 
is the meaning of recognition. It is not somehow a separate function. Recognition 
may invoke language or some other symbolic designation, but not necessarily. 
However, different cognitive networks can be activated for the same recognition. 
What is recognized is the object’s identity. It should be noted that the object, as in 
external object, is no doubt real, but for the cognizing subject all that matters is the 
activation of cognitive networks. 
A percept will have essential properties and incidental properties with respect to its 
identity. For example, the property of having three sides is essential for a triangle, but 
the property of being green is incidental. Those properties that are essential will have 
the same value in every percept of the object; those properties that are incidental will 
vary over different percepts. This is what essential and incidental properties are—
their designation as essential or incidental does not arise from some metacognitive 
analysis. The potential of an essential property in the concept is limited, whereas the 
potential of an incidental property is correspondingly broad. 
Within the cognitive network correlative to a concept or percept, various components 
can be differentially excited or inhibited. If the components of the cognitive network 
correlative to essential properties are excited, and those correlative to incidental 
properties are inhibited, then the concept or percept is schematic. Because of the 
equality of extent of concepts and percepts, a schematic concept will always 
correspond to a schematic percept, and vice versa. 
The meaning of the narrowing of Bergson’s cone (or cylinder) of duration is the 
schematizing of concepts and percepts. When a schematic concept corresponds to a 
schematic percept, it can be said that the subject “sees the general n the particular” 
(Mason & Pimm, 1984). This, I believe, is the real meaning of the phrase. 
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METHOD 

The method of this paper lies broadly within the research program of 
neurophenomenology (Varela, 1996, 1999). According to Varela (1996), 
“Phenomenological accounts of the structure of experience and their counterparts in 
cognitive science relate to each other through reciprocal restraints” (p. 343). I utilize a 
psychological analysis appropriate to mathematics education, rather than rigorous 
phenomenological investigation, and research on the cerebellum in cognitive science. 
The conclusions arise from mutual constraints offered by the two disciplines. 
EMPIRICAL STUDIES IN COGNITIVE NEUROSCIENCE 
Many regions of the cerebral cortex are linked with the cerebellum in closed, distinct 
cerebrocerebellar loops: cerebral cortex  pons  cerebellar cortex  deep 
cerebellar nuclei  thalamus  cerebral cortex (Allen et al., 2005; Leiner, Leiner, & 
Dow 1986; Schmahmann & Pandya, 1997). In particular, the top level in the posterior 
hierarchy of cognitive networks is linked through the lateral cerebellar cortex and 
neodentate nucleus, all of which are phylogenetically recent neural accretions. 
The cerebellar cortex has a highly uniform structure (Ramnani, 2006). It contains 
around 5000 microcomplexes, which are indivisible modules of cerebellar activity 
(Ito, 2006). The microcomplexes receive cerebral input through the cerebrocerebellar 
loops, and respond combinatorially to this input (Imamizu et al., 2000). 
For each cerebrocerebellar loop, an adjunct loop passes from the cerebral cortex to 
the cerebellum through the inferior olive and red nucleus (Habas & Cabanis, 2007; 
Leiner et al, 1986). This adjunct loop selectively suppresses microcomplex response, 
enabling the cerebellum to “learn” (Kawato, 1999). Cerebellar learning is a form of 
supervised learning; supervision is accomplished by means of recognition at the 
cerebral source of the loop (Doya, 1999). 
RESULTS AND CONCLUSIONS 
The functional role of the cerebellum is to schematize concepts. Analogously, the 
functional role of the cerebellum is to schematize procedures. The hypothesis is 
falsifiable and therefore scientific—it is “true” only to the extent of its explanatory 
power. The following are arguments in favour of the hypothesis: 

• Phylogenesis. Some cerebrocerebellar loops are composed of neural 
structures that are of very recent phylogenetic origin (Leiner, Leiner, & 
Dow, 1993). The functional correlates of these loops will also be of very 
recent phylogenetic origin. Sophisticated conceptual thought, presumably, 
arose only with humans. It is consistent with the hypothesis that recently 
evolved cerebellar structures are implicated in conceptual thought. 

• Structural connections. Cerebrocerebellar loops connect cerebellum and top 
level in the posterior cognitive network hierarchy (Allen et al., 2005). 
Conceptual thought is associated with this region of the cerebral cortex (e.g., 
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Dehaene, 1997) It is consistent with the hypothesis that cerebellar structures 
that connect to this region are implicated in conceptual thought. 

• Uniformity of cerebellar microstructure. Orthodox theory postulates that the 
effect of the cerebellum with respect to the anterior hemisphere is to make 
motor behaviour smooth and efficient (Schmahmann, 1997). This can be 
interpreted as schematization of procedures. There is a remarkably uniform 
microstructure across the entire cerebellar cortex—uniformity of structure 
implies uniformity of function (Ramnani, 2006). In the posterior 
hemisphere, this implies schematization of concepts. 

• Analogy to the anterior hemisphere. This argument presupposes the notions 
of concept, percept, and property, and their anterior hemisphere analogues. 
A functional role of the cerebellum with respect to the anterior hemisphere is 
to overcome inefficiencies in the perception-action loop by means of 
forward models (e.g., Ito, 2006) The cerebellum accomplishes this by 
emphasizing those action properties in the cognitive network of the action 
plan that will belong to the successor act. Because of the temporal 
relationship between the action plan and its individual acts, the effect will be 
to select few action properties from many. If the role of the cerebellum with 
respect to the posterior hemisphere is the same, then the effect in the 
posterior hemisphere will also be to select few properties from many—in 
other words, the concept is schematized. Moreover, schematization of 
concepts is the posterior analogue of smooth, efficient motor behaviour. 

• Modularization. Relatively few cerebellar microcomplexes respond 
combinatorially to a vast number of possible cognitive networks (Imamizu et 
al., 2000). Cognitive networks can be modularized by means of their 
properties. Modularization of cognitive networks by properties, such that a 
collection of microcomplexes corresponds to a given property, is consistent 
with the argument by analogy to the anterior hemisphere. 

• Supervised learning. In its input and output characteristics the cerebellum is 
a supervised learning system (Doya, 1999). An alternative name for 
supervised learning is concept learning, in which a diverse input is classified 
by the learning system. In this case cognitive networks are input and the 
method of classification is by concept recognition. It is consistent with the 
hypothesis that the cerebellum is a concept learning system. 

• Cerebellar lesions. Lesions of phylogenetically recent cerebellar structures 
produce cognitive dysfunctions that are consistent with an impaired ability 
to schematize concepts; these same lesions do not result in motor 
dysfunction (Schmahmann, 2004). 

• “Seeing the general in the particular.” It was argued that schematization of 
concepts may be regarded as seeing the general in the particular. There must 
be a neural correlate for this cognitive facility. It is proposed that activity of 
the cerebellum with respect to the cerebral cortex is this neural correlate. 
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IMPLICATIONS FOR MATHEMATICS EDUCATION 
An essential characteristic of mathematical reasoning is its focus and precision. In 
other words, mathematical reasoning is the epitome of reasoning with schematic 
concepts and percepts. In subjective, functional terms, the role of the cerebellum is to 
schematize concepts and percepts. In other words, the cerebellum sharpens and 
focuses cognition. The manner in which this is accomplished in objective, 
physiological terms has significant implications for mathematical reasoning and 
learning. Three of these implications are repetition, decontextualization, and 
decomposition. Although mathematical reasoning consists of the balanced application 
of concepts and procedures, the presentation below will focus solely on the posterior 
hemisphere and the conceptual aspect of mathematical reasoning. The summary 
argument below does not do justice to the full argument. 

• Repetition refers to presentation of a mathematical concept multiple times. 
On a single presentation the concept may not be schematized accurately. 
However, subsequent presentations of the same concept will correct the 
schematization (Imamizu et al., 2000). Cortical recognition of the concept 
supervises the accuracy of cerebellar learning (Doya, 1999). 

• Decontextualization of refers to presentation of the object that represents a 
concept in such a way that the percept, and therefore also the concept, will 
involve few incidental properties. Cerebellar schematization will be less 
efficient if a concept has associated with it a large number of incidental and 
essential properties which are emphasized equally. 

• Decomposition of a mathematical concept refers to breaking the concept into 
simpler constituents, each of which is learned separately. Decomposition 
may be regarded as serial decontextualization, and efficacious for that 
reason. Synthesis of the learned components is a separate issue. 

These three implications for mathematical learning of the cerebellar schematization 
hypothesis recall traditional forms of mathematics education, with rows of students 
bent over exercises consisting of large numbers of largely identical symbolically 
presented problems. I do not claim that this is the way for all mathematics education. 
The theoretical efficacy of repetition, decontextualization, and decomposition can 
inform mathematics education. On the other hand, Anderson, Reder, and Simon 
(2000) argue that constructivist and situated learning theories of mathematics 
education have misapplied the results and ideas of cognitive psychology. It is too 
simplistic to suppose that mathematical learning can only take place with complex, 
varied, contextualized presentations of mathematical ideas. On the other hand, I am 
not arguing that mathematical learning can take place without constructivist elements. 
Mighton (2007) writes, 

People are seldom more destructive than when they invent simple theories to solve 
complex problems. In education there are too many variables to control for a researcher 
to prove that one method of teaching or one philosophy is necessarily, under all 
conditions, superior to another. (p. 226) 
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A good metaphor is the driving range. Few people would claim that the 
decontextualized driving-range can replace real golf. On the other hand, golf can be 
decomposed into various elements, one of which is hitting the ball a long way. It is 
beneficial, surely, for golfers to improve this element of their game by practicing it in 
isolation. Moreover, repetitive activity, swing after swing, allows golfers to perfect 
their technique. The driving range is a good way to improve certain aspects of one’s 
golf. And it can be fun . . . . 
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ENCAPSULATING INFINITY: RECONSIDERING ACTIONS 
Ami Mamolo 

York University 
 

This report is part of a broader study that investigates the specific features involved 
in accommodating the idea of actual infinity. It focuses on the conceptions of two 
participants – a mathematics university student, and a graduate – as manifested in 
their engagement with a well-known paradox: the Ping-Pong Ball Conundrum. The 
APOS Theory was used as a framework to interpret their efforts to resolve the 
paradox and one of its variants. These two cases suggest there is more to 
encapsulating infinity than just the ability to ‘act’ on a completed object – rather, it is 
the manner in which objects are acted upon that is also significant. 
The focus of this study is shaped by the conceptions of infinity of university students 
and graduates of mathematics as manifested in their engagement with variations of a 
well-known paradox: the Ping-Pong Ball Conundrum (presented and discussed 
below). The APOS (Action, Process, Object, Schema) Theory (Dubinsky & 
McDonald, 2001) postulates a framework for interpreting learners’ understanding of 
mathematics. Dubinsky, Weller, McDonald, and Brown (2005a) proposed an APOS 
analysis of two distinct ideas of mathematical infinity: potential infinity and actual 
infinity. According to Fischbein (2001), potential infinity can be thought of as a 
process which at every moment in time is finite, but which goes on forever. In 
contrast, actual infinity can be described as a completed entity that envelops what 
was previously potential. Through the mechanisms of internalisation and 
encapsulation, Dubinsky et al. (2005a,b) suggest that learners construct meaning for 
the concept of mathematical infinity as a process and infinity as an object. Further, 
they relate these two conceptualisations to the ideas of potential infinity and actual 
infinity, respectively. This study takes a closer look at the specific features connected 
to the encapsulation of infinity as an object.  
THE PING-PONG BALL CONUNDRUM 
The Ping-Pong Ball Conundrum can be presented in the following way: 

Imagine you have an infinite set of ping-pong balls numbered 1, 2, 3, …, and a very large 
barrel; you are about to embark on an experiment. The experiment will last for exactly 1 
minute, no more, no less. Your task is to place the first 10 balls into the barrel and then 
remove ball number 1 in 30 seconds.  In half of the remaining time, you place balls 11 – 
20 into the barrel, and remove ball number 2. Next, in half of the remaining time (and 
working more and more quickly), place balls 21 – 30 into the barrel, and remove ball 
number 3. Continue this task ad infinitum. After 60 seconds, at the end of the experiment, 
how many ping-pong balls remain in the barrel?  

