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BRIEF REFLECTIONS ON THE MATHEMATICS EDUCATION 

DOCTORAL STUDENTS CONFERENCE 

Jason T. Forde 

Simon Fraser University 

 

Occurring for the first time on November 25, 2006, and marking its 14th instance with 

the most recent activities on November 2, 2019, the annual Mathematics Education 

Doctoral Students Conference (MEDS-C) continues to evolve with each passing year. 

Not only has its participating cohort metamorphosed over time, but, naturally, so too 

have aspects of its structure and facilitation seen change. In part because my time in 

the Mathematics Education doctoral program is gradually drawing to a close, I have 

inevitably begun to reflect upon the experience of engaging with MEDS-C and its 

related pre- and post-conference activities from one year to the next. Beyond 

encouraging a deeper appreciation of the conference’s role in fostering both our 

individual and collective growth as graduate students, beyond reaffirming a great 

respect for the many prominent speakers and guests who have attended the event and 

shared their insights/expertise, beyond bringing back to mind the wealth of intriguing 

research themes that have been presented, doing so has also piqued an interest in (or, 

perhaps, curiosity about) the conference’s more general history and development, not 

to mention the ways in which the space of the conference is gradually being reshaped. 

Personal retrospection, however, is not the only reason I have opted to compose this 

prefacing commentary. In fact, I am also viewing this as something of an opportunity 

to reintroduce a formal reflective component to MEDS-C at large (if only by way of 

these conference proceedings). Interestingly, when looking back into past proceedings 

documents, I discovered that the conference activities of November 14, 2009 

concluded with a 30-minute session entitled “Reflection and vision for the future of 

MEDS”, which appears to have involved all attendees. Judging from the available 

conference programmes from other years, this constituted the first instance of group 

reflection being integrated into the conference proper and recorded as a canonical 

activity. More telling, though, is the absence of any scheduled or recorded reflective 

practice in subsequent years/programmes, such that this brief session in 2009 would 

seem to mark the sole instance of communal reflection on the past history and future 

potential of the conference. In addition to being curious why this is the case, I am also 

led to wonder if the sudden inclination to reintroduce a reflective component to MEDS-

C now (i.e. 10 years later) might in some way point to an emerging cycle for the 

conference itself. If nothing else, perhaps it can be seen as a compelling coincidence. 

In essence, what follows is simply an articulation of various considerations about the 

conference’s structure, its associated activities, and a number of other factors that have 
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entered into my thoughts. While some of these considerations might already be shared 

by the reader, I expect that others will be more singular/esoteric. Nevertheless, it occurs 

to me that there should be value in committing such thoughts to print, if even simply 

to foster additional reflection on the part of current and future MEDS-C 

participants/organizers/contributors, or to indicate a few different ways in which the 

overall milieu of the conference might be perceived. In keeping with this general intent, 

and noting that MEDS-C is a primarily student-run affair, I encourage my 

peers/colleagues to periodically revisit/reconsider/reaffirm their own sensibilities 

about the nature of the Mathematics Education Doctoral Students Conference, and to 

give further thought to the trajectory they might envision for it in the coming years. 

*** 

Amongst its more widely known features is the fact that MEDS-C is, by design, 

modelled after the annual conference in the Psychology of Mathematics Education (or 

PME). Inasmuch, MEDS-C mirrors/emulates aspects of PME and its accompanying 

formalisms, including manuscript submission, peer-review, oral presentation of 

research, audience Q&A, compilation/editing of proceedings, et cetera. Indeed, many 

MEDS-C participants parlay their work into subsequent PME papers and presentations, 

and the adoption of the PME template for MEDS-C manuscripts illustrates one 

particular manner in which MEDS-C is especially well-suited as a sort of staging 

ground for PME submissions. 

While its purposeful similarities to PME are part of MEDS-C’s structural DNA, I 

would suggest that it is also important to acknowledge that MEDS-C need not be 

perceived as existing within the shadow of PME, or as being subordinate to that 

conference in any appreciable way. By stating this, I do not intend to minimize the 

obvious significance of the two conferences’ connections, or to suggest that anyone 

overlook/ignore the good sense of utilizing MEDS-C as a space for refining work in 

progress. Rather, I mean only to point out that MEDS-C carries much innate value of 

its own, outside the context of its links to PME. Should one choose to perceive it in 

such a light, MEDS-C can be seen as occupying quite a unique position insofar as 

academic conferences in our field are concerned. 

As I have come to know it, MEDS-C realizes a number of different, yet overlapping, 

spaces for our growth as doctoral students, teachers/practitioners, and researchers in 

mathematics education. Although the notion of developing and sharing graduate 

research might broadly encapsulate many of these, it would not be all-encompassing. 

Thus, I briefly outline a few notable spaces in the pages to follow, whilst 

acknowledging that my perspectives may not necessarily reflect or fully represent those 

of my peers/colleagues. 
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MEDS-C AS A SPACE FOR COMMUNITY BUILDING AND NETWORKING 

With the overall expansion of the mathematics education doctoral cohort, the extent to 

which MEDS-C instantiates a community-oriented programme has become 

increasingly apparent. Particularly for more senior graduate students who are no longer 

engaged in course work or attending seminars, the annual conference comes as a 

regular opportunity to reconvene with colleagues and faculty, to engage with visiting 

scholars, and to forge new relationships with beginning graduate students as well as 

potential inductees to the Mathematics Education program. Albeit less frequently than 

the semesterly book club gatherings, MEDS-C facilitates both professional and casual 

socialization, each of which contribute to its communal atmosphere and discursive 

relevance. 

As all those who have been involved with the conference are aware, MEDS-C also 

makes possible a wide range of collaborative activity. Whether at the level of 

organizing the event itself, facilitating peer review, compiling/editing conference 

proceedings, curating digital spaces, troubleshooting technical issues, or ensuring that 

conference-goers are well-fed and comfortable, the impact and importance of these 

paired or small-group partnerships cannot be overstated. It is true that many aspects of 

the more general graduate student endeavour can involve spates of largely solitary 

activity; however, the various collaborations afforded by our annual conference have 

the potential to be greatly rewarding and enlightening for those who seek them out. 

MEDS-C AS A SPACE FOR ENCULTURATION INTO ACADEMIA 

Despite being a single conference internal to a doctoral program within a specific 

university, MEDS-C’s influence extends well beyond our Mathematics Education 

doctoral program and its parent institution. By virtue of the tasks/activities it entails 

and the community it draws together, the conference plays a significant role in helping 

to enculturate its participants into the world of academia. With the members of our 

cohort coming from many different backgrounds and walks of life, and pursuing 

diverse interests and goals, MEDS-C reflects not only the work being done within the 

doctoral program itself, but also the many ways in which fledgling members of the 

mathematics education research community are choosing to engage with the field at 

large. 

In keeping with this theme of enculturation, as a largely student-driven event MEDS-

C is simultaneously a representation of and a precursor to the established academic 

culture into which we are being inducted. As its participants, then, we are shaping 

aspects of that culture at the very same time as we are being shaped by it. By virtue of 

this mutual interplay, for some, MEDS-C can be instrumental in determining how they 

might wish to begin navigating the academic terrain and negotiating its myriad streets. 

Subsequently, much can be said of the relief/comfort that comes in knowing that it is 

possible for more tentative steps into this complex environment to take place in the 

company of empathetic peers, under the guidance of supportive elders. 
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MEDS-C AS A SPACE FOR EXPERIMENTATION AND EXPLORATION 

While the sentiment may not be as commonplace as those already expressed, I will 

venture here to suggest that MEDS-C can also be seen as realizing a powerful space 

for experimentation and exploration, possibly even self-discovery. Invariably, facets 

of the conference do pose constraints; yet, with those constraints also come other 

affordances that may not be immediately evident. By this, I mean to emphasize that the 

conference sets forth various opportunities to experiment with modes of expression 

and the ways in which we, as participants/contributors, ultimately choose to articulate 

scholarly ideas in both written and verbal form. 

Although it may not always seem to be the case, it is entirely possible to experiment 

with voice and tonality, to play with structural conventions, to explore alternative 

presentation styles and engage with one’s audience/readers differently, and even to 

subvert expectations if one might be so inclined. In spite of certain restrictive structures 

inherent to MEDS-C, I am of the impression that the more permissive setting of our 

conference does allow for such experimentation to be highly fruitful/generative, and 

that it enables (or at least empowers) us to actualize/employ more tentative approaches 

than might be possible in other conference settings. At the time of drafting this 

reflective piece, it is unclear to me how common it is to be afforded opportunities to 

play around the borders of a given academic field, and possibly even to push at them a 

little. In that sense, I suggest that MEDS-C instantiates quite an interesting and 

liberating set of circumstances, for it necessitates adherence to certain common 

academic constraints whilst being entirely free of a great many others. As a result, for 

those graduate students who might be looking to broaden the space of possibility that 

is examined within the field of mathematics education, it can be rather fertile ground. 

A SPECIAL NOTE ABOUT THE PROCEEDINGS 

At the expense of a more elaborate discussion, but in favour of keeping things concise, 

I return to the underlying motivation of this prefacing commentary, namely the desire 

to reintroduce a reflective component to MEDS-C at large. Although it is not my place 

to specify what form such reflection might take, the process of engaging in meaningful 

reflection is certainly something I hope to promote. That said, it seems clear that the 

ongoing evolution of our annual graduate student conference will continue to be 

informed by its history, and it is for this reason that I briefly speak to another curious 

discovery gleaned from the examination of existing conference materials, which has 

prompted me to include additional comments about the MEDS-C proceedings 

themselves. As with the dearth of formal reflective practice following the 2009 

conference, this particular discovery is also marked by an interesting absence. 

Noted earlier, MEDS-C has now reached its 14th instance, yet this is not true of the 

accompanying proceedings. While a conference did indeed occur on November 29, 

2014, it would appear that a proceedings document was never actually generated; 

therefore, an unusual gap has manifested in the lineage of the conference records. As 
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an unfortunate result, certain traces of the 2014 conference can now only be 

accessed/revisited anecdotally, which is to say that these traces exist primarily within 

the memories of the various individuals who attended the conference or were otherwise 

involved in its planning/execution. To date, MEDS-C 2014 is the only instance of the 

conference characterized by such circumstances. Albeit an isolated case, it does raise 

the interesting question of how else we might point to, or index, this occurrence of the 

conference beyond the remembrances of those involved, or any fragmentary allusions 

to it that may exist elsewhere. 

I cannot offer much insight into the conference’s history before my own induction into 

the Mathematics Education doctoral program; however, exploring the traces of past 

conferences embodied by their proceedings has given some indication of the overall 

“flavour” of those events. Even for an academic conference as young as MEDS-C, it 

is clear that the proceedings not only serve as a reflection of the various research 

contributions from one year to the next, but also satisfy the function of 

marking/recording the existence of the conference as an actual series of events that 

transpire in a specific place and time. Thus, they are tangible, historical artefacts as 

much as they are condensed overviews of research in progress. 

Via a loose metaphor, the reader might even envision the conference proceedings as a 

sequence of figurative snapshots/photographs of the mathematics education 

community (or a small part thereof), and as indicators of the diverse topics and themes 

that motivate its newest members. In that sense, the proceedings resemble a cross-

sectional image of our evolving field, captured mid-growth. I articulate this point in 

order to stress that these documents extend beyond the anecdotal, allowing even 

previous conferences to persist/endure in such a way that they might be re-entered 

anew at any time (by anyone). Granted, engaging with the written content of the 

proceedings undoubtedly differs from the lived experience of the conference itself; 

nevertheless, the former affords all interested parties (be they attendees of the original 

conferences or not), a kind of asynchronous and extended/ongoing access to the latter. 

As a cumulative whole, the MEDS-C proceedings help to tell the story of how a portion 

of our field is developing over time. By collectively preserving that history, illustrating 

growth, and pointing toward future trends, they can be considered a deeply informative 

and powerful tool. 

*** 

Having very likely said too much at this point, I close out this prefacing commentary 

by once again encouraging my peers/colleagues to revisit/reconsider/reaffirm their 

own sensibilities about the nature of the Mathematics Education Doctoral Students 

Conference, and to reflect upon the constant evolutionary change it is undergoing. I 

encourage future participants/organizers/contributors to consider how MEDS-C also 

exists as a distinct entity, and how they might already perceive its many overlapping 

spaces (including those not mentioned in the current preface). While there is certainly 

value in working within the existing structures and constraints of MEDS-C, much 
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potentially stands to be gained by periodically re-evaluating those same structures and 

constraints, and thoughtfully/judiciously modifying them in response to the changing 

goals of the graduate community that MEDS-C represents. Finally, I encourage my 

peers/colleagues to explore the invaluable traces of past conferences that are housed 

within the available MEDS-C proceedings. At the time of writing this prefacing 

commentary, those documents may be readily accessed via the following URL: 

https://www.sfu.ca/education/mathphd/program-expectations/meds-c/past-meds-

conferences.html 

 

It is my sincere hope that current and future members of the Mathematics Education 

doctoral cohort will deem it worthwhile to dip into these documents on occasion, so as 

to engage with the multifaceted works within and to develop a greater appreciation of 

the vastly different perspectives being articulated in our field. On behalf of the 

Mathematics Education doctoral cohort and our supervising faculty, I also humbly 

extend additional thanks to the array of exceptional plenary speakers who have, to date, 

greatly enhanced the MEDS-C activities with their diverse contributions and insights. 

For ease of reference, a comprehensive list of these speakers and the titles of their 

respective talks has been included below: 

 

• November 25, 2006: Brent Davis 

Complexity Thinking as a Pragmatic Pedagogical and Investigative Tool 

 

• December 8, 2007: Nicholas Jackiw 

Perspectives on Dynamic Geometry Software 

 

• November 22, 2008: David Pimm 

Mathematics Education as an Interdisciplinary Endeavour: Over Thirty Years 

of Looking Elsewhere 

 

• November 14, 2009: Thomas O’Shea 

The Accidental Professor 

 

• September 25, 2010: Robin Barrow 

Some Fundamental Questions and Egregious Errors in Educational Thought 

 

• November 19, 2011: David Robitaille 

International Studies in Mathematics Education: TIMSS and PISA 

 

• December 8, 2012: Lulu Healy 
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Mathematical Cognition and Embodied Experience: Learning from Students 

with Disabilities 

 

• November 23, 2013: Beth Herbel-Eisenmann 

From Talking the Talk to Walking the Walk: An Exploration of Data Using 

Tools from SFL 

 

• November 29, 2014: John Mason 

A Few of My Favourite Tasks 

 

• October 17, 2015: Cynthia Nicol 

Slow Pedagogy, Research and Relations: Building Relationships for Research 

that Matter 

 

• December 3, 2016: Alf Coles 

An Enactivist Story of Researching the Teaching and Learning of 

Mathematics 

 

• November 4, 2017: Ofer Marmur 

Undergraduate Student Learning During Large-Group Calculus Tutorials: 

Key Memorable Events 

 

• November 10, 2018: Xiaoheng Kitty Yan 

What’s the Story? Identifying Key Idea(s) in Proof in Undergraduate 

Mathematics Classrooms 

 

• November 2, 2019: Egan Chernoff 

The Canadian Math Wars: A Disagreement over School Mathematics 

 

Respectfully, 

Jason T. Forde 
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MEDS-C 2019 PROGRAMME – NOVEMBER 2, 2019  
 

8:30 – 9:00 Welcome and Coffee – Learning Hub EDUC 8620 

 EDB 8620.1 EDB 8620.2 EDB 8625 

9:00 – 9:35 Andrew Hare 

Getting New Writing on 

the Board in an 

Undergraduate 

Mathematics Lecture 

Peter Lee 

Dyscalculia in the Media: 

A Critical Discourse 

Analysis of Two News 

Articles 

Annette Rouleau 

“I Don’t Want to Be That 

Teacher”: Anti-Goals in 

Teacher Change 

9:40 – 10:15 Sandy Bakos 

Teacher-as-Learner or 

Teacher-as-Expert? 

Pauline Tiong 

Talking in Mathematics ‒ 

Do We Know How? 

 

10:15 – 10:30 Break 

10:30 – 11:05 Srividhya Balaji 

Understanding Creativity 

Through Emergence: A 

Process Perspective 

Victoria Guyevskey 

Learning Geometry 

Through Drawing and 

Dragging in a Primary 

Mathematics Classroom 

 

11:10 – 11:45 Rob Sidley 

Changing Assessment 

Practice and Teacher 

Conceptions of Student 

Improvement in 

Mathematics 

Canan Güneş 

Reciprocal Influences in a 

Duo of Artefacts  

 

11:50 – 12:25 Mike Pruner 

Thinking Classrooms and 

Complexity Theory 

Sam Riley 

Logarithms through 

Textbooks: From 

Calculating Tool to 

Mathematical Object 

 

12:25 – 1:25 Lunch 

1:30 – 2:15 Plenary Speaker: Egan Chernoff 

The Canadian Math Wars: A Disagreement over School Mathematics 

2:15 – 2:30 Plenary Q & A 
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2:35 – 3:10 Niusha Modabbernia 

Not Choosing is Also 

a Choice  

 

Max Sterelyukhin 

Exploring the Bentwood 

Box: Collaboration in 

Lesson Design and 

Implementation 

 

3:10 – 3:25 Lunch 

3:25 – 4:00 Yumi Clark 

Dot Product - It’s so 

Easy? 

Wai Keung Lau 

Mathematical Problems 

that have No Known 

Solution in the Secondary 

Curriculum 

 

4:05 – 4:40 Sheree Rodney 

Embodied Curiosity, 

Geometer’s Sketchpad 

and Mathematical 

Meanings  

Jason Forde 

Engaging with Metaphors: 

Borderless Puzzles and 

Defragmentation 

 

4:40 – 5:00 Wrap up – EDUC 8620 
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CONTRIBUTIONS 

MEDS-C 2019 was organized by members of the Mathematics Education Doctoral 

Program. The conference would not have been possible without the following 

contributions:  

  

Conference Coordinators:  Sandy Bakos and Robert Sidley 

Final Survey:   Pauline Tiong 

Lunch Coordinator:   Max Sterelyukhin 

Photographer:    Victoria Guyevskey and Sam Riley 

Proceedings Editors:   Andrew Hare, Judy Larsen, and Minnie Liu 

Program Coordinator:   Srividhya Balaji and Annette Rouleau 

Review Coordinators:   Jason Forde and Sheree Rodney 

Snack Coordinators:   Canan Günes and Niusha Modabbernia 

Technology Support:   Michael Pruner 

Timers:     Yumi Clark and Peter Lee  
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PLENARY SPEAKER  

Egan Chernoff 

THE CANADIAN MATH WARS: A DISAGREEMENT OVER SCHOOL 

MATHEMATICS 

The Math Wars, Eh? Believe it or not, the teaching and learning of mathematics has 

become a staple of local, provincial and national media coverage over the last five 

years. The purpose of this talk is to provide an abridged version (5 years presented in 

1 hour) of the recent heated debate over the teaching and learning of mathematics. 
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ABSTRACTS  

 

Sandy Bakos 

TEACHER-AS-LEARNER OR TEACHER-AS-EXPERT? 

This paper examines two primary teachers’ explorations with TouchTimes (TT), an 

iPad touchscreen application designed to provide a visual and kinaesthetic way to 

engage with multiplication directly through touch. Using the Theory of Semiotic 

Mediation, I will focus on the key notion of semiotic potential by analysing each 

teacher’s first interactions with TT. While seeking to gain insight into the use of the 

app from the perspectives of these teachers, there were interesting shifts observed 

between the teacher-as-expert and the teacher-as-learner. The semiotic potential, 

however, did not always arise from the artefact and lead to the mathematics, as 

expected. Rather, there were instances where the teachers’ prior knowledge of the 

mathematics actually led to understanding the artefact. 

 

Srividhya Balaji  

UNDERSTANDING CREATIVITY THROUGH EMERGENCE: A PROCESS 

PERSPECTIVE 

Creativity has always been assessed from two important viewpoints: novelty and 

usefulness. However, these perspectives enrich our understanding only of the creative 

product and not of the underlying process. To gather a holistic appreciation of what 

creativity entails, both the creative process and the product need to be studied hand in 

hand. To accomplish that, it would be worthwhile for us to understand the nature of 

the creative process and its unfolding. In this paper, I primarily argue that creativity 

is an emergent phenomenon with the help of a modern theoretical framework called 

enactivism and I examine the creative processes involved in a mathematical proof 

generation. Interview excerpts from two expert mathematicians are analysed and the 

idea of emergence involved in their creative endeavours are discussed. 

 

Yumi Clark 

DOT PRODUCT - IT’S SO EASY? 

In many college level math classes, concepts are often presented in such a way that 

overlooks the remarkable mathematical achievements culminating in those concepts. 

How the dot product of two vectors is introduced in the 2- or 3-dimensional space is a 

prime example. Given two vectors  and , students often 

find it very trivial to compute . This trivial computation 

often gives them false impressions about their understanding of the concept. How do 



MEDS-C 2019                                                                                                   Abstracts 

13 

textbooks facilitate students’ understanding of dot product? With this question in mind, 

a textbook analysis involving 13 textbooks in mathematics, physics, and engineering 

was conducted. This paper discusses its results and findings. 

 

Jason Forde  

ENGAGING WITH METAPHORS: BORDERLESS PUZZLES AND 

DEFRAGMENTATION 

In a deliberate move away from the typical MEDS-C submission, this paper focuses 

less on the articulation of specific research findings, and more on the communication 

of insights gleaned from the process of writing about my primary research themes 

(namely the nature of mathematics and the notion of material assemblage). 

Specifically, two complementary metaphors which have proven useful in formulating 

my view of mathematics as the science of material assemblage are discussed at a 

metacognitive level, using the writing process itself as a framing device. I also briefly 

indicate how the metaphors of interest (i.e. borderless puzzles and defragmentation) 

can be linked to underlying mathematical considerations. 

 

Canan Günes  

RECIPROCAL INFLUENCES IN A DUO OF ARTEFACTS  

The combined use of a physical pedagogical artefact and its digital counterpart is 

described as a duo of artefacts. In the literature duos of artefacts are presented with a 

certain order assuming that the digital counterpart enhances mathematical knowledge 

by adding affordances to the physical artefact. This study examines the effect of 

reciprocal use of artefacts in a duo on a 5-year-old child’s identification of 

relationships between the objects. Data is created through the video record of two 

clinical interviews with the child. The results show that unless they are used 

reciprocally, none of the artefacts were enough to mediate relationships between the 

objects of artefacts which are important for multiplicative thinking.  

 

Victoria Guyevskey  

LEARNING GEOMETRY THROUGH DRAWING AND DRAGGING IN A 

PRIMARY MATHEMATICS CLASSROOM 

This project was carried out in a mathematics classroom in an affluent and culturally 

diverse urban elementary school in North America. We conducted a month-long 

classroom intervention with Grade 2/3 students, experimenting with geometric tasks 

within physical environment of paper-and-pencil, and virtual multitouch environment 

of dynamic geometry. In our experiments, we were interested in specific ways these 

two contexts give rise to mathematical concepts, and how learning affordances of 

digital and tangible tools are complementary and different. We wanted to see (1) what 
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the students would learn, and (2) what the constraints and liberations of those 

environments would be. We found that there was no binary distinction between the two. 

 

Andrew Hare 

GETTING NEW WRITING ON THE BOARD IN AN UNDERGRADUATE 

MATHEMATICS LECTURE 

In this paper I take seriously the task of the lecturer in undergraduate mathematics: to 

write on the board a selection of true results and precise definitions while providing 

convincing argumentation justifying these inscriptions. Using a microethnographic 

approach that emphasizes contexts and the role of the hands, I analyze a few moments 

to highlight some common writing/speaking/gesturing actions: construal of a piece of 

writing in order to make a contrast, construal of a piece of writing in order to make a 

specific choice from a general type, nonlinear writing, grasping and circling to 

indicate “many”, and moving the hands from one place to another while keeping the 

shape constant in order to indicate equality. 

 

Wai Keung Lau 

MATHEMATICAL PROBLEMS THAT HAVE NO KNOWN SOLUTION IN THE 

SECONDARY CURRICULUM 

It is possible to find a connection between high school mathematics and mathematics 

beyond the curriculum. In this paper, I offer two well-known examples, namely, 

Euclid’s fifth postulate (parallel postulate) and Ping-pong ball conundrum 

(Littlewood-Ross paradox). The former is equivalent to say that “sum of the angles of 

a triangle is 180°”, and the latter involves considerable cognitive conflict in different 

sizes of infinity. I argue that good examples not only can reveal the beauty of 

mathematics but also can inspire students’ interest in mathematics. I also say that 

despite intuitive ideas without rigours proof may not be valid for formal mathematics, 

students may gain extra benefit rather than just delivering the conventional lessons. 

However, how to choose good representative examples for high school students is one 

of the crucial points for high school teachers and the researchers. 

 

Peter Lee 

DYSCALCULIA IN THE MEDIA: A CRITICAL DISCOURSE ANALYSIS OF 

TWO NEWS ARTICLES 

Dyscalculia has received relatively little attention in the popular media compared to 

other disabilities such as dyslexia. This paper applies the tools of critical discourse 

analysis to examine two rare articles on the disability. Discursive representations of 

dyscalculics, cognitive neuroscientists and their research on the brain and the roots of 
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number sense are examined for how such representations are influenced by ideology 

and the media genre. 

 

Niusha Modabbernia 

NOT CHOOSING IS ALSO A CHOICE  

Although counting problems are easy to state there is much evidence that students 

struggle with solving counting problems correctly. As this topic became part of K-12 

and undergraduate curricula, there is a necessity to study factors that might have 

affected students’ success. Detecting all the choices in solving a counting problem is 

one of the factors of students’ success. The option of not choosing which may not often 

be considered as a choice is the core of this research. A pair of prospective high school 

teachers participated in this research. Their combinatorial thinking was examined in 

term of Lockwood’s model (2013) with the focus of detecting the option of not choosing.  

 

Mike Pruner 

THINKING CLASSROOMS AND COMPLEXITY THEORY 

In this article I will look at how Thinking Classrooms can be described and studied 

through the lens of Complexity theory. A Thinking Classroom is a teaching framework 

developed by Peter Liljedahl to occasion greater supports for student activity and 

engagement through the extensive use of randomized groupings, problem solving on 

vertical whiteboards, and sequenced tasks to maintain flow. The public nature of the 

whiteboard surface and the close and fluid interactions of the students affords the 

potential for ideas, hunches, queries and representations to move freely through the 

room. In this article, I describe the connection between Thinking Classrooms and 

Complexity theory and how emergent events may be observed in this environment. 

 

Sam Riley 

LOGARITHMS THROUGH TEXTBOOKS: FROM CALCULATING TOOL TO 

MATHEMATICAL OBJECT  

Throughout history, logarithms have been understood and therefore presented in many 

different ways. How they were introduced in a textbook affected the work done with 

logarithms throughout the text, as well as affecting what sort of understanding readers 

could take from the text. By looking at three texts used in the same area over 150 years, 

through the lens of Anna Sfard’s Operational/Structural conception duality, I will 

analyse how these texts built understanding in their readers. 
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Sheree Rodney  

EMBODIED CURIOSITY, GEOMETER’S SKETCHPAD AND MATHEMATICAL 

MEANINGS  

This paper is a corollary to a larger research study. It examines how two grade nine 

students, both 15 years old, from a secondary school in Jamaica, interacted with circle 

geometry theorems in a Dynamic Geometry Environment (DGE) called The 

Geometer’s Sketchpad (GSP). I utilize the notion of Embodied Curiosity, as well as, 

Andrew Pickering’s idea of agency (the influence of human and non-human actions 

against each other), to analyse the ways in which Embodied Curiosity emerge when 

students interact with their peers on geometric tasks. In addition, I adopt parts of 

Berlyne’s curiosity dimension model as a methodological tool to identify physical 

markers of when and how students become curious. I argue that curiosity along with 

digital technology, body movements and mathematical meanings work hand-in-hand 

for learning to take place. I also suggest that curiosity; the main ingredient, plays an 

important role in shaping the body and the mind.  

 

Annette Rouleau  

“I DON’T WANT TO BE THAT TEACHER”: ANTI-GOALS IN TEACHER 

CHANGE 

This paper uses the theory of goal-directed learning to examine anti-goals that arise 

as teachers implement change in their mathematics practice. Findings suggest that 

anti-goals develop as teachers begin to recognize who they do not want to be as a 

mathematics teacher. Accompanying anti-goals are emotions that can be useful in 

measuring progress towards anti-goals (fear and anxiety), and away from anti-goals 

(relief and security). Furthermore, acknowledging anti-goals allows mathematics 

teachers to focus on the cognitive source of their difficulties rather than be 

overwhelmed by the emotional symptoms.  

 

Max Sterelyukhin  

EXPLORING THE BENTWOOD BOX: COLLABORATION IN LESSON DESIGN 

AND IMPLEMENTATION 

This work resulted from an attempt to collaboratively design and implement a lesson 

with the lens of First Peoples Principles of Learning in a high school Mathematics 8 

class in 2018-2019 academic year. We describe the process, outline the key objectives 

and challenges in both design and implementation stages. We also discuss the 

reflections and the learning observed by teachers as designers as well as learners 

along with the students. The analysis of noted teachers’ experiences and observations 

showed the complexity of the challenge to incorporate the indigenous ways of learning 

into teaching practice is substantial among mathematics teachers and the lack of 
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knowledge in the subject matter remains large. We discuss possible approaches of 

bridging the gap between the current state of First Peoples Principles of Learning to 

what it is mandated to be by the Ministry of Education in British Columbia 

mathematics classrooms.  

 

Pauline Tiong 

TALKING IN MATHEMATICS ‒ DO WE KNOW HOW? 

The notion of talking in mathematics or what is more commonly referred to as spoken 

communication in mathematics classrooms has been an increasingly important yet 

demanding task for both students and teachers. Specifically teachers face the challenge 

of orchestrating and facilitating meaningful mathematical talks with and for their 

students. As an in-depth literature review of the notion of spoken communication in 

mathematics classrooms, this paper serves as a preliminary exploration to address 

what teachers need to know or do to help students develop their mathematical spoken 

communicative competence. A possible framework which may explicate why and how 

spoken communication (or mathematical talk) can contribute to mathematics teaching 

(and learning) is proposed as a result of this exploration. 
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TEACHER-AS-LEARNER OR TEACHER-AS-EXPERT? 

Sandy Bakos 

Simon Fraser University 

 

This paper examines two primary teachers’ explorations with TouchTimes (TT), an 

iPad touchscreen application designed to provide a visual and kinaesthetic way to 

engage with multiplication directly through touch. Using the Theory of Semiotic 

Mediation, I will focus on the key notion of semiotic potential by analysing each 

teacher’s first interactions with TT. While seeking to gain insight into the use of the 

app from the perspectives of these teachers, there were interesting shifts observed 

between the teacher-as-expert and the teacher-as-learner. The semiotic potential, 

however, did not always arise from the artefact and lead to the mathematics, as 

expected. Rather, there were instances where the teachers’ prior knowledge of the 

mathematics actually led to understanding the artefact. 

INTRODUCTION 

Multiplication is commonly introduced in primary schools through counting in groups 

or repeated addition. Supported by curriculum documents and deeply rooted in 

teaching practice, multiplication as repeated addition has become the dominant 

perception of multiplicative situations for both primary students and primary teachers 

(Askew, 2018). This is problematic because although multiplicative structures do rely 

partly on additive structures, Vergnaud (1983) points out that they also possess “their 

own intrinsic organization which is not reducible to additive aspects” (p. 128). 

Davydov (1992) argues that “multiplication does not receive any special advantage” 

(p. 9) when thought of as repeated addition. Thinking about multiplication only in this 

way is limiting and later creates difficulties for students when they progress to more 

complex mathematical concepts requiring a direct capacity to think multiplicatively 

(Siemon, Breed & Virgona, 2005).  

In an effort to engage primary school children with multiplicative relationships in an 

easily accessible, visual and kinaesthetic way, an interactive touchscreen iPad 

application called TouchTimes (hereafter TT) has been developed. Inspired by 

Vergnaud’s (1983) relational and functional aspects of multiplication, and Davydov’s 

(1992) double change-in-unit, TT provides students with a model for multiplication 

that does not rely on repeated addition.  

Brief description of TouchTimes 

Prior to reading the ensuing description of TT, it may be helpful to view this short 

video demonstration of the app (m.youtube.com/watch?v=L3BRXZfBbZo). When 

first opened, the screen is split in half by a vertical line. Different coloured discs (called 

https://m.youtube.com/watch?v=L3BRXZfBbZo
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‘pips’) appear beneath the user’s fingers upon contact with whichever side of the screen 

is touched first (the app is designed to be symmetric) and will remain so long as the 

user’s fingers maintain continuous screen contact. The numeral that corresponds to the 

number of pips created is displayed at the top of the screen (Figure 1a) and adjusts 

instantly as pip-creating fingers are added or removed.  

Once the pips are established, the user is then able to create bundles of pips (termed 

‘pods’) by tapping on the side of the screen that is opposite the vertical line. The pods 

reflect a duplicate of the colours and configuration of the original pips (Figure 1b), and 

as the pods are created, a multiplication (×) sign, and a second numeral appear as part 

of the mathematical expression. The pips represent the multiplicand, and the pods, the 

multiplier. Both pips and pods may be produced by sequential or simultaneous screen 

contact, but unlike the pips, the pods do not require continuous finger contact in order 

to remain visible on the screen. TT encircles all of the pods in a single unit with a white 

‘net’ while simultaneously completing the mathematical expression by displaying the 

product in white (Figure 1c). The content of the pods and the subsequent product are 

directly affected by the addition and removal of pips, and if all of the pip-creating 

fingers are lifted from the screen, then all of the pips and pods will disappear.  

   

Figure 1: (a) Creating pips (b) Creating pods (c) Finished expression 

Modeled upon the double change-in-unit process, the first unitising in TT takes place 

when the multiplicand (represented by the pips) is determined, and the second unitising 

occurs when the number of units (or pods) is established. Consistent with the 

Davydovian approach to multiplication where the unit quantity is identified prior to the 

number of units, the multiplicand precedes the multiplier in TT. One way to 

conceptualise this action is to see the pips unitised into pods (first unitising), and then 

the pods unitised into the product. This order is not commonly found in Alberta 

textbooks where the multiplier always precedes the multiplicand and is the opposite of 

how many teachers think about and teach multiplication to their students.  

