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PLENARY SPEAKER 
Alf Coles 
AN ENACTIVIST STORY OF RESEARCHING THE TEACHING AND 
LEARNING OF MATHEMATICS 
In this talk, Alf will reflect on the methodological principles he has used in his 
research, drawing on examples from work in early number, teacher learning and the 
links between mathematics education and environmental sustainability. These 
principles include: the use of 'story'; the significance of 'detail' and mechanisms for 
seeing what is 'not' seen. 
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ABSTRACTS 
Darien Allan 
UNDERSTANDING AND GETTING A GOOD GRADE: AN EXAMINATION OF 
TWO MATHEMATICS MOTIVES  
From the teacher’s perspective, student actions run the gamut from compliant and 
expected to irrational and unpredictable. Yet, from an activity theory perspective, all 
student activity is driven by motive. This research, conducted in three secondary 
mathematics classrooms over one semester, explores the actions that students perform 
in the mathematics classroom with a goal of identifying student motive and analyzing 
relationships between the actions and motives. In this paper I focus on two of these 
identified motives: understanding, and getting a good grade. Analysis of student 
actions suggests two key findings: first, that in any single activity setting, student 
actions are a poor indicator of motive; and second, that understanding is a continuous 
motive, whereas getting a good grade is discrete.  
 
Lyla Alsalim 
USING PATTERNS-OF-PARTICIPATION APPROACH TO UNDERSTAND A 
HIGH SCHOOL MATHEMATICS TEACHER’S PRACTICE 
In this paper, patterns-of-participation theory serves as a lens to interpret and 
understand Saudi high school mathematics teachers’ practices. This framework 
focuses mainly on understanding what practices and figured worlds are significant for 
the teacher and how the teacher engages in those figured worlds. The data presented is 
about Noha, a high school mathematics teacher in Saudi Arabia. The data generated 
suggests that there are five significant practices or figured worlds to Noha’s sense of 
her practice as a mathematics teacher.  The paper discusses and explains these figured 
worlds. 
 
Jason Forde 
MAXIM ADHERENCE IN SECONDARY SCHOOL MATHEMATICS 
TEXTBOOKS 
This paper extends H.P. Grice’s four conversational maxims of Quality, Quantity, 
Relation, and Manner into the genre of secondary school mathematics textbooks.  In 
order to determine if and how the supervening Cooperative Principle may be 
applicable to the author-reader relationship, the general notion of division by zero is 
explored across Grade 9, 10, and 12 mathematics textbooks from a single publishing 
group. Examining a formal definition of the rational numbers, considerations 
associated with simplifying rational expressions, and an introductory discussion of the 
tangent function in these respective textbooks reveals likely authorial assumptions 
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regarding students’ prior mathematical knowledge, as well as certain inconsistencies 
in representing undefined cases connected to potential divisions by zero. 
 
Leslie Glen 
I WONDER AS I WANDER 
In this paper, I describe an informal self-study experiment during which I use an 
unfamiliar DGE (Geometer’s Sketchpad). The use of previously identified dragging 
modalities in predictable ways is obvious, but I wanted to explore the possible need for 
an additional modality and examine how it might fit into this familiar landscape. I use 
the framework of instrumental genesis to explore the differences between the modality 
known as wandering dragging and a potential new modality I call “wondering 
dragging”. The results of the experiment are discussed, not in terms of squeezing the 
new term in to the old lineup, but of creating a new “dimension” in which to use this 
term and making room for others. 
 
Andrew Hare 
WORDS IN CONTEXTS: ‘PROOF’ AND ‘PROVE’ IN A COURSE OF 
MATHEMATICS LECTURES 
This paper addresses the question: "what do the lexemes PROOF and PROVE mean 
when they are uttered in a course of undergraduate mathematics lectures".  35 lectures 
of a third-year abstract algebra course were videotaped and transcribed. The 
transcript was broken into units called stanzas, and the stanzas into units called lines.  
A corpus linguistic approach to the transcript is taken, and we use the surrounding 
stanza as the context for our lexemes. We find that: 1. 'Proof' gets explicitly defined by 
the professor. 2. Two written proofs are often explicitly compared and contrasted. 3. 
Whether or not some argument constitutes a proof is contested on a few occasions by 
the students and the professor. 4. 'Proof' gets contrasted with conceptually close but 
distinct notions, including illustration, model for a proof, outline, and main idea. 
 
Harpreet Kaur 
YOUNG CHILDREN’S UNDERSTANDING OF BENCHMARK ANGLES IN A 
DYNAMIC GEOMETRY ENVIRONMENT 
This paper examines young children’s thinking about benchmark angles in a dynamic 
geometry environment. Using the dynamic sketches in Sketchpad, kindergarten 
children were able to develop an understanding of angle as “turn,” that is, of angle as 
describing an amount of turn. Children experienced different realizations about the 
benchmark angles and showed a shift from context specific descriptions to more 
general descriptions. Children’s gestures, motion and environment played an 
important role in their thinking. 
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Judy Larsen 
DISCURSIVE PATTERNS IN THE MATHEMATICS TEACHER BLOGOSPHERE 
Teacher collaboration is essential for improving teaching, but is often difficult to 
establish and sustain in a productive manner.  Despite this, an unprompted, unfunded, 
unmandated, and largely unstudied mathematics teacher community has emerged 
where mathematics teachers use social media to communicate about the teaching and 
learning of mathematics. This paper presents an analysis of one episode where 
teachers engage in a prolonged exchange about responding to a common 
mathematical error. Analytical tools drawn from variation theory are used to explain 
generative moments of interaction. Results indicate that discursive patterns signal 
taken-as-shared pedagogical approaches, which can extend the space of possible 
variation while establishing a range of permissible change. 
 