The normative resolution to the Ping-Pong Ball Conundrum (PP) involves 
coordinating three infinite sets: the in-going ping-pong balls, the out-going ping-pong 
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balls, and the intervals of time. In order to make sense of the resolution to this 
paradox, a normative understanding of actual infinity is necessary. Although there are 
more in-going ping-pong balls than out-going ping-pong balls at each time interval, 
at the end of the experiment the barrel will be empty. An important aspect in the 
resolution of this paradox is the one-to-one correspondence between any two of the 
three infinite sets in question (see Mamolo & Zazkis, 2008, for a more detailed 
discussion). Given these equivalences, at the end of the experiment, the same amount 
of ping-pong balls went into the barrel as came out. Moreover, since the balls were 
removed in order, there is a specific time for which each of the in-going balls was 
removed. Thus at the end of the 60 seconds, the barrel is empty.  
A variation of the Ping-Pong Ball Conundrum can easily be imagined. Consider the 
following: 

Rather than removing the balls in order, at the first time interval remove ball 1; at the 
second time interval, remove ball 11; at the third time interval, remove ball 21; and so 
on… At the end of the experiment, how many balls remain in the barrel? 

This Ping-Pong Ball Variation (PV) begins in much the same was as the original 
Ping-Pong Ball Conundrum (PP). In one minute, an experiment involving inserting 
and removing infinitely many ping-pong balls from a barrel is carried out. However, 
the distinction lies in the fact that the Ping-Pong Ball Variation calls for the removal 
of balls numbered 1 at time one, ball number 11 at time two, ball number 21 at time 
three, and so on. Thus, despite the one-to-one correspondences between all of the 
infinite sets in question, at the end of the 60 seconds there will remain infinitely many 
balls in the barrel. In this experiment there will never be a time interval wherein balls 
2 to 10, 12 to 20, 22 to 30, and so on, are removed. The seemingly minor distinction 
between removing balls consecutively, as in PP, versus removing them in a different 
ordering, as in PV, has a profound impact on the resolution of the paradoxes: while in 
one instance subtracting infinitely many balls from infinitely many balls yielded zero, 
in the other it yielded infinitely many. 
BACKGROUND 
The Ping-Pong Ball Conundrum, PP, and the Ping-Pong Ball Variation, PV, illustrate 
an essential feature of the conventional understanding of actual infinity: that the 
‘sizes’ of infinite sets, or their ‘cardinalities’, are compared by establishing one-to-
one correspondences. This understanding forms the basis of Cantor’s Theory of 
Transfinite Numbers, a theory in which Cantor developed several aspects of actual 
infinity, and which is accepted today as one of the cornerstones of mathematics. 
A prominent trend in current research in mathematics education has been to analyse 
learners’ conceptions of actual infinity through their strategies of comparing infinite 
sets (e.g. Fischbein et al., 1979; Tirosh & Tsamir, 1996; Tsamir, 2003). In particular, 
when analysing infinite sets, students were observed to apply methods for comparing 
sets that are acceptable in the case of finite sets, such as the ‘inclusion’ (or ‘part-
whole’) method, but which result in contradictions in the infinite case (Dreyfus & 
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Tsamir, 2004; Fischbein et al., 1979; Tall, 2001). Further, Tsamir and Tirosh (1999) 
observed that different presentations of sets, such as the set N = {1, 2, 3, …} of 
natural numbers and the set E = {2, 4, 6, …} of even numbers, elicited different 
strategies of comparison from high school students. For example, if the sets N and E 
were presented side-by-side, students tended to respond that N was the larger set 
since the set E was contained within it (the ‘inclusion’ method of comparison). 
Whereas if the sets N and E were presented one above the other, the tendency was to 
draw a one-to-one correspondence between each number and its double and thus 
conclude that the two sets were equinumerous. In a related study which examined the 
conceptions of prospective secondary school teachers, Tsamir (2003) observed, 
“Even after studying set theory, participants still failed to grasp one of its key aspects, 
that is, that the use of more than one … criteria for comparing infinite sets will 
eventually lead to contradiction” (p.90). 
Complementing investigations into learners’ conceptions of infinite set comparison 
includes research which examines learners’ understanding of paradoxes of infinity. 
Mamolo and Zazkis (2008) explored the conceptions of undergraduate and graduate 
university students as they emerged in participants’ engagement with Hilbert’s Grand 
Hotel paradox and the Ping-Pong Ball Conundrum. They observed: (1) participants  
attended to the practical impossibility of the paradoxes and dismissed the normative 
solutions, and (2) participants who distinguished between their intuitive inclination 
and formal knowledge had the most success resolving the paradoxes. Mamolo and 
Zazkis (2008) concluded, in resonance with recommendations made by Dubinsky and 
Yiparaki (2000), that separating ‘realistic’ and intuitive considerations from 
conventional mathematical ones is important in helping learners appreciate properties 
of actual infinity.  
This study extends on prior research by using paradoxes as a lens to investigate 
learners’ understanding of ‘acting’ on infinite sets, in the terminology of the APOS 
Theory. Using paradoxes as a lens to investigate learners’ understanding of different 
aspects of actual infinity has been acknowledged as an effective means to help 
identify specific difficulties inherent in conceptualising actual infinity (Dubinsky et 
al. 2005a; Mamolo & Zazkis, 2008). In particular, through an analysis of learners’ 
engagement with the ping-pong ball paradoxes, this study offers a first look at the 
specific challenges associated with subtracting infinite quantities.  
This report focuses on the responses of a mathematics university student and a 
graduate of mathematics, as they addressed the Ping-Pong Ball Conundrum (PP) and 
the Ping-Pong Ball Variation (PV), and analyses their responses through the 
perspective of the APOS Theory. Of particular interest are the specific attributes 
related to encapsulating infinity. 
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THEORETICAL PERSPECTIVES 
The APOS Theory postulates a framework for interpreting learners’ understanding of 
tertiary mathematics. Through the mechanisms of internalisation and encapsulation 
the learner is said to construct meaning for mathematical entities that are 
conceptualised with the ‘structures’ of the APOS Theory: actions, processes, objects, 
and schemas (Dubinsky & McDonald, 2001). In the terminology of the APOS 
Theory, an understanding of a mathematical entity begins with an action conception 
of that entity. Action conceptions are recognised by an individual’s need for an 
explicit expression to manipulate or evaluate. Eventually, an action may be 
interiorised as a mental process. That is, once an action has been interiorised, the 
individual can imagine performing an action without having to directly execute each 
and every step. A process conception is recognised by qualitative descriptions which 
may describe actions though not execute them. If the individual realises the process 
as a completed totality, then encapsulation of that process to an object is said to have 
occurred. Encapsulation of a process is considered a sophisticated step in an 
individual’s conceptualisation. It requires appreciating the mathematical entity as a 
completed object that can be acted upon. In other words, the entity is conceived of as 
an object upon which transformations or operations may be applied. These three 
structures of the APOS Theory – the action, process, and object – describe how the 
idea of a single mathematical entity may develop. However, it is possible that a 
mathematical concept may be composed of more than one entity, involving several 
actions, processes, and objects that must be coordinated into a mental schema.  
Relating this discussion to the concept of mathematical infinity, Dubinsky et al. 
(2005a,b) suggested that interiorising infinity to a process corresponds to the idea of 
potential infinity, that is, infinity is imagined as performing an endless action, though 
without imagining carrying out each step. Encapsulating this endless process to a 
completed object is said to correspond to a conception of actual infinity. Connecting 
Dubinsky et al.’s (2005a,b) classification to this study, in the case of the Ping-Pong 
Ball Conundrum, the action of cutting the remaining time in half can be imagined to 
continue indefinitely, and would thus describe potential infinity. Whereas actual 
infinity would entail the completed infinite process of halving time intervals, and 
would describe the set of time intervals as a completed entity, where each interval 
exists within the 60 seconds. 
As in the general case, encapsulation of infinity is considered to have occurred once 
the learner is able to think of infinite quantities “as objects to which actions and 
processes (e.g., arithmetic operations, comparison of sets) could be applied” 
(Dubinsky et al., 2005a, p.346). Dubinsky et al. (2005a) also observed that “in the 
case of an infinite process, the object that results from encapsulation transcends the 
process, in the sense that it is not associated with nor is it produced by any step of the 
process” (p.354). Brown, McDonald, and Weller (in press) introduced this 
possibility, and termed the encapsulated object of infinity a transcendent object. 
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Two questions arise: (1) How does a learner act on infinity (i.e. how are arithmetic 
operations applied)? and (2) What can the ‘how’ tell us about an individual’s 
understanding of infinity? This study is a first attempt at addressing these questions. 
SETTING AND METHODOLOGY 
Data for this study were collected from two participants: Jan and Dion. Jan was 
mathematics major in a southeastern state university in the USA. She was in her final 
year of the program and was very interested in the concept of infinity both from a 
mathematical and philosophical point of view. Jan had prior experience with Cantor’s 
Theory of Transfinite Numbers through formal instruction during her undergraduate 
studies. In particular, she was familiar with comparing sets via one-to-one 
correspondences. Dion was an instructor in mathematics education at a university in 
eastern Canada. He held a master’s degree in mathematics education and a bachelor’s 
degree in mathematics. Dion taught prospective secondary school teachers in 
mathematics and didactics, the curriculum for which included aspects of Cantor’s 
theory, such as establishing a one-to-one correspondence between the sets of natural 
and even numbers. 
Data was collected from an interview with the participants, who were asked the Ping-
Pong Ball Conundrum (PP) as stated above. Following their responses and a 
discussion of the normative resolution to PP, participants were asked to address the 
variant (PV) which calls for the removal of balls numbered 1, 11, 21, … A discussion 
of the normative resolution to PV, akin to the explanation above, ensued. After this 
discussion (at the end of the interview), participants were encouraged to reflect on the 
two thought experiments and their outcomes. 
RESULTS 
Contrary to prior research (Mamolo & Zazkis, 2008), both Dion and Jan were easily 
able to resolve the Ping-Pong Conundrum (PP) by establishing the appropriate one-
to-one correspondences. They both realised that the question of ‘how many’ balls 
referred to the cardinality of the sets of balls, and as Jan stated: 

“equal cardinality of two sets is entirely determined by the existence or nonexistence of a 
bijection [one-to-one correspondence] between the two sets in question.” 

When explicitly addressing the comparison between sets of in-going and out-going 
balls, both participants realised that “every ball that is put into the barrel is removed.” 
In Jan’s words: 

“if a ball is placed in the barrel in the nth step, then it is removed in one of the steps 10n-
9, 10n-8, .... ,10n-1, 10n. So if a ball is placed in the barrel during the minute, it will be 
taken out. Conversely, if a ball was taken out of the barrel, it must have been put in at 
some point during the minute. This establishes a bijection between the balls put in the 
barrel and those taken out.” 