THEORETICAL FRAMEWORK 

Built upon the Vygotskian perspective of signs as semiotic mediators, the Theory of 

Semiotic Mediation (hereafter, TSM) (Bartolini Bussi & Mariotti, 2008) further 

extends Vygotsky’s ideas into the context of the mathematics classroom. From an 

educational perspective, semiotic mediation refers to the study, use and interpretation 

of signs and symbols (semiotics) and the potential use of these signs and symbols as 

mediators between learners and knowledge. The TSM provides a framework for 

describing the teaching-learning sequence which begins with the integration of an 
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artefact for use in completing a task, and proceeds with the teacher guiding students 

towards mathematical understanding. Knowledge of the semiotic potential of the 

artefact in use and thoughtful engagement with the didactic cycle are key components 

that underlie the semiotic and educational perspectives of the TSM. Though more 

commonly used in situations involving students learning mathematics, the TSM is also 

well suited for the purposes of this paper, with its focus on the semiotic potential of TT 

and two teachers’ initial exposure to it. 

An essential component within the TSM, an artefact is viewed as a material or 

symbolic object, which has been created to answer a specific need (Rabardel, 1985), 

while signs are psychological tools that support and develop mental activities. The 

relationship between an artefact used to accomplish a task and the specific 

mathematical knowledge that emerges varies depending on the experience of the user. 

Whereas a novice will construct personal knowledge while completing a task using an 

artefact, an expert will recognize the mathematical knowledge that can potentially 

emerge by using the artefact to accomplish a task (Mariotti, 2012). Therefore, the 

semiotic potential of an artefact involves the double semiotic link which may be 

established between an artefact, the learner’s personal meanings evoked by its use to 

accomplish a task and the mathematical meanings that emerge from its use that can be 

recognized by an expert as mathematics. 

Adopting a semiotic perspective involves “recognizing the central role of signs in the 

construction of knowledge” (Vygotsky, 1978, p. 60). When first using an artefact to 

complete a task, the initial situated signs evoke the artefact (artefact signs) and emerge 

from the learner’s personal experiences (Bartolini Bussi & Mariotti, 2008). The 

primary objective of semiotic mediation is student acquisition of mathematical content 

which requires that the teacher carefully orchestrate the transition from artefact signs 

that express the relationship between the artefact and the task towards culturally 

determined signs connected to the mathematical knowledge evoked by the artefact 

(mathematical signs). During this process, pivot signs, hinting at both the artefact and 

mathematical knowledge, appear and must be recognized and exploited by the teacher 

in order to facilitate this transition for the learner. 

In the context of a mathematics classroom, this evolution will be facilitated through 

task design and guidance by the teacher through the didactic cycle, which consists of 

activities with the artefact, individual and/or small group production of signs as well 

as the collective production of signs during mathematical discussions. However, for 

the purposes of this paper, which consists of individual interviews with two teachers 

in a research context, the unfolding of the semiotic potential (Mariotti, 2012) of TT 

will be examined. Consequently, the focus will remain on the first phase of the semiotic 

mediation process and the emergence of the teachers’ (rather than students’) personal 

signs when interacting with the TT artefact.  

There is additional complexity to be recognized in using the TSM in a research context 

with teachers interacting with a digital app not previously experienced (teacher-as-
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learner), that presents an already known mathematical concept (teacher-as-expert) 

(Bakos & Sinclair, 2019). The emergence of subtle shifts between teacher-as-learner 

and teacher-as-expert occurred throughout the interviews and must be considered in 

relation to their use of TT as an artefact, their previous knowledge of multiplication 

itself, and their prior teaching practices related to multiplication. 

METHODS 

The data for this paper comes from a small-scale qualitative study involving two 

experienced elementary school teachers, both of whom have spent the majority of their 

teaching careers in Alberta classrooms. The two teachers, who are referred to as 

Hannah and Katie, were chosen to be part of this study due to their extensive experience 

teaching grades in which multiplication is first introduced and practiced with Alberta 

students. Single session exploratory conversations were conducted with each 

participant separately, lasting between 10 and 20 minutes in length. Audio and video-

recordings of each session were created and later transcribed.  

Each teacher was given time to become familiar with the TT app through independent 

exploration prior to any specific requests or questions from the interviewer. After this 

short period of free discovery, the participants were provided with some open-ended 

tasks to complete using TT. These exploratory situations provided an opportunity to 

observe how each teacher made sense of TT using their pre-existing personal 

knowledge of multiplication as well as a chance to learn their thoughts about the app 

in relation to their experiences teaching children multiplication.  

The semiotic potential of TouchTimes in relation to multiplication 

A full analysis of the semiotic potential of TT is beyond the scope of this paper, 

therefore the key affordances of TT will be linked to meanings emerging from its use 

and how these meanings may elicit specific mathematical meanings of multiplication. 

The unfolding of the semiotic potential of TT, according to the TSM, will result in the 

emergence of different personal signs related to the use of the artefact to complete a 

task. These personal signs have the potential to evolve into mathematical signs.  

RESULTS 

From the video transcripts of both interviews, episodes have been chosen that 

illuminate aspects of the semiotic potential of TT in relation to multiplication. Prior to 

their first task, Hannah and Katie were given a short time to freely explore the app. It 

was not intuitive for them that continuous finger contact with the screen is required for 

the creation and maintenance of pips, but only a tap is required to create pods. This 

proved to be problematic throughout the initial exploration of the task and persisted 

even after reminders that continuous contact is not required to keep the pods visible.  

Katie: Teacher-as-learner of the app 

Once comfortable with the app, each teacher was given the task:“The product is 24, 

how many pips are there?” Katie immediately began sharing her thoughts while 
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exploring TT. Her first comment was, “The only thing is, it’s hard to see the groups 

when you’re touching them.” An artefact sign which prompted me to instruct Katie to 

lift her right hand (the one creating the pods) so that she could see that the pods would 

remain after removing her hand. Later, while placing both hands on the screen and then 

removing one or other first, Katie noted, “Oh the groups stay. That’s a good thing 

because I’d not want my fingers to stay there. But they don’t stay on the other side.” 

Even after this Katie still used both hands to create 6×4=24, saying “I can make 24 but 

I have to use both hands, which is a little difficult”.  

Mid-way through the interview, while discussing the mathematical expression on the 

screen, Katie maintained continuous pip-contact, but removed her hand from the pods, 

which remained. Then, wanting to modify the equation, Katie removed some of her 

fingers so that there were fewer pips. When doing this, she appeared not to notice the 

changing configuration of pips within the pods, and once finished removing pips, she 

began tapping the right screen (RS). Seeing the addition of more pods, she stated in 

surprise, “Oh, you just have to tap them!” and then clarified, “So I can tap them, and 

they stay?” This statement and question, each in succession, are both artefact signs that 

signify a transition in Katie’s understanding of how the app operates. 

The artefact sign in TT relating to the maintenance or removal of finger contact and its 

subsequent effect on the pips or the pods, demonstrates how Katie was a teacher-as-

learner when interacting with the digital tool. This would become a pivot sign, 

prompting her to pay closer attention to the effects that finger placement or removal 

had on the pips and the pods already on the screen.  

Hannah and Katie: Teachers-as-experts of multiplication 

Hannah and Katie’s engagement with the TT app during the first task seemed to 

activate what I shall term a semiotic sifting and imposition of the mathematics. The 

signs emerged not from the artefact itself, but instead from the mathematics prompted 

by the task. Each teacher had pre-existing knowledge of multiplication and methods of 

teaching multiplication, and both endeavoured to impose their personal meanings 

which were intertwined with the mathematics, upon their use of this artefact. 

When asked how many pips would be required for a product of 24, both teachers gave 

the answer first and then created it using TT. Katie stated, “Well I think of 6×4, right 

now.” Her emphasis on right now indicates how quickly she knew the answer (teacher-

as-expert). Later, when asked to make 24 another way, she said: “24, yeah. 24×1, 

12×2” before engaging with the app. These are both examples of mathematical signs 

that emerged from the task given, but prior to the use of the artefact.  

When Hannah was first given the task, she questioned: “The product is 24, there’s only 

going to be 12?” and used TT to create 12 pips and a single pod for a product of 12. 

After being prompted, “So the product is 24”, Hannah responded, “So we didn’t do 

enough? [Creates another pod] Oh, I see, I have to put two fingers down over here”. 

This scenario began with Hannah providing a correct answer to the task (a 

mathematical sign) and then working to explain the mathematics using TT to build 12 
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pips and two pods (an artefact sign). She goes further by stating, “So 12 pips, because 

they’re all going to go in groups of two”, which is a pivot sign between the mathematics 

and the personal meanings developed through Hannah’s use of the artefact. 

Hannah and Katie: Teachers-as-experts and teachers-as-learners 

When asked to create a product of 24 in another way, Hannah made 24=4×6 but had 

difficulty describing how the changes made were reflected in the pips and pods. Hoping 

to encourage the use of TT’s affordances in “building” multiplication, I had Hannah 

remove two pip-fingers (Figure 2a) and asked, “Can you adjust that now to get 24 

again?” She added two pods to create 24=6x4 (Figure 2b) and explained, “There’s 

more of these things. I mean four in each one [indicates the pods], there’s six with four 

in each one [gestures over the pods]”. Wanting her to notice the spread effect of pips 

in the pods, I asked her to recall what she created earlier. Hannah placed two pip-

fingers down, noted 36=6×6 at the top of the screen, dragged two pods to the trash 

(24=4×6) and said, “So I could take two of those away, so there’s six in each one” 

(Figure 2c). 

                             

Figure 2: (a) 16=4×4 to start (b) 24=6×4 (c) 24 =4×6 

In this episode, Hannah was using her pre-existing knowledge of the commutative 

property in concert with the multiplication expression displayed at the top of the iPad 

screen (mathematical sign) in order to create a product of 24 that reflects six pods made 

up of four pips and four pods composed of six. Throughout this process, she was 

working towards a more solid understanding of how the creation of pips and pods in 

the app (teacher-as-learner) reflects what she already knows about the commutative 

property (teacher-as-expert). Her reference to the expression at the top of the iPad 

screen through gestures, indicates that this mathematical sign continued to work as a 

pivot sign between the mathematics that she already possessed and the personal 

meanings that she was developing through the use of TT to solve the task given. 

Katie also seemed to shift back and forth between teacher-as-expert and teacher-as-

learner in regards to the mathematics and the use of the artefact. After Katie created a 

configuration of 6×4=24 using TT I asked, “Can you remove more fingers perhaps and 

create more pods?” To which she replied, “Probably yeah…but I’d have to really think 

about this because then I’d have to make the other side…” She then removed a pip-

finger to create 5×4=20, pointed at the pods and explained, “I could make six here”, 

lifted another pip-finger (4×4=16), “I could make four here” and finished by tapping 

one, two more pods to make 4×6=24. When asked how the pods were different, Katie 

stated, “They only have four in them. […] Okay that’s weird because now they’re six 
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of them [makes a circling gesture over the six pods] with four in them [points at a pod]. 

I guess that’s how it changed. So, how did that work?” 

As Katie interacted with TT to address the task, she was creating artefact signs. 

Through physically changing 6×4=24 to 4×6=24, and her accompanying explanation 

about what she was doing, Katie appeared to recognize the relationship between the 

pips and pods in TT (mathematics signs) until she questioned, “So, how did that work?” 

A pivot sign that she was not understanding how the pips comprised the pods. At this 

point I intervened by continuously adding and removing two pips while questioning 

Katie about what was happening. She pointed back and forth between the pips and 

pods, and explained that, “You’ve just added two more and then they’ve added two 

more on both sides.” Wanting to know specifically where the two pips were going, I 

prompted further. Katie responded by pointing at my pip-creating fingers and said, 

“There’s two here and they’ve added two there [indicating a single pod]”. But she then 

questioned, “Haven’t they? Or are they always six there? No, they always were six. 

Okay. They’ve added two more here [points back at my two pip-fingers]. Two more 

pips, I don’t know where they’re going”. Trying to direct her attention away from the 

unchanging number of pods and towards the changing composition of pips within the 

pods, I suggested that Katie pay attention to the colours. Although she noted that my 

pips “go into there [the pods]. They’re the same colour as what you’re doing”, it wasn’t 

until I said, “Yes, but there are two more in each pod. So it’s not just two, it’s two more 

in each group” that Katie verbalised, “Yeah, so it’s like 12 more? Yeah, yeah, okay.” 

The artefact sign that I was paying particular attention to was Katie’s difficulty in 

describing what was happening within each of the pods. Although she noticed the 

addition of pips within a pod, it was only within a single pod, rather than in all of the 

pods. Her question, “so it’s like 12 more?” was a pivot sign that indicated her transition 

towards mathematical meaning in relation to the artefact used (teacher-as-learner). 

After this, she experimented by adding and removing a single pip while watching the 

effects of her actions on the pods. She then explained, “So really, what I thought is 

they’re [points back and forth between the pips and pods] working together. They’re 

really not working together. That’s [indicates the pips] building this [points to a pod]. 

Is that what we’re saying? […] it’s building the groups”. 

Hannah also elaborated further about her observations regarding the impact of the 

changes she had been making to the pips and pods in TT. “It can either make less 

groups, more groups, it changes how many. […] It has to take however many fingers 

you have over here [circles over pips], has to be in your group over there [points to 

pods]. So, that’s [points to pips] going to change what’s in over here [points to pods]”. 

Throughout both explanations, the intertwined nature of gesture and speech is readily 

apparent while also demonstrating the double semiotic link between the task and the 

artefact, and the resulting development of personal meanings that were linked with 

mathematical understanding as it was related to the use of TT specifically. 
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DISCUSSION AND CONCLUSION 

Besides shifts between teacher-as-learner and teacher-as-expert, there were also 

unexpected shifts that occurred in relation to semiotic potential throughout Hannah and 

Katie’s explorations with the artefact. Initially, both appeared to draw upon their 

knowledge of mathematics prior to engaging with TT, which influenced their 

interactions with the app in unexpected ways. The teachers first engaged in a semiotic 

potential of the mathematics itself, rather than exploiting the semiotic potential of the 

artefact. Then, after becoming more familiar with TT there was a transition towards 

using the app to make sense of the mathematics in a way that was more consistent with 

the semiotic potential of the artefact within the TSM. However, further research related 

to the role that semiotic potential plays when introducing TT to those who already 

possess pre-existing ideas about the process of multiplication is necessary. If primary 

teachers are to effectively implement this digital technology as a teaching tool, then it 

is necessary that they possess a clear understanding of the multiplicative principles that 

underly it. An understanding that is not as straight forward as previously presumed 

prior to these interactions with two very experienced educators.  
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UNDERSTANDING CREATIVITY THROUGH EMERGENCE: A 

PROCESS PERSPECTIVE 

Srividhya Balaji 

Simon Fraser University 

 

Creativity has always been assessed from two important viewpoints: novelty and 

usefulness. However, these perspectives enrich our understanding only of the creative 

product and not of the underlying process. To gather a holistic appreciation of what 

creativity entails, both the creative process and the product need to be studied hand in 

hand. To accomplish that, it would be worthwhile for us to understand the nature of 

the creative process and its unfolding. In this paper, I primarily argue that creativity 

is an emergent phenomenon with the help of a modern theoretical framework called 

enactivism and I examine the creative processes involved in a mathematical proof 

generation. Interview excerpts from two expert mathematicians are analysed and the 

idea of emergence involved in their creative endeavours are discussed. 

INTRODUCTION 

Creativity plays an important role in the development of new knowledge in any human 

endeavour. The definition of creativity, what it is or how to measure it, however, is 

elusive. One distinction however is that there seems to be an over reliance on creativity 

associated with the human mind. (Sawyer, 2012). That is, creativity is often seen as a 

personal trait or an attribute that one is born with. We usually find studies about the 

‘person’ behind a creative act, acknowledged as being ‘talented’ or ‘gifted’ (Leikin et. 

al., 2010; Sriraman, 2005). Less frequently, we find creativity framed in terms of a 

person’s social milieu, like being raised in a certain family environment, or something 

similar. For example, socio-culturalists argue that creativity (‘imagination’ in 

Vygotsky’s terms) develops through the interiorization of cultural tools available to an 

individual (Gajdamaschko, 2005). There are many other challenges in describing 

creativity or coming to terms with what it could mean in different situations. For 

example, creativity is often times judged and measured using a finished creative 

product rather than the creative process underlying it (Sawyer, 2000). Is there a way to 

conceptualize creativity without having to think about the creative product and if so, 

what might that look like?  

A possible solution for this question would be to turn our attention towards the 

‘process’ aspect of creativity, where the primary focus of analysis would be on the 

unfolding of events in a creative act, in an unpredictable fashion. In other words, I 

suggest that in order to understand creativity in its totality, ‘emergence’ might be an 

important lens to use. Emergence, according to philosopher George Henry Lewes 
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(1877), is an effect that is unpredictable and arises out of the combined agencies of its 

interactants, but in a form that does not display these interactants (in Sawyer 1999). In 

other words, an emergent effect is neither predictable nor decomposable into its 

components. This idea could be nicely tied into creativity, which has mostly been 

treated as a static trait that only belongs to the individual involved in a creative act, 

whilst neglecting influences of the multiple interacting factors involved like tools, 

social situations, mood of the individual etc., to a large extent. Thus, situating creativity 

in the idea of emergence helps in decentering the human agency involved, thereby 

providing equal emphasis on other influential factors involved in the creative process. 

Also, thinking about creativity in terms of the creative process, instead of the finished 

creative product sheds light on the development trajectory of the product, which is 

otherwise often hidden if only looking at the product. Put differently, the 

improvisational aspect of creativity, where the creative process is the product, brings 

forth a perspective that is otherwise concealed when conceptualizing creativity from 

the product perspective alone (Sawyer, 2000).  

In this paper, I analyse data collected from newspaper/magazine interview excerpts of 

some expert mathematicians’ reflections on their own creative process while engaging 

with proofs/problem solving and I look for evidence that bring forth the idea of 

emergence and unpredictability involved in the unfolding of their creative process. I 

then argue that creativity is primarily an emergent phenomenon, following which I 

delve into exploring the possible factors this emergence depends on and furnish some 

pointers as to what this might inform us about creativity in general. I use enactivism, a 

modern theoretical framework on interaction as a way to look at creativity as 

emergence. I begin with a brief exposition of enactivism and its main tenets, to give 

the reader a theoretical lens to engage with the paper.  

ENACTIVISM AND EMERGENCE  

Moving on from the constructivist approaches where the primary emphasis is on 

knowledge rather than knowing, enactivism was developed to bring forth the idea of 

the inseparability of the individual and the world (Begg,1999; Lozano, 2005). The term 

‘enactive’ was coined in the 1992 seminal book Tree of Knowledge written by 

Francisco Varela and Humberto Maturana, to bring forth the view of knowledge not as 

existing “in any place or form, but enacted in particular situations” (Kieran & Simmt, 

2015). Enactivism is a theory of cognition that comes from a biological viewpoint and 

posits that ‘knowing’ neither represents grasping knowledge from the outside world 

nor constructing knowledge inside our minds, but is a result of interactions of an 

individual with the environment. It further explains that since each individual’s 

personal history and experiences are different, the outcomes of their interactions with 

the environment will be quite different. In other words, the outcomes of the mutual 

interaction an organism and its environment are not predetermined; rather, they emerge 

real-time as a product of the interaction, directly and continually influenced by both 

(Proulx, 2013). This sits perfectly well with the description of emergence, as proposed 
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earlier, as an effect that is not additive in nature, but a phenomenon that surfaces due 

to the combined agencies of its interactants. Although enactivism is not explicitly a 

theory of emergence, its essence is rooted in the unfolding of unpredictable outcomes, 

the cause of which cannot be traced back to the properties of either the organism or the 

environment. Enactivism is grounded in Darwin’s theory of biological evolution and 

some associated concepts like ‘structural coupling’ and ‘structural determinism’ are 

discussed below.  

Structural Coupling  

The concept of ‘structural coupling’ is rooted in Darwin’s conception of how 

organisms and environment co-evolve to adapt and become compatible to each other 

(Maturana & Varela, 1992). Enactivism builds on this idea to explain how an organism 

and its environment co-adapt and mutually influence each other during the process of 

their interaction. This then means that, both the organism and its environment go 

through constant transformations in their structures, as a result of their interaction with 

each other. From this notion of structural coupling, we can say that the outcomes of the 

interaction are highly dependent on both the environment and the organism. This leads 

us to another important concept of enactivism, namely structural determinism. 

Structural Determinism  

The phenomenon called structural determinism addresses the importance of the 

structural makeup of an organism that allows itself for transformations and changes 

(Maturana & Varela, 1992). Here, structural makeup not only refers to the physical 

structure of an organism, but a collective of the physical, psychological, neurological 

and sociological make-up of the being. Thus, two people trying to solve a problem, 

which can be thought of as a ‘disturbance’ from the environment, would engage with 

it differently based on their structural makeup and their interaction with the problem. 

This constraint and limitation possessed by each organism is precisely called structural 

determinism, in enactivist terms. Thus, the interaction between each structurally 

determined organism and its environment, is guided very much by the organism’s way 

of making sense and understanding, which Varela (1996) refers to as ‘problem posing’.  

As an emergent effect arises from the combined agencies of its interacting components, 

structural coupling and structural determinism help us in making sense of what those 

agencies of the components are. Specifically, though emergence is not predictable from 

the knowledge of its components and their agencies, we can at least understand what 

each component brings with itself and how each of these components is transforming, 

as they all interact.  

METHODS 

The data for this study was collected from newsletter/magazine interview excerpts of 

two expert mathematicians and Field medallists, Sir Andrew Wiles and Maryam 

Mirzakhani. A 10-page interview of Sir Wiles for the European Mathematical Society 

Newsletter and a 3-page interview of Mirzakhani for a Clay Mathematical Institute 
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Annual Report were taken for analysis. The gathered data was then examined to find 

traces of the notion of emergence in creativity and subsequently discussed using 

enactivism. Interview excerpts where the mathematicians precisely spoke of their 

creative process were chosen for this paper.  

EMERGENCE IN MATHEMATICAL PROOF GENERATION  

The words ‘proof’ and ‘proving’ are arguably two of the most important words 

associated with the discipline of mathematics. A mathematical proof entails a 

systematic series of successive mathematical statements, each of which follow 

logically from what has gone before (Bell, 1976).  The evolution of the finished 

creative product named ‘proof’ is not just a mechanical activity based on axiomatic 

deductive reasoning starting with an infallible truth, rather, it begins with the 

emergence of a conjecture which is then continuously transformed through the process 

of structural coupling by its interaction with the mathematician, and through the 

emergence of supporting lemmas, axioms and counter examples. Coming up with a 

proof from the same mathematical assumptions by different mathematicians seem to 

highly depend on their knowledge base and various other factors that come into play 

during this process. Maryam Mirzakhani, the late 2014 Field’s medallist, mentions 

about this idea of looking at a problem from different perspectives.  

I find it fascinating that you can look at the same problem from different perspectives, and 

approach it using different methods. …I would prefer to follow the problems I start with 

wherever they lead me. (Clay Mathematics Institute Annual Report, 2008, p. 12) 

Sir Andrew Wiles, the famous mathematician who proved Fermat’s Last Theorem, in 

a detailed interview, describes how many different factors along the course of many 

years influenced the way he started writing his seminal proof.  

I started off really in the dark. I had no prior insights how the Modularity Conjecture might 

work or how you might approach it. …To start with, there are three ways of formulating 

the problem, one is geometric, one is arithmetic and one is analytic. …I think I was a little 

lucky because my natural instinct was with the arithmetic approach and I went straight for 

the arithmetic route, but I could have been wrong. …Partly out of necessity, I suppose, and 

partly because that’s what I knew, I went straight for an arithmetic approach. I found it 

very useful to think about it in a way that I had been studying in Iwasawa theory. With 

John Coates I had applied Iwasawa theory to elliptic curves. When I went to Harvard I 

learned about Barry Mazur’s work, where he had been studying the geometry of modular 

curves using a lot of the modern machinery. There were certain ideas and techniques I 

could draw on from that. I realized after a while I could actually use that to make a 

beginning – to find some kind of entry into the problem. (EMS Newsletter, September 

2016, p. 34) 

Even though we might think that Wiles proved Fermat’s last theorem in isolation, in 

reality, it emerged from the constant interactions between him and the environment 

that he was situated in. From his interview, we see that his interactions with peers like 

John Coates and his situations in Harvard that led him to Barry Mazur’s work, were 

influential in helping him to formulate his proof pathway. The process involved in the 
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generation of a proof is quite emergent and lively, as opposed to the mechanical activity 

of lining up of pre-determined logical statements. Thus we could say that the 

generation of a mathematical proof depends on a lot of factors like the  mathematician’s 

knowledge base, personality, mood at any given time and the situation that they are 

situated in, making it as a result of their mutual interaction, as suggested by the 

enactivist theory.  

DISCUSSION 

From our data in the previous sections, we see that the process involved in the 

generation of a mathematical proof is quite unpredictable in nature, even to the 

individual who is creating it, emerging at each step from the constant mutual 

interaction between them and their surroundings. As true to our conception of the 

notion of emergence, the causes behind the outcomes of a creative process cannot be 

completely mapped to either the individual or their surroundings; a one-to-one 

mapping between cause and effect ceases to exist during any kind of improvisation. 

Nevertheless, I find that these unpredictable outcomes do depend highly on the 

characteristics of the interacting entities, thus accounting for the uniqueness that 

accompanies each interaction, as suggested by the enactivist lens. In the following 

paragraphs, I will discuss how the emergence of these outcomes depends on the 

interacting individual followed by how the surroundings contribute to the emerging 

outcomes of a creative process. 

In Sir Andrew Wiles’s interview, when he says, “ Partly out of necessity, I suppose, 

and partly because that’s what I knew, I went straight for an arithmetic approach”, we 

see how the personal preferences and limitations of the individual has a great impact 

on how a problem or a conjecture is being approached. This is consistent with Varela’s 

notion of structural determinism, where the organism’s structural make-up, with its 

physical/psychological features allow for a certain kind of action. Thus, the knowledge 

base of a person in a certain domain seems to be directly influential in bringing forth 

the optimal situations for them to explore. Also, when he says, ‘I started off really in 

the dark. I had no prior insights how the Modularity Conjecture might work or how 

you might approach it’, it gives a glimpse of the internal feelings of doubt and 

uncertainty, that he was going through at that moment, which might have influenced 

his work in a certain way. 

In terms of the influence of the environment, when Wiles says, ‘When I went to 

Harvard I learned about Barry Mazur’s work, where he had been studying the 

geometry of modular curves using a lot of the modern machinery… There were certain 

ideas and techniques I could draw on from that’, it is evident that the exchange of ideas 

from fellow researchers from the domain play a significant role in constituting the 

surroundings of a mathematician engaged in the generation of a proof. It also informs 

us as to how a mathematician depends on the knowledge and work of others, to build 

their own work. In a non-collaborative setting, where an individual is generating a 

proof in solitude, there is still a collaboration between them and their respective 
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discipline, which exerts an agency in the emergent creative process. In Andrew 

Pickering’s (1995) terms, this is called disciplinary agency. He claims that the concepts 

or materials belonging to a discipline, exert agency during practice, that is quite 

significant. When the expert mathematician Maryam Mirzakhani says, “I would prefer 

to follow the problems I start with wherever they lead me”, we see the exploratory 

nature of her pursuit and her reliance on the agency of the problems. Here, we see how 

Mirzakhani gives an equal emphasis on her co-evolving creative entity, the 

mathematics that she works with, which constitutes the environment that she is in. This 

co-evolution of the individual and their environment is what I identify as structural 

coupling. There is also evidence of the individual’s momentary de-centering of  

themselves from the creative act, as they give away their agency to the problem or the 

collaborative setting that they are in, to lead them into some unknown territory as 

Mirzakhani does when she says she would follow her problems wherever they lead her 

to.  

Thus, we see that creative processes are zig-zag in nature and seldom linear. The 

unpredictable emergence of ideas and thoughts in a creative process plays an important 

role in stimulating the enthusiasm of the creator, for if the outcomes were known 

beforehand, the joy of creation is lost. Thus, I argue that emergence plays a vital role 

in keeping the individual engaged in their creative activity, or in other words, creativity 

is primarily an emergent phenomenon. Also, we could possibly say that the emergence 

of creativity is a product of multiple interacting factors, for which optimal conditions 

might be created, but can seldom be reduced or dismantled to the properties of the 

component parts. This is quite consistent with the notion of emergence mentioned in a 

previous section as something that is not additive in nature.  

CONCLUSION  

Once a product is formed, we tend to overlook the dynamic emergent processes that 

were involved in the creation of the product and look at it as a static entity. However, 

creative processes are seldom linear, because the product thus formed is due to the 

result of constant emergent deformations, caused by the interaction between the 

individual and their environment. In this paper, interview excerpts of two expert 

mathematicians regarding their creative processes were analyzed to find evidence for 

the notion of emergence in creativity, to advocate for the idea that, creativity, in 

general, is an emergent phenomenon that unfolds due to the constant mutual 

interactions between a person and their environment. Several statements from the 

mathematicians emphasized the role of their collaborators, mood, personality and their 

disciplines in the emergence of their creative process.  

The descriptions from the expert mathematicians about the unpredictability and 

suspense experienced during a proof generation sheds light on the significance of 

emergence imbedded in the creative process. On the surface, mathematical proofs 

appear exceptionally precise and logical, however, the inner core of their 

improvisational aspect is very much imprecise, zig-zag and uncertain, much like a free-
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flowing musical improvisation. I conclude that the unpredictable emergence of the 

outcomes is imperative for an individual to feel the liveliness in their creative process, 

for which de-centering the human is essential. In other words, creativity does not reside 

in any one entity, but emerges in the interaction of multiple interacting factors.  
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DOT PRODUCT - IT’S SO EASY? 

Yumi Clark 

Simon Fraser University 

 

In many college level math classes, concepts are often presented in such a way that 

overlooks the remarkable mathematical achievements culminating in those concepts. 

How the dot product of two vectors is introduced in the 2- or 3-dimensional space is a 

prime example. Given two vectors  and , students often 

find it very trivial to compute . This trivial computation 

often gives them false impressions about their understanding of the concept. How do 

textbooks facilitate students’ understanding of dot product? With this question in mind, 

a textbook analysis involving 13 textbooks in mathematics, physics, and engineering 

was conducted. This paper discusses its results and findings.  

INTRODUCTION 

Achieving deep understanding, or what Richard Skemp calls relational understanding, 

of mathematical concepts is challenging. In particular, “concepts of higher order than 

those which people already have cannot be communicated to them by a definition, but 

only by arranging for them to encounter a suitable collection of examples” (Skemp, 

1987, p.18). APOS theory and Anna Sfard’s process vs. object conceptions also 

suggest that there are stages an individual learner must goes through in order for an 

unfamiliar concept to be encapsulated into a more static, structural object in one’s mind 

(Dubinsky & McDonald, 2001; Sfard, 1991). In terms of developing object conception 

of any mathematical ideas in learners, how the concept is communicated to them can 

have significant impact. It is particularly the case for more advanced mathematical 

concept, as the level of abstraction is so far removed from our immediate experiences 

with the surrounding physical environment. It is; therefore, paramount to introduce a 

mathematical concept in such a way that can facilitate this learning process. In this 

paper, we focus on the concept of dot product. How do textbooks communicate this 

concept to the students? 13 textbooks, including calculus, linear algebra, physics, and 

engineering, were studied in order to analyze how they introduce the concept of dot 

product. These books were studied with the following questions in mind: 

1  Is the motivation for the definition given? 

2 How is it defined; algebraically or geometrically? Does the book make 
connection between the two ways? And if so, how? 

3 Does it relate to physical/concrete examples of applications outside of 
geometry?  

4 Any notable differences between math and physics/engineering? And if so, 
what implications do they have on teaching and learning of this concept? 
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Following the example in Park (2016), in analyzing the findings, attention was given 

to how these textbooks communicate the concept of dot product to the learners. Park’s 

study relied on Anna Sfard’s interpretive framework stemming from the idea that 

thinking is a form of communication (Sfard, 2007).  

COLLECTED DATA 

In the U.S. college curricula, students typically encounter the notion of dot product in 

one of three ways, depending on which course they take first; 1) multivariable calculus 

course, 2) calculus-based physics course, or 3) linear algebra course. To answer the 

above listed questions, 13 textbooks were studied consisting of 7 calculus books, 2 

linear algebra books, 1 integrated physics and calculus book, 1 calculus-based physics 

book, 1 engineering statics book, and 1 upper division physics (electrodynamics). 

Table 1 on page 5 summarizes the findings. The detailed explanations of the column 

headings and the data in this table follows.  

Textbooks 

7 Calculus Books: Riddle’s text (1984) can be considered a book from the pre-calculus 

reform era. Apostol’s text (1964) is a textbook chosen frequently for honors level 

calculus courses in the U.S. It is much more theoretical and abstract than typical 1st 

year calculus textbooks. Stewart’s text (2008) and Thomas’ Calculus by Haas and Weir 

(2008) are books that are popular for calculus sequence. McCallum and Iovita (1998) 

can be considered one of the most popular reform calculus textbooks. Herman and 

Strang (2017) and Schlicker (2017) are books born out of the opensource movement to 

provide low cost options to students. The book by Herman and Strang is gaining 

popularity because of the credibility of the authors. 

2 Linear Algebra Books: Anton and Rorres (2014) and Lay (2000) are both 

introductory linear algebra textbooks. Lay’s book emphasizes more applications.  

1 Integrated Physics & Calculus Book: Rex and Jackson (2000) provides a rare 

example of a textbook that presents calculus with physics content focus.  

3 Physics & Engineering Books: Serway (2000) represents a typical textbook for 

calculus-based physics courses that most students majoring in STEM fields would take. 

Hibbeler (2001) is one of the popular engineering statics textbooks. Griffiths (1999) is 

an example of a textbook used typically by physics majors in upper division who take 

a course such as electricity and magnetism, which is essentially an applied vector 

calculus course.  

Motivation 

“Motivation” here refers to an attempt made by each textbook to motivate the definition 

of dot product. The data in this column indicate if each textbook introduces the notion 

of dot product by making a connection to students’ prior knowledge or by making a 

reference to any other associated concepts as a segue into the notion of dot product.  
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Definitions 

Generally, there are two ways to define the notion of dot product; algebraic and 

geometric. The letter “A” in this column indicates the algebraic definition of dot 

product. More specifically, this indicates that the dot product of  and 

 being given by:    .   In contrast, the 

letter “G” indicates the geometric definition of dot product; namely, 

, where  is the smaller angle between the two vectors. As 

summarized in Table 1, there were 4 possible outcomes for this column. A-G indicates 

that the book defined the dot product algebraically, then derived the geometric 

definition as a theorem. G-A indicates the opposite approach. A+G means that both 

definitions were provided simultaneously. “A” indicates that only “A” was given as 

the definition without stating the geometric definition (or as theorem). “A”; however, 

is very similar to G-A approach as the motivation of the dot product for this approach 

was the angle formula. So, in a sense the geometric definition was given as part of the 

motivation for the notion of dot product. 

Connection 

“Connection” refers to each textbook’s attempt to relate the two definitions. It answers 

the question, “how does the textbook connect the two definitions?” We can see that A-

G definition is followed by an application of the law of cosine to establish the 

geometric definition. It is interesting to note that all physics and engineering books 

relied on algebraic computations to show the equivalence of the geometric and 

algebraic definitions even though using the law of cosine is a viable approach.  