Peter Lee 
REPRESENTING MATHEMATICAL LEARNING DISABILITIES:  AN 
ANALYSIS OF A CBC RADIO INTERVIEW ON DEVELOPMENTAL 
DYSCALCULIA 
On October 23, 2015, CBC radio host Rick Cluff conducted an interview with cognitive 
neuroscientist Daniel Ansari on developmental dyscalculia, discussing what it is, its 
causes and its treatments.  The purpose of this paper is to apply the methods of Critical 
Discourse Analysis to examine the interaction between host and interviewee to see 
what lines of inquiry emerge.  The intent is to demonstrate how the nature of the 
medium positions the host and interviewee in relation to dyscalculia, and how the 
medium represents developmental dyscalculia, those who have it, and its treatments to 
the CBC audience.  Analysis suggests that the radio interview enables certain 
traditional storylines regarding developmental dyscalculia to be told while also 
allowing some alternative ones to emerge. 
 
Minnie Liu 
STUDENTS’ MODELING PROCESS – A CASE STUDY 
In this paper I discuss a case study where two grade 8 students worked collaboratively 
to solve a modelling problem. Their modelling process shows that rather than closely 
following the modelling cycle suggested by modelling literature closely, where they 
develop a real model, a mathematical model, a mathematical solution, and a real 
solution for the entire situation and repeat the modelling cycle to improve their 
solution, these students broke down the modelling problem into smaller pieces and 
went through the modelling cycle multiple times in order to generate a realistic 
solution to the modelling problem. 
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Masomeh Jamshid Nejad 
UNDERGRADUATE STUDENTS’ PERCEPTION OF TRANSFORMATION OF 
SINUSOIDAL FUNCTIONS 
Trigonometry is one of the fundamental topics taught in high school and university 
curricula, but it is considered as one of the most challenging subjects for teaching and 
learning. In the current study mason’s theory of attention has been used to examine 
undergraduate student’s perception of the transformation of sinusoidal functions. Two 
types of tasks – (a) recognizing sinusoidal functions and (b) assigning coordinates – 
were used in this study. The results show that undergraduate students participating in 
this study experienced difficulties in identifying a period of a sinusoid, especially when 
it was a fraction of π radians. 
 
Tanya Noble 
IDENTIFICATION OF SURFACE MARKERS FOR POSITIONING OF 
MATHEMATICS IN STUDENT WRITTEN DISCOURSE  
The study explores the movement of mathematics from the classroom into the lived 
experience of students. The Positioning theory from Wagner & Herbel-Eisenmann 
(2013, 2014) is used to identify different authoritative structures within student 
mathematical discourse. British Columbian students enrolled in Workplace 
Mathematics were given the task to pose a math question of interest. The task 
anticipated the creation of personally relevant questions instead student responses 
mimicked the dominant curriculum resource. Understanding a student’s authority 
within the discipline of mathematics is critical for the mathematical applications 
beyond the classroom. 
 
Sheree Rodney 
STARTING FROM SCRATCH: AN INVESTIGATION OF POLYGONS 
In this paper, I report on the work of one student in a computerized environment - 
scratch programming-and consider ways in which children learn to assign and 
internalize meanings to geometrical ideas, specifically polygons. I use the Vygotsky 
inspired theory of semiotic mediation as an analytical lens, to show how technology 
tools (as mediators) enable the invention and use of signs as auxiliary means of 
constructing mathematical meanings. I argue that scratch programs and the 
potentialities provide a deeper understanding and educe creative innovations, which 
may not be possible in paper-and-pen environments. 
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Annette Rouleau 
CREATING TENSION BETWEEN ACTION AND INTENT 
Pre-service teachers come to mathematics methods courses with well-established 
conceptions of what it means to teach and learn mathematics. Images of teaching 
reinforced by their own lived experiences shape their pedagogy. This can be 
problematic for a teacher educator for whom it may be necessary to offer a way of 
reframing traditional notions of teaching and learning. The research presented here 
examines that process of reframing. In this study we deliberately introduce a tension in 
pre-service teachers’ conception of timed drills and examine the resulting process of 
transition they undergo. Using a tension pairing from Berry’s (2007) framework, our 
findings suggest that the introduced tension provided the means for reflection on intent 
and resulted in a subsequent change in action. 
 
Robert Sidley 
ARE THEY GETTING ANY BETTER AT MATH? REFLECTIONS ON STUDENT 
EVALUATION AND MATHING 
Conversations with stakeholders about students’ improvements in mathematics 
invariably focus on student grades and work habits. Further, research into 
improvements in mathematical performance focus almost exclusively on the 
acquisition of mathematical content and improvement in test scores. This narrow focus 
makes assumptions about what it means to know and do mathematics. By analyzing 
traditional evaluation data gathered from a year-long grade 10 mathematics class, I 
evaluate the usefulness of this data in determining student improvement and, by 
exploring the micro and macroculture of mathematics classrooms, reflect on the role 
traditional evaluation and pedagogy have in shaping how students “math”. 
 