Similarly, both Jan and Dion also recognised a one-to-one correspondence between 
the in-going and out-going balls in the Ping-Pong Variation (PV). Dion commented 
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on the similarities between PP and PV as well as the relevance of Cantor’s Theory of 
Transfinite Numbers to his solutions. When addressing PV, Dion reasoned that, as in 
PP, there existed one-to-one correspondences between the pairs of sets of in-going 
and out-going ping-pong balls and time intervals. He concluded that the variant and 
the “ordered case” should yield the same result: an empty barrel. Dion argued that the 
barrel would be empty because “after you go [remove] 1, 11, 21, 31, …, 91, etc, you 
go back to 2”. He described a “strong leaning to Cantor’s theorem” (Cantor’s Theory 
of Transfinite Numbers), and although he insisted that “at some point we’ll get back 
to 2”, he could not justify the claim.  
During the interview, Dion grappled with the possibility of a nonempty barrel. He 
stated:  

“If ball number 2 is there, so is ball 2 to 10, etc… so, infinite balls there? I have trouble 
with that.”  

Eventually, Dion conceded he was “convinced” of the normative solution to PV. 
Dion went on to observe that while “on one hand infinite minus infinite equals zero, 
on the other it’s infinite” – a property of transfinite arithmetic that was absent in his 
prior knowledge of Cantor’s Theory of Transfinite Numbers. Engaging with the two 
paradoxes contributed to Dion’s discovery of the indeterminacy of subtracting 
infinite quantities. Further, Dion’s revelation that “on one hand infinite minus infinite 
equals zero, on the other it’s infinite” suggests that accommodating the idea of actual 
infinity goes beyond the ability to act on an object, and includes an understanding of 
how to act on that object. 
In contrast to Dion’s struggle, Jan was able to resolve PV, recognising that 
“transfinite cardinal arithmetic doesn’t work exactly like finite cardinal arithmetic”. 
Jan connected her understanding of correspondences between infinite sets to explain 
the indeterminacy of transfinite subtraction. She remarked: 

“Even though there is a bijection [one-to-one correspondence] between the set of balls 
put into the barrel and the set of balls removed, there are still an infinite number of balls 
left in the barrel after the minute is up! … we can easily create an infinite sequence of 
balls that are not removed”. 

Jan realized that although the quantity of balls taken out of the barrel was the same as 
the quantity put in, this was not sufficient to conclude that all of the balls had been 
removed. Jan observed that remaining in the barrel was the set of balls numbered  

“{10n+2 | n=0,1,2,...}. This set is clearly infinite, and represents a subset of the balls left 
after the minute. Since the set of all balls left after the minute contains an infinite subset, 
it too must be infinite.”  

Further, Jan recognised the significance of the ordering of out-going balls as it 
determined which balls were removed from or remained in the barrel. Jan reflected 
on this issue as well as the relationship between her intuition and properties of actual 
infinity: 
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“So, if we think about both the original question [PP] and its variation [PV], we seem to 
have done the exact same thing (physically) in both cases, but due to some arbitrary 
numbering system that we have imposed upon the set of balls removed, we have changed 
the remaining number from zero to infinity! But why should numbering matter? We seem 
to have done the same thing in both cases. This is [a] case where the intuition we’ve 
learned from the physical world fails us when it comes to the infinite”. 

DISCUSSION 
(1) How does a learner act on infinity? 
Dubinsky et al. (2005a) suggest two ways an individual may act upon the object of 
infinity – by applying arithmetic operations and by comparing cardinalities of sets. 
Focusing on the former, this study identifies two different ways learners ‘acted’ on 
infinity. Dion, who revealed a normative understanding of infinite set comparison in 
his resolution of PP, suggested that ‘anything’ subtracted by itself should be zero, and 
expressed ‘trouble’ with the idea that the barrel in PV would not be empty. When 
Dion was faced with a non-routine problem regarding transfinite subtraction, he 
‘acted’ by generalizing his intuition of subtracting real numbers, and had difficulty 
with the indeterminacy of subtracting infinite quantities. Dion’s struggle was 
surprising in light of his comfort and understanding of the normative approach to 
infinite set comparison. In contrast, Jan’s ability to deduce consequences of a set 
being equinumerous with one of its proper subsets contributed to her understanding 
of the indeterminacy of transfinite subtraction. It allowed her to ‘act’ – both by 
comparing sets and by applying arithmetic operations – in a way that was consistent 
with normative standards. 
(2) What can the ‘how’ tell us about an individual’s understanding of infinity? 
Dion’s difficulty acting on actual infinity via applying arithmetic operations in the 
normative way, and his resistance toward the indeterminacy of transfinite subtraction, 
suggest that acknowledging the distinction between how actions, such as arithmetic 
operations or set comparisons, behave differently when applied to transfinite versus 
finite entities is an integral part of accommodating the idea of actual infinity. Further, 
it suggests that how actions are applied may be relevant to the encapsulation of an 
object. Dion’s struggle exemplifies the intricacies involved in the mechanism of 
encapsulation – although Dion seemed able to consider the infinite sets of ping-pong 
balls as ‘completed’ entities which could be compared, he nevertheless was 
‘troubled’ with transfinite subtraction.  
This study opens the door to further investigation into how learners act on infinity 
and what, if anything, can be inferred about an individual’s conceptualisation based 
on how that individual applies actions to a mathematical entity and which actions are 
applied.  
References 
Brown, A., McDonald, M., & Weller, K. (in press). Students’ conceptions of infinite 

iterative processes. 



Proceedings, MEDS-C — 2008 1- 52 

Dreyfus, T., & Tsamir, P. (2004). Ben’s consolidation of knowledge structures about 
infinite sets. Journal of Mathematical Behavior, 23, 271–300 

Dubinsky, E., & McDonald, M. A. (2001). ‘APOS: A constructivist theory of learning in 
undergraduate mathematics education research.’ In Derek Holton, et al. (Eds.), The 
Teaching and Learning of Mathematics at University Level: An ICMI Study, (pp. 273–
280). Dordrechet: Kluwer Academic Publishers. 

Dubinsky, E., Weller, K., McDonald, M.A., & Brown, A. (2005a). Some historical issues 
and paradoxes regarding the concept of infinity: an APOS-based analysis: Part 1. 
Educational Studies in Mathematics, 58, 335–359. 

Dubinsky, E., Weller, K., McDonald, M.A., & Brown, A. (2005b). Some historical issues 
and paradoxes regarding the concept of infinity: an APOS-based analysis: Part 2. 
Educational Studies in Mathematics, 60, 253 – 266. 

Dubinsky, E., & Yiparaki, O. (2000). On student understanding of AE and EA 
Quantification. In E. Dubinsky, A.H. Schoenfeld, & J. Kaput (Eds.), Research in 
collegiate mathematics education IV, (pp. 239-289). Providence: American Mathematical 
Society. 

Fischbein, E. (2001). Tacit models of infinity. Educational Studies in Mathematics, 48, 
309–329. 

Fischbein, E., Tirosh, D., & Hess, P. (1979). The intuition of infinity. Educational Studies 
in Mathematics, 10, 3–40. 

Mamolo, A., & Zazkis, R. (2008). Paradoxes as a window to infinity. Research in 
Mathematics Education, 10, 167 – 182. 

Tall, D. (2001). Natural and formal infinities. Educational Studies in Mathematics, 48, 199–
238. 

Tirosh, D. & Tsamir, P. (1996). The role of representations in students’ intuitive thinking 
about infinity. International journal of mathematical education in science and 
technology, 27(1), 33-40. 

Tsamir, P. (2003). Primary intuitions and instruction: The case of actual infinity. In A. 
Selden, E. Dubinsky, G. Harel, & F. Hitt (Eds.), Research in collegiate mathematics 
education V (pp.79-96). Providence: American Mathematical Society. 

Tsamir, P., & Tirosh, D. (1999). Consistency and representations: The case of actual 
infinity. Journal for Research in Mathematics Education, 30, 213–219. 

   



Proceedings, MEDS-C — 2008 1- 53 

CONNECTING PATTERNS AND THAT MUMBO JUMBO STUFF 
WE HAVE TO TEACH: A COLLABORATIVE LESSON DESIGN 

Paulino Preciado 
Simon Fraser University 

 