Applications 

“Applications” column indicates any examples provided for applications of dot product 

beyond the geometric ones, such as vector projection and orthogonality. As the table 

shows, the most common application came in the form of work as it relates to force 

and displacement vectors. 

DISCUSSION 

We will now analyze the findings from the perspective of possible implications each 

approach may have on the formation of more complete understanding of dot product.  

Motivation 

On the notions of process vs. object conceptions, Sfard (1991) views processes as 

operations performed on previously established objects. In this light, a motivation 

justifies the need for the new process represented by dot product being performed on 

vectors as objects. The findings indicate the common ways to motivate dot product are 

to appeal to the usefulness of dot product in computing work or to the usefulness in 

computing angles between two vectors. Regardless of which type of motivation is 

given, providing one facilitates the learners’ understanding of the “need” to define such 

notion, aiding in their attainment of the process conception of dot product.  
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Definitions 

We can see in Table 1 that there is a notable difference in the tendencies between 

mathematics textbooks vs. physics & engineering textbooks in ways they define dot 

product. Whether a motivation for the notion of dot product is provided, mathematics 

textbooks tend to give the algebraic definition first before the geometric. In contrast, 

physics and engineering textbooks tend to define dot product geometrically first. 

Perhaps, this is not surprising since the common example of dot product in physics and 

engineering tend to be that of work, which involves the projection of force vector along 

the displacement vector. This lends itself to the geometric definition of dot product. In 

mathematics textbooks, we see some variations in the way they define dot product; 

however, predominantly, “A-G” is the most common approach. Further investigation 

is needed before we can conclude whether the A-G tendency for mathematics and the 

G-A tendency for physics and engineering are due to common belief within each 

discipline as an effective approach or merely a default position due to tradition. 

McCallum’s book’s approach of A+G is certainly unique. This can be viewed as the 

impact of calculus reform, in an attempt, to provide students with various 

representations of concepts.  

Connection 

Regardless of which approach of definition one takes initially, if we were to instill in 

learners more complete understanding of the notion of dot product, it is essential to 

provide evidence of equivalence for the two definitions and how they are related. If no 

connection is made by the learner, it is more likely that learners’ conception of dot 

product would remain at the process level conception, at least longer than otherwise. 

Particularly, if they solely rely on the algebraic definition to compute the dot product, 

it seems as though “dot product” is merely a name you give to the process of computing 

such product. They may also be regarded as pseudo-object by Sfard (1991). Pseudo-

objects are those that are operated on by other processes, yet not fully reified into 

objects. It may be possible that the notion of dot product remains at this stage for a 

long time for many students. 

For this aspect of dot product, we also see a notable difference between mathematics 

and physics/engineering textbooks. Again, it is difficult to ascertain whether it is due 

to the pedagogical belief held within each discipline or if it is due to each discipline’s 

tradition in practice.  

Applications 

Applications of dot product beyond those of geometric ones extend the scope of 

learners’ understanding. These also supplement the motivation for the definition by 

providing the evidence of the need for such conception. By and large, the application 

is limited to that of work as you see in Table 1. Griffiths provides an example of 

application in terms of E-field flux. By the time students reach the upper division 

undergraduate courses, the discussion of dot product is limited to a brief review of how 

one computes the dot product; however, it provides further applications that the lower 
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division undergraduate courses do not provide. One may argue that being able to apply 

dot product in these contexts may be an evidence of object-conception of dot product. 

Making such claim may be premature, as we do not know whether students are 

performing such operations with pseudo-object conception of dot product alone.  

CONCLUSION 

As we tread through our mathematical journey, the more advanced the content 

becomes, the more detached concepts encountered are from our immediate experiences 

with the physical world. Definitions often seem to come from nowhere in particular. 

In this paper, various textbooks’ approaches to the notion of dot product were studied. 

This was done in an attempt to understand how the textbook discourse may or may not 

facilitate more complete understanding of dot product. There is a strong tendency in 

mathematics textbooks to state the definition algebraically whereas physics and 

engineering tend to define it geometrically. There is also a notable difference in the 

way mathematics textbooks tend to connect the two definitions as opposed to how 

physics and engineering textbooks tend to do so. It is not clear if either approach is 

better than the other with regards to the effectiveness of communicating the concept. 

Perhaps, being exposed to both approaches greatly enhance the likelihood of attaining 

structural conception of dot product. It however, warrants caution on either side to be 

cognizant of potential confusion these approaches may cause in learners.  

How textbooks provide a motivation for dot product is not consistent, and often no 

motivation is given at all. Providing some motivation can be argued as crucial in order 

to facilitate learners’ understanding for the necessity of such conception. Providing 

application examples is essential according to Skemp (1987), however, the findings 

indicate that often examples provided are very limited.  

Further study may shed more light on the existing notable differences between math 

and other disciplines in their approaches with regards to definition and connection. It 

may turn out that these differences are, indeed, more beneficial than harmful for 

learners as they highlight the multifaceted nature of the concept of dot product.  

 

Discipline Textbook 

(by Author) 

Motivation Definition Connection Application 

Calculus Riddle Angle 

formula 

A  N/A 

Hass  

(Thomas’) 

Angle 

formula 

A  Work 

Stewart  A - G Law of cosine  Work 

McCallum * A + G Law of cosine Work 
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Table 1: Summary of findings 

* This book tried to motivate the definition as a useful tool to connect algebra 

and geometry. 

** This book was exploratory in nature. Asked the reader to go through 

computation to see any patterns emerged. 
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ENGAGING WITH METAPHORS: BORDERLESS PUZZLES AND 

DEFRAGMENTATION 

Jason T. Forde 

Simon Fraser University 

 

In a deliberate move away from the typical MEDS-C submission, this paper focuses 

less on the articulation of specific research findings, and more on the communication 

of insights gleaned from the process of writing about my primary research themes 

(namely the nature of mathematics and the notion of material assemblage). 

Specifically, two complementary metaphors which have proven useful in formulating 

my view of mathematics as the science of material assemblage are discussed at a 

metacognitive level, using the writing process itself as a framing device. I also briefly 

indicate how the metaphors of interest (i.e. borderless puzzles and defragmentation) 

can be linked to underlying mathematical considerations. 

AN UNUSUAL ACKNOWLEDGMENT 

There is a sense in which I must immediately offer an apology to the reader, for I have 

intentionally avoided the kind of contribution customarily found within the 

proceedings of our Mathematics Education Doctoral Students Conference (MEDS-C). 

Though still connected to the overall themes of my dissertation work, and while still 

grounded in a perspective that draws upon the new materialist discourse, this particular 

piece is not focused on the reporting of additional research findings (see related 

background discussions in Forde, 2018). Instead, it is intended to foreground a number 

of reflections that have informed my dissertation writing at key intervals. In part, 

because I have come to view the evolving doctoral dissertation as a kind of material 

assemblage (i.e. a dynamic configuring and reconfiguring of entangled ideas), and as 

a living document whose features continue to develop in response to my interpretations 

of the literature with which I engage, I have also opted to extend aspects of its internal 

discussion so as to reflexively comment on the writing process itself. 

While I shall make reference to broader theoretical considerations arising from the new 

materialist discourse, the forthcoming discussion is more directly rooted in the 

phenomenology of my own experience. As a result, the current paper constitutes a 

conceptually-motivated exploration more than it does a theoretically- or 

methodologically-motivated one. Moreover, insofar as written MEDS-C contributions 

are concerned, it also constitutes something of an experimental piece, in that it adheres 

to certain MEDS-C guidelines while openly eschewing others. Though I will address 

singular aspects of the dissertation writing process, I also hope to make clear the 

fundamental mathematical themes that prompted the writing of this paper. 
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OVERARCHING CONCEPTUAL CONSIDERATIONS 

As I have come to know it, the new materialist discourse does not currently have well-

defined disciplinary boundaries. This is largely to be expected, as the majority of new 

materialist scholars actively engage in the deconstruction and reconsideration of 

commonly-accepted boundaries within and between their respective fields of interest. 

Consequently, the themes explored (and the works produced) by new materialist 

scholars are highly varied. Consider, for instance, Barad (2007), de Freitas and Sinclair 

(2013, 2014), and Meillassoux (2008), which delve into the physical sciences, 

mathematics education, general philosophy, and socio-politics as well. Amongst the 

wide-ranging cross-disciplinary discussions within these works is the generative topic 

of assemblage theory, which I find particularly compelling by virtue of its parallels 

with modern physics. As with entangled quantum systems, assemblages 

involve/necessitate scenarios wherein contributing components co-evolve with and 

within the larger systems in which they are embedded, and it is by so doing that they 

“form emergent unities that nonetheless respect the heterogeneity of their components” 

(Smith, 2013). The features of these unified systems are neither static nor 

predetermined, such that contributing objects or processes can play different roles and 

exhibit greater or lesser prominence at different times. 

Of notable importance to my own work is the assemblage theory of French philosopher 

Gilles Deleuze (1925-1995), which emphasizes the importance of structural interplay 

and reconfiguration within assemblages. As John Macgregor Wise writes in editor 

Charles Stivale’s Gilles Deleuze: Key Concepts (2011): 

Assemblage, as it is used in Deleuze and Guattari’s work, is a concept dealing with the 

play of contingency and structure, organization and change […] The term in French is 

agencement […] It is important that agencement is not a static term; it is not the 

arrangement or organization but the process of arranging, organizing, fitting together. The 

term […] is commonly translated as assemblage: that which is being assembled […] An 

assemblage is not a set of predetermined parts […] Nor is an assemblage a random 

collection of things […] An assemblage is a becoming that brings elements together. 

(Wise, 2011, p. 91) 

At its heart, the sense in which I see mathematics as the science of material assemblage 

is also deeply concerned with ongoing processes of reorganization/structural change 

and the bringing together of elements. One of the key ways I articulate this is by 

working to substantiate the claim that “mathematics embodies the very principles 

according to which matter organizes and reorganizes itself” (Forde, 2018, p. 24). In 

keeping with this motif, my broader mathematical worldview leverages a portion of 

the new materialist discourse that skews less toward object-oriented ontology and more 

toward relational ontology (with a specific interest in entanglements stemming from 

the quantum theoretical discourse). 

Following forward from these explorations into material assemblage and the associated 

notions of structural change and reconfiguration, I have inevitably begun to think about 
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the dissertation writing process in similar terms. More specifically, I have come to 

envision my dissertation as an evolving assemblage of entangled ideas, and I am 

increasingly concerned with the structuring principles that are at play within it, and 

through which the document’s discussions are being realized. It is for this reason that 

I have more recently reconceived of metaphors in a manner analogous to my overall 

mathematical worldview. Just as mathematics might be seen as embodying the 

principles according to which matter might be reorganized, I here entertain an extended 

notion in which metaphors embody the principles according to which meaning might 

be reorganized. Granted, this may strike the reader as being quite far removed from a 

mathematically-grounded discussion; but, I shall shortly revisit this analogy in terms 

that should allow the underlying mathematical significance to become more evident. 

METAPHORICALLY SPEAKING 

The excerpt from Wise provided on the previous page is rather emblematic of my 

thoughts about the activity of scholarly writing. Indeed, I believe that the writing 

process is wonderfully illustrative of the sensibilities Deleuze and Guattari express 

about the nature of assemblage (or agencement); for the composition of coherent, 

engaging, and accessible text with sensible structure, agreeable flow, and rigorous 

discussion clearly has much to do with the processes of arranging, organizing, and 

fitting together authors’ ideas. There also exists a corresponding and ever-present need 

to be cognizant of structural interplay and possibilities for reconfiguration at multiple 

levels. Whether literally (at the level of word choice and grammar), or figuratively (at 

the level of connotation and intentionality), the conveyance of meaning through written 

text is very much an act of bringing together or entangling ideas in such a way that a 

larger, unified whole emerges from more singular elements. Syntactic/technical and 

aesthetic/stylist considerations are all deeply implicated in the negotiation of meaning 

common to written communication, and it is by facilitating the negotiation of meaning 

that metaphors are of immense value to authors and readers alike. The following two 

metaphors have been particularly useful to me throughout the endeavour to craft my 

own cohesive and (hopefully) well-structured dissertation document. 

Borderless Puzzles 

It has occurred to me that the earlier stages of my dissertation work were largely 

analogous to the construction of a jigsaw puzzle that had no border pieces (or rather, 

one whose borders were not apparent at the onset). The puzzle pieces also seemed to 

vary not only in shape but in size. The initial absence of an outer bound, compounded 

by this variation in granularity essentially meant that neither the scale of the puzzle 

image nor its resolution were entirely obvious, and the required scope and depth of the 

research task did not become evident until much later on. It was only when smaller 

clusters of related ideations began to accrete and connective tissues emerged from the 

interstices between neighbouring clusters that the general features of the puzzle image 

(and their orientations with respect to one another) started to reveal themselves. In 

addition to indicating how the complexity of a given research topic might impact the 
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features of the puzzle being constructed, these factors also made clear the necessity of 

oscillating back and forth between single puzzle pieces (i.e. individual words/ideas) 

and the larger puzzle image (i.e. the overarching vision for the dissertation). The need 

for this oscillation would not always be immediately apparent at the time of writing; 

however, in retrospect, it does seem to be an essential activity, as both the part and the 

whole must be given similar (if not equal) consideration. 

With this in mind, the “dissertation as borderless puzzle” metaphor can be seen as 

thematically derived from (perhaps even fundamentally rooted in) mereological 

underpinnings, and as marking the importance of attending to part-whole relationships. 

Of course, while the contexts of scholarly writing do involve markedly different 

moment-to-moment concerns when compared to explorations in number theory, this 

metaphor nonetheless helps to draw attention to the mathematically-significant notions 

of the discrete and the continuous, and indicates how they may actually be implicated 

in activities that are not typically associated with mathematics. 

In fairness, while the notion of writing as akin to puzzle construction is likely very 

common amongst writers, I have a sense that a direct association with mereological 

themes, specifically, might be less so. That said, just as fragmentary elements at a very 

small scale support more cohesive, unified structures at a larger scale, I would suggest 

that the corresponding reverse relationship is equally important. Often, the role of the 

solitary part in shaping the intended whole is given the greater priority, yet the 

reciprocal contribution of the intended whole in shaping the solitary part should not be 

overlooked. Both facets of the relationship are mutually informative, and neither 

should be dismissed/neglected. 

Mechanically, structural concerns at the level of individual characters, words, phrases, 

and so on inevitably preface/precede more expansive concerns at the level of sentences, 

paragraphs, chapters, et cetera, and all of these ultimately contribute to a single unified 

document whose subsections have the potential to cohere structurally and thematically. 

At the same time, ideationally/conceptually, the composite features of the document at 

large invariably shape the singular choices that are made as writing is in progress. Thus, 

rather than viewing these as two opposed perspectives on (or approaches to) writing, I 

instead prefer to think of them as complementary facets of one unified process of 

becoming, and I believe that such an interpretation would be aligned with the concept 

of assemblage/agencement as it has already been expressed by Deleuze and Guattari. 

Defragmentation 

Though the turn may be abrupt, at this juncture I ask the reader to move with me into 

the informational realm of binary data and digital file management. In particular, it is 

the processes of data storage and retrieval which will be highlighted here. When 

dealing with digital storage space under specific file management systems, the effects 

of data fragmentation can be an occasional concern. In brief, fragmentation arises when 

a file system is unable to reserve enough contiguous file space for data to be written as 

a unified “block”, and must instead reallocate data fragments elsewhere on the storage 
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medium. While not all file management systems operate in this manner, computer 

systems that do experience substantial file fragmentation can suffer a number of 

deleterious effects. The most apparent of these will manifest as general performance 

issues resulting from the scattered distribution of data and less efficient use of the 

available storage space. Essentially, the more fragmented a file system, the greater the 

time/effort necessary for a processor to read/access stored data and to reconstitute the 

information pertaining to any given file. 

As a preventative measure, defragmentation can be performed so as to combat these 

effects. Defragmentation is a redistribution of the binary data, a reallocation of 

information into more contiguous “chunks”. Inasmuch, it is also an extremely 

powerful/highly illustrative example of material assemblage in action, and another 

instance that nicely embodies the play of contingency and structure, organization and 

change spoken to by Deleuze and Guattari. It is a literal bringing together of elements, 

and the second metaphor to which I shall speak. 

This notion of redistributing and “tightening up” information has been integral to the 

latter stages of my dissertation writing. In a way, the defragmentation metaphor is 

simply a variation on the puzzle metaphor offered earlier; however, the contexts that 

motivate it are quite different and I have found it useful in characterizing another aspect 

of the writing process. Whereas the “dissertation as borderless puzzle” metaphor could 

be seen as relating more to the resolution of a coherent image with clear boundaries 

(i.e. a unified document with well-defined scope), this “defragmentation” metaphor 

might be comparable to sharpening the image (i.e. of restructuring/refining the 

document in order to further consolidate the content within). It could even be said that 

the former is concerned with the overall construction of the dissertation, while the latter 

is concerned with the efficiency of that construction. I grant that these analogies might 

be a little loose, but it has been no less helpful to think of my evolving dissertation 

work in these terms. 

To be clear, by drawing upon the notion of defragmentation, I am in no way meaning 

to invoke the long-standing and potentially problematic “brain as a computer” 

metaphor that continues to be debated. This is to say that I am not suggesting that 

human brains actually reorganize written information in the same way that the 

operating systems of digital computers defragment file space. Rather, I am simply 

articulating a figurative connection that has informed my own writing efforts. In fact, 

I would also suggest that the defragmentation metaphor I have put forth does not carry 

any of the problematic baggage associated with the aforementioned debate; for it 

makes no real claims about brain function and merely speaks to an underlying 

mathematical process. Indeed, if defragmentation is approached through the sense in 

which I see mathematics as the science of material assemblage (i.e. where mathematics 

embodies the principles according to which matter might be organized/reorganized), 

then defragmentation is an inherently mathematical process, albeit not necessarily a 

digital one. Alternately put, one can think of defragmentation as solving a specific kind 

of optimization problem, where the optimization constraints are not only associated 
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with grammatical syntax and the economy of word use, but also stylistic, semantic, and 

various other social factors as well. In this way, the notion of defragmentation (applied 

to the scholarly writing process) retains a mathematical basis. I will even go so far as 

to note that this is in keeping with the manner in which I see mathematics as being 

encoded in matter. 

As the science of material assemblage, mathematics embodies the essential framework 

upon which material reality is built, from which its objects emerge, and according to which 

they (co-)evolve […] In this view, mathematics not only underlies the material structure 

of reality, but also encapsulates the conditions and constraints through which the dynamic 

processes of material assemblage are manifested. 

(Forde, 2018, p. 24) 

AN INTERESTING EXTENSION 

Thus far, I have framed this discussion in terms of my overall dissertation writing, 

because that is the materially-grounded process that originally turned my attention in 

this direction. However, since mulling over the two metaphors addressed in the 

previous pages, I have also begun to wonder if these metaphors, or others like them, 

might be more generally applicable in terms of characterizing how we organize and 

reorganize, configure and reconfigure, our mathematical knowledge as well. For 

clarity, by using the pronoun ‘we’, I do not necessarily mean members of the 

mathematics education community alone, but ‘we’ in the more inclusive sense of 

human beings as a species. 

As suggested earlier, there are other aspects of my dissertation research that draw upon 

the quantum theoretical discourse. In light of these, I believe that both of the metaphors 

discussed herein might fall under the more encompassing thematic of granularity (to 

which I have alluded on p. 3). By employing this term, I mean to emphasize the 

fundamental tension between the discrete and the continuous that resurfaces in both 

metaphors, and which seems to speak to a key aspect of our sense-making activities 

(again, by ‘our’, I refer to the greater human collective). 

Interestingly enough, in his recent publication The Order of Time, theoretical physicist 

Carlo Rovelli (2018) puts forth the view that continuity “is only a mathematical 

technique for approximating very finely grained things. The world is subtly discrete, 

not continuous” (p. 75). Also noting that granularity “is ubiquitous in nature” (ibid.), 

he remarks that “The good Lord has not drawn the world with continuous lines: with a 

light hand, he has sketched it in dots, like Seurat” (ibid.). Beyond this artful allusion to 

Seurat’s pointillist style as a proxy for the quantum paradigm, it is Rovelli’s reference 

to continuity as a mathematical technique that piques my curiosity. While I cannot 

personally commit to the stance that continuity is simply a shared illusion, I am 

intrigued by the notion that the perception of continuity might arise from (or be 

grounded in) some sort of mathematical process. In a manner of speaking, this would 

suggest that the perception of continuity is not only a means of making sense of the 
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lived experience of time, but also a powerful form of mathematization that is integral 

to the ways in which human beings make sense of the material world as a whole. 

It is conceivable that a metaphor which characterizes “continuity as mathematization” 

might actually be closely aligned with the two metaphors already discussed in this 

piece; however, I hesitate to delve deeper into that possibility here. Instead, I encourage 

the reader to consider the sense in which written articulations depend upon some 

amount of continuity emerging from the combination of discreet elements. Individual 

units of text (i.e. characters, punctuation, other symbols, et cetera), which are largely 

devoid of meaning when removed from the systems they comprise, can be assembled 

according to various technical and stylistic constraints so as to produce words and 

passages designed to communicate intentionality and meaning. Via a surface reading 

of Rovelli’s remarks, any semblance of continuity that accompanies a given text could 

be interpreted as a simple trick of perception; but, I find it far more compelling to 

interpret this as mathematically-driven activity. The case of speaking could also be 

treated in a similar manner, as longer and more significant utterances are built up from 

individual phonemes. Thus, I am left wondering if it might be 

appropriate/fitting/reasonable to discuss both writing and speaking as activities that are 

also enacted, in some sense, through a capacity to mathematize. 

While I am tempted to continue extending the metaphors already presented, I have a 

suspicion that the connective threads I am drawing may now be wearing a little thin, 

and that I could be stretching them to their limits. In any event, I acknowledge once 

again that this document may, by design, not conform to the expectations of the reader. 

Nor is it likely to align with the structure of the other contributions to these 

proceedings. Nevertheless, I do hope that it has offered some insight into how the two 

metaphors of interest (borderless puzzles and defragmentation) have informed different 

aspects of my ongoing dissertation writing. 

I have chosen to describe the use of literary metaphors as a process consistent with the 

assemblage/agencement described by Deleuze and Guattari, and as one that facilitates 

the negotiation of meaning common to written (and possibly spoken) communication. 

By extension, I have also attempted to make a case for treating two specific metaphors 

as being innately mathematical. In the case of the “dissertation as borderless puzzle” 

metaphor, the construction of coherent and unified written work from singular 

characters/words/ideas has been reframed as a process that is deeply concerned with 

mereology and the complementary relationship between the part and the whole. Via 

the “defragmentation” metaphor, the redistribution of fragmented writing/ideas into 

more contiguous passages has been likened to an optimization problem whose 

constraints involve a range of technical as well as social considerations. Both instances 

entail the rearranging, reorganizing, and fitting together of text and/or ideas, and both 

appear to be fundamentally rooted in considerations falling under the greater thematic 

of granularity. In itself, this evokes the fundamental tension between the discrete and 

the continuous; yet some scholars, like Rovelli, question whether the discrete and the 

continuous are as distinct as traditionally believed. Through my reading of Rovelli, I 
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have tentatively proposed that the perception of continuity might actually involve a 

form of mathematization. 

As a closing remark, I openly acknowledge that the perspectives I have shared here 

are, themselves, largely built up from metaphor, and the rearranging, reorganizing, 

and fitting together of ideas that I have been mulling over for some time. As more 

pieces of the larger dissertation puzzle fall into place, and as I continue to defragment 

the ideational content that emerges, I am confident that the deeper significance of these 

perspectives will become clearer. 

References 

Barad, K. (2007). Meeting the universe halfway: Quantum physics and the entanglement of 

matter and meaning. Durham, NC: Duke University Press. 

de Freitas, E., & Sinclair, N. (2013). New materialist ontologies in mathematics education: 

The body in/of mathematics. Educational Studies in Mathematics, 83(3), 453–470. 

de Freitas, E., & Sinclair, N. (2014). Mathematics and the body: Material entanglements in 

the classroom. Cambridge, UK: Cambridge University Press. 

Forde, J. (2018). The (implicit) mathematical worldview of Richard Skemp: An illustrative 

example. In J. Forde & A. Rouleau (Eds.), Proceedings of the 13th Annual Mathematics 

Education Doctoral Students Conference (pp. 17–24). Burnaby, Canada: MEDS-C. 

Meillassoux, Q. (2008). After finitude: An essay on the necessity of contingency (R. Brassier 

Trans.). London, UK: Bloomsbury. 

Rovelli, C. (2018). The order of time (E. Segre, S. Carnell Trans.). Great Britain: Allen Lane. 

Smith, D. (2013). Gilles Deleuze. In E. Zalta (Ed.), The Stanford encyclopedia of philosophy 

(Spring 2013 Edition). Retrieved from http://plato.stanford.edu/entries/deleuze/. 

Wise, J. (2011). Assemblage. In C. Stivale (Ed.), Gilles Deleuze: Key concepts (Second ed., 

pp. 91–102). Durham, GBR: Acumen Publishing Ltd. 

 



 

 

2019. In A. Hare, J. Larsen & M. Liu (Eds.). Proceedings of the 14th Annual Mathematics Education Doctoral 

Students Conference (pp. 48-55). Burnaby, Canada: MEDS-C.                                                                               48 

RECIPROCAL INFLUENCES IN A DUO OF ARTEFACTS 

Canan Güneş 

Simon Fraser University 

 

The combined use of a physical pedagogical artefact and its digital counterpart is 

described as a duo of artefacts. In the literature duos of artefacts are presented with a 

certain order assuming that the digital counterpart enhances mathematical knowledge 

by adding affordances to the physical artefact. This study examines the effect of 

reciprocal use of artefacts in a duo on a 5-year-old child’s identification of 

relationships between the objects. Data is created through the video record of two 

clinical interviews with the child. The results show that unless they are used 

reciprocally, none of the artefacts were enough to mediate relationships between the 

objects of artefacts which are important for multiplicative thinking.  

INTRODUCTION 

Learning by doing is encouraged in classrooms as the embodied theories gain weight 

in the mathematics education. Studies show that mathematical tasks which require 

students to manipulate physical artefacts enhance mathematical knowledge. However, 

the rigid structure of artefacts might prevent teacher from modifying them in a way to 

increase their mathematical potentials. At this point, their digital counterparts add value 

to the use of physical objects as classroom teaching equipment because different 

artefacts trigger different signs (e.g. natural language, gestures, and mathematical 

semiotic systems), and different signs lead to different cognitions. Digital counterpart 

can achieve this through “offering students a new opportunity to identify the 

mathematical properties embedded in the artefact behavior and more abstract and 

conventional representation of mathematical objects” (Soury-Lavergne, 2017, p.1). 

This combined use of a physical pedagogical artefact and its digital counterpart is 

described as duo of artefacts (Maschietto & Soury-Lavergne, 2013). 

Integrating duo of artefacts in mathematics classes is a recent practice, but it has 

already demonstrated some positive outcomes. Young children who learn 

combinatorics via a duo of artefacts were found to keep more systematic records of the 

situations and to enhance their understanding of what a combinatorial problem 

encompasses (van Bommel & Palmér, 2018). Duo of artefacts pushed six-year old 

French students to connect the separate conceptualisation processes related to the 

numbers (Soury-Lavergne & Maschietto, 2015). In addition to young children, duo of 

artefacts is also beneficial for older children. Using a duo of artefacts to prove 

Pythagorean theorem enhanced 7th grade students’ visualization and added a dynamic 

dimension with to the students’ personal drawings in their pencil-and-paper-based 

proofs (Maschietto, 2018).  
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In all these studies, the duo of artefacts is presented with a certain order: first, students 

are introduced the physical artefact and then they are given the digital counterpart. This 

restrictive order suggests that the duo of artefacts enhances mathematical ideas through 

the added value of digital counterpart only. However, this one-directional approach 

might hinder the potential of physical artefact to enrich the affordances of the digital 

counterpart. I will study how reciprocal influence of a duo of artefacts enhances 

mathematical ideas. In this study, the digital artefact is a tablet application called 

TouchTimes. It is designed to develop multiplicative thinking through creating 

numbers in specific ways. The physical artefact is the pencil and paper, through which 

students draw the target numbers they created with Zaplify – one of the TouchTimes 

“worlds”. 

ZAPLIFY 

TouchTimes is an iPad application designed to enhance multiplicative thinking. It 

consists of two models or “worlds” – The Zaplify and the Grasplify. This paper will 

focus only on the array model in the Zaplify. It starts with an empty screen. When the 

tablet is placed horizontally on a surface, seven fingerprints and a diagonal line appear 

respectively in order to guide users to place their fingers both horizontally and 

vertically in the designated areas separated by the diagonal (see Figure 1a &1b).  

            

Figure 1: (a) Fingerprints,        (b) Fingerprints and the diagonal. 

When a user places and holds any finger on the screen, a “lightening rod” (I will call 

them “lines” from now on), which passes through the point of touch, appears on the 

screen either horizontally or vertically according to the position of the touch with 

respect to the diagonal. The upper triangular area formed by the diagonal allows 

horizontal lines (HL), while the lower triangular area allows vertical lines (VL). Screen 

contact can be made with one finger at a time or with multiple fingers simultaneously. 

Multiple fingers that maintain continuous contact can create either only HL, only VL 

or both VLs and HLs (see Figure 2 a-c). 

Whenever two perpendicular lines intersect, an orange disc gradually appears on the 

intersection points. The numerical value of the total number of intersections, which is 

the product of the two factors, appears in the upper right corner of the screen (see 

Figure 2c). If there is no intersection, only the number of factors appear (see Figure 2 

a,b). 

https://tureng.com/en/turkish-english/kar%C5%9F%C4%B1l%C4%B1kl%C4%B1
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Figure 2: (a)HLs,   (b) VLs,                   (c) VLs and HLs. 

There are two modes of manipulation of the app: locked and unlocked. In the unlocked 

mode, the lines disappear as the fingers separate from the screen, whereas in the locked 

mode, lines remain on the screen even when the user’s finger is lifted. This allows a 

user to create products that involve more than ten fingers.  

THEORETICAL FRAMEWORK 

This study draws on Bartolini Bussi and Mariotti’s Theory of Semiotic Mediation 

(TSM). This theory focuses on the relationship between the representation systems and 

the human cognition. Human beings create representations through using artefacts and 

this has two consequences: the modification of the environment and the cognitive 

development. TSM is based on this double nature of artefacts.  

Given an artefact, it does not guarantee a specific use for the subject. At this point 

Rabardel (as cited in Bartolini Bussi & Mariotti, 2008) distinguishes artefacts from 

instruments. An artefact is a concrete or a symbolic object itself. It becomes an 

instrument by the subject through its particular use. For example, a glass is an object 

which is designed to carry liquid. If a cook uses it to crash some walnuts into smaller 

pieces by pressing the walnuts between the bottom of the glass and a cutting plate, the 

glass becomes an instrument.  

Instrumental approach to artefacts can be informative in analyzing the cognitive 

processes related to the use of a specific artefact and its semiotic potential. However, 

it is not adequate to analyze the more complex process of teaching and learning 

mathematics through artefact use. At this point, Bartolini Bussi and Mariotti (2008) 

resort to Vygotsky’s approach to artefacts.  

Vygotsky talks about the difference between an individual’s developmental levels in 

two different situations: (1) when an individual is able to accomplish a task him/herself, 

and (2) when an individual can accomplish a task with the guidance of a more 

knowledgeable individual (as cited in Bartolini Bussi & Mariotti, 2008). This 

difference is called zone of proximal development. Within this zone, the 

communication between the individual and the more knowledgeable one leads to the 

cognitive development of the learner. Theory of semiotic mediation elaborates more 

on the relationship between tasks, signs and mathematical meaning making within this 

process and distinguishes semiotic mediation of artefacts from teachers’ cultural 

mediation. 
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Using an artefact in a social context, learners produce certain signs which are essential 

for semiotic mediation. These signs have a dual role: expressing the relationship 

between the task and the artefact on the one hand, and the relationship between the 

artefact and mathematical meaning on the other hand. The former is called artefact 

sign and their meaning is associated with the operations conducted to achieve the task. 

The latter is called mathematical sign and it is aligned with the existing mathematical 

culture. On the way to the evolution of artefact signs into mathematical signs, pivot 

signs are important. The pivot signs “may refer both to the activity with the artefact 

[...] and to the mathematical domain” and they are distinguished from the other signs 

based on the extent of generalization they carry (Bartolini Bussi & Mariotti, 2008, 

p.757).  

METHOD 

Data is created through the video recording of a 5-year-old child’s interaction with both 

TouchTimes’ Zaplify world and pencil-and-paper. The participant is recruited through 

convenience sampling. I (denoted as R in the below transcripts) conducted two 

interviews with the participant, Zach (denoted as Z in the below transcripts) at his 

home. The interviews consisted of number-making tasks, drawing tasks, and what-

happens task in which I asked Zach to anticipate how the number would change, if I 

added more fingers. Zach’s father (denoted as F in the below transcripts)) was present 

during the first interview, and he participated in the interview by asking questions to 

Zach when Zach seemed hesitant to respond. Both interviews lasted for approximately 

half an hour.  

In this analysis, I focused on the signs Zach created via duo of artefacts, drawing from 

Arzarello, Paola, Robutti, and Sabena's (2009) concept of semiotic bundle. There are 

two ways to analyze a semiotic bundle: synchronic and diachronic analysis. The former 

focuses on a specific moment where the subject produces different signs 

spontaneously. The latter focuses on the evolution of the signs produced by the subject 

in successive moments. In my analysis, I also analyzed different signs created by 

different artefacts at different time points in a synchronic manner in order to examine 

the relationship between the artefact signs. 

FINDINGS 

At the beginning of the first interview session, Zach randomly made one orange disc 

on Zaplify. Zach described the orange disc as a dot. When I asked him to make one 

more, he could not make it. During the following 18 minutes, while Zach was holding 

HLs, I was adding VLs one by one, making 2, 4, 6, 8, 10, and 3, 6, 9, 12, 15 

respectively. Then I asked Zach to make “one” again, assuming that creating numbers 

repeatedly on Zaplify might have helped Zach to identify the relationship between the 

lines and the discs. As I pointed to the upper right corner of the screen, I said: “I want 

to see the [numeral] one here and one orange ball”. After a few attempts, he could not 

make any disc. Then I asked him to draw one disc:  
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1  R: In order to get one dot, what we should see? How does one dot appear? Can you 
draw one dot? How was it on the screen when we see one dot? 

2  Z: It was small and red [drawing a circle] 

3  R: Were there anything else other than the dot? 

4  Z: A yellow line 

5  R: Where was it? 

6  Z: … [drawing a curvy line which looks like a wave just below the circle]  

         

Note. The author retraced the pencil marks in the pictures to improve visibility. 