Jeffrey Truman 
ALGEBRAIC AND GEOMETRIC REASONING PREFERENCES IN ADULTS ON 
THE AUTISM SPECTRUM 
This study examines the mathematical reasoning of college-educated adults on the 
autism spectrum. I aim to expand on previous research, which often focuses on 
younger students in the K-12 school system. In this report I focus on a case study of 
Joshua, an undergraduate student in science, and Cyrus, a college graduate in 
mathematics. The interviews involved a combination of asking for the interviewee's 
views on learning mathematics, self-reports of experiences (both directly related to 
courses and not), and some particular mathematical tasks. In particular, I examine 
observations related to preferences in types of reasoning that I have encountered.   
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Milica Videnovic 
ORAL VS. WRITTEN EXAMS: WHAT ARE WE ASSESSING IN 
MATHEMATICS? 
One of the most striking differences between Canadian educational system and most of 
the other European educational systems is the importance given to oral examinations, 
particularly in mathematics courses. In this paper, seven mathematics professors 
share their views on mathematics assessment, and types of knowledge and 
understanding in mathematics that can be assessed on written and oral exams. With 
the increased emphasis on closed book written examinations, there is a critical need 
for implementing the oral assessments in mathematics courses.  
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UNDERSTANDING AND GETTING A GOOD GRADE: AN 
EXAMINATION OF TWO MATHEMATICS MOTIVES 

Darien Allan 
   Simon Fraser University                                   

 
From the teacher’s perspective, student actions run the gamut from compliant and 
expected to irrational and unpredictable. Yet, from an activity theory perspective, all 
student activity is driven by motive. This research, conducted in three secondary 
mathematics classrooms over one semester, explores the actions that students perform 
in the mathematics classroom with a goal of identifying student motive and analyzing 
relationships between the actions and motives. In this paper I focus on two of these 
identified motives: understanding, and getting a good grade. Analysis of student 
actions suggests two key findings: first, that in any single activity setting, student 
actions are a poor indicator of motive; and second, that understanding is a continuous 
motive, whereas getting a good grade is discrete.  

INTRODUCTION 
Students’ actions within the mathematics class often appear to occur with little reason. 
In any given setting, an individual student may perform one action one day, and a 
different action the next, or exhibit two seemingly contradictory behaviours in two 
separate settings. This seemingly random or unpredictable behaviour actually has a 
common source, according to activity theory: motive. In fact, according to activity 
theory, motive is the driver of all human activity. Thus, establishing the nature of this 
driving force plays a role in explaining the actions that students perform, and 
reconciling behaviours that appear to be irrational.  
What students do in the classroom is called studenting. The term ‘studenting’ was 
coined by Gary Fenstermacher in 1986. Initially, he describes this concept in terms of a 
cohort of student behaviours including “getting along with one’s teachers, coping with 
one’s peers, dealing with one’s parents about being a student, and handling the 
non-academic aspects of school life” (p. 39). In essence, Fenstermacher describes 
studenting as what students do to help themselves learn. A later definition 
encompasses other behaviours such as “‘psyching out’ teachers, figuring out how to 
get certain grades, ‘beating the system’, dealing with boredom so that it is not obvious 
to teachers, negotiating the best deals on reading and writing assignments” 
(Fenstermacher, 1994, p. 1) and other similar practices. 
Analyses of student behaviour support Fenstermacher’s expanded definition. The 
process of schooling produces a number of unintended consequences, some desirable, 
but also many that are patently objectionable (Engeström, 1991) and 
counterproductive to the goal of student learning. Preliminary studies in mathematics 
classrooms have shown that students often act in ways that subvert the expectations of 
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the teacher or in ways that comply with expectations1 but are unlikely to result in 
learning (Liljedahl & Allan, 2013a; 2013b).  
The research data that founds this particular analysis is part of a larger project, aimed at 
investigating two key questions: What are the behaviours that students exhibit in 
different activity settings in the mathematics classroom; and, What are the motives that 
drive their behaviours? The basis for this paper lies in the answers to the latter 
question. However, to put this in context I provide an overview of the entire research 
project in Figure 1, below. 
 

 

Figure 1: Overview of research. 
Student motives have significant impact on their actions in mathematics class. Overall, 
five distinct motives emerged: understanding; get a good grade; get credit for the 
course; pass the course/get through it; and avoid work and/or attention. In this paper I 
now compare and contrast the actions of students holding two particular motives with 
respect to mathematics: understanding and getting a good grade. First, however, I 
provide a brief description of activity theory and the methodology I used to investigate 
and analyse student behaviour. 

THEORETICAL FRAMEWORK 
As mentioned earlier, the force that drives student activity is motive and it is the key 
component of Leontiev’s Activity Theory (1978). As a theoretical lens, activity theory 
permits a description of what students do and say without overlaying pre-existing 
assumptions or judgments. These observations, taken together, can then be used to 

                                           
1 For the purposes of this paper the term ‘expectations’ refers to the actual expectations of the teacher, 
and/or the students’ understanding of the teacher’s expectations. 
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develop a hypothesis for the student’s motive, which may be something other than a 
desire to learn.  
For Leontiev, “[a]ctivity does not exist without a motive; ‘non-motivated’ activity is 
not activity without a motive but activity with a subjectively and objectively hidden 
motive” (1978, p. 99). The object of an activity is its motive, and is something that can 
meet a need of the subject. Motives arise from needs, which are the ultimate cause of 
human activity. Figure 2, below, illustrates the relationship between the elements in 
Leontiev’s development of activity theory. 