Predicting students’ struggles and possible approaches in problem solving is part of 
Lesson Study strategy. In this paper a team of teachers—including the author—made 
use of previous experience, knowledge of current students, and some theoretical 
background from the literature in order to prepare suitable responses in advance to 
students' questions and thoughts in the designed tasks. While making such 
predictions, beliefs of mathematics and mathematics learning were discussed and 
negotiated, and we developed theoretical statements about students' learning 
process. In conclusion, I argue that predicting such possible students' struggles and 
approaches not only provides an arena to analyze and negotiate teachers' 
mathematical and pedagogical knowledge, but also is a critical factor contributing to 
the improvement to educational systems.  
INTRODUCTION 
This paper is a preliminary result of a wider research project which attempts to 
analyze teachers' interactions when designing mathematical lessons collaboratively—
in particular by conducting lesson study—as described by James W. Stigler and 
James Hiebert in their book The Teaching Gap (1999). The research focuses on the 
potential teaching improvement by giving an account of teachers' changes in their 
beliefs and practices. 
Teachers and educators have been using collective lesson design and analysis as part 
of their professional development. Watanabe (2007) explains that lesson study 
contributes to improving the curriculum and textbooks design; Marton and Tsui 
(2004) use learning study, based on variation theory, as means of improving learning. 
Both learning study and lesson study involve collective lesson design by teachers and 
educators in a reflexive way. Communities of teachers and educators pursuing 
learning improvement in a critical way are sustained on social practices of teaching—
for instance, Jaworski (2006) argues in favor forming communities of inquiry, and 
Servage (2008) describes the critical and transformative practices of professional 
learning communities. This perspective situates the teachers in a more socially-
engaged practice, going beyond just the classroom: critical collaborative work among 
peers is a part of teachers' practice. 
It is easy to predict the kind of interactions that members of a lesson design team 
could have, as well as the knowledge they might share. Subject matter, pedagogical 
and curricular knowledge—as described by Shulman (1986)—is shared through the 
discussions teachers have while planning  lessons. The reflexive process of teachers 
and the changes they undergo have been analyzed using narratives (e. g. Brown and 
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Jones, 2001). However, a good understanding of the factors which contribute to 
professional growth in a community and its members when working in a 
collaborative way is needed in order to implement and sustain such community' 
development. Which factors contribute or constrain the collaborative work? What 
kinds of interactions trigger the teachers' learning in a community? What are the 
individual and community's learning processes? The aims of this research is to take a 
look inside a small community in order to observe its members' interactions and 
learning while participating in a cycle of lesson design, implementation, and 
refinement. 
Among the topics teachers use to discuss in lesson study are: the selected problem for 
the lesson, including its wording and numbers; anticipated solutions, thoughts, and 
responses which students might develop; and the kind of guidance, or questions, that 
could be given to support students showing some misconceptions in their thinking 
(Stigler & Hiebert 1999, p. 117). In this paper I show a case where teachers involved 
in lesson study engage in discussions using theoretical statements,both derived from 
the literature and developed by their own, while approaching those aforementioned 
topics. 
THEORETICAL BACKGROUND 
“Communities of practice” (Wenger, 1999) is a useful theory to describe social 
interactions of people having a common enterprise. The notions of negotiation of 
meaning and identity serve to describe how knowledge is generated in such a 
community. In order to describe the process of designing the lesson, and in particular 
how a team developing theoretical statements about student learning, it is important 
to consider the collective characteristics of the task. As a community, each participant 
has a way of engaging with the team. Each individual contributes different ideas and 
resources according to his or her own perspective. Each participant has an identity, 
and a role in this particular community. The meaning of the theoretical statements 
obtained in the discussion of the lesson is negotiated by the team.   
I will consider professional development not only as an individual enterprise, but also 
as a matter of community learning. For instance, if some teachers leave the school, 
the community of the school keeps a legacy of the former members. From this point 
of view, improving teachers' practices also improve s the school in time.  
Brown (2001) describes learning not just as adding knowledge, but as a 
transformative process: “...knowledge, or at least our state of knowing, can be 
transformed in many ways; one subtracts from it as well as adds to it . . . one 
reorganizes  so that new things get new meaning” p. 84. I use this description of 
learning for both communities and individuals; the case of learning in a community is 
described by Wenger (1998). From a phenomenological perspective, Brown (argues) 
argues that “It is the individual's experience of the world, of mathematics and social 
interactions which governs his actions rather than externally defined notion of 
mathematics itself” p. 138. I consider not only mathematical notions, but also ideas 
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we may have about any other subject; in particular teachers' notions of students' 
learning process. Teachers and researchers build their knowledge from personal 
experience, peers discussion, and literature reviews—which in any case are 
subordinated to personal interpretation. From this point of view, the individual—
teacher or researcher—as well as the community, makes meaning of, describes, and 
predicts certain phenomena—for example, students' performance in a classroom. I 
will call these individual or collective interpretations theoretical statements. 
METHODOLOGY 
In order to give an account of the evolving process of teachers designing a lesson 
through several meetings, ethnography is a suitable means of describing social 
interactions and micro-cultural aspects of the community. A team of teachers was 
video recorded while designing and discussing a mathematical lesson.  I split the 
video records in small segments and write a description according to what was 
discussed in each moment, generating pre-codes. After focusing on teachers' use of 
theoretical statements to predict student approaches to the mathematical tasks of the 
lesson, I selected some segments to transcribe and analyze. My participation in the 
research is both as a member of the team and as a researcher. The use of video 
allowed me to focus fully in the lesson design discussion, and observe the meetings 
later for research purposes. 
As  I mentioned above, this is a preliminary report of a design experiment (Cobb, 
Confry, diSessa, Lehrer, & Schuable, 2003) and some steps which will complement 
and give stronger validation to the study are still missing. Further interviews with 
participants will be conducted in order to discuss my conclusions, or detect new 
issues. New interventions in the future will be conducted with a possible shift in the 
research. 
THE STUDY 
The team was composed of three secondary mathematics teachers from the same 
school and me—I have experience teaching at this level, though in another country. I 
will refer to myself as Armando when describing and analyzing the video recorded 
meetings.   
The lesson has been designed for a grade nine class in a secondary school in British 
Columbia. We held five meetings, one a week, before the implementation of the 
lesson. Teachers selected the goal of the lesson study: for students to write algebraic 
expressions from word sentences. We decided to use patterns for this purpose in part 
because it relates to the curricular prescribed learning outcomes students have to 
achieve.  
From the video it is possible to distinguish some differences among the team 
members. For instance, Arnold (pseudonym) always brings some book, article, or 
other resource to the discussion; Brad (pseudonym) engages in a critical way in the 
discussion by questioning whether we will reach the desired goals of the lesson, 
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Denzel (pseudonym) used to redirect the discussion of the meeting when we lost 
focus, and Armando used to refer to his previous experiences to explain ideas. These 
differences are instances of each member engaging in the community. 
Theorizing in order to predict 
Since the first meeting, when we decided to use patterns, Armando has hypothesized 
that students will make meaning of algebraical expression easier if they can verbalize 
mathematical procedures derived from finding the required number—for example, 
perimeter, amount of squares—in a sequence of shapes with some linear pattern. In 
this hypothesis, Armando was theorizing the way they can make sense of algebraic 
expressions. 
When we started to predict possible student approaches and difficulties, theoretical 
statements were used in the discussion; some of them came from books or other 
material and some of them were generated by us. I will show first an example of the 
use of theoretical statements from the literature. 
As a way of describing the students level of understanding, Arnold referred to an 
assessing scale which appears in Marzano (2007) and consists in four major levels—
with some additional sub-levels in between.   

The lowest score value on the scale is a 0.0, which represents no knowledge of the topic. 
Even with help, the student demonstrates no understanding or skill relative to the topic . . 
. A score of 1.0 indicates that with help the student shows partial knowledge of the 
simpler details and processes as well as the more complex ideas. . . .[with] a score of 2.0, 
the student independently demonstrates understanding of and skill at the simpler details 
and processes, but not of the more complex ideas and processes. A score of 3.0 indicates 
that the student demonstrates skill and understanding of all the content—simple and 
complex—that was taught in class. A score of 4.0 indicates that the student demonstrates 
inferences and applications that go beyond what was taught at class (p. 104).  

This scale was used by Arnold in the second meeting as both a reference to 
classifying students as well as a description of how we would like students to move 
forward. 

Arnold:  More moving on the scale so that if we model here for students with 
help, then hopefully the students will be able to move into this area 
[pointing to the score above 1.0 in the assessing scale]. 

Further in the same session, Arnold kept using the same scale to describe students' 
possible paths when we were selecting the problem to be posed in the lesson. 

Arnold:  If it was up to me, I would introduce that and really try to move them 
on this continuum to one and then set them independently in something 
more challenging, and then see where the students can get to [pointing out 
to the Marzano's scale]. 

A second case of the use of theoretical statements is the way it helps to make 
meaning of students' learning process. In the end of the second meeting  Brad was 
questioning whether the use of patterns in the way we were discussing would be 
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effective in making students translate words into algebraic expressions, while 
Armando argued it was necessary that students come up with the algebraic 
expressions from their own explanation of how to find the general term in the 
patterns. 

Brad:  After doing all those puzzle-solving [problems] and getting their own 
solutions and writing them down and talking about it, how is that help 
with specifically this task of translating? [words into algebraic 
expressions].  

.... 
Armando: We must conclude this lesson.... with some algebraic expressions . But the 

idea is that these algebraic expression come from the wording of students. 

However, Brad is still concerned with covering the topics in the curriculum, which 
are the same as in the book, and how to relate that with the use of patters in the lesson 
we are designing. 

Brad:   I'm just trying to find the connection, the link . . . . So,  this is the class, 
we now did all this problem solving, and now lets see if they can do this.  
We still have to teach this, no matter what.... After all these funny games 
we still have to teach this [pointing to the page in the textbook related to 
writing algebraic expression from English sentences]. 

Next meeting Brad made meaning of the students' process of writing their ideas in 
order to write algebraic expressions. It seems that Brad is thinking and talking, 
questioning and answering at the same time. 

Brad:  What I am trying to do is [this], I'm fitting in what I have to teach in 
that section, where they translate words into algebra, with the activities 
here. So, I was thinking: lets say they come up with “there is two more 
than three times the stage”. Well, that is good because then we now can 
express algebraically two more than three times the stage; “is this like 
this?” and you can write it like that.  

   In my mind, I am trying to blend in what we are doing here with 
what we have to teach, or what they have to know how to do in the 
textbook. I am trying to find that connection between this and those 
mumbo jumbo stuff they have to do. They say, “Oh this is just two more 
than the stage.” How do we write two more than something? 

Arnold:  I think that will be amazing if they can verbalize that, 
because.[interrupted by Brad] 

Brad:  They can verbalize it down here: you know for the tenth stage you just 
have to add two more to the previous stage. But, what does it have meant? 
How do you write that in math instead of just writing it in words? 
I try to blend, I'm trying to fit in that section I want to teach with what we 
were doing here. I try to find the way to do that in my head. 

   So if I would do this in my first class, I would say O.K. lets take 
a look at all your answers down here. Is there a way to simplify that? Is 
there a way to make it easier to write instead of all the words? You know, 
it took two lines or  three lines to explain your answers. Is there a simpler 
way, an easier way to do that? And they will say “okay. . . . lets write that 
algebraically, or may not call it algebraically, lets write that in an easier 
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way, and see what it looks like.” 

And then Brad agrees with Armando about providing a hypothetical case of two 
different students' approaches to find the general term in one of the possible 
sequences we use in the lesson. 

Brad:  But one group may say “two more than twist the number” or one group 
may say “add one to the stage and double it.”  Well, let's say they are the 
same. Let's work it out algebraically and see they are the same... Why not 
use algebra instead of all these words? 

After this discussion, Brad started participating in a more enthusiastic way with the  
lesson design, possibly because Brad has made meaning of the use of the patterns in 
getting students to translate word sentences to algebraic sentences.  
A third case was the use of theory from other sources in order to design our questions 
for students' task. In the fourth session, Arnold brought a rubric to evaluate 
communication for students from a binder with many resources which have been 
used before. The rubric consists in three criteria and four levels for each criterion. 
Although we did not use this rubric to describe or assess students, it was useful in 
phrasing one of the questions for the students' task. 

Armando: We are missing here the fourth question which is: could you explain how 
do you get it [the number of the n stage]? 

Arnold:  How do you phrase that? Explain your ... like it was consistent with 
this rubric: “my explanations are clear and complete, and easily 
understood.” [showing the communication evaluating rubric]. 

We were discussing the point that the textbook presents sentences which students 
must  translate into algebraic expression. These expressions have no context and 
Denzel, as a theoretical statement, though that it would be problematic for students. 
Brad agreed with that statement. 

Denzel:  I'm kind of thinking that when they describe something that is physical, 
then it's easier to translate it [to an algebraic expression] than just some 
sentence. 

Finally, at the end of the fifth meeting, we came up with a chart of students' possible 
thought-pathways, struggles, and teachers' responses. This reflects the theoretical 
statements we came up after meaning discussion and negotiation. These statements 
provided a framework which was also proposed as a frame to observe students 
achievements in the lesson while it was being implemented (Table 1).  

Student steps and potential gaps Possible teacher responses 

Student draws each pattern and counts 
number of squares/perimeter. 

 

Student uses recursive thinking (adding 
to previous stage) to determine number of 
squares/perimeter at each subsequent 

“Where are you adding lines at each 
stage?” 
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stage. 

Student can predict number of 
squares/perimeter at any stage (non-
recursively). 
Student can use words to describe how to 
determine number of squares/perimeter at 
any stage (non-recursively). 

“Is there a more efficient way of adding 
[the same number] many times?” 
“For [a particular stage], how many times 
did you add [the same number]?” 
“Think aloud.” 

Student can write a mathematical formula 
to describe number of squares/perimeter 
at any stage. 

For pattern A, work through this step 
with the class, using several different 
examples of student-generated words to 
come up with (hopefully) a few formulas 
which can be compared. Use n , as well as 

1n− . Use the word “previous” in relation 
to 1n− . Use the word “formula”. 
Refer to this example later when students 
try to find formula for other patterns. 