Figure 3: Horizontal curly line.  

Zach used the words “small” and “red” in order to describe the dot. These artefact signs 

refer to physical features of the ball unlike its position, which might suggest a 

relationship between the other artefact signs such as lines and the intersection point. 

When I drew Zach’s attention to the other artefact signs (line 3), Zach uttered the word 

“yellow line”. This artefact sign includes a mathematical sign, which is a “line”, yet it 

also refers to the color of the line in order to describe it. Again Zach created signs 

related to the physical features of the objects rather than their orientation, which is 

important in terms of multiplicative relationships. When I hinted the orientation by 

asking where it was (line 5), Zach created a sign in another modality. Rather than 

describing it with verbal signs, he created a visual sign with his drawing (see Figure 

3). This sign illustrates the line in horizontal orientation as in the Zaplify, yet separate 

from the disc. So it seems that Zach did not relate the disc with the HL. They were two 

independent entities for him. 

The relationship between the signs appeared in our second trial. After Zach and I 

together made a disc the second time on Zaplify, I asked him to draw a disc on the 

paper. 

7 R: How did we do one dot? Can you draw it? 

8 Z: … [drawing a circle] 

9 F: Draw what you saw on the screen. Where were the yellow lines? 

10 Z: Where were the yellow lines? One is here and one is here.  

11 R: Why don’t you draw it here [pointing to the paper]  
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12 Z: … [drawing one vertical curly line from top to the bottom of the paper, then 
another one from left to right of the paper crossing over the VL] 

13 F:  [pointing to the dot on the paper] Is this dot on the same spot compared to 
the screen? 

14 Z:  No. 

15 F:  Draw the dot. Where should it be?  

16 Z:  It should be in the middle of here [pointing the intersection of the lines] 

                         

Note. The author retraced the pencil marks in the pictures to improve visibility.    

Figure 1: (a) Dots and the intersecting lines, (b) Pointing to the intersection of the 

lines.  

Compared to the first drawing, Zach produced more signs in this episode. First, he 

drew one disc and then two lines next to the disc, which intersected each other. So this 

physical separation between the lines and the disc in Zach’s drawing indicates partial 

relationship between the artefact signs. The lines are related to each other, but they are 

not related to the disc.  

Zach transferred the orientation of the lines from Zaplify to the paper directly. He drew 

two perpendicular lines as in Zaplify (see Figure 4a). When we made one disc together, 

Zach first held his finger and made a VL, and then I put my finger and made a HL. 

Similarly, first he drew the VL in this episode. While Zach transfered the order of the 

lines from Zaplify to his drawing, the order of the disc was not transfered. In Zaplify, 

Zach created two lines on the screen and then the disc appeared out of the lines, but on 

the paper, he first drew the disc and then the lines. Thus, he did not transfer the location 

of the disc in relation to the lines. Zach connected the disc with the lines (see Figure 

4b) only after he was asked to compare his drawing of the disc with the diagram in the 

Zaplify (no. 13-16).  

Zach started to create the intersecting lines on the screen after he used his second 

drawing as a reference to make one disc in Zaplify. However, the relationship between 

the intersecting points and the discs became solid after we discussed the relationship 

between the lines at the second interview. Until this episode, Zach answered few “what 

happens” tasks correctly. After our discussion, he started to demonstrate a consistent 

strategy to answer these tasks correctly. The following episode presents these 

discussions. 
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After Zach made one disc on the screen, I asked him: “What happens here?” as I 

pointed to the intersection of the lines. 

17 Z: One dot. 

18 R: What is happening to the lines here where the dot stays [pointing to the 
intersection]? 

19 Z:  The dot stays in the middle [pointing to the dot] of these [tracing the VLs 
and the HLs] lines 

20 R: How did you make this [pointing to the dot] in the middle? 

21 Z: I put my finger here [pointing to the bottom of the VL] and make the line, 
and then I put my finger here [pointing the HL] and make the line, and then 
I make the dot with this line [tracing the HL back and forth]  

22 R: You made this line [pointing the VL] first, and this one [pointing the HL] 
second, right? 

23 Z: Yes. 

24 R: What did the second line do to the first line? What happened here [pointing 
the intersection]? 

25 Z: Second line crossed [tracing the HL] the first line [tracing the VL]. The dot 
is with the second line.  

 

Figure 5: (a) Pointing to the dot, (b) Tracing the VL,  (c) Tracing the HL.                          

Zach referred to the intersection point via a sign “the middle”, which he created during 

a drawing task in the previous interview (line 16). The verbal sign “the middle” and 

“these lines” are used together with the gestures (line 19). They all together suggest 

that the orientation and the intersection point of the lines are both related to the location 

of the disc. The pointing gesture (see Figure 5a) and the word “middle” refer to the 

intersection point, and the tracing of the lines (see Figure 5b & 5c) refers to the 

perpendicular lines. According to Zach’s verbal accounts, the intersection seems to be 

necessary for the disc to appear. He stated that he made the disc with the second line, 

which crossed the first line (line 25). Thus, the sign “cross” constitutes the relationship 

between the lines and it is an important sign to create the disc. 

CONCLUSION AND DISCUSSION 

Multiplicative thinking differs from additive thinking when a child identifies the 

factors of multiplication as two distinct referents and conceptualizes the multiplication 

as the coordination of these units (Clark and Kamii, 2006). Therefore, distinguishing 
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HL’s and VL’s of Zaplify which represent two factors of multiplication and identifying 

the coordination between the lines and the product are important for multiplicative 

thinking.  

The findings show that continuous interaction with Zaplify was not enough for the 

child to identify the relationships between the objects which are important for 

multiplicative thinking. Pencil and paper provided an environment for the child to think 

in another modality, which was transferred back to the digital artefact via Zach’s 

gestures. Zach first expressed the location of the lines by drawing on the paper and 

then he expressed it by tracing the lines on the screen. However, drawing through 

pencil and paper was also not effective itself to make the relationships between the 

objects salient. Zach created several pivot signs in different modalities via reciprocal 

use of this duo of artefacts. Moreover, Zach’s discussions with adults through these 

signs seems to play a role in mediating the identification of the relationship between 

one disc and the intersection point of the two lines. Even though it is problematic to 

equate this relationship with multiplicative relationships, it might mediate identifying 

the two separate units and the relationship between them in a multiplication. The future 

research will be conducted to examine this potential mediation through the reciprocal 

use of a duo of artefact.  
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 LEARNING GEOMETRY THROUGH DRAWING AND 

DRAGGING IN A PRIMARY MATHEMATICS CLASSROOM 

Victoria Guyevskey 

Simon Fraser University 

 

This project was carried out in a mathematics classroom in an affluent and culturally 

diverse urban elementary school in North America. I conducted a month-long 

classroom intervention with Grade 2/3 students, experimenting with geometric tasks 

within physical environment of paper and pencil, and virtual multitouch environment 

of dynamic geometry. In my experiments, I was interested in specific ways these two 

contexts give rise to mathematical concepts, and how learning affordances of digital 

and tangible tools are complementary and different. I wanted to see (1) what the 

students would learn, and (2) what the constraints and liberations of those 

environments would be.  

INTRODUCTION 

In recent years, much research has focused on the use of manipulatives in mathematics 

classroom (e.g. Murray, 2010; Clements & Sarama, 2014). Physical manipulatives 

were reported to increase student engagement, gains in students’ mathematical ability 

and communication. Virtual manipulatives were found to improve progress, promote 

problem-solving skills, facilitate changes in mental representations, create complex 

spatial patterns, and assist in understanding abstract concepts, among other benefits 

(Spencer, 2017). More recently, researchers focused on combining virtual and physical 

manipulatives (e.g. Soury-Lavergne & Maschietto, 2015). Soury-Lavergne (2016) 

suggested that concrete manipulatives, when used in isolation, limit knowledge transfer 

between situations, and proposed to design duos of artefacts, associating a concrete 

manipulative tool to a technological tool in order to combine the advantages of both 

types.  

In specific case of geometry, Perrin-Glorian et al. (2013) distinguished three kinds of 

spaces: physical (the world of physical objects), graphical (diagrams, drawings, and 

artifacts) and geometrical (Euclidian theory, deductions, and tools to solve problems). 

According to Perrin-Glorian, it is the graphical space that acts as a ‘bridge’ between 

the other two. Indeed, Soury-Lavergne & Maschietto (2015) found that DGE acted as 

such graphical space since one could produce different graphical representations of 

objects by referring either to physical or geometrical space: “Actions in dynamic 

geometry carry some of the properties of physical space, since objects can be moved, 

grabbed, suppressed, hidden, folded, etc. Dynamic geometry provides pupils with 

continuous feedback as they drag the points of a diagram. This is something that cannot 
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be produced using a paper-and-pencil diagram” (p. 6). In addition, Thom and 

McGarvey (2015) argued that the act of drawing served as a means by which children 

became aware of geometric concepts and relationships and should be viewed as a 

mode of thinking rather that a product of that awareness.  

This paper reports on a qualitative, empirical study, conducted in a primary 

mathematics classroom. The purpose of this study was to explore how this combination 

of paper-and-pencil drawings and DGE would give rise to geometric concepts. 

THEORETICAL FRAMEWORK 

Since my interest lies primarily in geometry, I will use Raymond Duval’s geometric 

constructs to guide the analysis of students’ learning in each of the two environments.  

Dimensional Decomposition 

Duval emphasized “ways of seeing” and considered visualization to be fundamental in 

geometric thinking. He argued that the cognitive power of visualization lied in its 

tendency to fuse units of inferior order into one unit of superior order (Sinclair, Cirillo, 

& de Villiers, 2016), and that it was important to achieve synergy between the visual 

and discursive registers of geometry. This could be done through engaging a 

“constructor” way of seeing, which was supported by the process of dimensional 

decomposition. Dimensional decomposition involves two aspects: seeing the basic 

shapes as constructed from lines and points and seeing that many two-dimensional 

shapes could emerge from networks of lines.  

Duval proposed that the learning of geometry could begin with exploration of the 

different configurations that could be formed with lines. To support dimensional 

decomposition, he recommended construction as the point of entry: 

The shape is no longer a stable object but one that evolves over time, capable of being 

decomposed and reconfigured. This non-iconic visualization is characteristic of geometric 

thinking… It is a way of seeing that eventually enables all the discursive procedures in 

geometry (pp.459–460).  

Duval distinguished four apprehensions of a geometric figure: (1) perceptual 

(recognition), (2) sequential (construction), (3) discursive (property-based 

recognition), and (4) operative (processing, as in transforming and reconfiguring). He 

viewed geometry as joining two representation registers: the visualization of shapes 

and the language for stating and deducing properties - seeing and saying. Since our 

primary concern was development of geometric thinking, Duval’s vision was found 

helpful in analysing progression of students’ learning. 

Dynamic Geometry 

As was mentioned above, spatial thinking was found fundamental to mathematics 

learning and a predictor of future mathematics achievements. It has been recently 

acknowledged that spatial reasoning skills are not genetically predetermined like once 

thought, but can be developed with practice, and that students with well-developed 
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spatial reasoning skills succeed in STEM subjects. Davis et al. (2015) articulated the 

need to bring a stronger spatial reasoning emphasis into school mathematics, while 

Sinclair & Bruce (2015) explored the role of tablet technology as a mediator of spatial 

reasoning for young children, and concluded that compared to handling physical tools, 

engaging with virtual tools provided students with different kinaesthetic experiences. 

Research has also demonstrated that the use of Dynamic Geometry Software (DGS) 

can significantly enhance the learning process, combating prototypical thinking. DGS 

can lead users to think about geometric objects and relations in different ways, thereby 

changing the fixed, linear development, proposed by the van Hiele’s model (Sinclair 

& Moss, 2012). It is important that learners understand dragging as a manipulation that 

preserves the critical attributes of the shape.  

METHOD 

Interested in ways different contexts give rise to mathematical concepts, I conducted a 

classroom intervention, experimenting with geometric tasks within two environments: 

(1) physical environment of paper-and-pencil and hand-held manipulatives, and (2) 

virtual multitouch environment of DGE. I wanted to see what the students would learn 

in each of the environments, and how learning affordances of digital and tangible tools 

are complementary and different. In this paper, the physical environment is understood 

to encompass both tools like pencils, and manipulatives like pattern blocks. Virtual 

environment encompasses virtual tools (e.g. geometric primitives provided by the 

widgets) and virtual manipulatives (e.g. a constructed shape that can be manipulated 

on the screen).  

I conducted this research in a Grade 2/3 classroom in an affluent and culturally diverse 

urban elementary school in North America. While students were exposed to tablet and 

Smartboard technology since Kindergarten, they never worked with DGS before. It 

was a month-long classroom intervention, which consisted of four weekly sessions. 

Each session was an hour-and-a-half long. In my lessons, I opted for a combination of 

whole-class Smartboard discussions, followed by students working on iPads or using 

paper and pencil. I used web sketches based off The Geometer’s Sketchpad (Jackiw, 

2012) Specifically, I used “Triangle Shapes” and “Point, Segment, Circle” web 

sketches designed by Sinclair (sfu.ca/geometry4yl.html):  

 

 

Figure 1: Web sketches 
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In my tasks, I focused on properties of a triangle. Each session was thoroughly 

documented through notetaking, photographs, and examples of students’ work, both in 

static and dynamic format. Records of classroom activities were analysed for the 

evolution of students’ conceptual understanding of a triangle. 

FINDINGS 

I will now describe some of the findings according to the environment that housed the 

activities, while attempting to interpret them through the lens of dimensional 

decomposition and its role in the development of geometric thinking.  

Pencil-and-paper environment 

Most students drew their first triangles in a prototypical way – with bases parallel to 

the bottom of the page, which indicated perceptual apprehension. When requested to 

not have a side on one of the lines, most still had a side parallel to the edge, flipping 

the shape upside down, or rotating it just slightly. Some children drew triangular 

prisms, positioned like pyramids. These initial drawings provided an important 

window into students’ conception of a triangle: an iconic equilateral triangle with one 

of its sides parallel to the bottom of the page.  

Drawing solutions to DGE problems turned out to be challenging - students frequently 

ended up with drawings of pentagons and trapezoids, even though there were no such 

shapes on the screen. Having to construct a shape from scratch needed not only well-

developed perceptual apprehension, but sequential as well. This drawing experience 

provided an important insight: more DGE experiences were needed to help consolidate 

the ability to think sequentially.  

The situation has changed when the students were offered to make free drawings, with 

the constraint to use triangles only. The difficulty to decompose and recompose quickly 

resurfaced to reveal accurate level of geometric thinking, which was still perceptual. 

No one used two triangles to form a square, but many were comfortable adding smaller 

triangles inside a larger one for eyes or mouth.  

In the paper-and-pencil environment, the unsatisfactory construction has to be erased 

and re-done, and that could involve multiple attempts. It did not have the affordance to 

fluidly move from one construction to another, allowing for observation of an infinite 

number of transient stages, one of which could represent the solution. The benefits of 

this pencil-and-paper activity were in the construction process itself - it engaged the 

“constructor’s way of seeing": being able to see that a triangle can be constructed from 

lines and points, and that many various triangles could emerge from networks of lines. 

This emphasis on one-dimensional prior to two-dimensional is a precursor for 

development of geometric thinking (Duval, 1998).  

Dynamic Geometry Environment 

Judging by the silent focus during the first web sketch demonstration, the students were 

stunned to see a dynamic triangle, whose behaviour disrupted the expected equilateral-
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ness of the green wooden pattern blocks. One of the students, who volunteered to come 

to the board, first made his triangle “dance” by dragging its vertex – an impossible skill 

to teach a triangle within a paper-and-pencil environment. As the boy was playing, his 

body was mimicking the trajectory in a subtle way. I did not observe anything like this 

during the paper-and-pencil session. Now, this virtual experience paradoxically 

seemed more embodied than the physical, which means it could help mediate 

mathematical cognition (Radford, 2008). Previous research showed that virtual things 

could be even more concrete than physical because students come to be in close relation 

with them through interaction. This instance precipitated entry into operative 

apprehension of geometric diagram.  

The first DGE task was to fill in a square with two dynamic triangles (Fig. 5), which 

did not feature much variation. There would usually be an isosceles triangle nicely 

centered, with its base taking up the entire lower side of the square. With three 

triangles, the design featured a perfectly centred equilateral triangle, embraced by a 

symmetrical “curtain” (Fig. 2). 

 

 

Figure 2: Filling up a square with three dynamic triangles 

Even when the challenge included four triangles, this design persevered, leaving the 

fourth triangle unused. One student solved the problem creatively: he shrank the 

leftover triangle into a near-line and added it to one of the sides. Others protested: “You 

can’t do that! You should have left more space!” This difficulty to see this “thorn-like” 

triangle as a triangle indicated that discursive apprehension was not quite developed 

yet, as the collaborative definition now included the length of the sides.  

Once the class moved to the template of a star, the difficulty students faced has 

increased significantly (Fig. 3).  

 

Figure 3: The Star challenge 

The break-through happened as one student saw the possibility to drag one of the 

vertices into the pentagonal area. After that, students seemingly saw that any rectilinear 

shape could be made of triangles.  

When I introduced construction, as their first task the students were assigned to 

construct anything using a segment, a point, and a circle widget at least once. 

Everybody without exception made use of the segment tool. Second task was to 

construct a house only with triangles built from scratch, but most houses came out 

crooked (Fig. 12a). However, an instance of breakthrough thinking was observed, 
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when a student applied prior knowledge and used two almost-right triangles to make a 

door (Fig.4).  

    

Figure 4: First constructions 

DISCUSSION AND CONCLUSION 

Now I will discuss the results as they pertain to the literature, and answer the two 

research questions: (1) what the students would learn in each of the environments, and 

(2) what the constraints and liberations of those environments would be.  

Constructor’s way of seeing 

Using Duval’s construct of visualisation as a lens, I concluded that the majority of 

students learned to decompose a triangle: they were able to move from 1D to 2D when 

drawing and constructing shapes, and move from 2D to 1D when they needed to re-

draw a side or use the “go back” function in the sketch pad. Also, the vast majority of 

students could recognise a triangle - even in disguise of a “thorn” (perceptual 

apprehension), construct it in both environments (sequential apprehension), talk about 

some of its properties and prove that it was indeed a triangle (discursive apprehension), 

and finally process and transform both prefabricated triangles and triangles constructed 

from scratch (operative apprehension).  

Our experiments showed that one level of visualisation was not necessarily a precursor 

to the next, but the two or more were developing concurrently, and some students 

exhibited signs of operative level long before they had a chance to master sequential 

level: I could see triangles being constructed and manipulated in sketchpad, when 

students still had difficulty recognizing shapes based on properties. It is this non-linear 

experience that allowed the students to frequently revisit and reflect on various 

activities, while building on prior knowledge: one apprehension level was supporting 

another, while still being under development itself. Ultimately, such spiral combination 

of tools and environments supported the development of geometric thinking and 

evoked all four apprehensions of a triangle in primary students, albeit to a varying 

degree. 

I carefully observed how these two contexts of physical and virtual gave rise to 

mathematical concept of a triangle, but it is not possible to single out one task or one 

environment that could be considered more important or more effective: it was the 

combination of the two, and frequent switching between them, which helped students 

improve their spatial reasoning skills and ultimately develop geometric thinking.  
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No binary distinction  

Thom and McGarvey (2015) argued that the act of drawing served as a means by which 

children became aware of geometric concepts and relationships and should be viewed 

as a mode of thinking rather that a product of that awareness. This was evident during 

our process of drawing: children experienced dimensional decomposition first hand, 

planning to produce a 2D shape they knew well, but then realizing they needed to 

produce 1D object first, and that would be a significant step in understanding that a 

triangle was made of segments.  

DGE is complimentary to drawing in that it invites the learner to construct a 2D shape 

from a number of 1D objects as well. Dimensional decomposition can also be 

performed effectively, since the first step of engagement with DGE is often a 

construction task. However, the complexity that this environment brings into the 

picture is impossible to achieve with paper-and-pencil drawings. Once the initial 

construction is complete, the fun is just beginning. Learners come to understand that 

dragging preserves the critical attributes of the shape, if the construction is robust. They 

must eventually understand dragging as an action that can be used to generate a family 

of shapes, with a certain set of properties, determined by the way the shape was 

constructed, which involves a significant discursive shift (Sinclair & Yurita, 2008). 

Being able to see all the transitional variations of a shape, whose vertex is being 

dragged from point A to point B, is a one-of-a-kind experience, opening up the familiar 

constraints and leading a student towards abstraction.  

Soury-Lavergne & Maschietto (2015) argued that the construction of geometrical 

knowledge was based on spatial knowledge and implied building relationships between 

the three spaces: physical, graphical and geometrical. They proposed that the use of 

digital technologies supported the connections between spatial and geometrical fields. 

I witnessed in my experiments how today’s activity seemed difficult, but tomorrow it 

was appropriated and applied in a new context, as students were making meaningful 

connections (e.g. learning how to fill up a square with two triangles in a web sketch 

and then transferring that skill to the construction of a door, or learning the concept of 

a right angle, which came to fruition in DGE play). 

I found that each context boasts a unique set of features, benefiting the learner in a 

particular way, but that there is no strict binary distinction, and multitouch environment 

often makes experience more physical due to whole body involvement. The physicality 

of digital environment was ever-present as students were developing intimate relations 

with the triangles they were constructing and instantly appropriating as their own, 

making DGE more concrete than abstract, or indeed a “bridge” between the two.  
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GETTING NEW WRITING ON THE BOARD IN AN 

UNDERGRADUATE MATHEMATICS LECTURE 

Andrew Hare 

Simon Fraser University 

 

In this paper I take seriously the task of the lecturer in undergraduate mathematics: to 

write on the board a selection of true results and precise definitions while providing 

convincing argumentation justifying these inscriptions. Using a microethnographic 

approach that emphasizes contexts and the role of the hands, I analyze a few moments 

to highlight some common writing/speaking/gesturing actions: construal of a piece of 

writing in order to make a contrast, construal of a piece of writing in order to make a 

specific choice from a general type, nonlinear writing, grasping and circling to 

indicate “many”, and moving the hands from one place to another while keeping the 

shape constant in order to indicate equality. 

INTRODUCTION 

Many undergraduate mathematics classes are taught using a lecture approach. The 

professor stands in the front of the room, usually at a blackboard or whiteboard, perhaps 

with a transparency or other means of projecting text onto a large visible screen, writes 

out theorems and their proofs and their corollaries, writes out examples and exercises 

and their solutions, draws diagrams of all kinds, points repeatedly at elements of these 

things, gestures, tells stories and jokes, gives historical background and motivation, 

fields questions, asks questions of the class and engages in dialogue with those who 

answer, and more. The class sits in their seats, usually do not talk except when 

whispering to the person next to them or answering a question or asking a question or 

pointing out an error they think the professor has made. Their seats face the front of 

the room where the professor and the board are, and there is usually an unbroken spatial 

boundary between them (Barany & McKenzie, 2014; Greiffenhagen, 2014). Such an 

arrangement for university mathematics teaching and learning has been very common 

for a very long time – Hilbert and Klein would find nothing unusual about it.  

Mathematics was already a deep subject in the 1890s, with an incredible amount of 

mathematical truths already proven in the literature. Already professors had to be 

extraordinarily selective in what they chose to lecture on to their undergraduates. Every 

generation of mathematicians since has inherited the previous generations’ literature, 

and has attempted to compress it, to rewrite it using newer mathematical concepts and 

results. The subject known now as group theory was still very young then; by now it 

has a very large literature indeed. Famously, the theorem which classifies all finite 

simple groups has a proof that extends to thousands of pages, is the collective work of 
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many many mathematicians, spread over hundreds of research articles. Even the 

attempt at a “second-generation” proof runs now to many volumes (8 of an expected 

11 have been published thus far). No one individual in the world understands the full 

proof. I will take from this example two lessons (neither of them I hope surprising). 

First, that those who teach group theory to undergraduates have an enormous wealth 

of material to draw on – there are always far more theorems and definitions than are 

possible to include in a first course, even when you restrict to material accessible to an 

undergraduate (even group theory textbooks designed for first courses in group theory 

are much longer and denser than can be reasonably covered in a course). Second, that 

mathematics is supremely a collective human endeavor, the result of a community of 

people sharing a common mathematical language and heritage. I combine these lessons 

with a third, also hopefully unsurprising observation, that the results in mathematics 

must be proven – with arguments that satisfy this community, using definitions that are 

precise and unambiguous, relying on previous results that are trusted and can be 

verified. Taking these assertions seriously, this paper seeks to find some partial 

answers to the question: how does a lecturer manage to successfully write new pieces 

of mathematical material on the board. In the next section I describe work by two 

mathematics education researchers, Elena Nardi and Keith Weber, that impacted this 

study. 

MATHEMATICAL LECTURING, WRITING, AND REASONING 

In 2002-2003 Nardi conducted eleven half-day focused group interviews with twenty 

mathematicians from different parts of the UK. Their ages ranged from early thirties 

to late fifties and the length of their teaching career varied from a few years to more 

than thirty. A week before the interviews she distributed data samples consisting of 

students’ written work and interview transcripts. This data had been collected from 

students attending first year courses in calculus, linear algebra, and group theory. When 

the participants arrived for the four-hour interview they usually came with comments 

and questions based on their careful consideration of the samples. She took a narrative 

approach in presenting the results of her analysis of these interviews (Nardi, 2007), 

structuring her book as a dialogue between two characters, M (the mathematician, a 

composite of all the participants) and RME (the researcher in mathematics education). 

Nardi offers mathematicians revealing their pedagogical beliefs and strategies insofar 

as they are conscious of them and can articulate them. 

Concerns about their students’ mathematical writing expressed by M are a dominant 

theme: 

And words, sentences, those creatures ever absent from students’ writing exist exactly for 

this purpose: of emphasis, of clarification, of explanation, of unpacking the information 

within the symbols. (151) 

Nardi’s mathematicians reveal over and over that they are keenly interested in the 

details of precise and careful use of language, including syntactic and paragraphic 

structure. Another common theme is that of mathematical viewpoint and perspective: 
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I see this business of sharing landscapes as my main business as a lecturer. We are not just 

communicating facts, we are saying that this is one way you can view it and that is another 

way you can view it, let’s put these together somehow. And it’s not an easy job, believe 

me! (218) 

Weber performs an analysis conducted largely at the level of the (75 minute) lecture, 

and concludes that they can be sorted into three categories that reveal three different 

teaching styles: logico-structural, procedural, semantic (Weber, 2004). In his 

discussion of the procedural style, Weber notes that it appeared to him that in lectures 

delivered in this style, the professor aimed to explicitly teach his students strategic 

knowledge, which Weber defined as “heuristic guidelines that they can use to recall 

actions that are likely to be useful or to choose which action to apply among several 

alternatives” (Weber, 2001). In this paper I conduct a case study of a lecturer teaching 

a course, just as Weber did: I hope to analyze the actions of the professor in the 

classroom that they in practice use when faced with alternatives or when faced with 

the question of what to do next and how. 

CONTEXTS AND MICROETHNOGRAPHY 

Chafe (1994) has emphasized the importance, in spoken discourse, of local contexts 

where a specific topic is being discussed. He notes that beginnings and endings of these 

contexts are communicated by speakers in a variety of ways: intonation, volume, pitch, 

tempo, pauses, body movements, eye gaze, gestures. In the context of mathematics 

education research, Staats (2008) defended the division of transcripts of classrooms 

into poetic lines, citing workers in linguistic anthropology such as Dell Hymes and 

Dennis Tedlock who helped develop the field of study known as ethnography of 

communication.  

This paper adopts a microethnographic approach (Streeck, 2017). This framework does 

not posit thoughts inside people’s heads that are not visible. Instead, close attention is 

paid to visible actions, occurring inside local contexts, where the participants visibly 

adapt their movements and their gestures and language to meet their own answer to 

what they understand the communicative event they are involved in to mean. 

METHODOLOGY 

35 50 minute lectures in group theory were videotaped. A 240 000 word corpus was 

constructed from this data. The transcript was divided into 3004 stanzas, using the tools 

described by Chafe. 

Some notes on the transcripts below. In the transcripts of speech, when mathematical 

objects are referred to, they will be put within dollar signs delimiters, with no space 

between the variable and the dollar signs. In the transcripts of writing, when 

mathematical objects or equations are being used, a dollar sign and a space will be used 

as delimiters. Any other mathematical relationship in the transcripts of writing will be 

written using a backslash and then an abbreviation of the relationship (in fact, we use 

the format mathematicians use when producing their published texts – LaTeX). When 
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speech is referred to, single quotation marks will be used; when writing on the board 

is referred to, double quotation marks will be used. 

DATA ANALYSIS 

Construing to contrast; grasping/circling to show ‘many’; equating.  

This section analyzes the following stanza (the 42nd in the 23rd lecture): 

1 ok so here it is as a definition 

2 a subgroup of a group is normal 

3 if every left coset equals the right coset 

4 that doesn’t mean that $a$ little $h$ equals little $h$ $a$ for every $h$ 

5 for every little $h$ in the subgroup ok? 

6 it just means that this collection of objects 

7 that’s a coset 

8 that’s order $H$ elements in there 

9 that collection of objects is the same as that collection of objects 

10 no matter which coset rep we take. (23.42) 

The writing that exists on the board as he begins this stanza (he has just written it to 

begin the new chapter of the textbook they are using) is as follows: 

A subgroup $ H $ of $ G $ is _normal_, written $ H \nsubgp G $, if 

$ a H = H a $ for all $ a \in G $. 

J begins the stanza by taking four steps to the board in order to arrive at the equation 

on the board just as he says ‘here’, using his index and pinky finger of his left hand to 

simultaneously point to either side of the equation. The previous stanza had seen him 

make a spoken comment from a distance. Keeping his fingers in their configuration he 

pulls his hand back and pushes his hand to the board twice in emphasis as he says 

‘definition’. In his next spoken line he reads the first written line while touching “$ H 

$” when he says ‘subgroup’, “$ G $” when he says ‘group’, and “normal” when he 

says normal. While the last is a direct transposition of writing to speech, the first two 

are small modifications: by now in the course he has stopped writing “a group $ G $”, 

trusting that “$ G $” alone will carry the meaning. This is one of numerous 

compressions of writing that occur on the micro-scale.  

The reading continues in the next line, where he touches the left and right sides of the 

equation while saying ‘left coset’ and ‘right coset’ respectively. As soon as he 

concludes this line he turns his gaze for the first time in the stanza to the students, 

marking a transition in the stanza. He maintains the same body position, orienting his 

upper body and head in order to face the students, but shifting his body weight to the 

leg closer to the class. There is little to no pause and no change in volume or tone as 

he continues, so it is clear that the same work is continuing in the same stanza. In line 
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4 he turns again to the board and begins touching the equation again, this time touching 

each of the 4 letters in it as he says ‘$a$’, ‘little $h$’, ‘little $h$’ and ‘$a$’ respectively, 

ending with holding the last letter and turning his gaze back to the class as he says line 

5. Here although he is touching the capital letter $ H $, which denotes a subgroup, he 

is deliberately construing this mathematical object to be an arbitrary element in the 

subgroup (“little $h$”). He is contrasting the actual written truth with what it might 

easily be mistaken with, cautioning them against this interpretational error. 

Line 6 begins with him turning his head back to the board, and as he speaks the first 

few words he forms a grasping shape with his left hand, and touches the board with all 

fingers and thumb while surrounding the left hand side of the equation. He appears to 

grab “$ a H $” in a clutching move as he says “collection”. His hand looks like he is 

trying to contain a bunch of objects, rather than the single element that he had been 

touching with a single finger in line 4. In line 7 he shifts to a different approach to 

indicate that there are many objects living in the set that is the left hand side – he uses 

his left index finger to circle around and around the “$ a H $” term as though to draw 

a physical boundary around these elements and corral them safely together as a single 

grouping. Such movements of the shape of his hands while he distinguishes the one 

from the many recur frequently in the course – both versions, the grasping gesture, and 

the circling/corralling gesture.  

Now that his hand has placed the notion of many elements on the (vertical) table, he 

moves to revealing how many elements there are. His left hand briefly imitates the 

vertical line that would be drawn on the board on either side of “$ H $” in order to 

write down the order of this subgroup (and hence also the order of the left coset he is 

talking about, tacitly appealing to an earlier proved theorem). This writing-in-the-air 

lasts for only a half-second (not even as long as he needs to say the words ‘order $H$’). 

This is an instance of an occasion where perhaps the communicative feature of the 

gesture is of less importance (because if you blink you miss it) than the function of the 

gesture to help J himself think through what he wants to say. On many other occasions 

the writing-in-the-air (treating the air in front of him as if it were a surface he was 

writing on) lasts longer, and this is a regular feature of his hand movements in the 

course. By the time he says ‘there’ his hand is shaped like an open palm and he is 

pressing on the board with all fingers and thumb, entirely covering the left coset. Now 

when he turns his gaze to the class again, he is ready for the punchline (lines 9 and 10) 

of his stanza: he holds his hand where it is as he says ‘that collection of objects’, lifts 

it up from the board without altering the shape of his hand at all, moves it over the few 

centimetres needed (while saying ‘is the same as’), and places his hand over the right 

coset (the right hand side of the equation) as he says ‘that collection of objects’. 

Transferring the hand in this way in order to indicate equality is a regularly recurring 

gesture. Line 10 finishes the observation – saying ‘no matter which’ he leans over to 

tap underneath the phrase “for all $ a \in G $”.  

J marks the conclusion of his 29-second-long stanza by turning his gaze from the 

students on the word ‘which’ to the page of notes that he has been carrying in his right 
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hand throughout the stanza, and looking at it as he finishes ‘coset rep we take’. In 

addition, he swivels again to the board, switching the notes to his left hand so that his 

right hand is free to write, and the next stanza is begun with the words ‘ok so’ and his 

hand moving up to the board to write. The first line of this stanza continues ‘actually 

I’d better write that’, and he proceeds to write on the board a parenthetical comment 

that comes after the written definition that captures the warning he has spent the last 

stanza explicating with the help of his hands and the previous written material on the 

board. Very often his spoken comments remain only spoken, but often too J follows 

his spoken comments with a written capture (and frequently such comments are 

marked on the board by being contained within parentheses).  

Nonlinear writing, construing to specify.  

I turn now to a stanza that begins about three and a half minutes later: 

1 and going in the other direction 

2 what do we want 

3 we know that this is a subset of this for all $x$ 

4 and what we want is that this holds for all $a$ 

5 so let’s pick an $a$ 

6 and what we want to end up with 

7 is $aH$ equals $Ha$ 

8 that’s where we’re going 

9 now do we know immediately where to go 

10 well we’re trying to prove that these things are equal  

11 and what we’re given is a condition on inclusion of subsets 

12 so that is a clue as to how we are gonna prove 

13 that those two sets are equal is it not? (23.50) 

This stanza occurs as he begins the backwards implication portion of the proof of the 

theorem that he labels as the “Normal Subgroup Test”, the statement of which is: 

Suppose $ H \subgp G $. Then 

$ H \nsubgp G $ \iff $ x H x^{-1} \subseteq H $ for all $ x \in G $. 