 

Figure 2: Leontiev's Three-Level Model of Activity (1974) 
Motives sit at the apex of the triangle and drive activity, and activities are directed at 
goals. People have many goals, which shift in importance and in content on the basis of 
both contextual and intrapersonal factors. At any time an individual has a hierarchy of 
these motives, the order of which is determined through and as a result of one’s 
activity.  
Actions are the many steps that comprise an activity, although not all are immediately 
related to the motive (Kaptelinin & Nardi, 2012). Actions are directed towards specific 
targets, called goals. Goals are conscious, in contrast to motives, of which a subject is 
not usually aware.  
The fact that motive is often hidden from the subject suggests difficulty in determining 
the ultimate motive. This obstacle can be overcome by utilizing an “actions first” 
strategy (Kaptelinin & Nardi, 2012). The strategy begins at the level of goals, which 
people are generally aware of and can express, and the analysis is subsequently 
expanded up to higher goals and ultimately the motive. Given the primary interest of 
this study is the students’ actions/goals and activity/motive, only the top two levels of 
Leontiev’s pyramid will be considered. 
Student motives have significant impact on their actions in mathematics class, and 
hence their learning. Cataloguing the observable aspects of studenting (actions) and 
analysing these together with students’ goals through the lens of activity theory can 
offer new insights into student motives and provide researchers and educators with 
evidence to better understand student behaviour.  
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METHODOLOGY 
The nature of the research questions necessitates an ethnographic approach, and in this 
spirit, I spent significant time immersed in the classes under study observing and 
interacting with students, taking fieldnotes, and asking questions. Analysis occurred 
throughout the process whereby data collected in one lesson provoked questions and 
shifted focus for subsequent observations and interviews.  
Participants 
The data for analysis are taken from a larger study conducted in three secondary school 
mathematics classes in British Columbia. Three classes were observed: two at the 
grade 11 level (PreCalculus 11 and Foundations 11) and one at the grade 10 level 
(PreCalculus 10). All teachers had at least ten years teaching experience. 
Data Collection and Analysis 
Data were collected during the 2013-2014 school year. Throughout the fall semester 
the class was observed for twelve periods, each period ranging from 60 to 75 minutes. 
Classroom lessons and informal interviews were audio recorded and transcribed for 
later analysis and comparison with field notes taken during the class. Activity settings, 
discussed below, are used as a unit of analysis by which student actions can be 
organized and analysed.  
Activity Settings in Mathematics Class 
Activity settings serve as a unit for analysing students actions in mathematics class. 
Defined as units of “contextualized human activity” (O’Donnell & Tharp, 1990), they 
are the specific settings that provide the context in which activities take place and that 
influence the types of activities subjects are likely to encounter. According to Tharp 
and Gallimore (1988), activity settings are the who, what, when, where, and why of 
everyday events that take place in what Mariane Hedegaard (2012) calls institutions.  
Activity settings within the secondary mathematics classroom include (but are not 
limited to): now you try one; taking notes; problem solving; doing homework; and 
doing review. Given that students behave differently in different activity settings it is 
of interest to investigate the nature of these particular behaviours, in what settings they 
occur, and what force drives students’ actions.  
The data discussed here has been subjected to an analysis using Leontiev’s activity 
theory in order to determine the likely primary motive underlying the students’ 
behaviour. Then the actions are re-examined through the lens of the driving motive. 

RESULTS AND ANALYSIS 
The following investigation draws from the actions of students whose motives were 
determined using the “actions first” strategy. Though students’ motives were 
determined by considering their actions and goals in all settings, not all settings are 
represented in the diagrams or discussion. 
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Of the aforementioned five identified motives, the scope of this paper is limited to 
examining two: understanding and get a good grade. Two diagrams represent the 
range of actions performed by students, together with students’ rationales. Activity 
settings and significant action choices (such as cheating and volunteering) form the 
main structure of the diagram; student actions branch from these nodes. The interior 
region holds observations and rationales of students who do not participate in activity 
settings; the exterior holds actions of students who did participate. 
The following analysis considers each motive separately first before discussing 
similarities and differences.  
Understanding 
My teaching experience and my data supports the finding that the number of high 
school students who authentically want to understand mathematics is tragically small. 
Considering Figure 3, below, there are a number of immediately obvious features of 
the behaviour of a student who holds a primary motive of understanding mathematics.  

 

Figure 3: Actions of students with a motive of understanding. 
First, there is significant blank space in the inner region; there are very few activity 
settings, or aspects of classroom life that these students choose not to participate in2. 
Some notable exceptions, for some students, are: doing homework in class, now you try 
one, cheating, asking for help, and review day. However, students who chose not to do 
homework in class communicated that it was because they knew how to do the topic 
already and didn’t need to waste effort practicing more, or because they prioritized 
other work (from other classes or from mathematics class). Sometimes there was 