Table 1. Students' steps and potential gaps, and teachers' responses. 
After the implementation of the lesson, we could observe that almost all student 
teams, when presenting their answers to the group, came up with a general formula to 
describe the patterns in the tasks. This was beyond the expectations of the lesson. We 
also realized that students didn't have troubles in moving from the drawn figures to 
the recursive formula. However, they needed some guidance to explain their process. 
Some other students wrote algebraic general expressions as explanation for their 
procedures. Although they were correct, explanation with words were missing. 
Discussion 
The process of anticipating solutions, thought, and responses which students might 
develop, as well as planning the kind of guidance teachers will give to students, 
entails teachers' use of theoretical statements—which either come from a known 
cognitive theory or are developed by teachers. This process challenges teachers' 
beliefs and assumptions, and triggers an adjustment of both the individual teacher's 
conceptions and collective meaning. 
The idea of generating and refining theories useful for teaching in a collaborative 
lesson design involving teachers has been applied in design experiments (Cobb, 
Confry, diSessa, Lehrer, & Schuable, 2003). For instance, learning study uses 
variation theory as a grounded theoretical framework (Marton & Tsui, 2004). The 
capability of describing and anticipating phenomena is characteristic of any theory. 
Therefore, describing and anticipating students' solutions or approaches to posed 
problems must entail the use or development of theoretical frameworks. 
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In addition to corroborating and refining teachers' theoretical statements, written 
reports of implemented lessons contribute to an improvement in the community itself, 
not only in the teacher. In this way, the educational system can be in a permanent 
process of enhancement, as Watanabe (2007) mentions with regard to Japanese 
elementary educational system. Implementing communities of teachers working 
collaboratively and contributing to next teachers generations in local settings—school 
or district—will contribute to the learning of such community, not only as a mentor-
apprenticeship relation with novice and experienced teachers, but also as generating 
new knowledge from teacher's practice.  
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PEDAGOGICAL CONTENT KNOWLEDGE IN MATHEMATICS 
FOR ELEMENTARY TEACHERS COURSES:  TWO 

PRELIMINARY CASES 
Susan Oesterle 

Simon Fraser University 
 

This paper offers some preliminary results of a qualitative research project whose 
aim is to study pedagogical content knowledge in the context of Mathematics for 
Elementary Teachers courses.  Grounded theory methodology is applied to 
interviews with two teachers of this course. Themes that emerge from analysis of the 
transcripts are identified and discussed, and implications for future directions of the 
project are considered. 
BACKGROUND 
Over the last twenty years mathematics education researchers have worked towards 
more clearly articulating the knowledge that teachers need to teach mathematics 
effectively.  In the late 1980’s Lee Shulman (1986) coined the phrase “pedagogical 
content knowledge”, which captured the essential interplay between subject 
knowledge and knowledge of teaching and learning in the practice of teaching.  The 
subsequent research on “mathematics for teaching”, though far from attaining a 
definitive description of all it entails, suggests that beyond subject matter competence 
teachers need a profound understanding of mathematics (Ma, 1999) which allows 
them to plan for and respond to their students’ needs (e.g. Simon, 2004). (See Ball, 
Lubienski, & Mewborn, 2004, for a review.) 
In an effort to more appropriately respond to the needs of prospective elementary 
school teachers, university mathematics departments have developed Math for 
Teachers courses.  These courses are described as mathematics content courses and 
are distinguished from pedagogically focussed mathematics methods courses that are 
offered by education departments.  This apparent separation of content from 
pedagogy seems to go against Shulman’s (1986) call for a more integrated approach.  
However the Math for Teachers courses do aim to develop a deeper conceptual 
understanding of elementary school mathematics than students would have 
encountered previously.  The curriculum typically includes a wide variety of 
representations and models for arithmetic operations and procedures, which forms a 
part of Shulman’s (1986) conception of pedagogical content knowledge.  Opportunity 
exists for teachers of these courses to foster the development of pedagogical content 
knowledge in their students.  But do they? 
Math for Teachers courses are typically taught by instructors who have advanced 
mathematics degrees and little or no formal training in pedagogy, let alone 
experience in elementary school classrooms.  Given the importance of pedagogical 
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content knowledge in the development of good mathematics teachers, it would be 
useful to know to what extent this type of knowledge arises in the context of these 
courses.  
This paper offers some very preliminary results of a larger research project that seeks 
to describe the types of pedagogical content knowledge that are addressed by teachers 
of  Math for Teachers courses, and the methods that these teachers employ.  Such an 
investigation has the potential to contribute to our conception of the mathematical 
knowledge needed for teaching, and provide a theoretical basis for future reform of 
these courses. 
METHODOLOGY 
This study applies grounded theory techniques as described in Cresswell (2008) and 
Corbin & Strauss (2008).  This research methodology is especially suitable for 
developing rich descriptions of complex phenomena.  
Theoretical sampling is employed to select interview subjects from the pool of 
instructors of Math for Teachers courses at various post-secondary institutions in 
British Columbia.  These instructors are invited to participate in a semi-structured 
interview that takes approximately one hour.  The interview begins with questions 
about the backgrounds of the instructors:  education, number of years of teaching, 
and number of years of teaching Math for Teachers.  These questions are followed 
with questions about their initial orientation (preparation) for teaching the course, 
about what they do differently with this group of students compared to their other 
mathematics students, about their goals in teaching the course, and the outcomes they 
believe they achieve. These interviews are then coded for emergent themes through a 
process of constant comparative analysis. 
It is important that I acknowledge from the outset that though I am researcher and 
interviewer in this study, I am also an instructor in a mathematics department at a 
post-secondary institution, and have taught the Math for Teachers course over a 
dozen times in the last 18 years.  My experience with the issues surrounding this 
course may help provide insight into the perspectives of my interviewees, but also 
introduces the possibility of bias.  To compensate for this, interview coding is 
corroborated by a more neutral colleague, and narrative descriptions are read and 
verified by the interview subjects. 
The preliminary results reported here are drawn from only two interviews, and as 
such only provide a starting point for the study.  From these interviews I have been 
able to write brief narratives describing the interview subjects.  Some initial themes 
have emerged offering insight into potentially fruitful avenues for further 
investigation. 
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THEORETICAL FRAMEWORK 
Shulman’s (1986) description of pedagogical content knowledge provides a valuable 
initial framework for recognising instances of it in the interviews.  Under this type of 
teacher knowledge he includes 

the most useful forms of representation of those [mathematical] ideas, the most powerful 
analogies, illustrations, examples, explanations, and demonstrations—in a word, the 
ways of representing and formulating the subject that make it comprehensible to others 
(p.9) 

He goes on to add 
an understanding of what makes the learning of specific topics easy or difficult: the 
conceptions and preconceptions that students of different ages and backgrounds bring 
with them to the learning of those most frequently taught topics and lessons (p.9) 

This understanding of pedagogical content knowledge has influenced the formulation 
of the initial interview questions.  In particular, the instructors are asked to describe 
how they approach teaching a unit on fractions, a topic in elementary school 
mathematics that is particularly rich in models and interpretations, and one that is 
traditionally seen as problematic. 
Ball and Bass (2003) have also contributed to our understanding of the scope of 
pedagogical content knowledge through their analysis of the practice of teaching 
mathematics.  They identify an ability to unpack (or break-down) mathematical ideas, 
to understand the connectedness of mathematics concepts both at a particular level 
and across levels, and how students conceptions of mathematical concepts will 
evolve over time, as examples of mathematical knowledge required for teaching.  
Furthermore, they include knowledge of conventional mathematical practices, such 
as the role of definitions, and what constitutes an adequate explanation. 
This interpretation of pedagogical content knowledge as “mathematics for teaching” 
prompted me to include questions in the interview that ask the subjects to reflect on 
what might be different about teaching mathematics content to prospective teachers 
versus teaching mathematics to other groups.  
Although the theories of Shulman (1986) and Ball and Bass (2003) have shaped the 
initial approach to this study and provide a lens for viewing these preliminary results, 
the grounded theory research design demands the researcher keep an open mind in 
order to allow the theory to emerge naturally from the data.  In consequence it is 
likely that additional related theoretical perspectives will be incorporated as the study 
proceeds. 
THE CASES 
I will begin with a few general comments about the Math for Teachers course and 
narrative descriptions of the two interview subjects, Harriet and Bob, in order to 
provide some context for their interview responses.  This is followed by a discussion 
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of a selection of their comments which specifically mention pedagogical content 
knowledge items, and a brief mention of some of the other emergent themes. 
General Comments 
Harriet and Bob both teach the Math for Teachers course, but predominantly teach 
traditional post-secondary level mathematics courses.  The curriculum for the Math 
for Teachers course is set by the mathematics departments at each institution; 
however the course is provincially articulated to allow transfer of credit from one 
institution to another.  As a result the courses and their target audience are very 
similar for the two instructors.   
Harriet 
Harriet is an experienced Mathematics instructor who has been teaching for 22 years.  
She is relatively new to teaching Math for Teachers, but she has taught the course six 
times over the last three years.  She has not taken any Mathematics Education 
courses, nor does she have a formal teaching designation.  She has a Masters Degree 
in Mathematics, and has a special interest in the history of mathematics.  Harriet was 
initiated into the teaching of this course by a colleague who has a Masters Degree in 
Mathematics Education, has taught Math for Teachers for many years, and has a 
particular passion for the course.  This colleague provided information about course 
materials and the nature of the students and their difficulties.  She also provided 
teaching resources, including suggestions for activities.   
Harriet feels strongly about the need for good teachers of mathematics in the 
elementary schools, and has put a great deal of thought into what can be done in a 
Math for Teachers course.   Her priority when teaching the course is to change 
students’ attitudes towards mathematics and their own mathematical abilities.  She 
hopes students will come to see mathematics as enjoyable, even when it is 
challenging, and will develop confidence, based on a solid conceptual understanding 
of elementary mathematics.  
Bob 
Bob has been teaching mathematics for 13 years and has taught the Math for 
Teachers course nine times over the last nine years.  He has a Masters Degree in 
Mathematics, and has not taken any Mathematics Education courses, nor has he had 
any formal teacher training.  Bob’s first forays into teaching the course were guided 
by the established curriculum, the textbook that had been selected by colleagues who 
had taught the course before, and through informal discussions with those colleagues.   
Bob is passionate about mathematics.  He enjoys its logic, its structure, and the 
challenges presented by a good problem.  He cares about producing students who will 
be successful elementary teachers in the future, and to that end he hopes to equip 
them with a solid understanding of fundamental mathematics concepts, good 
communications skills, and a capacity to enjoy mathematics. 
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Pedagogical content knowledge:  Harriet 
Instances of comments coded under the heading “pedagogical content knowledge” 
permeate Harriet’s description of her goals and strategies for teaching the Math for 
Teachers course.  When describing the content of her course she mentions varieties of 
algorithms for arithmetic operations, along with models for their representation.  
Although these topics are part of the prescribed curriculum, her comments indicate 
that she goes beyond merely delivering this as content.  She explicitly considers its 
relevance for teaching mathematics:   

H:  We spend some time on the basic algorithms and different approaches to them, and 
how those can lead into different understandings of what you’re doing when you’re 
multiplying, or adding… 

When asked if there is anything that she teaches her Math for Teachers students about 
fractions that she wouldn’t teach someone who just wanted to learn how to use 
fractions, she replies: 

H:  The fact that there are different models, there are different ways of picturing what’s 
going on, and that they are appropriate for...what may work well for some situation, or 
for some student, may not work for some other one 

She specifically addresses issues of appropriateness at various grade levels. 
H: …what you can do with a grade three student, and what you can do with a grade six 
student are quite different and I want them to see that it’s all interconnected… 

And in particular the theme of connections between the mathematical ideas plays a 
central role in her conception of the course. 