In the previous stanza, having completed his justification of the forwards implication, 

he concludes the stanza by turning his gaze to his notes, and saying the line “so that’s 

one direction”. As he says this he picks up an eraser, says the word “and” from the new 

stanza, erases the next board (that had writing on it already from the previous chapter), 

and when he’s finished erasing, completes line 1. He then writes a backwards 

implication symbol as a heading, almost begins writing, then changes what he does at 

the moment the pen would have hit the board and says line 2 as he walks back over to 

the neighboring previous board that contains the writing of the definition of normal 
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subgroup as well as the normal subgroup test theorem. Again, stanza transitions are 

marked in multiple ways, here with body movement, erasing a whole board, and also 

the structure of the proof signalling a clear break between one context and the next.  

On the first ‘this’ of line 3 he touches the “$ x H x^{-1} $ expression; on the second 

‘this’ he touches the $ H $ on the other side of the subset inclusion relation; on ‘for all 

x’ he touches the quantifier clause. This is much like the reading-with-touching that 

occurred in the last section. The touching in the line 4 has a different character. On 

‘want’ he touches the $ H \nsubgp G $ condition, whereupon he rapidly moves his 

index finger up a few lines (and out of the theorem environment and into the definition 

environment) in order to touch both sides of the $ aH = Ha $ condition while saying 

‘this holds for all $a$). Walking back to the new board with purpose, he says line 5 and 

writes “Let $ a \in H $” right next to the backwards implication symbol heading. With 

no delay he then says line 6 while staring at his notes, then leaves a space of two lines 

on the board, and then writes “$ aH = Ha $” while saying line 7. This last bit of writing 

will end up being the concluding part of the proof of this backwards implication. He 

has written only the beginning and end of a short paragraph of argumentation. This is 

an example of nonlinear writing, of which there are many instances in the course. This 

is a beginning-and-end form of nonlinear writing; two other popular kinds are 

headings-first nonlinear writing, and leaving-small-gaps nonlinear writing.  

He takes three steps back from the board as he says line 8. This moment, like a similar 

moment analyzed in the last section, is a little transition inside this stanza, but does not 

rise to the level of a stanza transition. As he says line 9 his gaze is back on the board, 

and he has begun to walk back to touch it, which he accomplishes on the word ‘equal’ 

in line 10, holding the $ aH = Ha $ condition with a right handed index and pinky finger 

double hold while he stares at the class for a short pause. Then he walks back over to 

the previous board as he says ‘and what we’re given’, arriving at the subset inclusion 

relation just as he says the word ‘condition’ in line 11, again using his right hand to 

touch both sides of the inclusion with his index and pinky. By the beginning of line 12 

he has removed his hand, turned to face the class with his back to the board, and the 

final 2 lines are delivered looking at the students. There is one final pointing in the last 

line, in the general direction of the new writing on the new board as he says ‘those two 

sets are equal’. 

There is next a stanza where he elaborates a bit on this clue (showing two sets are equal 

can be achieved by showing that each set contains the other). The next moment I wish 

to highlight occurs in lines 3 to 7 of stanza 52: 

3 we know- let’s just try- 

4 oh what value do you think I should- 

5 this holds for all $x$ 

6 what value for- for $x$ do you think would be a good one to pick 

7 [$a$] $a$ would be a splendid idea 
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On ‘we know’ he touches the “$ x $” of the subset inclusion; during ‘let’s just try’ he 

touches the “$ H $” and “$ x^{-1} $” in succession. Some halting phrases here, atypical 

for this lecturer. In line 4 he switches to asking the class, and he touches the condition 

twice again. In line 5 he touches the “$ x $” term again as he says it, and by line 6, as 

he gets his full question out, he is looking at the class, and a student provides the 

answer. Here he has been touching a term but wanting to construe it as a specific value 

of that term (picking the specific value of $ a $ for $ x $). Touching a general term and 

construing it as a specific instance of that generality is a common move in the course. 

He is now ready to write the first line of his missing argumentation on the new board. 
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MATHEMATICAL PROBLEMS THAT HAVE NO KNOWN 

EXPLANATION IN THE SECONDARY CURRICULUM 

Wai K. Lau 

Simon Fraser University 

 

It is possible to find a connection between high school mathematics and mathematics 

beyond the curriculum. In this paper, I offer two well-known examples, namely, 

Euclid’s fifth postulate (parallel postulate) and Ping-pong ball conundrum 

(Littlewood-Ross paradox). The former is equivalent to say that “sum of the angles of 

a triangle is 180°”, and the latter involves considerable cognitive conflict in different 

sizes of infinity. I argue that good examples not only can reveal the beauty of 

mathematics but also can inspire students’ interest in mathematics. I also say that 

despite intuitive ideas without rigorous proof may not be valid for formal mathematics, 

students may gain extra benefit rather than just delivering the conventional lessons. 

However, how to choose good representative examples for high school students is one 

of the crucial points for high school teachers and the researchers. 

TERMINOLOGIES 

(1) Parallel postulate: there is at most one line that can be drawn parallel to another 

given one through an external point. One of the equivalent statements which has often 

been used in high school geometry is “the sum of the angles in every triangle is 180°”. 

(2) Great circle (of a sphere): is the intersection of the sphere and a plane that passes 

through the centre point of the sphere. Note that the shortest path between two points 

on a sphere lies on the segment of a great circle (see fig. 5). 

(3) Ping-pong ball conundrum: 

You have an infinite set of numbered ping-pong balls and a very large barrel and you are 

about to embark on an experiment, which lasts 60 seconds. In 30 seconds, you place the 

first 10 balls into the barrel and remove the ball numbered 1. In half of the remaining time, 

you place the next 10 balls into the barrel and remove ball number 2. Again, in half the 

remaining time (and working more and more quickly), you place balls numbered 21 to 30 

in the barrel and remove ball number 3 and so on. After the experiment is over, at the end 

of the 60 seconds, how many ping-pong balls remain in the barrel? 

(Mamolo & Bogart, 2011, p. 615) 

(4) Cardinality: Two sets have the same cardinality if and only if they can be put in 

one-to-one correspondence (Mamolo & Bogart, 2011, p. 616).  

Noting for finite sets A and B, the one-to-one correspondence implies they contain the 

same number of elements; but for infinite sets, the one-to-one correspondence implies 
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they have the same cardinality only, but not “the same number of elements,” because 

‘infinity’ is not a number. Conventionally, A ≈ B denote sets A and B have the same 

cardinality. Besides, we use the Hebrew alphabet  (aleph null) to denote the 

cardinality of the set of all natural numbers, ℕ = {1, 2, 3, …}. Since ℕ is countable, 

hence, if A ≈ ℕ, then set A is also countable with the cardinality of . 

INTRODUCTION 

Euclid’s fifth postulate and Ping-Pong ball conundrum are famous mathematical 

puzzles related to the properties of parallel lines and the “lens of ‘measuring infinity’” 

(Mamolo & Bogart, 2011), parallel lines and infinity are linked with high school 

curriculum but have no deeper in explanation. The purpose that I highlight these two 

examples is to advocate students thinking, visualize, classify geometric objects, and 

compare different sizes of infinite set through in-class discussion. To do so, I offer 

examples and tasks to develop creativity in students. Noting a good curriculum is more 

than a collection of examples and activities, as stated in Principles and Standards for 

School Mathematics (2000), one of the significant components of curriculum is “[t]o 

ensure that students will have a wide range of career and educational choices, the 

secondary school mathematics program must be both broad and deep” (p. 287). 

Therefore, in the broad sense, examples and tasks in this paper are appropriate for 

secondary or even elementary students. They are, in some sense, visualizable, tangible, 

entertaining, and situated in the real-world. In the deep sense, they all seem easy to 

formulate at first sight, but in fact, those examples have been attacked by many 

mathematicians and philosophers for a long time; hence, good examples are 

representative, motivative, and worth learning, by deliberating these examples, 

secondary school students can augment extra insight in mathematics. 

THEORETICAL ORIENTATION 

Scholars agree that learning-from-examples plays an essential role in learning 

mathematics, accordingly, how to select a meaningful and representative example for 

the learners, and how to promote learner create their own examples become an issue 

for teachers and researchers. In this regard, we can reference the research of Zhu & 

Simon (1987) and Zazkis & Leikin (2007). Zhu & Simon state that through carefully 

designed worked-out-examples, “students were at least as successful as, and sometimes 

more successful than, students learning by conventional methods, and in most cases, 

they learned in a shorter time” (p. 160). Zazkis & Leikin indicate that “[w]e all learn 

from examples, …, we believe that learners’ example spaces, and their relationship to 

the conventional ones, provide a window into their understanding of mathematics” (p. 

15, 21). Another pedagogical strategy that appears practicable to motivate students 

toward the idea of non-Euclidean geometry and the notion of infinity is demonstrating 

tangible geometric solids in class or presenting famous paradox regarding infinity. It 

might facilitate students’ initiatives for learning. For example, the ping-pong ball 

conundrum contains not only immediately the idea of the infinite but also the interplay 

of cognitive conflicts between potential infinity and actual infinity (Mamolo & Zazkis, 
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2008). Despite numerous research articles regarding Euclid’s fifth postulate and Ping-

pong ball conundrum are highly technical in philosophy and mathematics, this paper 

releases a unique message that highly technical thoughts still be able to understand by 

high school students. 

Also, proof by contradiction has commonly been used in mathematics, which means 

something either is, or is not, but cannot be both. At least in most of the formal logic, 

we must obey the law of excluded middle; that is, paradoxes or contradictions are not 

allowed. However, students could interest in whether paradoxes exist. For example, 

according to Parmenidean logic, contradictions are allowed to exist, and indeed, 

usually do exist in the realm of senses (Campbell, 2001). Nevertheless, I like the term 

‘incommensurability’ or lack of a common unit of measure (ibid.). In fact, in high 

school textbook,  is an irrational number using the property of incommensurability; 

moreover, Cantor’s one-to-one correspondence approach provides a unique way to 

measure the sizes of infinite sets, namely by its cardinality. It should also worth 

knowing for high school students. 

RESEARCH METHODOLOGY 

Although this paper does not involve the explicit contents in non-Euclidean geometry 

and the debates between potential and actual infinity, it does engage with the students’ 

interests and matches the high school curriculum. I purposefully emphasize the value 

of visualization. According to van Hiele’s model, visual perception (level 1) is the most 

basic level of thinking and understanding in geometry to achieve the next sequential 

levels, namely analysis, abstraction, deduction, and rigour. However, Mason (1997) 

shows that some mathematically talented students appear to skip the van Hiele levels 

which are supposed to be hierarchical, Mason further suggests that, even for the 

talented students, geometry course “should be taught in a much less abstract manner in 

its initial stages than the current traditional geometry course” (p. 51).  

For the Euclid’s fifth postulate 

The goal of this paper is not guiding the students to write a formal proof. Instead, I 

intend to demonstrate a big picture regarding the difference between Euclidean 

geometry and non-Euclidean geometry. I begin by showing the students a world map 

and world globe, obviously, the map is a plane while the globe is spherical, they are 

tangible, visualizable, and real-life related. Then I will guide them with tasks to find 

the shortest distance on the surface of a sphere as well as on a cone (a type of hyperbolic 

geometry). I do prepare six questions with various figures to lead them into the exciting 

part of non-Euclidean geometry step-by-step.  

For the Ping-pong ball conundrum 

This conundrum is a thought experiment involving a finite interval of time (1 minute 

only) and infinitely many steps. That is, we assume that one minute can be divided into 

infinitely many parts, namely,  minute,  minute,  minute, and so on. Hence, its 
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summation involves an infinite series. Indeed, high school students could have no 

trouble to find the sum of the geometric series . In this paper, I skip 

the philosophical debates regarding infinite divisibility of time, potential infinity, and 

actual infinity; I even skip the ‘time’ consideration. Instead, I emphasize the Cantor’s 

one-to-one correspondence which states, as mentioned before, that “[t]wo sets to have 

the same cardinality if and only if they can be put in one-to-one correspondence” (ibid., 

p. 616), I further assume that by “working more and more quickly” (Mamolo & Bogart, 

2011), the supertask (with infinite steps) can be completed. I will provide two simple 

tasks in class to encourage them to discuss the different ways of ‘measuring infinity,’ 

and thereof, understand more about the mystery of infinity. 

ANALYSIS & DISCUSSION 

The following diagrams could be very beneficial for a better understanding of the 

questions and the discussions. 

 

          fig. 1                  fig. 2                 fig. 3                   fig. 4                       fig. 5                fig. 6      

 

       fig. 7            fig. 8                  fig. 9          fig. 10       fig. 11                fig. 12        

Guiding questions and discussions about the Euclid’s fifth postulate 

1) Do you think the angles of any triangle on the map add up to 180˚?  

Discussion: students may notice that the sum of the interior angles of any triangle is 

sum up to 180˚. Good to be mentioned that, all the reasonings and ‘proofs’ within the 

high school textbook are using Euclid’s parallel postulate, which is taken to be true 

without proof. 

2) Suppose there are three non-collinear points on the globe, they undoubtedly form a 

triangle inscribed on the surface of a sphere (∆ABC in fig. 1). Do you think the angles 

of this spherical triangle (spherical geometry is non-Euclidean) also add up to 180˚?  
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Discussion: This question is not easy for many students, but the teacher could lead 

them to imagine a virtual tour starting at the north pole, following any longitude flying 

to the equator, then make a 90˚ turn along a quarter of the equator, then make another 

90˚ turn flying back to the north pole. In this virtual scenario, a classroom world-globe 

could be a useful teaching material because students can draw a visible path of the tour 

on the globe (see figure 1); amazingly, the angles of this triangle add up to 270˚ which 

is equal to 3π/2 when measured in radians. Furthermore, the teacher could have their 

students check whether in this particular case (see figure 1), the equality below holds, 

 
where R is the radius of the sphere. Without so much effort, many high school students 

could be able to prove the above equality algebraically by using the surface area of a 

sphere  . However, students may ask why, for example, line AB is 

the shortest distance from A to B but not otherwise? I will give an intuitive paper-task 

regarding ‘shortest distance’ in the next question #3. 

3) How can we find the shortest distance between two points on the sphere? And on a 

cone?  

Discussion: as mentioned, this paper is not focusing on the formal proof, therefore, 

despite a line (shortest distance) between two points on a sphere indeed lies on the 

great circle (e.g., longitude and equator on a globe), and it can be proved by solid 

geometry at the high school level. A teacher could use a paper strip to surround the 

globe, as shown in figures 2 and 3. Obviously, the paper strip is ‘flat’ while globe is 

spherical, students may notice that it is not possible to embed a paper strip on the globe 

entirely (see fig. 3), they also notice that the nearest embed is putting the strip, for 

example, on the equator (fig. 4). In fact, using a cone instead of a sphere could be 

better, because paper strip can be embedded perfectly on a cone, and one can expand a 

cone to become flat by cutting its slant. To do the task, step 1: make a paper cone (see 

figure 7), and a paper strip with the width about 2cm; step 2: use this paper strip to 

draw any triangle on the cone, noting paper strip must be fully embedded on the surface 

of the cone as shown in figures 8, 9, and 10; step 3: expend this cone by cutting its slant 

(see figure 12, do not cut any slant passing through the triangle ABC). Then students 

can see the triangle on the cone really form three straight lines. Hence, it must be the 

‘shortest distance.’ Besides, the teacher could show them if the strip is not entirely 

embedded on the surface of the cone (e.g., red line DE on figure 11), then the red line 

appears to be a curve in a plane (see red line DE on figure 12). Therefore, it cannot be 

a ‘straight-line’ because it is not the ‘shortest distance.’ 

4) Can anyone find two parallel lines on the globe?  

Discussion: parallel lines do not exist in spherical geometry. Intuitively, students will 

notice that any two great circles always intersect with each other at two points. Hence, 

they are not parallel. In other words, any two different lines on a sphere, if we extend 

them, must intersect each other.  
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5) Do two points determine exactly one line on the surface of the globe? 

Discussion: for example, there are infinitely many lines joining the north pole and the 

south pole (all longitudes work). In fact, except two points are the endpoint of the 

diameter, any two points on the sphere determine exactly two lines, which correctly 

form a great circle. Students may verify it by the red disc in figure 5. Interestingly, it 

is also not valid for a cone (hyperbolic geometry). However, it is not easy to find such 

two lines; figure 6 could be a good counterexample for students to think with. 

6) Can a line on a sphere be extended to infinitely long? 

Discussion: this is an interesting question. Intuitively, students might think that any 

line on a sphere can only be extended to a great circle at most, because this line 

segment, when extends, will connect with itself at some point. I think this conclusion 

should be acceptable at the high school level. However, it is no harm to mention that 

in spherical geometry, a line segment can go around the sphere an infinite amount of 

times; hence it can be extended indefinitely long theoretically.  

Tasks and discussions about the Ping-pong ball conundrum  

The ping-pong ball conundrum is a thought experiment involving a finite interval of 

time (lasts exactly 60 seconds) through infinitely many steps. This conundrum has been 

studied intensively by Mamolo and others. As said, I skip the philosophical debates on 

the infinite divisibility of time and potential/actual infinity. Instead, I borrow the ideas 

from Manolo & Bogart (2001), give two new variants (scenarios A and B) to encourage 

high school students to open their thinking about infinite quantities. I also give 

credence to both the intuitive and normative approaches. Roughly speaking, the 

intuitive approach means employing part-whole consideration (the whole is greater 

than those parts). At the same time, the normative approach is relying on Cantor’s 

notion of cardinality (use one-to-one correspondence to compare different sizes of an 

infinite set). Two scenarios below should be intelligible to high school students. 

Scenario A: Imagine we are in a virtual classroom: there is an infinite number of ping-

pong balls in the right corner, and we have a barrel, we are going to put the balls in the 

barrel. So, the teacher goes to the pile and picks up 10 of these, comes over the barrel, 

dumps 9 balls in the barrel and throws one in the left corner. Then the teacher goes 

over again, picks up the other 10 balls, dumps 9 in the barrel, throws one in the left 

corner, and so on. Now let go to infinity, we take the limit, the teacher goes super-fast, 

and there are no more balls left in the right corner (assume that this supertask has been 

completed). Now, the problems are: How many balls remain in the barrel? How many 

balls are in the left corner? Are we all agree that there are infinitely many balls both in 

the barrel and in the left corner? Below are some common responses for scenario A: 

A1) There is no end for this task. Putting infinite balls in the right corner cannot be 

completed no matter how fast the teacher could move. Thus, the hypothesis “assumes 

that this supertask has been completed” is wrong.  
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A2) There are infinitely many balls both in the barrel and in the left corner because the 

in-going balls in the barrel are more than the throwing-out balls in the left corner, its 

ratio is always 9:1 (Rates of infinity). 

A3) Initially, there are ℕ = {1, 2, 3, …} many ping-pong balls in the right corner, 

according to Cantor’s one-to-one correspondence criterion, despite the ratio of in-going 

(countable) and throwing-out (countable as well) seem to be 9:1; however, they have 

the same cardinality. It raises a question whether ‘having the same number of elements’ 

is equivalent to ‘having the same cardinality’?  

Scenario B: take the same setting as in scenario A, but now all balls are labelled as 1, 

2, 3, … and so on. At the first step, the teacher dumps ten balls (#1 to 10) in the barrel, 

then he/she picks one ball from the barrel, throws it in the left corner; at the second 

step, he/she dumps other ten balls (#11 to 20) in the barrel, then picks one ball from 

the barrel, throws it in the left corner; same manner for third step for balls #21 to 30 

and so on until no more balls left in the right corner. In this task, how many balls are 

in the barrel, and the left corner? Noting scenario B is different from the Ping-pong 

ball conundrum (Mamolo & Bogart, 2011, p. 615) and scenario A. What differences 

can you find? 

Nevertheless, a normative resolution of ping-pong ball conundrum is constantly 

meeting Cantor’s one-to-one correspondence, which claims that the barrel will be 

empty: 

[…] In order for the barrel to be empty at the end of the experiment, the ping-pong balls 

must be removed consecutively, beginning from ball numbered 1. Consequently, there will 

be a specific time at which each in-going ball is removed: ball numbered n is removed at 

time , for all n ∈ ℕ. Thus, at the end of the experiment the barrel will indeed be empty. 

(Mamolo & Bogart, 2011, p. 616) 

Below are some common responses and questions regarding scenario B: 

B1) At first sight, scenario B is the same as the ping-pong ball conundrum and 

scenarios A, for in each step, only one ball was thrown, and 9 balls were stayed in the 

barrel. Question: are all responses in scenario A is reasonably valid in scenario B? 

B2) Scenarios A and B are different. Students will recognize that the balls in scenario 

B are labelled by 1, 2, 3, … while scenario A does not. Thus, whether balls are 

numbered might play an important role. In general, the mystery is still hard to perceive 

for most of the people, not only for high school students. 

B3) It is good to know that Cantorian one-to-one correspondence is considerably 

normative because many mathematicians acknowledge it, but it is also good to know 

that it sounds not ‘more correct’ than the intuitive ‘part-whole relation’ because one-

to-one correspondence often leads inconsistency in many thought experiments, 

especially in the real world. Mamolo & Bogart indeed did list many interesting ‘riffs’ 

that lead paradox in logic. I will give an alternative resolution in B4. Noting Mamolo 
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and Bogart also highlight that ‘one-to-one correspondence’ may necessary but not 

sufficient to solve the paradox (ibid.). 

B4) Here is an alternative resolution of scenario B. Pick any natural number, say 3, 

then after this supertask is completed, there remain exactly 3 balls in the barrel.  

How could that be? Here is the clarification: in step one, the teacher picks ball #4 from 

the barrel (instead of ball #1), then throws it in the left corner; in step two, the teacher 

picks ball #5 from the barrel (instead of ball #2), then throws it in the left corner and 

so on. That is, in step n, the teacher picks ball #(n+3) from the barrel. Thus, at the end 

of this supertask, the left corner has a set of balls numbered by {4, 5, 6, …}, which is 

very close to the initial set of balls in the right corner ℕ = {1, 2, 3, 4, …}. However, if 

so, the barrel remains exactly three balls, no more, no less, namely ball #1, #2, and #3. 

Are there any mistakes, or mystery, or trick in this clarification? I think it is beneficial 

for the students to think with even though they might not resolve the puzzle right by 

the way because paradoxes “might influence students’ understanding of infinity, as 

well as the persuasive factors in students’ reasoning” (Mamolo & Zazkis, 2008, p. 167).  

CLOSING REMARKS 

Discussion is one of the common ways to get students to open their imagination and 

intuitions, defend their reasoning by relevant facts, learn how to cooperate with others, 

and increase participant engagement, especially through discussion on the open-ended 

questions among the peer group. I hope this paper can help secondary students gain 

extra mathematical insight into non-Euclidean geometry and the essence of infinity.  
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DYSCALCULIA IN THE MEDIA: A CRITICAL DISCOURSE 

ANALYSIS OF TWO NEWS ARTICLES 

Peter Lee 

Simon Fraser University, Canada 

 

Dyscalculia has received relatively little attention in the popular media compared to 

other disabilities such as dyslexia. This paper applies the tools of critical discourse 

analysis to examine two rare articles on the disability. Discursive representations of 

dyscalculics, cognitive neuroscientists and their research on the brain and the roots of 

number sense are examined for how such representations are influenced by ideology 

and the media genre. 

INTRODUCTION 

The purpose of this paper is to analyse some of the discursive practices at play within 

two media texts on dyscalculia. Relatively little is known about dyscalculia (compared 

to dyslexia for instance) and research on it crosses over into many different fields such 

as medicine, cognitive psychology, neuroscience and mathematics education. Debates 

over its origins, causes and core deficits continue in the literature (Chinn, 2015). While 

much of the reported research on dyscalculia occurs in the academic literature, the 

popular media, on occasion, picks up on the topic. Such was the case with Discover 

Magazine (Flora, 2013) and the journal Nature (Callaway, 2013) (in a news feature). 

It is of interest to analyse media representations of dyscalculia as researchers begin to 

learn more about the disability to see how those labelled as dyscalculic are positioned 

in relation to others and how different conceptions of the roots of number sense are 

debated over. This paper is a brief exploration of the discursive terrain on which 

dyscalculia is written about in the news and due to space limitations, I only analyse the 

headline, kicker, image and image captions for each article. The rationale for such an 

exploration is to denaturalize the “taken-for-granted” language and identify the 

ideological underpinnings around disability and number sense in relation to 

dyscalculia.  

THEORETICAL AND METHODOLOGICAL FRAMEWORK 

Norman Fairclough’s (1993) critical discourse analysis (CDA) is a useful framework 

for analysing media discourses. For Fairclough, language is a socially and historically 

situated mode of action that is both “socially shaped and socially constitutive” (p. 134). 

His CDA applies Halliday’s multifunctional view of language as constitutive of social 

identities, social relations and systems of knowledge and belief (systemic functional 

linguistics). Language use is socially shaped by societies and institutions through often 

competing discursive practices. These discursive practices (e.g. those exemplified 
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through the media), often adhere to certain conventions of language use, but may not 

always follow them as straightforwardly as one may think. Fairclough (1993) 

categorizes discursive practices between discourses “ways of signifying areas of 

experience from a particular perspective (e.g. patriarchal versus feminist discourses of 

sexuality)” (p. 135) and genres, “uses of language associated with particular socially 

ratified activity types such as job interview or scientific papers” (p. 135). I use both 

terms in these senses throughout this paper. Fairclough’s framework is also critical in 

the sense that it aims to “investigate how [discursive] practices, events and texts arise 

out of and are ideologically shaped by relations of power and struggles over power; 

and to explore how the opacity of these relationships between discourse and society is 

itself a factor securing power and hegemony” (p. 135). For Fairclough (1989), ideology 

is, loosely, common sense in the service of power. 

I follow Fairclough’s (1993) three-dimensional framework for analysing any 

communicative event in terms of three facets: “it is a spoken or written language text, 

it is an instance of discourse practice involving the production and interpretation of 

text, and it is a piece of social practice” (p. 136). Due to space limitations, I only apply 

the first two dimensions of Fairclough’s framework. I apply the techniques of systemic 

functional linguistics to analyse the articles as text and I apply the concept of 

interdiscursivity for the second dimension. Interdiscursivity highlights “the normal 

heterogeneity of texts in being constituted by combinations of diverse genres and 

discourses” (p. 137) and “a historical view of texts as transforming the past—existing 

conventions or prior texts—into the present” (p. 137). This analysis asks: “How are 

dyscalculia and dyscalculics represented in the articles?”, “How is the concept of 

number sense represented?” and “How do the two articles differ in their 

representations?”. 

ANALYSIS AND DISCUSSION 

Starting with the Nature news feature, the headline and kicker (introductory paragraph) 

dominate the first page, together taking up almost half the page. The headline itself 

(“NUMBER GAMES”) is capitalized and in large font, an allusion to the dystopian 

novel The Hunger Games. The movie adaptation of the book was released the year 

before the article was published to much box-office success and this pun capitalizes on 

the movie’s popularity. Indeed, the headline has a similar font style as the title in the 

theatrical release poster. It is unclear, however, what the connection is, if any, between 

the themes of the novel and the topic of the article. The Hunger Games is a televised 

fight to the death set in a post-apocalyptic future, and the novel touches on themes such 

as power, poverty and oppression. “Number Games”, on the other hand, refers to one 

of the main topics of the news feature: the research of cognitive neuroscientists in the 

development of computer games in order to improve the number sense of children with 

dyscalculia. Some readers may draw their own conclusions regarding the connection 

between the use of computer games as a treatment and intervention for dyscalculia, and 

the Hunger Games as a cruel punishment imposed by the “Capitol” of the nation Panem 
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on neighbouring districts for a past rebellion, although such a connection could not be 

made until after the article is read—it is not until the second section of the article before 

it becomes clear what “Number Games” has to do with the rest of the article. (It is also 

notable that the strength of the allusion will be lost as time passes on as interest in the 

movie slowly fades—as the power of the pun diminishes, the heading will be less 

effective at drawing the reader’s attention.) Nevertheless, the author’s decision to use 

“Number Games” for sensationalistic reasons has the ideological effect of placing 

greater focus on the interventions for dyscalculia rather than other equally important 

aspects of the article such as discussion about the origins, symptoms and causes. 

Furthermore, this focus hides the individuals to whom the treatments are for—those 

labeled as dyscalculic. The heading makes clear that the article is more about the 

treatments themselves rather than the individuals effected.  

The kicker of the Nature article (“Brian Butterworth is on a crusade to understand the 

number deficit called dyscalculia—and to help those who have it”) is placed before the 

heading, and Brian Butterworth’s name is thematically prominent at the beginning of 

the sentence (and the entire article itself). The use of the word “crusade” (sometimes 

used sensationalistically in newspapers) is suggestive of a religious war but, in this 

context, is suggestive of a campaign for a type of social change and Brian Butterworth 

is set up as the leader of this campaign. Note how the dash creates an emphasis on the 

parenthetical statement “and to help those who have it.” Brian Butterworth is 

undeniably the agent and those with dyscalculia (who are nameless) are the patients of 

his “help.” Also note the modality of the sentence suggested by the phrase “to 

understand.” Butterworth is not on a crusade against the number deficit dyscalculia in 

the same way other campaigns crusade against gambling or against crime where it is 

abundantly clear what “gambling” or “crime” is. Instead, he is on a crusade to 

understand the number deficit called dyscalculia. That is, dyscalculia is not yet fully 

understood by scientists despite the fervent desire for change suggested by the word 

“crusade.” There is also the presupposition of the existence of dyscalculia and the 

reality of it is brought to life by the definite article “the” used to identify a particular 

“number deficit.” A further assumption is that readers of the news feature are 

unfamiliar with dyscalculia but may have some understanding of what is meant by a 

“number deficit.” (I unpack the use of “number deficit” in more detail below.)  

At this point it is worth analyzing the image of Brian Butterworth that takes up half of 

the third page of the article, as there are parallels between the caption for the image 

and the kicker. In the image, Brian Butterworth sits in front of a shelf full of scholarly 

books and various artifacts while holding what appears to be a three-dimensional glass 

model of a brain. The caption reads: “Brian Butterworth hopes that his number games 

will help dyscalculic children—and open a window on how the brain processes 

numbers.” Note the linguistic similarities with the kicker. “Brian Butterworth” is once 

again thematically prominent at the beginning of the sentence and he is the central and 

only figure in the image itself. There is again the “hope” that his number games will 

“help” dyscalculic children. Note the truth modality inherent in the author’s use of the 
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word “hope” which parallels the modality in the kicker—there is the possibility that 

his number games do NOT in fact help dyscalculic children. There is also the informal 

use of a dash to emphasize the parenthetical statement “and open a window on how the 

brain processes numbers.” There are two key metaphors at play here that are suggestive 

of the way cognitive neuroscientists understand how the brain functions. Firstly, the 

“open a window” metaphor is a metaphor of seeing and alludes to the research of 

neuroscientists who observe how certain neurons can literally be “seen” firing in 

specific regions of the brain in response to some numerical task. Secondly, the word 

“processes” suggests how the brain performs numerical tasks as a series of steps or as 

a mechanical procedure similar to how operations are carried out by a computer. These 

metaphors tend to support a particular perspective on numerical thinking, particularly 

that of number sense originating from specific regions of the brain (such as the 

intraparietal sulci as noted on page 3 of the article) which can be “exercised” through 

“number games” in order to hone certain numerical abilities.  

This idea of the brain as being transparent and amenable is literally depicted in the 

image of Brian Butterworth holding a glass model of a brain between his fingers. This 

image also places him in a powerful position as a knowledge keeper, and the article 

itself emphasizes his role as a leading scholar in the research on dyscalculia (the voices 

of researchers with competing views on number sense such as Stanislas Dehaene are 

not as dominant—his views are buried in the middle of the article and he certainly does 

not get a half page image of himself). Thus, image, image caption, and kicker, combine 

to establish Butterworth’s particular research as the primary view on number sense 

even before a paragraph needs to be read. Yet, in contrast to this construction of him 

as a leading academic scholar is an ethical dimension to his character. He is depicted 

by the author as a type of saviour (suggested by the use of the word “crusade” and the 

repeated use of “help”) to those identified with dyscalculia. In the only pull quote of 

the article (shown prominently in the middle of the last page used both to entice readers 

and highlight a point), we get a further sense of his caring for children and the 

seriousness of his conviction. In this pull quote, he describes how he is struck by the 

distress that children feel by being bad at maths: “Every day they go to school. Every 

day there’s a maths class. Every day they’re shown up to be incompetent.” Note the 

shock value in this quote created by the short, snappy sentences and the repetition of 

“Every day” at the beginning of each one. There is a narrative created by the three 

sentences and readers themselves must draw the conclusion implied by last two 

sentences: Maths makes some children feel incompetent. In this brief analysis so far, 

it is becoming apparent that characteristics of two traditional print genres combine in 

this news feature to create an interdiscursive mix: the magazine and the scholarly 

journal. The sensationalism of the header, kicker and pull quote are characteristic of a 

magazine (note that these are characteristics of newspapers too), while the 

circumspection of the claims made, the academic jargon (“number deficit”, 

“dyscalculia”) and references at the end of the article not commonly found in 

magazines are typical of the scholarly journal.  
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I now turn to an analysis of the headline, kicker and image in the Discover article. 

Firstly, it should be noted (as indeed it is at the end of the online edition of the article) 

that the headline for the original print edition is “No Head for Numbers”. The headline 

for the online edition is “How Can a Smart Kid Be So Bad at Math?” Interestingly, this 

headline is the first subheading in the print edition. “No Head for Numbers” appears 

nowhere in the online edition other than in the aforementioned note at end of it. I cannot 

account for this authorial or editorial change other than perhaps to speculate that the 

online headline is catchier (although wordier) and more suggestive of the topic of the 

article. (“No Head for Numbers” may well be suited as a headline for the Nature article 

as there is a focus on number sense and the connection with the brain.) Whatever the 

case may be for this difference between the two mediums, “No Head for Numbers” is 

still an effective headline when one considers what the characteristics of an effective 

headline may be. There are two uses of metonymy within it: “Head” serves as adjunct 

for “cognitive ability” and “Numbers” for “mathematics”, “number sense”, or possibly 

“arithmetic”. The headline draws readers into the topic of the article in an informal yet 

concise manner taking a rather complex topic and encapsulating it into a mere four 

words. The secondary effect of this conciseness is that there remain hidden meanings 

within the headline, creating a bit of mystery for the reader and enticing him or her to 

read further. A possible critique of such a headline is that it oversimplifies complex 

ideas for rhetorical (even ideological) effect and (perhaps falsely) makes assumptions 

about where “number sense” may come from or how we learn mathematics. 