                                           
2 The inner region, NO, represents actions that align with ‘not participating’ in an activity setting or 
activity. 
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insufficient time to try examples, but other reasons for appearing to not try an example 
included “I did it in my head,” and “I already know how to do it.” Finally, it is not 
surprising to see that none of the students entertained cheating as a course of action. To 
a student with a motive of understanding mathematics there is no upside to cheating. 
When students displayed behaviour that might deviate from expectations, there was 
usually a rational reason, such as not asking for help because it wasn’t needed, and not 
doing homework or taking notes if the material was well known. In fact, with this 
motive it would be odd for a student to DO homework if they already understood all of 
the material and were confident with it, unless he or she was trying to satisfy a 
secondary motive of getting marks or complying with teacher expectations. Actions 
that don’t comply are usually justified by reasons of efficiency and necessity. 
Looking to the outside of the region, some goals or reasons for participating appear 
quite frequently. One of these is, “I want to learn.” Notes were taken because they 
were useful for review, and could be used to build from and make connections with 
other material at a later date. Students with a motive of understanding engaged with the 
problem solving tasks. For some it was a challenge and several stated that they enjoyed 
doing puzzles.  
Get a good grade 
There is a much larger contingent of students who are motivated primarily to get a 
good grade in mathematics. At first glance there are two things that are immediately 
clear in Figure 4. First, there are not only a great number of actions, there is also 
significant variety among their behaviours. Second, the center region of the diagram is 
far from empty; there are many actions that don’t comply with expectations.  
Delving into the content represented in the diagram, although the interior is heavily 
populated with reasons such as distracted, lazy, and not worth marks, many ‘valid’ 
reasons are also present for not exerting effort to pay attention to a lesson, not doing 
homework in class, or not attempting the now you try one examples. Some of these 
justifications include: “I know it,” “I’m doing work for another class,” “I’m doing an 
assignment that needs to be completed for this class,” “not enough time is given,” and 
“I’ll do the work with my tutor later,” or “I’ll do it at home.”  
Another point of interest is the appearance of cheating as an admitted or potential 
action. Students confessed to cheating as a means to confirm answers, get a hint to help 
remember, or because the marks were needed. Those who did not cheat explained that 
it was too difficult to do so and they would get caught; or they would feel guilt; or it 
wasn’t worth the risk of getting caught if the gain in marks was not at a certain 
threshold; or, it wasn’t worth it because they would still have to learn the material later. 
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Figure 4: Actions of students with a motive of getting a good grade. 
It is notable too that there were many students who would not engage with the problem 
solving tasks. Reasons for abstaining included frustration from not understanding, “it’s 
not worth marks” so there was no purpose in making the effort, and the student was 
working on something else that was worth marks. Also, at this point there were a 
greater number of students whose actions complied with expectations because it was 
expected. 
Discussion of similarities and differences 
Beyond the obvious localized contrasts in cheating behaviour, engagement with 
problem solving tasks and the similarities in reasons of efficiency or prioritization of 
other schoolwork for not participating, there are three global findings. 
First, students with a motive of understanding tend to put in effort as ‘payment’ for 
understanding the topic. Students with a motive of getting a good grade tend to see 
effort as an exchange for marks; if the payoff is not high enough then it is not worth 
putting in the work. 
Second, what is apparent in the data is that the primary motive understanding is more 
stable than the getting a good grade. In line with Kaptelinin’s (2005) conclusions 
regarding conflicting motives, the motive getting a good grade is more susceptible to 
being displaced by environmental conditions. These are often internal, such as being 
tired or hungry, but are just as frequently external, when other assignments or interests 
take precedence. But when a student holds a motive of understanding, it is pervasive. It 
drives all that they do, almost all the time. Referring to Figures 3 and 4 above, we see 
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much more variance in students’ behaviour when they have a motive of getting a good 
grade as compared to the actions of students who primarily want to understand.  
The final global finding is tied to the second. Since understanding as a motive is more 
stable, it can be viewed as continuous, as opposed to discrete. This distinction refers to 
the actions of students over time. For a student with a motive of understanding, the 
actions that are consistent with this motive occur continuously, as opposed to only at 
certain intervals. Discrete, then, describes motives wherein the actions that are 
consistent with those motives occur sporadically. This is best explained by example.  
Consider two fictional students, Jenna and Lisa3. Jenna has a primary motive of getting 
a good grade. That motive holds dominance when assignments (worth marks) are due, 
and in the lead-up to an assessment such as a test or a quiz. At other times, Jenna may 
defer her learning (and effort) to another time, or not see participation in certain 
activities, such as problem solving, as important. Jenna’s attention may waver during a 
lesson and she may not try the examples because she can learn it later, or because she 
already knows it. In contrast, Lisa holds a primary motive of understanding. She sees 
opportunities for understanding at all times, not just before an assessment or when an 
assignment is due. She may not always do her homework in class or try every example, 
but understanding is most often her primary motive and her actions almost always 
align with this motive. 

CONCLUSION 
Although the actions of different students in the mathematics classroom often appear 
similar, this analysis shows that they are driven by very different motives, with 
significant consequences for potential learning.  
Traditional assessment practices value grades and achievement, which pushes the 
motive of getting a good grade. What this research suggests is that traditional 
assessment practices should be reconsidered in light of supporting motives of 
understanding. 
In addition to the distinctions in motives as continuous or discrete, and differentiated 
by stability, at the very least these results suggest a need for additional research for 
creating conditions that support student development of a motive of understanding in 
mathematics. 
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In this paper, patterns-of-participation theory serves as a lens to interpret and 
understand Saudi high school mathematics teachers’ practices. This framework 
focuses mainly on understanding what practices and figured worlds are significant for 
the teacher and how the teacher engages in those figured worlds. The data presented is 
about Noha, a high school mathematics teacher in Saudi Arabia. The data generated 
suggests that there are five significant practices or figured worlds to Noha’s sense of 
her practice as a mathematics teacher.  The paper discusses and explains these figured 
worlds. 

PURPOSES OF THE STUDY 
In Saudi Arabia, the education system has undergone major changes in the past decade. 
Government agencies involved in education have introduced new policies, standards, 
programs, and curricula. These changes are accompanied by high expectations that 
teachers will incorporate the changes seamlessly without consideration of their 
existing practices. This paper is part of an ongoing study that intends to gain a better 
understanding of how high school mathematics teachers in Saudi Arabia are coping 
with recent education reform, including how their practices are evolving in response to 
the changes that are happening in the education system. 