H: I emphasize it [connections between topics] all the way through.  I don’t try to plan 
the course to start from the beginning and go through to the end with an obvious thread, 
because mathematics is way too big for that. […]But at all times I connect it, as far as I 
can, to what goes on at different levels.  What you might do with a grade 1 class, how 
that connects to what they’re going to see in, you know grade 4 or 5 or something like 
that, how that connects to what they might do in high school and how that connects to 
what I’m doing in Calculus.  Because they’ve got to see how it’s connected, and how 
we build bigger and bigger, you know, understandings of sets of numbers, or 
calculations, or whatever. 

Harriet does not just pay lip-service to these ideas.  She describes assignments and 
activities for her classes that provide them with opportunities to exercise their 
pedagogical content knowledge:  her students engage in analyses of pupil errors, as 
well as activities that allow them to compare alternative methods for solving math 
problems.  The ability to communicate mathematical understandings clearly is also 
promoted through group work and formal evaluations. 
Pedagogical content knowledge:  Bob 
Bob’s interview contained far fewer statements that could be coded as instances of 
pedagogical content knowledge.  Recurrent in Bob’s responses are the notions of 
strong understanding of fundamental mathematics and communication skills.  When 
comparing the Math for Teachers course with his other mathematics courses he notes  
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B: ...this one focuses on their ability to communicate and convey the ideas that they 
should, hopefully, be already familiar with and capable of, you know, doing. 

Near the end of the interview when pressed by the interviewer to consider how what 
the students do in the course may be more specifically related to what they will do 
one day as teachers, Bob responds that he discusses their future role as teachers with 
them. 

B:  …what kinds of questions will you encounter?  And why is it important that you to 
be able to communicate your ideas effectively, […], why should you understand this 
material to the most, sort of, fundamental and basic level, and understand all of the 
structure? 

He goes on to note that the understanding needs to be deep enough to not only answer 
questions that arise but to make pedagogical decisions about them. 

B:  … when you get some of these obtuse questions, that are seemingly, you know, that 
are seemingly obtuse, (laughs), you have to be able to appreciate it and be able to 
differentiate whether that’s something that can lead you into a teachable moment... 

Bob describes teaching various algorithms and models as part of the course content, 
but does not specifically address any comments to consideration of how this 
information can be used differently at different grade levels.  His main concern seems 
to be to help students improve their personal conceptual understandings of the 
mathematics and their mathematics skills, what Shulman(1986) would describe as 
subject matter content knowledge.  When asked what his students leave the course 
with, he replies: 

B:  …I think that they […] leave having had some sense of the structure of mathematics, 
because there’s a sufficient amount (chuckle) of that in the course, and I think that they 
also leave the course feeling that they can solve problems, on their own.  […] probably 
it’s the technical skills that they have, probably, you know, solidified the most 

This comment indicates a predominant focus on subject knowledge, though it would 
be premature to conclude that Bob undervalues or fails to address pedagogical 
content knowledge in his course.  One possibility is that Bob, in fact, may discuss 
pedagogical content issues with his students regularly, but was unable to recall 
instances of this during his interview.  Another is that although Bob does not appear 
to address mathematics knowledge for teaching explicitly, it may arise in more subtle 
ways. At one point Bob relates a class discussion of a variety of solutions that 
emerged from a problem.  He was excited about this opportunity to discuss the 
equivalence of the different solution methods, though this occurrence was not a 
deliberate part of the days’ lesson. 
Other themes for Harriet and Bob 
The two interviews were also coded for additional themes that may impact on 
pedagogical content knowledge.  These categories include affective elements such as 
confidence, attitudes, motivations and self-awareness of the students in these courses; 
references to problem solving and other types of knowledge; the teaching strategies 
employed by the instructors; and the challenges of teaching this course. 
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Especially striking in Harriet’s interview is her concern with student attitudes 
towards mathematics and their own abilities to do mathematics, as well as her efforts 
to encourage her students to become aware of their own learning.  Ball (1990) 
indicates that prospective teachers’ feelings about mathematics and their ability to do 
math can have an influence on their understanding of mathematics concepts and their 
significance. 
Bob’s interview triggered coding of “other types of knowledge” based on his use of 
phrases like “theoretical appreciation” and “mathematical thinking”.  These are 
evocative of sociomathematical norms (Yackel and Cobb, 1996), and suggest 
consideration of the relationship between these norms and the mathematics 
knowledge needed for teaching. 
Though a deeper discussion of these themes is beyond the scope of this paper, their 
continued occurrence in future interviews would suggest that an expanded theoretical 
framework may be required to capture a more complete picture. 
DISCUSSION 
Harriet and Bob exemplify two very different approaches to teaching the Math for 
Teachers course.  While Harriet’s course is more grounded in the context of 
becoming a future teacher, Bob’s course seems to centre on mathematics for its own 
sake.  Though Bob acknowledges the importance for teachers of being able to 
provide clear explanations and deal with questions, it appears that from his 
perspective, these skills will both be addressed adequately by having a sound 
conceptual understanding of the mathematics.  This is quite consistent with the 
traditional view that strong content knowledge is sufficient for teaching (Hill et al, 
2007).  As the data set grows, the prevalence of this view among instructors of Math 
for Teachers will be more evident.  
While it is too soon for a description of an emergent classification of the types of 
pedagogical content knowledge that occur, we see that in Harriet’s interview there is 
often an emphasis on the “pedagogical”, with students explicitly given opportunities 
to practice application of mathematics to teaching situations.  In Bob’s case the 
explicit pedagogical content knowledge seems to lean more towards the “content”.  
But even this broad description must be considered with due caution.  At this point 
the analysis is based only on the instructors’ reported recollections, beliefs, and 
interpretations of the interview questions.  Analysis of the interviews will need to be 
supported by other research instruments.  Observations of classes, follow-up 
interviews, and examination of artefacts (course outlines and tests) will be useful in 
providing validation. 
Though the data set at this stage is very small, the preliminary results show promise 
that this approach will help elucidate the process of fostering the development of 
pedagogical content knowledge in these mathematics content courses.  Initial coding 
suggests the need for an expanded theoretical framework which may include attitudes 
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and beliefs, as well as address the relationship of sociomathematical norms to the 
knowledge of mathematics for teaching.  I am hopeful that a broader and deeper 
analysis will provide much needed insight into this important stage in the 
development of future teachers. 
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Educational neuroscience in mathematics education research can provide better 
empirical ground for developing more accurate theories of mental processes during 
mathematical thinking and learning.  Electroencephalography (EEG) is a technique 
for noninvasive measurement of electrical characteristics of brain function. Scalp 
measurements, nevertheless, include activities generated within a large brain area. 
This paper reports on the roles of independent component analysis (ICA) for analysis 
EEG data. ICA provides separation of different signals related to different brain 
activators. It also calculates relative projection strengths of the respective 
components at all scalp sensors.  As such, ICA is shown to be a useful tool for 
imaging brain activity and isolating artifacts from EEG data.  An overview of these 
application areas is provided in the study on the example of data set capturing an 
‘AHA moment’. 
INTRODUCTION 
A major reason for growing interest in research in educational neuroscience in 
mathematics education research is that there is a need for better empirical ground for 
developing more accurate theories of mental processes during mathematical thinking 
and learning (Campbell, 2006 a, b). According to Byrnes (2001), brain research is 
relevant to the field of psychology and education to the extent that it fosters better 
understanding of the mind, development and learning. The validity, reliability, and 
relevance of psychological theories and traditional psychological experiments may be 
corroborated, refined, or refuted through neuroscientific studies or the use of 
neuroscientific tools and methods to test hypothesizes of any particular theoretical 
account (cf. Byrnes, 2001; Kosslyn & Koening, 1992).  Among the neuroscientific 
research methods the electroencephalogram (EEG) is one of the most beneficial as it 
is noninvasive, and provides the best temporal resolution. Since EEG is the 
measurement of brain electrical activity recorded from electrodes placed on the scalp 
its major problem is that every electrode records a composite signal from many 
different electrical generators of the brain. Generally speaking, it is not possible to 
derive from the scalp potential distribution the activity of each single neuron. In the 
microscopic level the ‘inverse’ problem of deriving the source configuration from 
scalp potentials cannot be solved. Nevertheless, the separation of compound activity 
of some distinct brain area can be realized mathematically as well as the unique 
solution to the inverse problem can be found in mathematical sense (Scherg, 1990).  
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Here we will discuss and illustrate ways in which one independent component 
analysis (ICA) algorithm is used for analyzing EEG data.   
WHAT IS ICA 
ICA is a method for extracting individual signals from mixtures of signals. It is based 
on physically realistic assumption that different physical processes can generate 
independent signals. Intuitively ICA can be understood in terms of the classic 
‘cocktail party problem’ (Stone, 2002). Imagine that you are at a cocktail party where 
many people are talking at the same time. If there is a microphone, then its output is a 
mixture of voices. More precisely this problem is described in (Stone, 2005) by the 
following way. Consider two people speaking at the same time in a room containing 
two microphones (Fig.1)  
 

 

 

 

 

 

Figure 1.  ICA decomposition if two people speak at the same time in a room with 
two microphones (after Stone, 2005). 

Obviously, the voices of two different people are independent physical processes. 
This property has a fundamental importance for ICA and can be captured as 
statistical independence. If signals are statistically independent, then the value one 
signal provides no information regarding the values of the other signals. Another 
important assumption for ICA is that there must usually be as many mixtures 
(microphones) as there are source signals (speaking people). It is also assumed that 
original signals are mixed linearly.  The source signals must have non-Gaussian 
distribution, in contrast, signal mixtures should have normal Gaussian histogram. 
If we denote the speech signals by s1(t), s2(t) , and microphone signals by x1(t), x2(t) , 
the amplitude of both signals can be expressed as a linear equation: 
                       x1(t)= a11 s1(t) + a12 s2(t) 

                   x2(t)= a21 s1(t) + a22 s2(t) 

where aij , i, j=1,2 are elements of a mixing matrix A that depend on the distances of the microphones. The 
matrix A defines a linear transformation on the signals s1(t), s2(t). Let us denote by x the random vector 
whose elements are the mixtures x1,….,xn , and likewise by s the random vector with elements s1, ….,sn   . 
Using this vector‐matrix notation, the mixing model is written as  

                      x=As. 

    
ICA 
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ICA FOR IMAGING BRAIN ACTIVITY 
As discussed above, ICA finds an unmixing matrix, W, that linearly unmixes the 
multichannel scalp data into the number of temporary independent components, 
u=Wx. The rows of the matrix u are time –amplitude courses of activations of ICA 
components.  According to Jung et al. (2001), the columns of the inverse matrix, W-1, 
give the relative projection strengths of the respective components at all scalp 
sensors. These scalp weights give the scalp topography for each component 
separately, and provide some evidence for the possible components’ physiological 
origin . The projection of the i-th independent component onto channels is obtained 
by the outer product of the i-th row of the component activation matrix, u, with the i-
th column of the inverse unmixing matrix W-1, and is measured in the corresponding 
units and located in original sensor locations. Thus, brain activities of interest can be 
obtained by projecting selected ICA components back onto the scalp. Fig. 2 
illustrates component scalp projections for the data set capturing an "AHA! moment" 
in the research in the area of mathematical problem solving. The data set was 
processed by software EEGLAB which allows to visualize component scalp 
projections and time-amplitude courses for original channel recordings and 
component decompositions.  Ten second single trial EEG data set capturing an AHA! 
moment reveals that during that time the majority of brain areas were active.  
 