Nevertheless, a headline’s purpose is not to tell the entire story, but to encourage further 

reading in search of answers or further debate, and I believe this headline attempts to 

do so. 

The first subheading for the print edition “How Can a Smart Kid Be So Bad at Math?” 

is “promoted” to the headline of the online edition (there is no first subheading for the 

online edition although many subheadings appear later on in the article). This serves 

as an appropriate subheading for the print edition as the author addresses the answer to 

the question by the third paragraph of the article: “There are many reasons for a bright 

student to be bad at math, including poor learning environments, attention disorders 

and anxiety. But Steph’s struggles typify a specific math learning disability known as 

developmental dyscalculia.” This subheading and the introductory paragraphs serve 

well to introduce Steph, a college bound student prominently featured in the article, 

and the general topic of the article. By moving this subheading to the more prominent 

position of headline in the online edition, Steph’s story about having dyscalculia and 

her struggles become front and centre—she is indeed the “Smart Kid” who is “Bad at 

Math” mentioned. The headline “No Head for Numbers,” in comparison, may well 

refer to a general disorder and is less explicit about any particular individual, and it 

hints more at the cognitive neuroscience aspects of the article. Moreover, “No Head 

for Numbers” is less colloquial and engaging than the rhetorical question “How Can a 

Smart Kid Be So Bad at Math?” (Consider the usage of the colloquialisms “Smart Kid” 

and “Bad at Math.”) The informal nature of both headlines is consistent with Discover 

Magazine’s appeal to a more general audience. (Note also how the latter headline has 
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a higher word count, but is less prominent with a much smaller font size than the Nature 

article headline.) By deciding to use this as the headline for the online edition rather 

than as a subheading creates a different framing effect (more provocative and relatable) 

than if it were left as a subheading.  

A closer analysis of the headline “How Can a Smart Kid Be So Bad at Math?” reveals 

a number of presuppositions inherent in the rhetorical question that make a general 

appeal to readers’ “background knowledge” and hence give it a “dialogic” property 

(Fairclough, 1989). There is the presupposition of the notion of a “Smart Kid” (many 

widespread discourses connect “smart kid” with “high I.Q.,” “high emotional 

intelligence,” “high test scores,” “well read,” “well spoken,” or “street smarts”). There 

is the presupposition of what it means to be “Bad at Math” (often associated with many 

widespread discourses such as “can’t do arithmetic,” “did poorly in math at school,” 

“math anxiety,” or “math learning disability”). Most importantly, there is the 

presupposition that readers consider these two ideas to be mutually exclusive (“Smart 

Kids” are often associated with “good at math”) for the headline to be impactful and 

newsworthy—it is the unexpectedness of the event that gives it value as a news item 

(Richardson, 2007). The headline “How Can a Stupid Kid Be So Bad at Math?” is not 

newsworthy at all. The ideological effect of the headline “How Can a Smart Kid Be So 

Bad at Math?” is to elide the heterogeneity of how MLD is experienced and the co-

occurrence of MLD with things such as dyslexia, anxiety, slow processing or low 

socioeconomic status. Thus, the headline presumes that the dominant interest (those of 

“smart” people) is the interest of society as a whole and the interests of kids who may 

suffer more global disadvantages co-incident with math difficulties are less notable. 

Indeed, the article introduces us to the story of Steph who excels in many areas 

including chemistry, writing and literature but struggles with math, and her diagnosis 

of “dyscalculia” is the explanation for such a discrepancy in her learning. 

The kicker makes this explanation explicit: “Scientists search for the cause, and 

treatment, of a mathematical learning disability called dyscalculia.” Note the shift in 

tone between the headline and kicker from informal to formal as the kicker responds 

to the question posed in the headline. The use of the words “scientists,” “search,” 

“cause,” “treatment,” “disability,” and “dyscalculia” all suggest a medical condition 

and gives the sentence a feeling of scholarly importance. It is more understated and 

less informal than the kicker used in the Nature article—contrast the use of the word 

“search” in the Discover article with “crusade” in Nature, and the use of “treat” versus 

“help.” Moreover, the Discover article uses the general term “scientists” rather than a 

specific name as in the Nature article (“Brian Butterworth”). Indeed, the Discover 

article is less bias towards the research of one particular scientist and more about the 

story of an individual who suffers from dyscalculia—about Steph and her experiences 

with dyscalculia as opposed to Brian Butterworth and his “crusade” to help those with 

dyscalculia. While both articles contain voices from various scientists, the Discover 

article maintains a balance between those voices whereas in the Nature article 

Butterworth’s research is more prominent.  



MEDS-C 2019                                                                                                            Lee 

86 

Another notable point of contrast between the two kickers is how “dyscalculia” is 

introduced to readers—as a “number deficit” in the Nature article versus a 

“mathematical learning disability” in the Discover article. “Number deficit” suggests 

that dyscalculia is characterized by a difficulty in dealing with numbers (or poor 

number sense) and reflects the Nature article’s focus on Butterworth’s research on the 

cognitive basis of numeracy (e.g. approximate number sense) and how an 

understanding of dyscalculia can shed light on it. “Mathematical learning disability,” 

on the other hand, is more suggestive of a disability in learning mathematics in its 

broadest sense rather than a deficit in mere numbers or arithmetic (although like the 

Nature article it also explores the core deficits of number sense). This is reflected in 

the Discover article’s description of Steph’s struggles to learn mathematics by using 

“flashcards, computer games, videos, math songs, summer tutors” and how she was 

eventually able to overcome her challenges: “Steph persevered through multiplication 

tables and ratios, fractions and decimals. It was never fun—and geometry in particular 

is an adventure she’d prefer to forget.” Moreover, the phrase “learning disability” 

suggests a deficiency in cognitive processing that might affect mathematical learning 

(such as poor working memory or executive functioning) in a way that “number 

deficit” does not. Thus, the use of MLD is more suggestive of the different ways people 

may experience dyscalculia, how it affects learning school mathematics, and the co-

occurrence of it with other conditions that might affect learning (such as dyslexia). 

I will end this section by analyzing the image and image caption in the Discover article 

and comparing them to the ones in the Nature article. The image in the Discover article 

follows immediately after the kicker and shows Steph smiling toward the reader with 

one hand on a sign with the words “Coe College” on it. She is standing in front of 

Nassif House that the sign indicates to be the office of admission and financial aid. The 

caption reads: “Steph Zech, who has developmental dyscalculia, will attend Coe 

College in Iowa this fall.” Note the non-essential clause “who has developmental 

dyscalculia” set off by commas. While non-essential from a meaning perspective (the 

caption will still make sense without it), it is essential from a news value sense in that 

it is a “happy news story” that someone with a disability is able to “overcome” it to be 

admitted into college—the image itself suggests a happy ending to the story despite the 

negative sounding headline. This common narrative found in popular media 

representations frames impairment as a problem that is solvable through willpower and 

possibly the help of technology. Critiques of such frames note how they limit the access 

the disabled have to the media and such stories may not be relevant to the everyday 

lives of those living with disability (Grue, 2015). Notice how both the stories in Nature 

and Discover follow particular scripts in order to be deemed newsworthy. The Nature 

article is about a leading cognitive neuroscientist on a “crusade” to help dyscalculic 

children through the use of computer games (hero helping the disabled script). The 

Discover article, on the other hand, is about a “smart” girl diagnosed with dyscalculia 

who, despite this, is accepted into a high-ranking college through hard work and 

support (the disabled lifting themselves up script). Both types of narratives focus on 

well-educated, middle-to-upper class individuals that may overlook the lives of lower 
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class individuals who suffer from dyscalculia and co-morbid disorders. For example, 

in the Nature article, a young student with dyscalculia named Christopher serves as the 

beneficiary of Brian Butterworth’s computer games research. He is described as 

struggling at first, but slowly improves to the point of optimism and serves no more 

than a foil to Butterworth’s research. Unfortunately, a more nuanced view of those who 

struggle with dyscalculia outside of these scripts (such as a depiction of the everyday 

life of a student with both dyscalculia and dyslexia and his or her family and teachers) 

may not be “appropriate” or even worth a magazine or journal’s attention.  

CONCLUSION 

By applying the tools of critical discourse analysis, this brief analysis has demonstrated 

the heterogeneous nature of the news articles in terms of genre (the conventions of 

news, magazines, and journals), the discourses employed (e.g. discourses on 

disability), and the formal and informal nature of the writing. An analysis of just a few 

elements of the articles already begins to reveal much about whose voices are heard 

and how the media frames what is newsworthy or not. For instance, the Nature article 

presents a very distinct perspective on the neurocognitive roots of number sense that 

may not be shared by the wider academic literature. The choices that the authors made 

or did not make in their representations of individuals labelled with dyscalculia and the 

nature of the research being reported is often ideologically influenced depending on 

the politics and/or economics of the discursive practices involved. A detailed 

explanation of such choices is beyond this paper and would require an analysis of the 

articles as a form of social practice (this would be the third dimension of Fairclough’s 

framework). 
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NOT CHOOSING IS ALSO A CHOICE  

Niusha Modabbernia 

Simon Fraser University 

 

Although counting problems are easy to state there is much evidence that students 

struggle with solving counting problems correctly. As this topic became part of K-12 

and undergraduate curricula, there is a necessity to study factors that might have 

affected students’ success. Detecting all the choices in solving a counting problem is 

one of the factors of students’ success. The option of not choosing which may not often 

be considered as a choice is the core of this research. A pair of prospective high school 

teachers participated in this research. Their combinatorial thinking was examined in 

term of Lockwood’s model (2013) with the focus of detecting the option of not choosing.  

INTRODUCTION 

Combinatorics topics have become part of K-12 and undergraduate curricula. Over the 

last two decades, the number of research articles about students’ combinatorial 

reasoning has increased. Examining common errors, strategies, and ways of thinking 

related to students’ solving of counting problems were the core of those research 

articles (e.g., Annin & Lai, 2010; Eizenberg & Zaslavsky, 2004; English, 1991; Halani, 

2012; Lockwood, 2013, 2014; Lockwood, Swinyard, & Caughman, 2015; Tillema, 

2013).  In addition, as counting problems play an important role in computer science 

and probability some researchers were interested in studying these types of problems 

(e.g., Abrahamson, Janusz, & Wilensky, 2006). Furthermore, counting problems are 

accessible and easy to state but need critical mathematical thinking to solve (e.g., 

Martin, 2013; Tucker, 2002). Hence, this topic has absorbed educators' attention.  

Several researchers reported low overall success rates among postsecondary students 

in solving counting problems (e.g., Eizenberg & Zaslavsky, 2004; Godino, Batanero, 

& Roa, 2005, Batanero et al.1997). They mentioned several error types they found in 

students’ work, including errors of order, errors of repetition and using incorrect 

arithmetic operations. 

A counting problem points out some options/choices to present a group of objects. The 

number of these objects would be the answer of the problem. In solving counting 

problems, errors may come from not correctly detecting options/choices which the 

problem specifies. Options can be presented in different ways, including the possibility 

of not choosing. In this paper, I narrow the focus to students’ understanding of a 

particular option that is the possibility of not choosing as a choice and how students 

may consider it in solving counting problems. 
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THEORETICAL FRAMEWORK 

To be able to understand how students conceptualize counting problems, a model of 

students’ combinatorial thinking was developed (Lockwood, 2013). This model 

facilitates a conceptual analysis of students’ thinking in facing counting problems and 

it provides a language to address and describe different aspects of students’ activities 

related to combinatorial enumeration (counting). In fact, it has equipped educators to 

elaborate on ways that students might think in solving counting problems, and it has 

provided a powerful lens to analyse different facets of students’ counting. 

 

 

Figure1. Lockwood's model of students’ combinatorial thinking 

This model has three components, formulas/expressions, counting processes, and sets 

of outcomes. Any mathematical expressions that turnout some numerical values can be 

considered as a formula/expression. While solving a counting problem, a counter may 

engage in an enumeration process or series of processes. The counter either does some 

steps or procedures or even imagines doing them. Both cases are considered as 

enumeration processes which describe counting processes as a component in this 

model. Sets of outcomes refer to the sets of elements which a counter wants to count. 

Any collection of objects that the counter tries to generate or calculate by a counting 

process, is considered as a set of outcomes. This model is a helpful lens to analyse 

students' combinatorial thinking which is proper for this research. Considering 

students' combinatorial thinking with the focus on students' detection the option of not 

choosing as a choice is the main focus of this research. 

Formulas / 
Expression

Sets of 
Outcomes

Counting 
Process
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METHOD 

Participants and data collection 

The participants were two prospective secondary teachers who attended a mathematics 

content course. Although combinatorics was not in the content of this course, they both 

had been taught the multiplication and addition principles with the focus on solving 

counting problems. They both participated in individual semi-structured interviews. 

The interview instrument consists of 3 problems that aimed at probing students’ 

understanding in how they consider the possibility of not choosing as an option and 

comparing students' understanding of “choosing” to “not choosing”. The option of not 

choosing presents in different formations in each problem. Problem 1 was designed to 

consider if the option of not choosing would be detected by students. Problem 2 was 

designed with the focus on two purposes, 1) evaluating students' understanding on 

using the multiplication principle in solving counting problems, 2) considering 

students’ combinatorial thinking on the option of not choosing which is started by 

expressions component.  Investigating students’ understanding of the option of not 

choosing without recalling it is the purpose of designing the third problem. 

Tasks 

Problem 1: There are 9 international students and 5 domestic students to fulfil English 

language requirement. International students have to take one of three English courses 

(ENGL 100A, ENGL 100B, ENGL 100C). There is no requirement for domestic 

students to take any of these three courses. Taking one of these three courses is an 

option for them. How many possibilities are there for students’ choices (for example, 

one possibility is 3 international students take ENGL 100A, 3 international students 

take ENGL 100B, 3 international students take ENGL 100C and all domestic students 

take ENGL 100B). 

Problem 2: A group of 8 people had a meeting. Three of them had a presentation in 

this meeting. After their presentations they desperately needed a cup of coffee. The 

people who did not present can choose to have coffee. There were 11 different types 

of coffee to choose from. How many possibilities are there for these people's choices?  

Amy wrote the following expression as her answer: 

 

Do you agree with her? What was she thinking about? 

Nikki's answer was . What do you think about Nikki's answer? 

Problem 3: How many factors of  are divisible by 7? 
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DATA ANALYSIS AND RESULT 

Most of the focus of this research is on Alex, an interviewee who didn't consider the 

possibility of not choosing as an option while the other one initially did. The two 

interviewees' works show both of them were consistent in considering the option of not 

choosing in the three problems, either consider it as an option or not. Although different 

formations of presenting this option did not have an effect their consideration of the 

option of not choosing as an option or not, it affected on their combinatorial thinking. 

I decided to organize the data by considering the option of not choosing through each 

component of Lockwood’s model of students' combinatorial thinking. 

The option of not choosing and  

“If the domestic students have three options for either taking or not taking an English 

course, so it should have been . But it has supposed to have three choices for the don’t 

as well which is not our case. It’s not  as for the don't you just don’t take any course. 

For the options within the take, I would like to say .  for take and for don’t. So, for the 

they have three options. I just don’t know how to write it down.” 

Alex clearly showed by slightly changing the problem he could get a correct answer 

but dealing with the extra option for domestic students while it was not considered as 

an option brought some confusion. Although he could solve the changed version of the 

problem, eliminating options to be able to reach a solution for the original problem was 

challenging. Thinking about  may come from him calculating the probability of taking 

a course in the changed version of the problem. Lack of understanding of the addition 

principle and the way it can affect expressions may be the reasons behind these two 

confusions. 

The two numerical expressions in the second problem pushed the interviewees to start 

their combinatorial thinking by formulas/expressions component. To be able to 

evaluate  as an answer, the extra option of not having a coffee needed to be 

numerically explained.  

“I agree with , but the 12 probably is 11 types of coffee plus 1 which is represents not 

having a cup of coffee. I don’t think they can add that. It’s like you are adding a different 

type of coffee but you can't add a choice by not having a coffee.” 

Although  brought up the idea of considering the option of not choosing as 

an option, supportive counting processes was needed to convince Alex. In addition, 

numerical expressions and sets of outcomes may have one to one relationship in his 

understanding which I will discuss it in the section which focuses on the component of 

set of outcomes. 

The option of not choosing and counting processes 

Although multiplication principle which is one of the foundations of counting 

processes presented in Alex's counting process, detecting options correctly was 

absent in his combinatorial thinking.  
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His answer to the first problem was . 

 

Considering  as the total possibilities for domestic students shows 1) his attention on 

the two options of taking a course or not taking a course which were explained by "yes" 

or "no", 2) missing the three options in the case of taking a course. He was asked what 

the difference is between the way he counted all the possibilities for international 

students compare to domestic students. His answer was:  

“The 3 is three different courses, but the 2 is yes or no. They don’t lie together. Domestic 

students they either take an English course or they don’t take it. If they do want to take an 

English course, it doesn't matter which one they still have 3 choices.” 

By not detecting the option of not choosing as an option, counting all the possibilities 

for domestic students needs different counting processes compare to counting all the 

possibilities for international students. Hence, not considering the option of not 

choosing as a choice may increase the level of difficulty in solving counting problems.  

The option of not choosing and set of outcomes 

Although Alex could correctly get the tree diagrams for the group of people who had 

an extra option in solving the first two problems, the correct counting processes and 

correct numerical expressions were missing. 

 

Drawing a tree diagram can show students awareness of the overall conditions of the 

problem. It can be considered as an activity to generate organized list of outcomes. 

Hence, based on the model, it can be described as the relationship between counting 

processes and sets of outcomes. In addition, getting an expression based on the diagram 

can be illustrated as the relationship between formulas/expressions and sets of 

outcomes. 

While he could count all the possibilities for international students, not considering the 

option of not choosing as an option for domestic students, became an obstacle in his 

combinatorial thinking to move smoothly from the component of set of outcomes to 

the other two components. 

While Alex was working on the second problem, he rejected  as 11 types of 

coffee can not be added to the option of not having a coffee. His reason was: 
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“Another explanation is these 5 people not only all choice cup of coffee, they chose from 

12 flavours instead of 11 flavours which is not the case. They had 11 flavours plus not 

having a cup of coffee. This means they had it for sure, just from 12 different flavours.” 

After being reminded that the number of two different counting can be equal, he 

continued by: 

“But to me the thing is you have to think this linearly. The first you need to make a choice 

of having a coffee or not. And then within the choice of having a coffee you have 11 

options. But for this 12 is like you only have one option of having a coffee, it just you have 

12 options, you have a coffee for sure but from 12 flavours. I don’t consider not having a 

coffee equivalent to the 12th flavour.” 

As was mentioned before, he might incorrectly assume there is a one to one relationship 

between sets of outcomes and expressions.  

DISCUSSION AND CONCLUSION 

Having awareness of options/choices is critical in solving counting problems. 

Although detecting the option of not choosing is not a counting process, it definitely 

affects the processes of counting. Not considering it as an option may cause a detour 

in students’ paths of solving counting problems by increasing the number of processes. 

In addition, not having it as an option may force counters to go through different 

structures of counting processes. Both scenarios make counting processes become 

more complicated. In addition, while detecting the option of not choosing cannot be 

considered as any combinatorial thought related to the other two components, not 

detecting it as an option may affect both. As detecting options should be part of 

combinatorial thoughts in solving counting problems, and it cannot be considered as 

any of the three components in Lockwood's model, refining this model could be a 

future research study. 
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THINKING CLASSROOMS AND COMPLEXITY THEORY 

Michael Pruner 

Simon Fraser University 

 

In this article I will look at how Thinking Classrooms can be described and studied 

through the lens of Complexity theory. A Thinking Classroom is a teaching framework 

developed by Peter Liljedahl to occasion greater supports for student activity and 

engagement through the extensive use of randomized groupings, problem solving on 

vertical whiteboards, and sequenced tasks to maintain flow. The public nature of the 

whiteboard surface and the close and fluid interactions of the students affords the 

potential for ideas, hunches, queries and representations to move freely through the 

room. In this article, I describe the connection between Thinking Classrooms and 

Complexity theory and how emergent events may be observed in this environment. 

INTRODUCTION 

Thinking Classrooms and Complexity theory are both relatively recent ideas in the 

field of mathematics education and not often discussed together. Thinking Classrooms 

are a model of instruction developed by Peter Liljedahl (2016) to occasion student 

activity, autonomy and collaboration towards solving rich mathematical tasks and 

creating a problem-solving culture in a classroom. Complexity theory describes events 

of emergence, “those instances where coherent collectives arise through the co-

specifying activities of individuals” (Davis & Simmt, 2003, p. 140). In Thinking 

Classrooms, the “coherent collectives” can be thought of as creative moments in 

problem-solving, the genesis of ideas as groups work to solve common problems or 

mutual understanding of new concepts. Davis and Simmt describe the mathematics 

classroom as having the potential to benefit from Complexity Science if certain 

conditions are present or nurtured. A Thinking Classroom has most of these conditions 

in place by its very structure, and so a Thinking Classroom is predisposed to exhibit or 

occasion emergent events such as creative ideas or collective understandings. In this 

article I will describe the deep connection between Thinking Classrooms and 

Complexity Theory and outline some possible avenues for study or observation of the 

emergent events within a Thinking Classroom. 

THINKING CLASSROOMS 

The Thinking Classroom framework was developed to occasion greater supports for 

student activity and engagement through the extensive use of randomized groupings, 

problem solving on vertical non-permanent surfaces (whiteboards), and sequenced 

tasks to maintain flow. The framework has fourteen elements for teachers to consider 

when structuring their lessons; three of these elements are the most impactful on 



MEDS-C 2019                                                                                                       Pruner 

96 

changing classroom norms and providing spaces that are conducive to problem solving 

(Liljedahl, 2016). These are visibly random groupings, vertical non-permanent 

surfaces, and rich thinking tasks. I have been teaching using the Thinking Classroom 

model for six years now and have found it to be quite successful in creating 

environments where students willingly engage in collaborative problem-solving tasks 

and classroom cultures that are inquisitive and mutually supportive. Over the past six 

years of implementation, I have been impressed with how my students attack problems 

and work together to find creative and at times innovative solutions. I have been struck 

with how the problem-solving process in a Thinking Classroom is so different from 

that found in traditional mathematics classrooms. The public nature of the whiteboard 

vertical surface and the close and fluid interactions of the students affords the potential 

for ideas, hunches, queries and representations to move freely through the room. In a 

Thinking Classroom, students are noisily exchanging ideas within groups and between 

groups, conjectures and diagrams evolve on the whiteboards around the room and 

shouts of joy can be heard as progress is made. It is only recently where I have begun 

to see Complexity Theory as an instrument to describe student behaviour and learning 

in this environment. 

COMPLEXITY THEORY 

The field of Complexity science or Complexity theory bears some resemblance to 

enactivism, radical constructivism, situated learning, and some versions of social 

constructivism and has only come together over the last 45 years. Like enactivism, 

complexity theory arose from cybernetics and deals with themes of emergence, 

interaction between object and environment and adaptation. 

Two key qualities are used to identify a complex system: adaptivity and emergence. 

Adaptivity is the change in the object and the change in the environment as the system 

interacts and evolves. Emergence is the self-organization of the individual agents into 

a collective with a clear purpose. Weaver (1948) described complexity by contrasting 

it with not-complex. Not-complex can be simple systems such as trajectories, orbits or 

billiard balls where actions and interactions can be characterized and even predicted in 

detail. As the number of variables increase, they become exponentially more difficult 

to predict and scientists move to new analytical methods such as probability and 

statistics to interpret, and the systems move from simple to disorganized complex. 

These two systems do not cover the range of possibility. It is when we recognize that 

objects within systems may not operate based on a set of known inputs/outputs (not 

deterministic), but rather their operations emerge in the interaction of the agents that 

we begin to think of it as a complex system. It is this key quality of emergence that is 

the focus of discussion in this paper. 

Complexity science is interested in events of emergence that come from these complex 

systems. Illustrative examples of emergence are flocking of sandpipers, the spread of 

ideas, or the unfolding of cultural perspectives. These are collective possibilities not 

represented in individual agents (Davis & Simmt, 2003, p. 140). 
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In terms of mathematics education, mathematics classes are adaptive and self-

organizing. Behaviours and norms of the group emerge from the collective. 

Complexity theory represents a move toward understanding the collective as a 

cognizing agent (as opposed to a collection of cognizing agents). It is this self-

organization that is a key quality in a complex system and may be present within a 

mathematics classroom. 

Simmt and Davis (2003, p. 145) outline five conditions of complexity as necessary but 

insufficient conditions for systems to arise and to learn: (a) Internal Diversity – enables 

novel actions and possibilities. (b) Redundancy – sameness among agents is “essential 

in triggering a transition from a collection of me’s to a collective of us.” (c) 

Decentralized Control – locus of learning is not always the individual. (d) Organized 

randomness – emergent behaviours are about living within boundaries defined by rules, 

but also using that space to create. Liberating constraints draw a distinction between 

proscription and prescription in tasks. (e) Neighbour Interactions – there needs to be 

collaboration… not necessarily people to people but more for ideas to bump up against 

one another. These five conditions are stated as necessary but insufficient, because a 

complex system cannot be forced or coerced into existence. Its very nature requires a 

randomness and a freedom amongst the individual agents for self-organization or 

emergence to occur. 

THINKING CLASSROOMS AS COMPLEX SPACES 

A Thinking Classroom as a complex space can be justified through the five conditions 

of complexity described above. 

Internal Diversity: The daily randomizing of the groups produces diversity within the 

groups.  

Redundancy: All students are at the same age and have similar prior mathematical 

experiences, they are members within random groups, they are all working at vertical 

spaces and all working towards completing a common task. This sameness helps to 

trigger the transition from individual learners to a learning community. 

Decentralized control: Thinking Classrooms are neither teacher-centred nor student-

centred. Rather, learning is shared and emergent and control is distributed amongst the 

groups. Knowledge and ideas are not coming from the teacher alone; they ebb and flow 

through the classroom as progress is made or seen or heard from others. 

Organized Randomness: The tasks in a Thinking Classroom may have structure or 

provide constraints (proscriptive), but the ways that groups progress through the tasks 

is completely random and unstructured. The natural randomness of human cognition 

thrives in a Thinking Classroom and is what allows creative ideas to develop, evolve 

and migrate throughout the room. 

Neighbour Interactions: The very nature of the groups working side-by-side in a 

vertical and public medium facilitates the interactions within groups and among 

groups. 
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Because a Thinking Classroom has all five of the conditions for complexity, it is a 

learning space that is ripe for the collective emergence of understanding or creativity 

within a mathematical solution. 

EMERGENCE IN THINKING CLASSROOMS 

What does emergence look like in a Thinking Classroom? Emergence in any classroom 

is when intellectual movements arise spontaneously and may quickly exceed the 

possibilities of any of the individuals – the knowledge, idea or understanding is a 

property of the collective. This is not only present in a Thinking Classroom, but it is 

amplified. Due to a Thinking Classroom satisfying all the conditions for complexity, it 

is a fertile space for observing emergence. Emergence can be observed by noting 

student representations, diagrams and solutions, and the evolution of these, on the 

public space of the vertical whiteboards. Observing conversations and student 

interactions is another method for noticing emergence in a Thinking Classroom. 

Neighbour interactions in the form of inter and intra-group communications as well as 

the interactions between ideas should be observable, and then emergence may also be 

noticed in these observations. Emergence in a mathematics classroom is a key solution 

strategy, a unique diagram or method, an A-Ha moment of inspiration or a new 

understanding of a concept; in a Thinking Classroom, these moments can all be 

observed, and their emergence can be mapped because of students working in the 

public space of vertical whiteboards. 
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LOGARITHMS: FROM A CALCULATING TOOL TO A 

MATHEMATICAL OBJECT 

Sam Riley 

Simon Fraser University 

 

Throughout history, logarithms have been understood and therefore presented in many 

different ways. How they were introduced in a textbook affected the work done with 

logarithms throughout the text, as well as affecting what sort of understanding readers 

could take from the text. By looking at three texts used in the same area over 150 years, 

through the lens of Anna Sfard’s Operational/Structural conception duality, I will 

analyse how these texts built understanding in their readers.  

BACKGROUND 

While relationships between geometric sequences and arithmetic processes had been 

known for centuries, they were not formalized until the 16th century under the work of 

John Napier, Joost Bürgi, and Henry Briggs (Cajori, 1913a). Their work was 

foundational in creating a process to evaluate logarithms, their operations, and how 

these can revolutionize arithmetic calculations. It was not until 1685 that an English 

mathematician named John Wallis first made the connection between exponents and 

logarithms in his text Algebra, though he does not fully define them through exponents. 

That first happened when William Gardiner published Tables of Logarithms in 1742, 

but it reached the wider mathematics world in Leonhard Euler’s publication 

Introductio, in 1748 (Cajori, 1913b). In there, modern readers would recognize the 

connections he makes, defining logarithms as an exponent and as the inverse of the 

exponential function (Dunham, 1999).  

In the following 250 years, logarithms continue to be introduced through exponents, 

but not always in the same way. Their introduction, along with how they use the 

process surrounding a logarithm can set the tone in how student understand this new 

concept. 

RESEARCH QUESTION 

My goal with this study was to look at three textbooks from different points in history 

to see if they introduced and worked through logarithms differently. Further, I wanted 

to see how their presentation guided the readers understanding of the concept. 

The textbooks were all written for University or College students by professors from 

the American Midwest.  
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• A School Algebra: Designed for Use in High Schools and Academies, by 

Emerson White, 1896 

• Introduction to College Algebra, by William Hart, 1947 

• Intermediate Algebra (11th ed), by Mark Bittinger, 2011 

THEORETICAL FRAMEWORK 

To examine the effect that the presentation of logarithms would have on the reader, I 

turned to Anna Sfard’s theory around the duality of operational and structural 

understanding. She comes from the school of ideas around Piaget, and others in that 

field, she is interested in the interiorization and encapsulation of an idea. Operational 

understanding is the process that created the idea and the calculations or computations 

that come from or use that process. Structural understanding looks to the idea beyond 

its process, becoming more than just calculations, but taking shape and becoming an 

object. The process is still inherent in understanding though, so mathematical concepts 

are both operational and structural at all times (Sfard, 1991).  

Mathematical concepts are cyclic, (Figure 1), with 3 phases, first on a process level 

with concepts that are already objects, then an emergent idea of the product of the 

process being an object, and finally the ability to see the new object and all that entails.  

 

Figure 1: Sfard’s model of concept formation (Sfard, 1991, p. 22) 

The first phase involves interiorization, being able to do the process that leads to the 

new object internally, so with a mental representation. Condensation is ability to alter 

between different forms of the concept and being able to see some parts of the concept 

as a mathematical object and not just an operation. “Reification is defined as an 

ontological shift […] detached from the process which produced it and begins to draw 

its meaning from the fact of its being a member of a certain category” (Sfard, 1991, p. 
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19–20). This last one does not build from continuous practice, but is more an ‘aha’ 

moment, where you change the way you understand and relate to the concept.  

While she does argue that there is a hierarchy apparent in these understandings, she 

does feel it is possible to introduce things outside of procedure as long as the student 

comes back to that important step of interiorization. This alternate pathway is often 

true in textbooks where they will introduce a concept by definition as an object, so 

structural conception may come before operational (Sfard, 1991). Separately, structural 

understanding cannot come without a reason for the concept to be an object, without a 

higher level process that the concept leads into, then that ontological shift will not 

happen (Sfard, 1995).  

METHOD 

As I wanted to focus on how the presentation of logarithms would affect how the reader 

viewed them as a concept, I conducted an analysis of the specific chapters and 

categorized them according to the theoretical framework expounded upon above. As 

all of the chapters did use exponents in some way to introduce logarithms, I paid 

particular focus to how they built that introduction into the basis of a separate operation 

(or function). Overall, I had five themes: Introduced through a repeatable process, Used 

for calculations, Interiorization, Condensation, Reification.  

ANALYSIS 

School Algebra: Designed for Use in High Schools and Academies 

This first text was published in 1896 by Emerson Elbridge White, a math instructor 

and a school administrator, who rose to become the third president of Purdue 

University in Indiana. As Purdue University was an agricultural school at this time, it 

follows that he had a strong belief in applied learning (Norberg, 2019). His text on 

algebra follows that pattern, pushing for learning through applications over theory. 

White begins by introducing logarithms through a definition relating it to exponents. 

He follows that by working through base-10 logarithms and how that relates to the 

formation of logarithmic tables (pp. 309–311). White’s work stays mainly in the world 

of calculations. While he does use the idea of exponents to build up the operations with 

logarithms (pp. 311–312), those operations are practiced only with the use of the tables 

of logarithms (pp. 313–323). Even when he does get into using logarithms within an 

equation (pp. 323–328), so as an operation, he does the work and then sets that up as a 

formula that the reader can use to plug in numbers as seen in Figure 2. So a reader 

would see logarithms used as an operation, and some operations with logarithms, so 

have taken a small step toward condensation. But while the idea of logarithms is 

interiorized, logarithms themselves stay a calculation and never become much of an 

object. 
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Figure 2: Using logarithms to create a formula (White, 1896, p. 323) 

Introduction to College Algebra 

William Hart was a mathematician turned mathematics educator who lectured at the 

University of Minnesota. He was very influential in broadening the idea of applicable 

mathematics, writing textbooks on statistics and the mathematics of investments. He 

used the above skills, along with assistance from his brother, Walter Hart, a 

mathematics teacher at the secondary level, to write a series of algebra books for 

students to use from secondary into their first University classes (Price, 1986).  

In Introduction to College Algebra, Hart also introduces logarithms through an 

exponential definition and spends a few pages evaluating logarithms through this 

means (pp. 212–214). He then combines this evaluation with the operations of 

logarithms, derived through exponents, so the reader gets practice with two views of 

logarithms (pp. 215–226), starting the work from interiorization to condensation. He 

also spends time working on the operations outside of evaluations, in both logarithmic 

and exponential equations (pp. 227–229). His equations combine ideas behind both 

exponents and logarithms so they would be hard to solve without understanding the 

logarithm as an exponent and the logarithm as its own thing. That he has his readers 

working with the logarithm as a value (something in a table), a process (which is 

exponential in nature), and an operation which one can use within an equation, helps 

the reader condense the logarithm into an object.  

Lastly, he introduces the logarithmic graph (Figure 3) and uses that to make some 

conclusions about its boundaries and limits. While reification would be hard to get 

from a text, as it is a change in how a person views the concept, it is something that a 

text can encourage. By including a graph as well as putting in some other limitations 

on logarithms (Figure 4), Hart pushes his reader to see logarithms in multiple ways, to 

think more about their structure, to question them limitations of a logarithm. He puts 

them on the path toward reification.  
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Figure 3: Hart, 1947, p. 229 Figure 4: Hart, 1947, p. 213 

 

Intermediate Algebra (11th ed) 

Marvin Bittinger was a professor at Indiana University who has written over 250 

textbooks, mostly focusing on algebra (Bittinger, n.d.). 