THEORETICAL FRAMEWORK 
In this paper, patterns-of-participation (PoP) (Skott, 2010, 2011, & 2013) approach 
serves as a lens to interpret and understand Saudi high school mathematics teachers’ 
practices during the current reform movement. The PoP framework identifies teachers’ 
practice as being how teachers narrate and position themselves in relation to multiple, 
and sometimes conflicting, figured worlds (Skott, 2013). Figured worlds are imagined 
communities that function dialectically and dialogically as if in worlds. They 
constitute sites of possibility that offer individuals the tools to impact their own 
behaviour within these worlds (Holland et al., 1998; Skott, 2013).  
Traditionally, most research in education that focuses on studying teachers’ practices 
adopt an acquisitionist approach, especially those studying teachers’ beliefs and 
knowledge in relation to teachers’ practices (Skott, 2013). Recently, more researchers, 
including Skott (2010, 2013), adopt participationism as a metaphor for human 
functioning to understand teachers’ practices. “The origins of participationism can, 
indeed, be traced to acquisitionists’ unsuccessful attempts to deal with certain 
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long-standing dilemmas about human thinking” (Sfard, 2006, p.153). Skott presents 
PoP as a coherent, participatory framework that is capable of dealing with matters 
usually faced in the distinct fields of teachers’ knowledge, beliefs, and identity. 
Therefore, PoP is a theoretical framework that aims to understand the relationships 
between teachers’ practice and social factors. Skott (2010, 2011) initially developed 
the patterns-of-participation framework in relation to teachers’ beliefs. However, in 
order to develop a more coherent approach to understand teachers’ practices, Skott 
(2013) extended the framework to include knowledge and identity.  
The social approach of research in mathematics education has progressively promoted 
the notion that practice is not only a personal individual matter; it is in fact situated in 
the sociocultural context. Although the relationships between individual and social 
factors of human functioning have generated much debate in mathematics education, it 
is mainly in relation to student learning (Skott, 2013). Therefore, PoP is a theoretical 
framework that aims to understand the relationships between teachers’ practice and 
social factors. To a considerable degree, PoP adopts participationism as a metaphor for 
human functioning more than mainstream belief research. Therefore, PoP draws on the 
work of participationism researchers, specifically Vygotsky, Lave & Wenger, and 
Sfard.  
“The intention of PoP is to take this one step further by limiting the emphasis on 
acquisition and include a perspective on the dynamics between the current practice and 
the individual teacher’s engagement in other past and present ones” (Skott, 2013, p. 
557). This framework focus mainly in understanding what practices and figured worlds 
are significant for the teacher and how the teacher engages in those figured worlds. A 
teacher’s engagement with these figured worlds inform and adjust the interpretations 
s/he makes to her/himself and the way s/he engages in on-going interaction in the 
classroom. These figured worlds work in a very complex system where they could 
support and sometimes, restrict one another as the teacher contributes to classroom 
practice. 

METHODOLOGY 
This paper is part of an ongoing study that intends to develop more coherent 
understandings of Saudi high school mathematics teachers’ practices during the 
current reform movement.  For data analysis, I used a qualitative analysis approach 
based on grounded theory method as used by Skott (2013). I applied the two 
fundamental and basic stages of coding identified by Charmaz (2006); the open or 
initial coding and the focus or selective coding. Through the coding process, I was able 
to organize, group and reflect on the data. The process includes isolating patterns and 
categorizing the data to identify practices and figured worlds that are significant for the 
participant teachers and how they engage with these figured worlds.  
The data presented in this paper comes from Noha. Noha is a high school teacher with 
thirteen years of experience teaching middle and high school.  She is currently teaching 
at a high school. She graduated from university with a Bachelor of Education Degree 
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with a specialization in Mathematics. The education courses Noha had in university 
focused on general issues related to teaching, such as lesson planning and classroom 
management.  She does not have any experience taking educational courses related to 
teaching mathematics specifically. After she graduated from university, she started 
teaching mathematics at a middle school.  After four years, she moved to a high school. 
She has nine years of experience teaching mathematics at the high school. 
I conducted two semi-structured interviews with Noha. The first one before I observed 
her teaching two lessons and the second interview was conducted after the classroom 
observations. In the first, I asked her to reflect on her experiences with mathematics 
teaching and learning in school, at university, and during her practicum year. I also 
asked her questions related to different aspects of the new reform movement in 
education system in Saudi Arabia. The second interview focused on her experiences 
with teaching mathematics at her school and on her relationships with the school, her 
colleagues, and the students. I asked her to reflect on the lesson planning process she 
had in order to prepare the lessons I observed. During the second interview, I also used 
a stimulated recall technique by playing audio recordings of parts from the lessons to 
facilitate her conversation about her own teaching practice in the classroom.  
During my visits to Noha’s school, I was also able to collect some data from informal 
observations of staff-room communication between Noha and her colleagues. I also 
have a copy of Noha’s lesson planning notebook and some of her worksheets and tests 
samples.  