 
 

Figure 2. 2D- scalp projections of some components after ICA processing of EEG 
data set of "AHA! moment". The total number of components is 64, the same as the 

number of scalp electrodes.     
 

Visual inspection of scalp projections together with corresponding component time - 
amplitude courses allows to preselect the activation areas of interest. For example, let 
us consider components 38 (Fig. 3). 
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Figure 3. 3D- scalp projection (left part) of component 38 and its time - amplitude 
course (right part).  

 

The activating source of component 38 can be located in brain’s Broca area, which is 
involved in speech production. The burst of amplitude and frequency corresponds to 
the time segment of subject’s speaking.  Nevertheless, we cannot make any 
conclusions about the signal   without having enough evidences that this component 
is not artifactual. Before making any conclusions about the nature of signals coming 
from any region of interest the first and the most important preprocess of data set is 
detection and removal artifacts which can not only mask and/or distort brain signals 
sufficiently. but to be treated as brain related activity instead of artifactual muscle 
activity.  
ICA FOR DETECTION AND ELIMINATION ARTIFACTS IN EEG DATA 
Because ICA algorithms have proven capable of isolating both artifactual and 
neutrally generated electrical brain activity sources ICA is widely accepted now as  a 
useful tool for isolating artifacts EEG data (Delorme et al., 2004; Delorme et al., 
2007; Iriarte, Urrestarazu, Valencia, Alegre, Malanda, Viteri, & Artieda, 2003; Jung 
et al., 2001; Makeig et al., 1996; Tran, Craig, Boord, Craig, 2004).   
In the presented study of AHA! moment EEG data set, scalp topography and signals 
of components 1 and 2 (fig. 4)  are typical for eye related behavior artifacts as they 
are of a low frequency and their topographical projection shows maximum in the 
frontal region (Delorme et al., 2007; Iriarte et al., 2003; Tran et al., 2004). 
Component 1 relates to saccadic horizontal eye movements; component 2 relates to 
vertical eye movements and/or blinks.  
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                           a 
 

                      b 

Figure 4. Eye movement artifactual components: a) component 1 is of horizontal eye 
movements; b) component 2 is of eye blinks and/or vertical eye movements. The 

time- amplitude courses correspond to the horizontal (1) and vertical (2) eye 
movements. 

 
These time- amplitude courses were then synchronized with EOG and video 
recordings. The results of this synchronization showed that all picks in EEG time- 
amplitude courses coincided with the moments of corresponding eye movements.  
Analysis of time- frequency transformations also showed that bursts of low frequency 
energy related to the moments of eye movements. Hence, components 1 and 2 were 
identified as artifactual. The contribution of these artifact components to original 
EEG data records was removed by subtracting the components’ projections onto the 
scalp electrodes from the electrodes’ original EEG records (Jung et al., 2001).  
CONCLUSION 
Mathematical problem solving implies a high level of concentration when small body 
movements are often uncontrolled. Quite often people articulate their thoughts; the 
process also implies eye movements. Hence, sufficient amount of artifacts can be 
expected in the EEG data recordings during such kind of experiments. Sufficiently 
that AHA! moment experiments are principally  of ‘single trial’ type and cannot be 
repeated fully or somehow be stimulated for getting expected time locked responses. 
This is why the procedure of artifact removal is so important for such kind of studies.   
ICA algorithm is an effective tool for detection and removal artifacts from the EEG 
data recordings. This method is especially valuable for the ‘single trial’ type 
experiments as it  removes only parts of EEG recorded signals related to artifact and 
saves information related directly to brain activity. ICA is also proved to be useful for 
imaging brain activity and identification the signals coming from the brain regions of 
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interest connected, for example, with certain kind of cognitive process. As such, it 
has important methodological roles to play in educational neuroscience, and 
mathematics educational neuroscience in particular. 
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AN ACCOUNT OF A LESSON STUDY ON THE PARABOLA: 
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This report is about how a group of practicing teachers experiences a school based 
professional development initiative by way of implementing lesson study, and how 
this process facilitates the development of teachers’ knowledge for teaching 
mathematics. The report presented here is taken from an ongoing study situated in a 
school based community of practice on how teachers’ key competences for teaching 
mathematics develop, refine, and even transform as a result of their participation in a 
collaborative enterprise of lesson study. Our focus is on the outcomes, taken here as 
teachers’ gains in their expertise in mathematics teaching, and which have the 
capacity to transform teachers’ everyday practice in the classroom. They are 
embodied in the knowledge, skill, attitude, and capability, both in the individuals and 
in the community as a whole. In this report we present these outcomes and the 
conditions in which they were achieved, through a particular account of the lesson 
study on the topic of parabolas. This lesson study has been the sixth lesson study 
implemented in the school since the inception of the initiative 18 months ago.  
 

BACKGROUND 
There is an increased attention to professional development initiatives that rely on 
building communities of teachers. While researchers may not yet fully agree on what 
mathematical knowledge, skills, and habits of mind teachers need to have to teach 
mathematics effectively, there seems to be a growing consensus that embedding 
teachers’ learning in their everyday work, through a careful examination of their 
practice and classroom artifacts, increases the likelihood that this learning will be 
meaningful (Lampert & Ball, 1998; Lieberman, 1996; Stein, Smith and Silver, 1999).   

It is believed that the Japanese succeeded in transforming on the national level 
something as complex and “culturally embedded as teaching” (Stiegler & Hiebert, 
1999) by systemically implementing the well-defined and established professional 
development practice of lesson study (Chokshi & Fernandez, 2005; Lewis, 2000; 
Watanabe, 2002). Lesson study is a process where teachers and scholars engage as 
researchers by developing and testing lessons and studying their impact on students. 
The process itself builds up a repository of knowledge on teaching and learning of 
various content, which is then used to inform curriculum changes, textbook creation, 
and university programs for preservice teachers, thus impacting change on multiple 
levels, from individual teacher to the entire profession of teaching. Most importantly, 
with its being centred in the classroom and focused on students’ learning, this 
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practice provides a high-fidelity context, usually carried out in the form of school 
based lesson study, in which teachers can build their content knowledge and 
pedagogical skills and a shared understanding of what constitutes effective practice.   

 
HOW LESSON STUDY WORKS 

Activities in which teachers engage include detailed examination of the mathematical 
content they are supposed to teach, and how this content is approached in other 
curricula. Teachers confer and exchange ideas on how students learn, what common 
misunderstandings are and how to best address them, what teaching methods and 
pedagogical techniques will be used, how the mathematical content will be developed 
through the lesson, what instructional materials will be designed or used and for what 
purpose, how the teacher will know what the students did and did not understand. 
While the goal of the teachers is to create an effective lesson that will reach all 
students and produce lasting learning gains, through this process of collaboration and 
shaping of common goals teachers in fact access insights into teaching and learning 
that they may have never otherwise.  

The centrepiece of lesson study is the research lesson, developed collaboratively, 
taught by one team member while observed by others, and finally discussed and 
reflected upon by the whole team. It should be noted that the term “research” in this 
context means teacher-initiated, practice-based inquiry. So what exactly is it about 
this context that allows for teachers to develop professionally? 

While it is not the aim of this paper to explicate in any great detail the mechanisms 
by which lesson study results in instructional improvement, it is worth mentioning 
that there is a commonly held view that lesson study improves instruction through the 
refinement of lesson plans. To be sure, our team went through five draft revisions 
before the lesson plan was finalized; however, this is not a plausible conjecture given 
that teachers on average conduct about two lessons study cycles per year only. The 
aim of lesson study is not to produce perfect lesson plans; rather it is to engage 
teachers in reflective practice, which in turn builds teachers’ knowledge (of subject 
matter, instruction, curriculum, and of how students learn and think), teachers’ 
commitment and sense of community, well thought out learning resources (such as 
good problems and other learning tasks), and a clarity of goals as well as of expected 
standards for instruction.   

For any community of teachers implementing lesson study, it is important to be 
aware of the pitfalls that have been identified and to avoid them at all cost (Lewis at 
al., 2006). Replicating the observable features of lesson study, which are: setting 
goals for student learning, study of existing curricula, planning and implementing a 
research lesson, collecting data during the research lesson, presenting and discussing 
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data from research lesson, is not in itself a guarantee that improvement of instruction 
will result from these activities. This has been termed as “rote implementation of 
surface features”. Models are being developed, which specify the connections 
between lesson study’s observable features and instructional improvement, 
specifically to avoid this kind of surface level implementations.  

 

BUILDING KEY COMPETENCIES AND CRAFT KNOWLEDGE  

This paper does not aim to give a full description of the activities of the team, nor a 
comprehensive account of teacher learning. We focus here on certain specific gains 
in the teachers’ competencies for teaching mathematics that were documented and 
that could impact the effectiveness of instruction beyond the specific content of the 
particular research lesson. We define the term teachers’ key competences for teaching 
mathematics as the knowledge, skills, attitude and capability, which contribute to the 
effective instruction.  We provide a preliminary analysis of how these gains are 
achieved by individual teachers or the group as a result of active participation in the 
lesson study process, and as evidenced from a concrete instance of lesson study. It 
has been the experience of this group of teachers that every lesson study cycle 
generated the kind of teacher knowledge that matters in the classroom. We invite the 
reader to consider the potential of lesson study as a possible way for all teachers to 
become experts in what they do. In this paper, we examine and discuss what kind of 
knowledge for teaching mathematics is being generated through one particular 
instance of lesson study, and how.  

Let us first consider the ways in which lesson study acts as an incubator for building 
effective practitioners. To be sure, there are other ways to build effective 
practitioners, such as using various mentorship programs whereby an expert teacher 
initiates a novice practitioner into the profession of teaching, known also as 
instructional coaching. It seems that such settings are especially conducive to 
building effective practitioners because they provide a unified setting, with the 
totality of what teaching entails and an authentic environment for it to be experienced 
and learned from. As such, a single lesson study cycle touches upon all that a teacher 
needs to be able to do in a daily practice. It is a form of learning how to teach through 
teaching, a place where the divide between theory and practice is nonexistent. 
Teachers learn by carefully observing, analyzing, critiquing, and systematically 
reflecting upon one’s own or a colleague’s practice. In a sense, they engage in the 
discipline of noticing through which it is possible to research one’s own practice 
(Mason, 2002). This exposes the participants to the craft knowledge of the teaching 
profession, and it also deepens the knowledge of the discipline they are supposed to 
teach, also known as pedagogical content knowledge and subject matter knowledge 
respectively (Shulman, 1986). Craft knowledge is a phrase used to describe the 
particular knowledge generated through being a practitioner. It is a mixture of 
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expertise, propositions and theories, and tacit knowledge applied in the daily conduct 
of teachers’ practice, and it is different from the knowledge produced by formal 
research.    
According to Burney (2004), craft knowledge is the road to transforming schools, if it 
were properly cultivated and disseminated. Craft knowledge is precisely the kind of 
knowledge that is being cultivated and shared through lesson study. Learning those 
kinds of skills is not a solitary endeavor but a highly social one. Furthermore, it 
depends on continual discussion and demonstration. People learn by watching one 
another, seeing various ways of solving a single problem, sharing their different 
"takes" on a concept or struggle, and developing a common language with which to 
talk about their goals, their work, and their ways of monitoring their progress or 
diagnosing their difficulties. When teachers publicly display what they are thinking, 
they learn from one another, but they also learn through articulating their ideas, 
justifying their views, and making valid arguments.  
Trying to understand and account for what makes an effective practitioner in terms of 
one or more isolated constructs seems to create more and more unanswerable 
questions. For example, what teachers need to know to teach effectively has been 
investigated by a number of prominent researchers from the field of mathematics 
education. Various frameworks have been offered for investigation, interpretation, 
categorization, evaluation, and theoretical discussion of teachers’ mathematical 
knowledge for teaching (e.g., Davis and Simmt, 2005; Ball and Cohen, 1999; 
Shulman, 1986, Leikin, 2006). While there is a consensus that teachers’ mathematics-
for-teaching is a complex, dynamic, and tacit body of knowledge, which is very 
difficult to assess reliably, there seems to be little agreement on what exactly this 
knowledge is.  