Unlike the other textbooks, logarithms here are not given their own chapter. They are 

introduced after he has covered exponential functions and inverses, so he introduces 

the logarithmic function graphically as the inverse of an exponential function (Figure 

5). The initial work in the section is to relate a graph and a table of values, and use 

those to evaluate logarithms (pp. 703–705). The setup of a new concept should lead to 

interiorization as the reader works to practice the process that gave way to that concept, 

but by introducing logarithms through an exponential graph and table of values, 

Bittinger creates something that would be difficult for a student to recreate mentally. 

It is not until he defines logarithms as the inverse of exponential functions through an 

equation and practices conversions between the two forms (pp. 705–708) that readers 

have something they could start to interiorize.  

 

Figure 5: Logarithmic graph as inverse of exponential (Bittinger, 2011, p. 703) 
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That interiorization may not always take hold in his presentation though, the readers 

are not given much practice in evaluating logarithms without either rewriting it as an 

exponential equation, or using a calculator (pp. 708–709). The few times the text does 

discuss evaluating logarithms without those methods, it is either a sidenote or a one-

time example that is followed by a litany of examples that use one of the above 

methods. A clear preference is present in the text, a preference that highlights the use 

of exponential equations or calculators. 

The operations of logarithms are presented as a property with an optional proof below. 

The proof leans into the conversion between logarithmic and exponential form, 

bypassing the procedure that introduced the concept (pp. 714–715). The rest of the 

chapter is spent on manipulating logarithms, logarithmic graphs, and solving 

logarithmic and exponential equations. Even though logarithms may not be interiorized 

in Bittinger’s text, as they are presented in so many different forms, they begin to 

become condensed into different parts of an object. They are given a shape, and some 

structure, perhaps leading a reader toward reification. 

DISCUSSION 

While Anna Sfard argues for the hierarchy of her model, she acknowledges that it is 

not a requirement, as long as you have operational and structural understanding than 

you can have full understanding of the concept. If we are going to look at how her 

model applies to logarithms as presented in these textbooks, then it will appear as it 

does in Figure 6.  

 

Figure 6: Concept formation of logarithm 

All three texts introduced logarithms through exponents, assuming that the readers had 

an operational and structural understanding of exponents. From there, the three steps 

of interiorization, condensation, and reification need to happen before there is a 

complete understanding of logarithms. While interiorization and condensation can be 

worked toward through practice, reification is more of a flash of insight. Furthermore, 
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Sfard (1995) believes that reification cannot happen without leading into a new 

process. In each of these books, logarithms are an end goal, so reification is an 

impossible task. Given that, it is still possible to move readers toward an operational 

and structural understanding by building up the processes and structure, but full 

understanding in any of these texts cannot happen. 

Tying this back into my initial themes, where aside from interiorization, condensation, 

and reification, I had looked at whether logarithms were introduced through a 

repeatable process and whether they were employed for calculations, we make some 

inferences. 

Both White and Hart introduced logarithms through exponents, and practiced 

evaluating logarithms in a consistent way with that introduction. They used that process 

to establish operations with logarithms, and then used those to evaluate logarithms. By 

having the reader recreate the process of a logarithm repeatedly, and by combining that 

process with others, the reader should be able to interiorize the concept. By showing 

logarithms in different forms, as a value, as an exponent, as an operation, they begin to 

work toward condensation. Hart even takes that initial introduction to start showing 

some of the structure of logarithms, exploring the graph and its boundaries, and in 

doing that he begins to build structure. 

Bittinger, in introducing logarithms graphically, puts his readers at a disadvantage. 

They may immediately begin to see the structure of logarithms, but they will not be 

able to interiorize the process of a logarithm. To move into any operations, he has to 

introduce logarithms in a different way, which in his text is to convert between 

logarithmic and exponential form. In any of the following examples logarithms are 

quickly disposed of in favour of the more familiar exponential form. They do come 

back in different forms over the rest of the chapter, but not in a way that builds off of 

the initial introduction, or even from the secondary introduction. So while readers will 

see logarithms in many ways, leading to condensation, they have yet to interiorize it.  

CONCLUSION 

It seems that even though Anna Sfard argued that there did not have to be a strict 

hierarchy in understanding a new mathematical concept, for logarithms that hierarchy 

is useful. An introduction that students can recreate, as well as practice in evaluating 

and using logarithms, make a great difference in the interiorization of the concept. That 

bridge that builds to a structural understanding should come out of the same procedure. 

From there, new forms of the concept will help fill out the structure that can lead to 

reification.  

Starting with different forms would seem to lead to a shallow understanding of the 

concept. While readers may have an idea of some rules and boundaries surrounding 

the concept, they may still be missing what exactly is the operation of a logarithm. 

Trying to build on a scattered structure, without that operational foundation underneath 

could lead to future problems with understanding logarithms. 
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I feel the next steps to this study are to do a wider exploration of textbook introductions 

of logarithms and how they build up the structure looking at whether different 

definitions lead to a different understanding of this concept.  
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EMBODIED CURIOSITY – A RECIPE FOR THE MATHEMATICS 

CLASSROOM 

Sheree Rodney 

Simon Fraser University 

 

This paper is a corollary to a larger research study. It examines how two grade nine 

students, both 15 years old, from a secondary school in Jamaica, interacted with circle 

geometry theorems in a Dynamic Geometry Environment (DGE) called The 

Geometer’s Sketchpad (GSP). I utilize the notion of Embodied Curiosity, as well as, 

Andrew Pickering’s idea of agency (the influence of human and non-human actions 

against each other), to analyse the ways in which Embodied Curiosity emerge when 

students interact with their peers on geometric tasks. In addition, I adopt parts of 

Berlyne’s curiosity dimension model as a methodological tool to identify physical 

markers of when and how students become curious. I argue that curiosity along with 

digital technology, body movements and mathematical meanings work hand-in-hand 

for learning to take place. I also suggest that curiosity; the main ingredient, plays an 

important role in shaping the body and the mind.  

INTRODUCTION 

Over the years, mathematics education research has concentrated on the nature of 

mathematics (Begg, 1994), and on issues relating to the teaching and learning of the 

subject (Ellerton and Clarkson, 1996). Furthermore, through engaging with literature, 

as well as my own experiences, I became aware that although much emphasis is placed 

on the cognitive aspects of mathematics learning, insufficient consideration is given to 

the affective in research on digital technology. A research conducted by Sinclair and 

Heyd-Metzuyanim (2014), which focused on the role of the body and emotions in 

mathematical communication sought to shed light on this. However, in this research 

consideration is given to how the body (specifically the hands and fingers), as well as 

emotions, influence how young children communicate mathematically in a touch-

screen environment. My interest is in pushing the boundaries a bit further to examine 

how the body (as a whole) and emotions contribute to mathematical learning in 

Secondary School children, particularly in a digital technology environment such as 

The Geometer’s Sketchpad. As a result, this paper seeks to address how children’s 

emotions (curiosity) and physical beings (their body) contribute to construction of 

‘new’ mathematical meanings. I refer to ‘new’ in the sense that the knowledge which 

may emerge might not be readily accessible in students’ mathematical register, but can 

be implicitly or explicitly identified when children interact with each other.  
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Additionally, in a technology-rich era such as the 21st century, I believe that 

advancement of modern technology is closely linked to humans’ constant need to 

explore the world. Seymour Papert (1980) had envisioned an abundance of technology 

use in society at a time when sceptics were unable to articulate the many positive 

benefits of computers. According to him, the invention of computers has influenced 

“the way people think and learn” (p. 3). His particular interest was on the way 

computers transmit ideas and promote cultural change. Papert also saw computers not 

solely as a tool that programs children, but also as children programming them. 

Pickering (1995) describes this two-way relationship between the children and the 

computer, as “the dance of agency” (p. 78), implying that both depend on each other 

in the process of learning. It is within this two-way relationship that I believe human 

curiosity is situated. As a consequence, I have dedicated this paper to the use of The 

Geometer’s Sketchpad as the digital technology tool of interest and examine its role in 

triggering curiosity via geometry. 

Curiosity 

As far back as the 14th century, the word “curiosity” has taken on several meanings. 

For example, curiositatem (Latin) meant “a desire of knowledge, inquisitiveness” 

which implies something good, while in Middle English “curiosity” meant “to pry, idle 

or a vain interest in worldly things”, which positioned curiosity as something bad. A 

more contemporary, scholarly view of curiosity emerged from George Loewenstein 

(1994) as a term evolving through the lens of psychology and philosophy. He defined 

curiosity as “a form of cognitively induced deprivation that arises from the perception 

of a gap in knowledge or understanding” (p. 75). He also suggested that one of the 

reasons for the constant change of the meaning is that there is insufficient account of 

why people voluntarily seek out curiosity. As a result, Loewenstein argued that 

curiosity is positioned at the intersection of both cognition and motivation. In this 

paper, curiosity is operationalized within Loewenstein’s views but, in addition, bears 

a connection to embodiment. 

Embodiment  

Like curiosity, the term ‘embodiment’ (the noun), emerged from the disciplines of 

psychology and philosophy and shared a similar unstable pathway in terms of its 

meaning. According to Kiverstein (2012), embodiment first became popular in the 

work of Varela, Thompson and Rosch (1991), whose intention was to discredit 

traditional ways of thinking about cognition as solely mind-based, following the 

Caretsian approach in which body and mind are seen as separate entities. Kiverstein 

suggests that the term has now transitioned in meaning through three fundamental 

perspectives. The body-functionalism (the body is understood to play an important role 

in implementing computational machinery), body-conservativism (the body’s 

contribution to cognition is solely as an input–output channel for the brain) and body-

enactivism (the body is seen as the primary source of meaning). In keeping with the 

body-enactivism perspective, on which the theoretical framework of this paper rests, 
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the body is seen not solely in a sensorimotor realm, but also as placing emphasis on 

the affective factors as well.  

THEORETICAL FRAMEWORK 

In order to pursue a more enactivist approach to curiosity, I have coined the term 

Embodied Curiosity (EC), which stresses not only the body as a primary source of 

meaning, but also the distributed and material nature of curiosity. As a result, I argue 

that, within an Embodied Curiosity framework, curiosity, digital technology, body 

movement and mathematical meanings work together in a unified and harmonious way 

to enhance mathematical learning. I also suggest that Pickering’s (1995) idea of human 

and non-human agency acts as an adhesive that keeps the elements of Embodied 

Curiosity framework connected. Pickering’s notion of “the mangle of practice” of 

individual, material and discipline was also useful in helping me understand 

mathematics in particular. In this “mangle of practice” agency is shifted away from the 

individual and as a result the claim is that curiosity no longer arises from the individual. 

According to Pickering, there is a line drawn between the actions of human and the 

actions of nature (other material things), which assigns agency both to people and to 

things; that is, agency has to do with the influence of one thing onto another. Two 

important aspects of his work (which form the basis of agency in this paper) is the 

emphasis that he placed on temporality and posthumanism. In these two ideas 

Pickering claimed that human and non-human agencies are not known in advance but 

rather they emerge during an experience and, that human agency is not given 

precedence over any other form of agency (material or disciplinary). This means that, 

within an Embodied Curiosity framework, the interactions among curiosity, digital 

technology, body movement and mathematical meanings are equally important.  

METHODS  

The students (age 15 years) who participated in the episode used in this paper, were 

part of a larger pool of Grade 9 students from two secondary schools in Jamaica. 

However, the boys were from one of the schools, which I called School X. The data 

was collected over a six-week period. The interaction represented in this research was 

randomly selected from approximately 24 video recordings (approximately 12 hours) 

of classroom observations. The purpose for a random selection of this interaction was 

to determine, at the initial stage of data analysis (for the larger research project) ways 

in which the elements of Embodied Curiosity were present in the data. Randomization 

was also important in giving me that first-hand look on any relationship which might 

be present between the components of EC. The episode was taken from an interaction 

between the two boys, which I called Dani and Mio while they were engaged in a task 

given by their teacher (Sammy). The task involves investigating what happens to the 

angle formed in a semi-circle – one of the circle geometry theorems.  
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Research design and methodology 

Since this paper is concerned with body movement and the ways in which curiosity 

influences these movement, I utilized Berlyne’s (1954) curiosity dimension model as 

an analytical instrument for Embodied Curiosity. Within this model Berlyne suggested 

that curiosity can emerge in two ways, that is, by perceptual (sensation-seeking) 

experiences or by epistemic (knowledge-seeking) experiences. He further argued that 

these two ways require a need to actively seek depth (specific) or variety (diversive) 

when an activity is performed. As a result, his model comprises four categories of 

curiosity. On one hand, there is epistemic specific curiosity, which focuses on a desire 

for a specific piece of knowledge, and epistemic diversive curiosity which requires an 

exploration and focuses on a desire for multiple ideas. On the other hand, there is 

perceptual specific curiosity with a desire for a particular sensation, and perceptual 

diversive curiosity which requires the use of multiple senses to explore the 

environment. In this paper, although his model has been a useful tool in helping me to 

identify curiosity, I deviated from the polarization he suggested and instead propose 

that in order for curiosity to be identified, perceptual and epistemic curiosity should 

work hand-in-hand. This is in keeping with my enactivst commitment. Therefore, I see 

curiosity as sensation-seeking coupled with a desire for knowledge.  

DATA ANALYSIS AND RESULTS  

In order to provide an account for the co-ordination of curiosity, body movement, 

digital technology and mathematical meaning, I used an interaction between two boys, 

whom I call Mio and Dani along with their teacher (Sammy). All names are 

pseudonyms and the episode which was used in this data analysis, was documented 

using a transcript, pictures, diagrams and anecdotes to express how the boys’ 

interaction played out. Upon analysing the data, I recognized that utterances were 

frequently accompanied by body movement. Therefore, I also describe the action of 

the participants within the transcript by placing them in curly brackets at the turns 

where they occurred simultaneously with speech. 

Mio and Dani  

Mio (in green shirt) and Dani (in white shirt) were working on a task together using 

separate computers and The Geometer’s Sketchpad software. The task for the day was 

for the students to explore what happens when an angle is formed in a semi-circle. 

Sammy (the classroom teacher) was in charge of the session and she asked the students 

first, to use the circle tool to construct a circle on the computer screen. All the students 

were able to produce the circle. Then next instruction was to construct a diameter and 

Mio quickly constructed his but noticed that Dani had constructed a radius instead of 

a diameter, as seen in Figures 1 [a] and 1[b]. 
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[a] Dani’s radius instead 

of the diameter. 

 
[b] Mio observed 

Dani’s radius. 

 
[c] Mio explains about 

the diameter.  

 
[d] Mio fingers moved 

inwards.  

Figure 1: The boys collaborate to construct the diameter 

Having observed that Dani had drawn the radius (Figure 1[b]), Mio in a surprised 

manner exclaimed to Dani that the diagram he drew was in fact the radius (Figure 1[a]), 

Dani then erased the circle with the radius and started the task again. With a second 

circle on the screen, Mio recognized that Dani faced a challenge when constructing the 

diameter because he was reluctant to use the line segment tool in his second attempt. 

Instead of telling Dani what to do, Mio used his index finger to show that the diameter 

could have a possible starting point on the circumference of the circle as seen in Figure 

1[c] despite drawing his in a symmetrical manner shown in 1[b]. Perhaps this was 

because he was surprised that Dani’s knowledge about the diameter did not seem 

secure and he wanted to reinforce the idea of the diameter ‘running through the centre 

and touching at both ends from any point on the circumference’. He further moved his 

index finger inward towards the centre of the circle indicating that the diameter, while 

having a starting point on the circumference should also pass through the centre of the 

circle (Figure 1[d]). Dani was visually fixated on the screen, while Mio negotiated a 

possible diameter as shown in Figures 1 [c] and [d]. 

One can argue that when Mio looked across at Dani’s screen, as seen in Figure 1 [b], 

he also demonstrates curiosity in a similar manner, but Mio has always been an 

assertive student throughout the interactions. This limits my judgment in being able to 

decide whether or not he was curious or merely demonstrating an interest in Dani’s 

work. Furthermore, Dani’s fixation was followed by him leaning closer to his screen 

as he demonstrated an interest in knowing what the diameter looks like. After a few 

minutes had passed, and Sammy walked around the room to check on other students 

performing the task, both boys managed to inscribe the triangle within the semi-circle 

based on the instructions given by their teacher. Dani’s diagram in Figure 2 [a] below 

shows the orientation and labelling of each vertex of the triangle. Sammy noticed that 

the boys had their full construction on the computer screen and stopped by Dani to 

probe his understanding of the task. The transcript which follows represents the 

dialogue which ensued between Sammy and Dani.  

1. S:  Move this (points to angle A in table 2 [a] below). 

2. D:  (Drags point A along a small portion of the circumference between angles 
B and D repeatedly in a back-and-forth manner). 
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3. S:  What do you notice with angle A? Move it again, which angle is changing? 

4. D:  (Drags point A further). The first one Miss? 

5. S:  No, it depends on which A you are taking about. The angle you are 
measuring should be in the middle. So, it’s BÂD. (points to the angle 
notation shown in Figure 2 [a] and then points to the vertices of the triangle, 
B, then A, then D (Figure 2 [b]). 

6. D:  But Miss, the size is not changing. 

7. S:  It is not changing. 

8.  D:  Miss bring it over that side to see? 

While Dani dragged point A (turn 2) along the circumference between angles B and D 

both angles were constantly changing while the invariant angle, A, remained 

unchanged at ninety degrees (turns 6 &7). Sammy drew his attention to the angle when 

she asked “what do you noticed with angle A?” at turn 3. Dani wondered what would 

happen if he dragged point A over the opposite side of the diameter (turn 8) which 

turned his focus from the measurement of the angle as Sammy implied in turn 5 to the 

angle itself as he asked, “miss, bring it over that to see?” portraying the geometric angle 

as a moveable object which can move from side to side.  

 

[a] Dani’s diagram after construction 

 

[b]Sammy pointing 
to the vertices of 
the triangle 

 

[c] Dani position 
his hand to show 
how the angle 
should move 

 

[d] Dani sways his 
hand from left to 
right 

 

[e]Dani’s hand 
movement 
continued 
from[d] 

 Figure 2: Dani’s hand movement illustrating a flip. 

His wondering accompanied by the swaying of his hand from left to right of the screen 

(Figure 2 [c] to [e]) while using the diameter as a reference for the action to be carried 

out, as well as the repetition of performing the dragging motion (turn 2) suggested that 

there is evidence of curiosity. His hand movement implied that if a reflection was done 

Angle configuration

m∠ADC = 55.99°

m∠BAD = 90.00°

m∠ABC = 34.02°

C

D

B

A
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and the angle remained unchanged then there is something to be said about this angle 

in particular. Furthermore, while Dani performed the swaying hand movement, he 

simultaneously dragged the point A along the circumference of the circle which meant 

that while his hand (left hand) represented a reflection of the angle, dragging the point 

along the circumference (using his right hand) in a circular motion represented a 

rotation. I found this intriguing because the functionality of Sketchpad played an 

important role in allowing both actions to be performed instantaneously, implying that, 

by using Sketchpad, Dani was able to experience implicitly a relationship between the 

geometric transformations – reflection and rotation.  

DISCUSSION: DANI’S EXPERIENCE OF EMBODIED CURIOSITY  

Dani began to experience Embodied Curiosity when his visual fixation (a sensory 

experience), his leaning forward coupled with his uncertainty about the diameter (the 

knowledge he was seeking) prompted him to construct the chord which runs through 

the centre of the circle. He had initially represented this concept as the radius but Mio’s 

hand movement from the circumference of the circle inwards through the centre, 

helped him to formulate the concept and construct it on his second attempt. This 

knowledge appeared to be ‘new’ for Dani. Additionally, in performing the task Dani 

seemed curious again when he wondered about what would happen to the angle which 

is formed in the semi-circle, if it was reflected through the diameter. His wondering 

was evident when he asked, “Miss bring it over that side to see?” He was uncertain 

whether or not the size of the angle would change or remain the same if the point was 

dragged over the diameter. Also, his repeated dragging action in a back-and-forth 

manner suggested that he had a desire to know what was happening each time the angle 

moves. The draggability of Sketchpad, coupled with the aesthetic appeal of the 

coloured triangle and the symmetrical manner in which the diameter was constructed 

(Figure 2 [a]) indirectly led to the representation of a composite geometrical 

transformation involving a reflection and a rotation. In this sense, Dani’s hand 

movement and the dragging function of the Sketchpad co-ordinated with each other to 

produce the composite geometrical transformation. I also believed, that the computer 

stimulated the boys’ interest in performing the task not only because it was efficient in 

constructing the various parts of the circle, but also allowed them to see how each part 

related to each other. For example, by dragging one point of the diameter along the 

circumference, it maintained its property as long as it passes through the centre of the 

circle. This knowledge would not be readily accessible to the students if the task was 

performed in a static environment.  

CONCLUSION 

The analysis provides supporting evidence that in understanding mathematics, students 

utilize their senses (in this case, sight), their bodies (hand movement, leaning forward 

and backward) and their uncertainties together to generate ideas and perform an action 

such as constructing a diameter. The data also revealed that in using Sketchpad to 
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perform these actions, new mathematical meanings may emerge. That is, students may 

become aware of a piece of knowledge which was not previously known to them, such 

as, that there is a relationship between a geometric reflection and rotation. The data 

also revealed that curiosity plays a significant role in triggering students’ ability to act 

and that the functionality of Sketchpad was instrumental in attaching meanings to the 

student’s hand motion. The hand motions in this case represented a reflection and a 

rotation occurring at the same time. Finally, the implication of this research finding 

suggest that curiosity is a central aspect of learning and should be exploited in the 

mathematics classroom. 
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“I DON’T WANT TO BE THAT TEACHER”:                               

ANTI-GOALS IN TEACHER CHANGE 

Annette Rouleau 

Simon Fraser University 

 

This paper uses the theory of goal-directed learning to examine anti-goals that arise 

as teachers implement change in their mathematics practice. Findings suggest that 

anti-goals develop as teachers begin to recognize who they do not want to be as a 

mathematics teacher. Accompanying anti-goals are emotions that can be useful in 

measuring progress towards anti-goals (fear and anxiety), and away from anti-goals 

(relief and security). Furthermore, acknowledging anti-goals allows mathematics 

teachers to focus on the cognitive source of their difficulties rather than be 

overwhelmed by the emotional symptoms.  

INTRODUCTION 

In Intelligence, Learning, and Action, Skemp (1979) describes a thought experiment 

in which we are to imagine two events. In the first, we strike a billiard ball causing it 

to move across the table into a pocket. In the second, we are in a room with a child 

who, upon our command, moves across the room to sit in a chair. Superficially, these 

are two similar events: we have ‘caused’ the child to cross the room and we have 

‘caused’ the billiard ball to roll into the pocket. This is basic stimulus and response in 

which an object remains in a state of rest, or uniform motion in a straight line, unless 

acted upon by an external force. Now imagine inserting an obstacle into the pathways 

of both the ball and the child. What a strange billiard ball it would be if it could detour 

around the obstacle and continue on its path. But a child will do this with no change in 

stimulus — perhaps by going around the obstacle, hopping over it, or even moving it. 

Skemp suggests that, unlike those of a billiard ball, the child’s actions are goal-

directed, and necessary to reach her goal state (sit in the chair). 

Recognizing that many human activities are goal-directed is essential if we want to 

understand their actions. In other words, we need to attend to their goals with the same 

importance as we do their outwardly observable actions. Skemp offers the example of 

someone crawling around on their hands and knees on the office floor. There is no 

point in asking them what they are doing — we can see that for ourselves. A better 

question might be “Why are you doing that?”, which might elicit a reasonable answer 

such as “I’m looking for the cap for my pen”. 

Let us try another thought experiment. Imagine observing a secondary mathematics 

teacher in her classroom. She is standing by an overhead projector demonstrating how 

to solve a problem while the students sit quietly at their desks and take notes. Another 
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adult sits with a notepad at the back of the room. Students who talk are met with a 

polite reminder to raise their hand if they wish to speak. What might the actions of the 

teacher suggest? An immediate response might be the teacher is teaching, albeit in a 

somewhat traditional manner. Now imagine talking with the teacher after the lesson as 

she describes her frustration with having to conform with school norms regarding 

effective teaching of mathematics in order to successfully pass a probationary 

evaluation. To observe that the teacher was teaching traditionally is accurate, but 

incomplete. To make sense of her actions also requires consideration of her goal — 

she was teaching traditionally in order to achieve her goal of maintaining employment. 

The aim of this study is to make sense of teachers’ actions through consideration of 

their goals. As the pursuit of a goal is an emotive experience (Skemp, 1979), I begin 

by describing some of the literature regarding emotions in teaching. To connect 

emotions with goals, I then outline Skemp’s theory of goal-directed learning. 

EMOTIONS, ACTIONS, AND GOALS 

Liljedahl (2015) describes emotion as the “unstable cousin” of beliefs yet there is much 

to be learned from their study; it is the erratic cousin at the family dinner who is most 

likely to blurt out uncomfortable truths. Fortunately, while pursuit of these 

uncomfortable truths was once the least researched aspect of teaching practice, over 

the past two decades there has been an increased focus on what emotion reveals to us 

about teaching and its implications for teacher change (Zembylas, 2005). As 

Kletcherman, Ballet, and Piot (2009) suggest, “A careful analysis of emotions 

constitutes a powerful vehicle to understand teachers’ experience of changes in their 

work lives” (p. 216). The unstable cousin is being heard. 

Prior to this, teacher cognition had been the primary focus of research on teachers (e.g., 

Richardson, 1996) and its underlying assumption was that teacher actions and 

behaviour were strongly influenced by cognition. More recently has come the 

recognition that emotion and cognition are inseparable and that emotions may provide 

insight into the relationship between a teacher and the socio-cultural forces that 

surround her (Van Veen & Sleegers, 2009). According to Hannula (2006), emotions 

(along with attitudes and values) encode important information about needs and may 

even be considered representations of them. While cognition is related to information, 

Hannula understands emotions as affecting motivation and therefore as directing 

behaviour by affecting both a person’s goals and choices. Emotions constitute a 

feedback system for goal-directed behaviour, and thus shape a person’s choices. 

Hence, emotions, cognitions, and actions turn out to be strongly intertwined and 

inseparable; it is necessary to consider these factors and their relationship in order to 

understand teachers’ actions. 

Skemp’s (1979) theory of goal-directed learning takes into account these connections 

between emotions and actions. His framework was built on fundamental ideas in 

psychology and links emotions to goals which a learner may wish to achieve, and also 
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to anti-goals which a learner wishes to avoid. Goals can be short-term, such as the 

desire to learn a procedure for solving a routine problem or long-term, as in the desire 

to be successful in mathematics. A short-term anti-goal may be to avoid failing a test, 

while a long-term anti-goal may be to avoid future mathematics studies altogether. 

Skemp emphasizes that goals and anti-goals are not simply opposite states, rather, a 

goal is something that increases the likelihood of success, while an anti-goal is 

something to be avoided along the way. 

For Skemp, emotions come into play as they provide information about progress 

towards either goal state in two distinct ways (see Figure 1). First are the emotions 

experienced as one moves towards, or away from, a goal or anti-goal (pleasure, 

unpleasure; fear, relief). For example, moving towards a goal brings pleasure, while 

moving towards an anti-goal results in unpleasure. Although the four emotions bear 

similarities, there are subtle differences. Consider relief and pleasure; the relief one 

feels upon not failing a test is a different feeling from the pleasure one experiences 

upon learning the correct procedure for a problem. The second aspect of emotions 

concerns one’s sense of being able to achieve a goal or, conversely, avoid an anti-goal 

(confidence, frustration; security, anxiety). For example, believing one is able to 

achieve a goal is accompanied by confidence while believing that one is unable to 

move away from an anti-goal state induces anxiety. 

 

Figure 1. Emotions associated with goal states (adapted from Skemp, 1979). 

Although initially designed to examine goals related to the learning of mathematics, in 

this study I will be using Skemp’s theory to examine goals related to the teaching of 

mathematics, particularly those of teachers who are trying to change elements of their 

practice. In doing so, I follow Jenkins (2003) who suggests that change is not just to 

make different, but, like learning, it is also to continually improve in skill or 

knowledge. Specifically, I use Skemp’s notion of goals and anti-goals to better 

understand the actions of teachers involved in changing their mathematics practice. 

METHODOLOGY 

McLeod (1992) suggests that detailed, qualitative studies of a small number of subjects 

allow for an awareness of the relationship between emotions, cognitions, and actions 

that large-scale studies of affective factors overlook. Accordingly, in this study, I adopt 
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an exploratory and qualitative approach that focuses on documenting that relationship. 

Data for analysis was taken from a larger study involving 15 teachers whose teaching 

experience ranged from 1 to 16 years. The data was created during semi-structured 

interviews that ranged from 40 to 60 minutes. The interviews were audio-recorded and 

then fully transcribed. The structure of the interview aimed at letting emotions emerge 

organically through a narrative rather than by direct questioning. For example, the 

teachers were asked to describe the changes they had implemented in their mathematics 

practice without explicitly asking them to describe the emotions they felt. This allows 

for richer descriptive data of personal experiences that leading questions may inhibit. 

With DeBellis and Goldin (2006), I am aware that emotional meanings are often 

unconscious and difficult to verbalise but, with Evans, Morgan, and Tsatsaroni (2006), 

I believe that textual analysis of teachers’ narratives allows the identification of 

emotional expressions that function in teachers’ positioning. As such, the transcripts 

were scrutinized for utterances with emotional components such as “I was worried…” 

and then re-examined for their potential connections to goals. Due to space limitations, 

I report only on those findings related to anti-goals. 

THE DEVELOPMENT OF AN ANTI-GOAL 

For the teachers in this study, the decision to implement change in their mathematics 

classrooms stemmed from dissatisfaction with their current practice. Most had learned 

mathematics as learners in traditional mathematics classrooms and had simply gone on 

to replicate that for their own students. As Kelly recalled, “There was nothing during 

my journey to becoming a mathematics teacher that made me think of another way to 

teach math.” Their collective desire to move away from the notion of teaching as 

telling and learning as listening (and remembering) so permeated their interviews that 

I originally coded these excerpts as ‘That Teacher’. However, it was this tension 

between who they were and who they wanted to be that led to change in their 

mathematics practice, as who they wanted to be as a teacher became their goal, while 

who they had been, or wanted to avoid becoming, became an anti-goal. 

Many of the teachers described similar situations where tension with their teaching 

practice drove them to seek out professional development. For example, the 

development of Amy’s anti-goal began with the feeling that “I was boring, like they 

just weren’t getting from me what they needed.” It coalesced into an anti-goal as she 

realized her practice was harming, rather than helping, her students: 

My practices resulted in increased anxiety and frustration amongst my students; damaged 

their mathematical confidence; removed their desire to think deeper and search for 

understanding; as well as robbed my students of conceptual experiences. Valuing speed 

and accuracy comes at a great cost for students and gives them little mathematical benefit. 

To alleviate the anxiety this caused her, Amy sought out professional development “for 

some new ideas”. Instead she experienced a student-centred teaching style that 

“completely transformed my pedagogy.” No longer content with her product-oriented 
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mathematics classroom where students worked individually to develop fluency with 

procedural skills, she turned to a process-oriented model that valued conceptual 

understanding and collaboration. In searching for relief from her anti-goal, Amy found 

security in the new practices she implemented. 

For other teachers, it was attending professional development that caused the 

development of an anti-goal. Kelly described the same sort of experiential learning 

from professional development as Amy but added, “I never questioned it [her practice] 

until my eyes were opened — when I saw another way. Since then, I have felt my 

teaching pedagogy do a complete 180° shift.” Although she had willingly attended the 

professional development session, it was not due to tension with her own practice; it 

was more a matter of convenience and opportunity: “It was our district ProD and it 

was a math topic. I was there because I was a math teacher.” Describing herself as a 

typical, traditional mathematics teacher, the experience provoked a desire to implement 

changes in her teaching as she noted: 

It was confounding to learn that something I was doing in my class was actually taking 

away from students’ learning. It really makes you think about and reflect on what you are 

doing as a teacher.  

Like Amy, the traditional teacher she once was became her anti-goal as she 

emphasized, “I knew I never wanted to be that teacher.” 

For both Amy and Kelly, their use of figurative language like “transformed” and “eyes 

opened” suggests the core of who they were as a teacher had been unexpectedly altered 

and the result was the development of an anti-goal. They may have set out to change 

some things about their practice but ended up changing themselves. For other teachers, 

this alteration appeared to be a more purposeful decision. Sam spoke of being at a 

“crossroads” where anxiety with his teaching style caused him to ponder two choices: 

seek out professional development or quit teaching. In the end he chose the former as 

he explained, “I'm going to try out for one more year and I'm going to become better.” 

No mention of transformational experiences, this was a deliberate response to relieve 

the pressure of an anti-goal: he was not happy with who he was as a teacher and he set 

out to change that. This sense of deliberation appears again in David, a new teacher 

assigned to teach mathematics. Having never planned to be a mathematics teacher, he 

first turned to colleagues for advice on what to do:  

I asked them, how do you teach math? How can I make this fun? And they're...like, I hate 

to say it, but they're older teachers, and they have very traditional views on math, and they 

kind of do it how I was taught math. They just work on the problem on the board, show 

them how it's done, and get them to practice, practice, practice until they get it. And I knew 

that’s not how I wanted to do it. That’s not who I wanted to be. 

Although David had not yet developed a mathematics pedagogy, he knew who he did 

not want to be as a teacher. This anxiety led him to sign up for a series of professional 

development sessions that focused on progressive teaching practices in mathematics. 
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And, over time he implemented the strategies he learned in his classroom. Again, there 

is less a sense of an unexpected transformation and more of a determined decision to 

avoid an anti-goal. 

Like the others, Corey had implemented new practices in her classroom that required 

changes not only in the physical movements of her students but in her own as well. She 

mentioned, “Physically the vertical learning can be challenging for me. I struggle to 

stand for the whole day, so I have to make sure I'm doing a mix of things throughout 

the day.” During the interview, she let this thought be and then came back to it 

unexpectedly about 10 minutes later as she further explained, “I just don’t want to be 

that teacher.” When asked to clarify, she added: 

Because I struggle to stand. I don't ever want to be that teacher that sits at the desk all day, 

because that's not effective at all. I think if it's this bad, I'm 43, what am I going to do five 

years from now? Six years from now? How's it going to look? That's something that keeps 

me up at night. How am I going to best serve these kids when I can't move around the 

room? So, yeah, it's a concern. That's one of the reasons I might not always be a classroom 

teacher; it might not be an option for me physically, to do a really good job of it. 

There are two things to note here. Like Kelly and David, Corey’s use of the 

adjective/noun combination ‘that teacher’ suggests she has developed a schema of 

what a teacher is and is not. This sets up an anti-goal as she knows what kind of teacher 

she does not want to be, and despite the tension that results from worries over her 

physical limitations, she does not veer from that. Second, it is interesting that while 

Corey does later mention solutions such as a “motorized scooter” or “mixing things 

up”, moving away from the new practices that are taxing her physically is not 

mentioned. Like Sam, it seems she would rather leave the profession than move 

towards her anti-goal state.  