DISCUSSION  
The aim of this paper is to develop a deeper understanding of the participant teacher’s 
significant practice and figured worlds and how she engages with these figured worlds.  
As a teacher positions herself in relation to her profession as a mathematics teacher, 
she draws on several, often incompatible, figured worlds. Her engagement with these 
figured worlds does not only appear in her verbal communication, but also by the 
choices she makes in her all other actions related to her profession, such as her 
immediate reaction to certain student behaviors or the way she expresses her view 
when engaging in a conversation with her colleagues.  
Teachers’ engagement with figured worlds informs and adjusts the perceptions they 
make and the way they engage in on-going interaction in the classroom. These figured 
worlds work in a very complex system where they could support, and sometimes 
restrict, one another as every teacher contributes to classroom practice 
Noha’s classroom 
Noha has 35-37 students in every class. In her classroom, students are usually quiet and 
calm, sitting in neat rows of two tables that face the front of the classroom. Normally, 
Noha starts her lesson by checking students’ homework, which is assigned daily. She 
then reviews previous material. The classroom environment is focused on getting work 
done. Noha plans her lessons very well and she makes sure to follow the plan very 
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carefully. A measure of time on task indicates that the lesson is going very well and 
that students are doing what they are supposed to do in her class. According to her, the 
most effective way to teach mathematics is to use the classroom board to introduce a 
mathematics concept, explain different mathematics procedures in relation to the 
presented mathematical concept, and then get students to practice theses procedures 
individually. In her classroom, the official mathematics textbook is never used. Instead 
of the textbook, Noha designed a notebook that she and her students use during the 
lessons. This notebook replaces the official textbook in her classroom.  
RESULTS 
After thirteen years of teaching, the data generated about Noha suggest that there are 
six significant practices or figured worlds to Noha’s sense of her practice as a 
mathematics teacher. These figured worlds are mathematics, textbooks vs notebook, 
students’ achievement, reform, relationship with students, and voluntary work.  
Mathematics 
According to Noha, mathematics is a body of knowledge centred on specific concepts, 
and learning these concepts means knowing how to use them. For Noha, mathematics 
is all about doing; if you are able to do mathematics, then you know mathematics. 
During a typical class session, Noha spends 10-15 minutes on whole-class instruction 
in order to introduce the new concept by using the board. Then she does an exercise 
that demonstrates how this concept is used and explains very clearly the methods and 
procedures used to do the exercise. The students’ main role during this part of the 
lesson is to listen carefully to the teacher. Noha makes sure while she is presenting the 
new material that the students are paying attention to what she is doing by saying 
phrases like “listen carefully to what I am saying” or “focus your attention on me”. 
After introducing the new material, she gives her students a few minutes to copy into 
their notebooks what is written on the board. Then she asks the students to do a similar 
exercise to the one she did.  
According to Noha, a basic part of understanding mathematics involves memorization 
and repetitive practice.   She clarified why memorization plays an important role in 
mathematical understanding by saying,  

some facts in mathematics need merely to be accepted as true and memorized, I can’t 
explain some mathematics to my students in a way that they really understand. Maybe 
some people would not agree with my view, but I really see that there is a place for 
memorization of basic facts in mathematics learning 

Noha argued that although her teaching style is considered traditional, her approach 
plays an irreplaceable role in helping all students, regardless of their level of ability and 
learning style, to gain high level of conceptual understanding of mathematics and 
acquire strong mathematics problem-solving and reasoning skills.  
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The textbook vs notebook 
One notable practice in Noha’s classroom is the absence of the textbook. Neither Noha 
nor her students use the textbook during the lesson. Noha explained her history of 
using the official textbook in her classroom by saying, “during my first year of 
teaching, I based much of my classroom activities on the textbook. In my second year, 
I used very little from it. Finally, in my third year, I got rid of it altogether and I haven't 
used the textbook during my lessons since.  I started to rely on the notebook I design”. 
After using the textbook as a main source for her practice for two years, Noha realized 
the textbook's deficiencies and substituted with an alternate version of the textbook. 
“The textbook failed to arouse my students’ interest and keep them on track”.  
Noha designs a notebook each year to use with the students in her classroom. This 
notebook replaces the textbook. During the summer, when schools are closed, she 
plans her notebook.  She organizes the notebook by chapters and lessons based on how 
they appear in the official textbook. At the begging of the school year, Noha 
photocopies the notebook and distributes one to each of her students. According to 
Noha, the notebook provides learning situations that guarantee keeping students 
engaged in learning activities during the lesson. She added, “Without a textbook, I can 
create lessons that engage students by relating mathematics to their needs. Lessons 
become clearer when I present the topic in an organized way, using a language that my 
students understand”. Noha talked about her notebook very proudly and has no 
intention of changing this aspect of her teaching practice.  
Reform 
It goes without saying that though out the years Noha has been recognized by school 
inspectors as an excellent teacher of mathematics because she represented the 
culturally accepted values of effective mathematics instruction. However, after the 
reform movement started, her teaching practice is not appreciated any more. Noha 
indicated that when the reform movement started, especially with the introduction of 
the new textbooks, the school inspector told her she needs to reconsider her role as a 
mathematics teacher with regard to student learning and choosing mathematical 
activities. Noha was also asked by her school inspector to stop using the notebook in 
her classroom and to mainly use the new textbook as a part of her classroom activities.  
Noha complained that the reform curriculum materials, including the new textbooks, 
new teacher guide and the circulated notes of recommendations that teachers receive 
regularly from the Ministry of Education, do not prescribe or describe practice for 
teachers, but rather offer new visions of mathematics teaching practice. Noha 
explained that her teaching practices are the result of her own adaptation to existing 
circumstances; those existing circumstances have not changed enough in a way that 
allow teachers to make effective changes.  She claimed that teachers face so many 
obstacles if they decide to change their practice. She noted, “In high school, we don’t 
have the tools and ability to teach mathematics as a subject of figuring things out or 
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making sense of things. The content is getting harder and more abstract. And we don’t 
have the tools and resources to teach this way”.  
Students’ achievement 
According to Noha, there is a strong connection between successful and effective 
teaching and student achievements. Noha indicated that teaching must lead to 
improvement in students’ academic performance; She stated, “Student achievement is 
always the result of successful mathematics teaching. A teacher will never be 
considered successful if her students’ achievement is low”.  
Student achievement appears to be the ultimate goal of Noha’s job as a mathematics 
teacher. In her practices, she relies mainly on two sources to evaluate student 
achievement, written tests and homework. Besides the midterm and final exams, Noha 
gives her students a quiz at the end of every chapter. The end of the chapter quiz helps 
her assess the effectiveness of her instruction, as well as students’ understanding of the 
concepts taught. Noha also explained that she does not support weekly testing because 
it destroys students’ interest and motivation to study for tests. Noha also pointed out 
that she relies on homework as a daily formative assessment tool in class in order to 
measure the level of student knowledge and understanding of the previous lesson.  
Relationship with Students 
In Noha’s teaching practice, it is crucial to connect with her students in a positive way. 
She said, “A positive teacher-student relationship can make my classes run easily. 
Without it, nothing will. Students need to feel that their teacher cares about them”. 
Noha makes sure to demonstrate respect towards her students by using a kind voice 
and appropriate language when speaking with students. According to her, teachers who 
treat their students with respect will have active learners in their classroom. It is very 
important to Noha that her students know she cares about them. She explained some of 
the strategies she uses, such as stressing the things that she and her students have in 
common. She noted, “I always explain to my students that I have the same goals as 
they have and I make it clear to them that my job is to help them achieve their goals”.  
She also communicates positive expectations letting her students know that she is 
proud of them. Noha likes to show her kind side to her students by using terms of 
endearment when calling her students in classroom. Terms like sweetie, honey, and my 
dear are used a lot by Noha.  
Noha uses an incentive system using points to motivate her students to participate and 
engage in class. She uses a notebook to keep track of the points. When she gives her 
students a task to do, she rewards every student who finishes the task one point. When 
a student collects five points, the student gets ¼ of a mark. According to Noha, the 
technique helps keep her students excited and energetic during the lesson.  
Voluntary Work 
Noha is a very active teacher. She is willing to do any work that could benefit students. 
She has no problem volunteering to do extra work even if it is not related to 
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mathematics teaching. She explained, “. All I want is to help create a more positive and 
productive school environment for all students”. While I was walking with her to the 
teachers’ room, Noha showed me some posters on the walls that she designed and 
printed as a part of her volunteer activities. The posters were about topics not related to 
mathematics, such about the benefits of eating healthy food and the importance of time 
management skills. Noha is also one of the few teachers who agree to go on field trips 
with students. Field trips are very rare for girls in high school because of the cultural 
restriction in Saudi Arabia. Noha feels obligated to support taking her students on field 
trips because “students need to do something different once in a while”.  
A major part if Noha’s volunteer work is designing and conducting free workshops for 
students at her school. Noha is one of few teachers in the district who conducts such 
workshops. The workshops focus on offering students skills and knowledge to help 
them score better on the General Aptitude Test (GAT) which is a standardized test 
students at high school take for university admission. The workshops are open to all 
grade 11 and 12 students attending her school, not only the students in her classes.   
Noha is not happy that some private institutes are trying to take advantage of the 
importance of this test for students and offer paid courses to teach students skills that 
are supposed to be learned at school. Noha indicated that during the workshops, she 
helps her students understand the nature of the GAT exam and how it is different from 
tests they usually take in school. She explains the mathematics facts, rules and 
formulas that students must know. 