Interestingly, while what should be known to teach well is elusive, how such 
knowledge should be held has been shown quite explicitly on several specific 
domains of mathematical knowledge for teaching (Ma, 1999). From Ma’s research 
we learn that mathematical knowledge for teaching rests firmly on what has become 
known as the “profound understanding of fundamental mathematics”. With such 
understanding teachers are seen to be able to move in their subject easily, naturally, 
and in a way that allows them to effectively plan for instruction avoiding the typical 
student misconceptions, and to respond efficiently to a great variety of possible 
student errors.  

We could say that craft knowledge implies profound understanding of fundamental 
mathematics. But it implies more than that. As noted earlier, we refer to this 
multifunctional collection of a teacher’s knowledge, skills, attitudes, and capabilities 
as key competences for teaching. Those competences enable their barer to act 
adequately in a multitude of situations and in various fields of activity within the 
teaching profession. Lesson study is a context in which these key competencies are 
cultivated on the basis of personal experience and activity as applied in practice.      



Proceedings, MEDS-C — 2008 1- 81 

In the remainder of this paper, we present and exemplify some instances and ways in 
which the above mentioned craft knowledge of mathematics teachers is being forged 
through the process of lesson study.   

 
SUBJECTS AND CONTEXT 
The team consisted of six practicing teachers specializing in mathematics teaching at 
secondary school level. Four of the teachers are based in Southpointe Academy, an 
independent school in British Columbia, where the implementation of the research 
lesson took place, while two of the teachers participated off site by providing 
feedback and suggestions for lesson refinement. This was the sixth lesson study cycle 
implemented in the school since the initiative started 18 months ago.  
The chosen research lesson was on the topic of parabola. It was implemented in a 
class of 22 Grade 11 students. The lesson was developed over a period of six weeks 
during which teachers met weekly for about an hour. The first two meetings were 
used to establish the instructional goals of the lesson and to consider how it will 
support the previously established long term goals for student development, which 
are, “To nurture students’ inquiry into mathematical ideas, to assist them in 
developing reasoning abilities, mathematical communication skills, and a willingness 
to persevere with difficult problems.”  Here teachers also decided who would be 
teaching the research lesson. Teachers take turns in teaching the research lessons 
from one lesson study cycle to another. It is seen as a challenge, honour, and a great 
opportunity for professional development, all at the same time. Kelly had volunteered 
to do it this time (pseudonym used).  
The goal for the lesson was chosen based on what teachers agreed is the most 
difficult part of this instructional segment, which is for students to understand the 
effect of the coefficient a of the quadratic term and to be able to find its value based 
on a graph of a parabola. The effect of this coefficient is commonly referred to in 
school mathematics as “vertical expansion or compression” because of its effect on 
the graph, and it is often used interchangeably with “horizontal compression or 
expansion” respectively, which creates much confusion for the students. The lesson 
and the post lesson discussion were videotaped, and an interview was held with the 
teacher teaching the lesson two weeks after the implementation.    
 
HOW KNOWLEDGE OF INSTRUCTION IS ADVANCED 
In our ongoing effort to answer the central question of, “How do we develop 
effective teaching”, we now turn to examine the gains in teacher competencies that 
were documented in this particular lesson study. A number of domains of teachers’ 
knowledge for teaching mathematics were impacted, such as increased knowledge of 
instruction, of subject matter and curriculum, and of how students learn; however, in 
this paper we limit our discussion to the first, the knowledge of instruction. Within its 
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domain we consider both the knowledge of how students think and learn, and what 
instructional support should be given to produce the desired learning outcomes, as it 
was developed in this community of practitioners. While these teacher gains were 
seen as true and real at the time when they were recorded and discussed, it is left for 
further research to determine which of these gains transfer into teachers’ further 
practice and under what conditions.     
To be sure, having a crystal clear instructional goal and a very well prepared lesson, 
together with a “research question” or even several of them of what is being 
investigated is inspiring enough to allow teachers to become especially sensitive and 
aware about how exactly students learn as a result of instruction that is being 
implemented. But first a great deal of thought must go into defining such clear 
instructional goals and then carefully designing such lesson that would allow to find 
out how students can learn most effectively the designated mathematical contents and 
processes. Here we examine the effects of lesson study in the domain of planning for 
instruction, and what exactly changed for teachers regarding this activity.  
In this part of lesson study process teachers decided upon the instructional goals of 
the lesson, based on students’ prior knowledge, and where they were heading in 
terms of their mathematical content learning. In this case, students have not yet been 
exposed to quadratic equation, and they have barely started the unit on quadratic 
function. In the lesson prior to this one, students learned to graph the basic parabola 

2xy =  by hand using the table of values, and they investigated what happened to the 
graph if all y values are made negative, and what happened to the graph if a given 
constant is added to each of the y values. In effect they came to understand the 
functions and their related graphs of 2xy −=  and qxy += 2  as well as qxy +−= 2 . 
In school mathematics this is referred to as the reflection of the parabola in the x-axis 
and the vertical shift. This instructional segment is intended to build towards the 
standard equation of the parabola qpxay +−= 2)( from which it is easy to determine 
how the corresponding graph should look like. Likewise, the standard equation is 
used to find the equation from a given graph most directly. While the values for 
constants p and q are easily determined from the vertex of the graph, determining the 
value of the coefficient of the square term a has been an ongoing struggle for the 
students, as reported by the teachers. Naturally they wanted to come of with a way to 
help students construct this knowledge in a way that would produce a robust 
understanding of the effects of this coefficient on the graph of the function, and how 
that coefficient can be found from the graph. This was the focus of the lesson.  
Up to this phase there was nothing new in the ways teachers usually plan for 
instruction, until three options for instructional practice emerged from the planning 
sessions. First was an instructional approach using an empirical learning process. 
Second was a type of discovery learning with a kind of open investigation to be 
undertaken by the students – the learning task associated with this approach became 
known to the community as “Putting on the Fritz Face”, and it had been used by one 



Proceedings, MEDS-C — 2008 1- 83 

of the team members in the past. The third approach which ended up being the 
chosen one after a careful consideration and argued discussion was structured 
problem solving which is incidentally also the approach commonly used in Japan to 
develop mathematical concepts. It is also known as cognitively guided instruction, or 
teaching through problem solving, which incidentally while it was invented in North 
America it only really become well understood and developed for effective use in 
practice as a result of lesson study (Fenema, Carpenter, & Franke, 1992).  
The empirical learning process was the instructional approach suggested in the 
standard textbook that the class had been using, and it is also the approach that Kelly 
had been using for years when teaching this particular concept. This instructional 
approach is commonly used by teaches who hold a perception-based perspective 
(Simon, 2007) on how students learn mathematics. Much of recent fascination with 
manipulatives can be attributed to the push for adopting this perspective, despite the 
fact that there is not much evidence about whether and how it works, and under 
which conditions. According to this perspective students develop mathematical 
understandings through their engagement with representations that make the concept 
under study clearly perceivable. Mathematical relationships exist as an external 
reality. Here we refer to this approach as the “show and tell” approach to teaching 
mathematical concepts. In our case of parabola the students are supposed to observe 
how varying the coefficient of the square term affects the graph. They commonly use 
the graphing calculator to do this; that is, by using a number of different values for a 
in the 2axy = , usually building from large to small positive values, and then 
observing the ever wider parabolas this process produces. What they are learning 
from this approach is that the smaller this coefficient, the wider the parabola and not 
the logical necessity of that relationship (a concept). It is contended that empirical 
learning process does not result in conceptual learning, because mathematical 
concepts are the result of reflective abstraction and not of empirical learning (Simon, 
2007).  
The team members constructed the following problem with which students then 
engaged and through which they attained the concept in a more meaningful way, 
based on reflective abstraction.  

Problem:  A bridge over a river is supported by a parabolic arch.   
At its centre it is 16 m above the water.  Its supports are 56 m apart.   
a) Find the equation of the arch in standard form. 
b) How high above the river is the arch 8 m from one support? 

Student engagement with the problem was very high. After some time spent on 
posing the problem and motivating the student buy-in, they pursued the construction 
of the equation actively. Indeed they explored and tested their hypotheses, and they 
learned along the way. In an interview with Kelly two weeks after the research lesson 
implementation, she indicated with much delight that this time around the concept 
had been learned much more robustly and that she “got a lot of mileage” in that class 



Proceedings, MEDS-C — 2008 1- 84 

from that one lesson. In addition, she remarked that it would be the way she will 
teach this lesson in the future. Of course, there were some things she would change, 
but not what concerns the instructional approach and the learning task itself. 
From a researcher perspective it is important to note that such research knowledge 
that is informed by practice should be more widely collected, tested, codified, and 
shared in the efforts to build a new foundation for the teaching profession. In 
addition, there also exists a rich body of knowledge produced by educational 
researchers, but which trickles to practitioners in very limited and haphazard ways. 
Take for example the research that had been done to understand how students attain 
proportional reasoning (Sowder, Armstrong, & Lamon, 1998). Despite the findings 
that clearly show the limitations of using the part whole interpretation of fractions as 
a primary mode for instruction on fractions, this approach is still widely used in 
practice, and sometimes it is even the only one used despite its ineffectiveness. 
Another such problem is the persisting problem of students’ (non)understanding of 
the equals sign, which is well known amongst researchers, but rarely amongst 
teachers. Something like this would never happen in professions such as medical or 
accounting, where it would be rightly considered as malpractice. The responsibility 
lies in part with the way textbooks are being produced, without much reference to 
scientifically based findings but also with teachers, “who have come to regard 
autonomy and creativity – not rigorous, shared knowledge – as the badge of 
professionalism” (Burney, 2004). It is our hypothesis that teachers, after having the 
kind of experience just described, will be far more likely to critically examine and 
evaluate the instructional materials for their value in how well they align with their 
goals of instruction. Moving from teacher as consumer of tasks presented in the 
textbook to teacher as creator of learning situations requires a certain degree of 
professional judgment that is more likely to manifest after such experience.    
There is a great deal more that teachers learned from this particular lesson study, but 
which cannot be fairly presented in this report given the space constraints. However, 
we have observed teachers generating knowledge from which powerful instruction 
can be understood and supported, and which has the capacity to transform what 
teachers do in the classroom to achieve greater learning outcomes for their students.  
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