RECONNECTING WITH AN ANTI-GOAL 

Traditional mathematics practices comprise universally accepted norms such as 

teacher-led examples, individual seat work, and silent practice that are especially 

difficult to displace. Such a strictly controlled environment offers the illusory appeal 

that serious learning is taking place. This notion is embedded in the mathematical 

backgrounds of the teachers in my study for whom the pull of traditional practices 

lingered. This created anxiety and fear for those attempting to suppress these desires 

and for those who succumbed. Lily recalled that in her early teaching career she 

believed that, “The quieter the class the more I thought learning was happening.” She 

had come to recognize that this is not the case, yet acknowledged: 

I do on occasion go back to this method because of a bad day or I am not prepared. When 

I do go back to this traditional method, I am aware that it was not a good teaching day for 

me or the students. 

This created anxiety as she realized that her decision, while satisfying her immediate 

needs, had unintended consequences for both her and her students. Interestingly, this 
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notion of being unprepared appeared to be the impetus for several others who also 

return to traditional practices to satisfy their own needs. As Kelly recounted: 

So today I sort of reverted. I have not been feeling great and I needed something quick and 

easy to put together for a lesson. I started the class with a review/notes of all the topics we 

have been doing. We did some examples together on the board then I gave them a 

worksheet. This class has rarely come into the room to see desks and chairs set out that are 

available to sit in. But today I caved. I was hoping for some quiet time while they worked. 

This backfired for Kelly as she later admitted, “For the most part I spent the rest of 

class going from one student to another with hands up helping them with problems.” 

Like Lily, her anxiety lay in knowing that her decision to ‘revert’ had had unintended 

consequences for both herself and her students. It appears that the challenge of 

implementing change can occasionally nudge teachers towards that which was once 

familiar and therefore seen as easier. Hoping for a respite, they instead experience the 

emotion that accompanies a move towards an anti-goal. 

This return to the familiar also occurred for several teachers not because it was easier 

but rather, they missed the reassurance of traditional teaching. This created anxiety for 

them as they struggled to suppress this need. Linda mentioned wanting to be sure she 

was covering the content since she implemented the changes in her classroom: 

I still occasionally like to start by demonstrating something new and then having students 

do similar problems or problems connected to what was demonstrated. This comforts the 

‘conventional’ teacher in me, but I do feel like it is cheating or missing the point.  

This need for reassurance is also apparent in Diane who mentioned occasionally 

returning to her previous teaching practices: 

I really want to make sure that everybody's learning. When they're quiet and they're all 

looking at me I know I have their attention. I'm not sure if everybody is paying 100% 

attention when they're working in the problem-solving groups. 

When speaking later of year-end assessments she added, “I know I don’t need to do it 

[teach traditionally]. I know I shouldn’t. They all did so well that it solidified for me 

that the way I was doing it was already working.” This suggests that anti-goals serve 

another purpose. Teachers might purposefully move towards an anti-goal in order to 

experience the relief it brings when they move away. In essence, they are reconnecting 

with their anti-goal in order to affirm the changes they are making in their practice. 

CONCLUSION 

Anti-goals develop during teacher change as teachers come to recognize and articulate 

who, and how, they do not want to be in the mathematics classroom. For some, this 

process occurs during change, for others this recognition propels them to seek out ways 

to change. In either instance, I suggest anti-goals are useful in three ways. First, having 

teachers reflect on the emotions they feel may be useful in reasoning why they felt this 

way and how they might use this knowledge to their advantage. Doing so allows 
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teachers to focus on the cognitive source of their difficulties rather than being 

overwhelmed by the emotional symptoms. For example, a teacher who can connect the 

anxiety she experiences to the action she is undertaking, can take steps to alter the 

action. Second, I suggest that recognizing what one does not want to be brings into 

sharp relief what one does want. Having that clarity might enable teachers to seek out 

the actions and changes that will help them reach that goal. For example, a teacher who 

realizes she does not want to be that teacher who only uses unit tests for assessment 

may look for learning opportunities that broaden her assessment practice. Finally, anti-

goals also prove useful in keeping change alive. Teachers who find themselves pulling 

back from the changes they have implemented, find in the emotional reconnection with 

their anti-goal the encouragement or reinforcement needed to continue with the change. 

As Zembylas (2005) suggests, “Teaching practice is necessarily affective and involves 

an incredible amount of emotional labor” (p. 14). Harnessing that emotion during 

teacher change may prove valuable for teacher educators. 
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EXPLORING THE BENTWOOD BOX: COLLABORATION IN 

LESSON DESIGN AND IMPLEMENTATION 

Max Sterelyukhin 

Simon Fraser University, Southridge School 

 

This work resulted from an attempt to collaboratively design and implement a lesson 

with the lens of First Peoples Principles of Learning in a high school Mathematics 8 

class in 2018-2019 academic year. We describe the process, outline the key objectives 

and challenges in both design and implementation stages. We also discuss the 

reflections and the learning observed by teachers as designers as well as learners 

along with the students. The analysis of noted teachers’ experiences and observations 

showed the complexity of the challenge to incorporate the indigenous ways of learning 

into teaching practice is substantial among mathematics teachers and the lack of 

knowledge in the subject matter remains large. We discuss possible approaches of 

bridging the gap between the current state of First Peoples Principles of Learning to 

what it is mandated to be by the Ministry of Education in British Columbia 

mathematics classrooms.  

INTRODUCTION 

In 2006/2007, the BC Ministry of Education partnered with the First Nations Education 

Steering Committee (FNESC) to create the English 12 First Peoples course. FNESC 

was founded in 1992 and works at the provincial level to provide services in the areas 

of research, communications, information dissemination, advocacy, program 

administration and networking (FNESC, 2019). The development of this curriculum 

included a significant input from Indigenous knowledge-keepers and educators from 

BC and was unique in a number of ways. The Indigenous Elders, scholars, and 

knowledge-keepers helped to ensure that the course was able to authentically embody 

aspects of First Peoples’ values around teaching and learning. This meant that the 

course had to take into account not only authentic First Peoples content, but also reflect 

First Peoples’ epistemology and pedagogy. Second, it included the development of the 

First Peoples Principles of Learning (FPPL), which will be elaborated on further in the 

paper (FNESC, 2019). The development of the FPPL has had a major influence in the 

writing of the new BC K-12 Curriculum, as the necessary curricular competencies now 

include elements of indigenous ways of knowing and learning (BC Ministry of 

Education, 2019). This created a new avenue for explorations for teachers and 

potentials opportunities for learning. Thus, another avenue of interest in this paper is 

teacher collaboration in lesson design and implementation. There is a growing body of 

research confirming that participation in more collaborative professional communities 

impacts teaching practices and improves student learning (Vescio, Ross, & Adams, 
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2008). Among many positive results, one stands out that more cohesive professional 

community correlates with an observable increase in the use of more desirable kinds 

of pedagogy (Louis and Marks, 1998). Such positive outcomes are suggested to occur 

because more collaborative working conditions can lead whole departments or even 

whole schools to develop shared norms, values, practices, and orientations towards 

colleagues and students (Achinstein, 2002; McLaughlin, 1993; McLaughlin & Talbert, 

2001; Westheimer, 1998). Teachers working in cohesive and highly collegial 

professional communities also report high levels of commitment to teaching all 

students, high levels of energy and enthusiasm, and high levels of innovation 

(McLaughlin, 1993). Now with these two orientations in mind, we will present a 

project where three teachers engaged in the design and implementation of a lesson in 

a Mathematics 8 classroom where the focus was on the following Curricular 

Competencies (BC Ministry of Education, 2019):  

• Incorporate First Peoples worldviews, perspectives, knowledge, and practices 

to make connections with mathematics concepts. 

• Engage in problem-solving experiences connected with place, story, cultural 

practices, and perspectives relevant to local First Peoples communities, the 

local community, and other cultures. 

THE PROJECT 

As part of a BC Ministry of Education Open School project, a group of 14 teachers 

were selected to create lessons that would showcase the new mathematics curriculum. 

There were a number of stages to the project: initial planning, writing, editing, 

implementing and videoing, editing of the footage, and finally releasing the videos as 

resources for other teachers in the province. Initial planning stage took place in the BC 

Ministry of Education office in Victoria, BC. Teachers self-selected the topics of 

interest for the lessons and the planning and design process began. Teachers were 

collaborating in the planning of the lessons, with ongoing check-ins of sharing between 

groups. In what follows, we will outline the framework, discuss the observations and 

teacher interviews, as well as offer analysis with possible implications to lesson design, 

particularly dealing with the FPPL orientation.  

THE STUDY 

This study positions itself at an intriguing crossroads of teacher collaboration and new 

curriculum implementation efforts with the FPPL at the centre. The collaborative 

nature of lesson design has been a well-researched topic in the mathematics education 

community. At the same time, First Peoples Principles is a much less explored avenue 

with the mathematics education lens. The new British Columbia mathematics 

curriculum calls for “Engaging in problem-solving experiences connected with place, 

story, cultural practices, and perspectives relevant to local First Peoples communities, 

the local community, and other cultures”, as well as “Incorporate First Peoples 

worldviews, perspectives, knowledge, and practices to make connections with 
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mathematical concepts” (BC Ministry of Education). Furthermore, the following are 

the First Peoples Principles of Learning as put forward by FNESC, taken from their 

website and frequently found on the walls of many BC schools and classrooms: 

• Learning ultimately supports the well-being of the self, the family, the 

community, the land, the spirits, and the ancestors. 

• Learning is holistic, reflexive, reflective, experiential, and relational (focused 

on connectedness, on reciprocal relationships, and a sense of place). 

• Learning involves recognizing the consequences of one‘s actions. 

• Learning involves generational roles and responsibilities. 

• Learning recognizes the role of indigenous knowledge. 

• Learning is embedded in memory, history, and story. 

• Learning involves patience and time. 

• Learning requires exploration of one‘s identity. 

• Learning involves recognizing that some knowledge is sacred and only shared 

with permission and/or in certain situations. 

We have decided to take both frameworks and look at the data we collected from the 

participating teachers with the above-mentioned findings and principles.  

ENVIRONMENT 

As mentioned above, there were several stages in this project. The first stage took place 

in Victoria, BC at the office of Ministry of Education. The teachers who volunteered 

their time to participate were instructed to design their lessons with the new curriculum 

in mind, in particular the curricular competencies. The mandate of the Ministry of 

Education was to step away from the content-centred lesson planning to a more 

curricular competencies-based orientation. A group of three teachers came together to 

plan, design and implement a mathematics lesson with the focus on the curricular 

competencies that deal with the above-mentioned First Peoples Principles of Learning. 

During the planning stage of the lesson design, the teachers brainstormed ideas, 

narrowed down topics and potential plans of implementation to agree to focus on the 

bentwood boxes as an indigenous artefact and mathematics that can be discussed 

pertaining to the making, the stories, and places connected to the bentwood boxes. 

After the initial planning stage was complete, the teachers summarized it in the cleaner 

version of the above whiteboard snapshot. This was done on paper, with a noticeable 

structure of a flow chart. The idea of recording the summary of the discussion as a 

flowchart had emerged organically and continued to be present in the subsequent stages 

of the project. At the next stage of refining and writing up of the lesson, one teacher 

was responsible for producing an initial activity plan followed up by the feedback of 

the other two members of the team. This involved mainly back and forth email 

correspondence with an occasional skype meeting session when needed. Once the edits 

of the above-mentioned document were complete, one teacher volunteered to teach this 

class. First component of this class was done at the school: students were shown a 
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video where a wood bender is making a bentwood box from the piece of wood with 

every stage of the process explicitly demonstrated. One thing to note here is that this 

video appears to be a test of patience and resilience from the audience as it does not 

offer instant gratification: it takes time to observe the progress. The process of making 

of the bentwood box is a tedious and meticulous one and the video demonstrates every 

stage in nearly exact time. This aspect aligns well with one of the FPPL, namely: 

“Learning involves patience and time.” Furthermore, it was decided that the 

connections with the story and place should play a central role in the lesson 

implementation and thus it was agreed that one portion of the lesson will be delivered 

through the experience of visiting a museum with the artefacts of actual bentwood 

boxes. The students were given the tour of the museum with the emphasis on the stories 

of bentwood boxes. Not only the boxes were discussed from the mathematical point of 

view, such as the process of making and practical usage, but also from the perspective 

of story and place, such as the artists and owners and their families, particular anecdotes 

and stories that are inevitably a part of the uniqueness of every box presented to the 

students. A whole class discussion followed upon the return from the museum, 

showing evidence of students’ authentic interest and appreciation for the complexity, 

ingenuity, and creativity of the box makers and artists.  

PARTICIPANTS 

Three teachers involved in the project and the design and implementation of this lesson 

were interviewed about the process. In what follows, we give a brief summary of each 

individual and their involvement in the project. 

(1) Mike. Mike teaches mathematics in the rural area of British Columbia. He is very 

involved in the mathematics education community and often takes part and organizes 

professional development for the teachers in his district. Mike is very well-versed in 

the areas of Numeracy teaching and learning as well as computational thinking.  

(2) Nathan. Nathan teaches mathematics at a Lower Mainland independent school. He 

is also an education coach at his school and closely works with faculty on improving 

instruction, collaboration, communication and research in mathematics education. 

Nathan is a graduate student in the mathematics education doctoral program.  

(3) Sally. Sally is an assistant professor of teacher education at a BC university. She 

has been a very active member of mathematics education community, FNESC, 

professional development around the province and beyond. Sally is a pioneer in many 

initiatives in mathematics education, particularly the ones dealing with the FPPL ideas 

and notions.  

METHOD AND DATA 

As outlined earlier, our interest was situated in teacher collaboration and FPPL 

integration into lesson planning and implementation. The participant teachers were 
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interviewed over email with the following questions, adapted from the Ministry of 

Education post-filming questions:  

1. Please provide a brief description of the activity including curricular competency 

and course(s). 

2. What were some considerations when designing the activity? 

3. What did you notice about the shift in designing with curricular competencies in 

mind in addition to content? 

4. Did you make it explicit with students about how to progress with respect to the 

curricular competencies? If so, how did you accomplish this? 

 5. Any advice for colleagues on ways to implement the new curriculum in their math 

classes? 

6. Are there things you’d like to change the next time you use the activity? 

7. Are there any extensions or adaptations you can think of to do with this activity? 

8. Any other reflections? 

All interview data was collected and after reading and coding all the responses, three 

themes were identified that surfaced from looking at the data. The emerged themes are 

as follows: (1) Importance of Story and Place; (2) Teacher Collaborative 

Experience; (3) Evidence of Learning.  

Due to the limits of this paper, we will only present two of the three themes. Below is 

the data created with the first two themes heading each set of participants’ responses: 

Theme 1: Importance of Story and Place 

(1) Mike: 

… permission to discuss, explore and use another cultures property such as art, crafts.  

… seeking the expertise of an outside expert I felt during this activity I was just like my 

students and I needed to listen, reflect, question, and decide where I wanted to go next. 

(2) Nathan:  

…and, the focus was on the place and the setting, which we thought, well, we can talk 

about those things in the classroom, but we [teachers] thought it would be a great idea to 

actually step away from there and actually be in the place where we'd be surrounded by 

the artefacts, and having people who have knowledge in the subject matter be leading 

guides for this. 

…where's the mathematics in this? I purposely left it for later because I wanted them 

[students] to have the experience with the actual, the history and the components that have 

to do with, not just the object itself, but everything that surrounds it, the stories. And, today 

was a wonderful experience of that, they really got to see and got to learn from the expert 

about that. 
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…it was sort of a collective decision to move outside of the classroom because the place 

and setting play such an important role in those curricular competencies we're looking at, 

and we thought about maybe we'll bring someone in into the classroom, but we thought it's 

actually probably better if we can find a place where we could go, where it'd be more 

authentic, in a sense, that we're surrounded by things we're looking at. 

(3) Sally: 

… being authentic to the First Peoples, the culture, and context of the bentwood  

          box; focus on the bentwood box first, then mathematics 

…learning in place... although we could gather videos and links to the bentwood box... 

being on the land was critical to the learning experience 

… attaching story and history to the bentwood box provided more meaning and purpose to 

the learning activity that extended beyond the calculation of surface area and volume, or 

maximizing or minimizing 

… students were learning in place, through story, and experientially with and about the 

bentwood box. 

 

Theme 2: Teacher Collaborative Experience  

 (2) Nathan: 

… I think the whole experience of, it taught me a whole lot. From the first day when we 

gathered in Victoria to make the lesson, and then the communication that was happening 

in between when we were done with that. And the topic we particularly tackled, I didn't 

have any expertise, not to say that I have expertise now, but at least I know a little bit more 

because I was able to engage with it, it's such an invaluable experience by working 

together. So, working with other people has been an immense, we don't get to do that very 

often in our practice because everybody's busy and doing their own thing, but it was 

extremely valuable to talk to people I normally don't ever get to talk to because Mike is up 

north and Sally is as well, and we don't ever get to really meet in person. But, that was, 

three of us bringing in our experience and our knowledge together, made really a huge 

difference because I don't think any one of us would be able to accomplish what some of 

the ideas that we were able to come up with.  

(3) Sally: 

 … we were operating as a collaborative team (i.e. Sally, Nathan, Mike) to  

           co-design the learning activity; being humble in the process 

… BE THE LEARNER. Collaborate with others. Invite community members in. Go find 

local knowledge keepers and elders to help facilitate the learning. Co-teach 

… This was an incredible learning experience and collaboration working with Mike and 

Nathan. I loved working with colleagues/mathematics teachers who were equally excited, 

curious, and scared to learn more about embedding Indigenous Education, First Peoples 

curricular competencies, and First Peoples Principles of Learning into secondary 

mathematics. We asked tough questions of ourselves and our practices.  
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THEMES AND ANALYSIS 

In this section we will elaborate on the observations from the data on the three themes. 

It was very satisfying that these three themes emerged so clearly from all the teachers, 

as the interviews were done over email and the responders never got to see their 

colleagues’ answers. Furthermore, the themes did not directly follow from the 

questions that were asked.  

First, we turn our attention to the Importance of Story and Place consideration and the 

opinions about it. Clearly, the three teachers decided to highlight it, thus allowing to 

conclude that they found it important and central to the activity. Mike, Nathan and 

Sally all comment on the crucialness of having the activity outside the classroom and 

“in the land”, “surrounded by the artefacts” were what made it successful. From these 

positive reflections we are confident that our original idea to make the place and story 

central to the activity was a worthwhile endeavour. This showcases the ability of 

teachers to implement the prescribed curricular competencies and echoes the FPPL, 

namely: “Learning is embedded in memory, history, and story” (FNESC, 2019). For 

the second theme of Teacher Collaborative Experience, one can easily identify the 

elements of positive experience in lesson design and implementations. Teachers are 

telling us that they learned as they engaged with the process, thus improving their 

teaching repertoire and teacher knowledge, which corresponds well with improving 

teaching practices with collaborative approaches to instruction (Vescio, Ross, & 

Adams, 2008). Furthermore, we can say that our data shows that the ‘unlikely’ 

collaboration from the teachers who normally do not work together on a frequent basis 

goes hand in hand with the cross-department, cross-school working together to produce 

positive outcomes in teaching and learning (Achinstein, 2002; McLaughlin, 1993; 

McLaughlin & Talbert, 2001; Westheimer, 1998).  

CONCLUSION 

As we gather from all three participants of this study, this experience was very 

rewarding and positive. All three participants spoke highly of usefulness and how 

ground-breaking and valuable the collaboration was for them. There is also an element 

of teacher education and professional development embedded in some of the potential 

extensions experiences such as this could offer. We particularly were pleased with the 

positive outcomes of this study as the topic and integration of First Peoples Principles 

of Learning is still a challenge for many educators in BC. This study clearly showcases 

one possible approach to this challenge and hopefully is an inspiring example for other 

educators to try to engage with the Indigenous ways of learning and teaching. We 

would like to conclude with the quote from Sally, one of our teacher-participants:  

“I feel that we had a shared mindset on how we could approach this learning activity. We 

were willing to compromise and listen. And, there were a few moments where we caught 

ourselves in our cultural bias, shifted our thinking, and made amendments accordingly. We 

took risks and were willing to extend ourselves to do something different. This is a 



MEDS-C 2019                                                                                                     Sterelyukhin 

130 

 

friendship and collegial relationship that will be career long and it's been one of my most 

memorable in my 25-years of teaching. Thank you for this opportunity. I believe that 

serendipity brought us together and I hope that other math educators can do the same to 

move forward in our practices together”.  
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TALKING IN MATHEMATICS ‒ DO WE KNOW HOW? 

Pauline Tiong 

Simon Fraser University 

 

The notion of talking in mathematics or what is more commonly referred to as spoken 

communication in mathematics classrooms has been an increasingly important yet 

demanding task for both students and teachers. Specifically teachers face the challenge 

of orchestrating and facilitating meaningful mathematical talks with and for their 

students. As an in-depth literature review of the notion of spoken communication in 

mathematics classrooms, this paper serves as a preliminary exploration to address 

what teachers need to know or do to help students develop their mathematical spoken 

communicative competence. A possible framework which may explicate why and how 

spoken communication (or mathematical talk) can contribute to mathematics teaching 

(and learning) is proposed as a result of this exploration. 

MOTIVATION FOR THIS EXPLORATION 

The notion of spoken communication, especially in the form of discussions between 

two or more people, seems awkward in mathematics education, as mathematics has 

always been considered culturally as an impersonal subject with universal 

mathematical truths where there is no need for any discussions to make any personal 

or collective meaning on what is being learned or taught (Bishop, 1991). Consequently, 

most people, including teachers, are more familiar with the communication of 

mathematical ideas in the written form of a solution to a problem for the purpose of 

teaching and assessing if one has learned and understood the mathematics ideas taught.  

Hence, with communication being highlighted as a process standard in The Curriculum 

and Evaluation Standards for School Mathematics by the National Council of Teachers 

of Mathematics (NCTM) in 1989 (NCTM, n.d.), the notion of communicating 

mathematically (Pimm, 1991) has since become an even more demanding task for both 

students and teachers. It seemed to have brought both clarity and confusion to how the 

notion of communication (from written to spoken, or even drawings or gestures) should 

be considered as a process in the teaching and learning of mathematics. On the one 

hand, NCTM defines mathematical communication as “a way of sharing ideas and 

clarifying understanding” (p.4) in both spoken and written forms which is important as 

students are given opportunities to reflect, refine and share ideas clearly and precisely 

using mathematical language, thus emphasizing the value of communication in 

developing mathematical thinking. On the other, their deliberate focus on the use of 

conversations or discussions in problem situations where “mathematical ideas are 

explored from multiple perspectives” so as to “sharpen thinking” (p.4) may have been 

misunderstood by many that mathematics can be learned simply through conversations, 
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i.e. communication in the form of conversations develops mathematical thinking - an 

idea which was contested by Sfard, Nesher, Streefland, Cobb and Mason (1998).  

While some teachers resist this notion of communication as they are not prepared to 

teach mathematics differently from the drill-and-practice way, many have swarmed 

towards it by changing their classrooms to embrace some form of spoken 

communication or talk of mathematical understanding, believing it will develop 

mathematical thinking as NCTM (1989) suggested or on the premise of promoting 

student-centric learning. However, the role of spoken communication and how it 

should look like to effectively help in the development of mathematical thinking did 

not seem clear. The biggest assumption for the belief that spoken communication can 

help to develop mathematical thinking is the ability of students to know how and what 

to communicate in the mathematics classroom, i.e. mathematical communicative 

competence was assumed to be a given (Adler, 2002; Pimm, 1987; Sfard et al., 1998) 

when it is the exact opposite.  

As Sfard et al. (1998) further argued, it is “an extremely demanding and intricate task” 

(p.51) for conversations (either orchestrated or unintentional) to be meaningful or 

productive in the mathematics classroom when students, and probably even teachers, 

need to be taught how to tap on communication to learn mathematics. Thus, there is a 

need to further understand the value and process of spoken communication in the 

mathematics classroom; and its corresponding implications on the teaching (and 

learning) of mathematics. With the limited scope for this paper, the focus here explores 

what teachers need to know or do to help students develop their mathematical spoken 

communicative competence - ability to communicate ideas or make meaning verbally 

in the appropriate language, i.e. mathematics register, in the context of mathematics 

discussions (Pimm, 1987) - which “cannot be taken-for-granted” (Adler, 2002, p. 10).   

SPOKEN COMMUNICATION IN THE MATHEMATICS CLASSROOM 

Perhaps due to the NCTM’s standards (1989), the level of research interest in the area 

of spoken communication in mathematics classrooms has increased over the years (e.g. 

Durkin & Shire, 1991; Morgan, Craig, Schuette, & Wagner, 2014; Moschkovich et al., 

2018). Studies have looked into students’ spoken communication, such as mathematics 

discussions, conversations or discourse, as part of research on language and 

communication in mathematics education. While this may implicitly lend support to 

the value of spoken communication in the teaching and learning of mathematics as 

suggested by NCTM, more clarity needs to be provided on how spoken communication 

actually develops mathematical thinking (Sfard et al., 1998) and how this can look like 

in the classroom.  

Talking in mathematics - The value and form 

Based on earlier literature, Sfard et al. (1998) described three common arguments in 

support of the value of spoken communication in mathematics teaching and learning - 
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namely the cognitivist, interactionist and neo-pragmatist perspectives. Yet they 

challenged the mathematics education field to reconsider whether or not these three 

perspectives indeed explain why and how spoken communication adds value to 

mathematics education. Some questions included thinking about the mechanism 

behind communication which develops mathematical thinking (cognitivist 

perspective); how a community of practice in the classroom supports mathematics 

learning through conversation when it does not really reflect how mathematicians work 

(interactionist perspective); rethinking if knowledge can be simply equated with 

conversation (neo-pragmatist perspective). Seemingly, the basis of each perspective 

may just be its own pitfall in trying to advocate the role or value of spoken 

communication in the learning of mathematics.  

In addition, what constitutes spoken communication in the mathematics classroom 

continues to be ambiguous. While researchers tend to use words such as mathematical 

conversation, discussion (as used by NCTM, 1989; n.d.), talk or even discourse (which 

has grown to be one of the favourite terms in recent years although Ryve (2011) has 

found the concept to be unclear in its use in mathematics education), are they simply 

terms that can be used interchangeably to refer to the same process? Are teachers or 

researchers clear about what and how they should look like in the mathematics 

classroom? Do teachers suppose that the process of putting a group of students together 

in the classroom to talk or discuss about a mathematics problem constitutes the kind of 

spoken communication leading to the development of mathematical understanding, as 

envisioned by NCTM (1989; n.d.)? Are these the only forms of spoken communication 

in the mathematics classroom which will aid mathematical learning? These are some 

questions which need to be further explored, particularly if spoken communication is 

to be effectively used as a teaching strategy to learning mathematics.  

Talking in mathematics - The “language” 

Beyond the value and form of spoken communication in the mathematics classroom, 

talking in mathematics, on its own, is an intriguing idea. It implies that mathematics is 

a language, analogous to natural languages such as English, Mandarin, a claim that 

many mathematics education researchers (e.g. Wheeler, 1983; Pimm, 1987) may 

disagree with. This confusion may have arisen due to the need for mathematics to be 

communicated in or through a natural language (e.g. English in many current 

curriculums), in order to express mathematical ideas. Instead, a more apt representation 

of the so-called “mathematical language” should be the mathematics register which 

involves a unique use of words and structures (both written or oral) in a natural 

language, e.g. English, to express “the set of meanings that is appropriate to” the 

mathematics discipline, i.e. “the mathematical use of natural language” (Halliday, 

1975, p. 65). However, it is not simply a collection of mathematics-related words or 

terms - which seems to reside in the surface understanding of the “mathematical 

language” (Halliday, 1975). Specifically, the mathematics register determines how 

these words or terms are used or structured, in conjunction with the everyday language 
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to form unique phrases or clauses that can precisely represent both explicit and implicit 

mathematical relationships or ideas (Schleppegrell, 2007; Wilkinson, 2015).  

Notably, the mathematics register has been developed as a rich language resource to 

support students’ acquiring and learning of ways of mathematical thinking (Wilkinson, 

2015), which is crucial in the teaching and learning of mathematics. Yet, it is a pity 

that students and even most teachers do not seem (or do not have the opportunity) to 

fully grasp or develop fluency in the register as part of the learning and teaching 

process due to gaps in their awareness and understanding of the mathematics register. 

AN IDEA TO TALKING IN MATHEMATICS 

With such ambiguity in the purpose and form of spoken communication in the 

mathematics classroom, it is necessary to revisit the intent of spoken communication 

in the mathematics classroom to better clarify what and how it may look like. With 

regard to the notion of communicating mathematically, Pimm (1991) suggested how 

spoken communication can be considered as the pathway to written communication if 

used purposefully with the intent of acquiring the mathematics register. In the process, 

students can be guided to move from informal mathematics talk, using everyday 

language, to formal ones, using the mathematics register, before progressing to formal 

mathematical writing which is deemed difficult but valued in school mathematics 

(Adler, 2002). As there is great independency between the development of 

mathematical understanding and the use of the mathematics register, Pimm’s 

suggestion helps to illuminate the purpose of spoken communication in the 

mathematics classroom.   

As for the form of spoken communication in the mathematics classroom, Barnes’ 

(1976) studies on classroom talk are a possible source of reference in providing a frame 

to understand classroom talk which contributes to learning. Particularly he identified 

two types of talk, namely exploratory talk and final-draft talk (c.f. expository talk 

coined by Crespo, 2006), which can be structured to bring about different learning 

outcomes. In his research, Barnes noted that exploratory talk happens when students 

are in the process of surfacing and refining ideas (usually with informal language) 

while final-draft talk happens when students are presenting or sharing ideas which have 

been thought through in advance (usually with more formal language).  
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Figure 1: Spoken communication as a process in mathematics classrooms. 

Based on the ideas from both Pimm (1991) and Barnes (1976), Figure 1 is my 

preliminary attempt to propose a framework which integrates both sets of ideas, with 

the intent of explaining why and how spoken communication (or mathematical talk) 

can contribute to mathematics learning. While it may not fully explicate the value and 

process of spoken communication in the mathematics classroom, I am hopeful that this 

idea can be further explored and refined through future research with teachers for a 

start, with the intent of answering the questions raised in the earlier section of this 

paper. 

POSSIBLE IMPLICATIONS FOR TEACHERS 

With the framework (Figure 1) illustrating the possible potential and value that spoken 

communication may bring to mathematics learning, the next step will be to think about 

integrating it meaningfully into the teaching and learning process. Particularly, it is 

important to note that for the process of spoken communication to achieve learning 

outcomes (as in Figure 1), it very much depends on students’ mathematical spoken 

communicative competence (Adler, 2002; Pimm, 1987; Sfard et al., 1998), an ability 

which should not be assumed, but rather explicitly taught or developed with the help 

of teachers. Putting students in groups to talk or discuss does not necessarily equate to 

any mathematical thinking or learning simply because the context or task is 

mathematics related. Teachers need to play a very crucial role in ensuring that 

mathematics learning takes place during the process of spoken communication in the 

classroom. However, this is probably what challenges or deters teachers from tapping 

into communication as a strategy in the mathematics classroom. It requires a different 

set of mathematical knowledge for teaching (Ball, Thames & Phelps, 2008) to 

orchestrate and facilitate mathematics talk in the classroom (Sfard et al., 1998), unlike 

what is required in a traditional or direct teaching classroom.  

Firstly, to ensure that spoken communication is effective in developing mathematical 

understanding, teachers need to purposefully design learning tasks. Students need to 

have the chance not only to explore ideas through informal mathematics talk, but also 
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to present final-draft ideas through formal mathematics talk. Secondly, throughout the 

learning process, teachers will need to mediate at appropriate times, such as to provide 

support on the use of the mathematics register; to probe or prompt students with 

questions which will help them review and refine their ideas or; even to tap into 

students’ final-draft talk to bring about richer discussions, etc. As such, this entire 

process of orchestrating and facilitating mathematics talk in the classroom is certainly 

not easy as there are many times when teachers need to review their lesson plans or 

make impromptu decisions to best support students’ learning, based on what they 

notice during or even after the teaching process.  

In particular, Adler (2002) identified three possible teaching dilemmas which require 

teachers’ decisions in this process, namely:  

• code-switching where teachers need to decide whether or when to change the 

language of teaching to ensure mathematical understanding (without 

compromising learning of the mathematics register); 

• mediation where teachers need to decide when to intervene to validate 

students’ meanings during the process of mathematical talk (without 

compromising the opportunities for them to develop mathematical 

communicative competence); 

• transparency where teachers need to decide the extent to explicitly teach the 

mathematics register (without compromising the focus on the development of 

mathematical understanding). 

Certainly, knowing or understanding these dilemmas may inform the practice, but it is 

not enough to help teachers make decisions as they facilitate the process of spoken 

communication in the mathematics classrooms. Moreover, these are probably not the 

only situations where teachers need to make decisions to ensure students’ learning. For 

example, the rationale and choice of students’ ideas from their informal or formal 

mathematical talk to consolidate learning is also a difficult decision many teachers 

have to know or learn how to make. If teachers do not use any of the students’ ideas in 

the consolidation of learning, students may feel that their ideas are not of value and 

gradually not be bothered with any exploratory talk. Conversely, if teachers attempt to 

use all the ideas, they may be overwhelmed and lose focus of the learning outcomes. 

Ultimately, the ability to make appropriate decisions when faced with teaching 

dilemmas as teachers orchestrate and facilitate mathematics talk in the classroom is 

highly dependent on their mathematical knowledge for teaching. Beyond the necessary 

mathematical content knowledge (including the mathematics register), teachers need 

to be equipped with or acquire pedagogical content knowledge (Shulman, 1986) which 

will inform the decisions to be made in mathematics classrooms which tap into spoken 

communication as a teaching and learning strategy. It may be necessary for teachers to 

have more opportunities to experience mathematics talks as learners themselves (e.g. 
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Crespo, 2006) before bringing it to the classroom to impact student learning in 

mathematics.  

Specifically, the framework (Figure 1) can be used to frame teacher professional 

development activities so as to provide such experiences for teachers. Through these 

experiences, teachers can better understand and also reflect upon the dynamics of such 

processes before they orchestrate and facilitate students’ mathematics talk. 

Mathematics talks for teachers may not always need to just replicate what students will 

discuss. Teachers can also come together in study groups to discuss the mathematics 

register (e.g. Herbel-Eisenmann, Johnson, Otten, Cirillo & Steele, 2015) or even to 

discuss strategies which may overcome a certain teaching dilemma they are facing, i.e. 

turning a dilemma or difficulty teachers face into a professional learning strategy or 

resource (e.g. Zazkis, 2000), etc. 
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