CONCLUSION 
Noha is a very active teacher and has a strong commitment towards her teaching 
practice. It is very important to Noha to build a strong relationship with her students. 
She demonstrates interest in extending her relationships beyond the classroom by 
voluntarily participating in extra-curricular activities with her students. An important 
part of her commitment towards her teaching practice is her students’ achievements.  
She is experiencing huge stress to help her students achieve well in school tests and 
raise their scores on standardized tests. Although Noha has a strong sense of duty and 
obligation toward her students and cares about them, her negative perception of reform 
and the new mathematics textbook is a result of many factors. These factors include the 
shortage of resources and professional support she received during the process of 
implementing new curriculum. Although Noha seems to reject reform ideas about 
mathematics teaching, some parts of the interview indicate that she seems to admit that 
there is another way to teach mathematics. This way could work if there were more 
resources available for teachers.  
As Noha positions herself in relation to her profession as a mathematics teacher, she 
draws on several, often incompatible, figured worlds. Her engagement with these 
figured worlds does not only appear in her verbal communication, but also by the 
choices she makes in all other actions related to her profession such as her immediate 
reaction to certain students’ behaviour, or the way she expresses her view when 
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engaging in a conversation with her colleagues. It is also important to clarify that I am 
not claiming that these are the only figured worlds that contributes to Noha’s sense of 
her practice as mathematics teacher. It is very challenging to get access to all the 
practices and figured worlds that are possibly significant for Noha’s classroom 
interaction. For instance, challenges could occur if the figured worlds are related to the 
teacher’s experience in schools and university (Skott, 2013).  
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This paper extends H.P. Grice’s four conversational maxims of Quality, Quantity, 
Relation, and Manner into the genre of secondary school mathematics textbooks.  In 
order to determine if and how the supervening Cooperative Principle may be 
applicable to the author-reader relationship, the general notion of division by zero is 
explored across Grade 9, 10, and 12 mathematics textbooks from a single publishing 
group. Examining a formal definition of the rational numbers, considerations 
associated with simplifying rational expressions, and an introductory discussion of the 
tangent function in these respective textbooks reveals likely authorial assumptions 
regarding students’ prior mathematical knowledge, as well as certain inconsistencies 
in representing undefined cases connected to potential divisions by zero. 

INTRODUCTORY OVERVIEW 
School mathematics textbooks represent an interesting space within the larger 
mathematics discourse, for they are somewhat removed from the textual contributions 
of the scholarly/academic community and involve more direct interaction with 
students of school mathematics (who are less firmly ensconced within the discourse 
itself).  As with other textbook resources, school mathematics textbooks are deeply 
embedded within the educational climate, and can be seen as representative of the 
predominant aims and values that motivate the educational endeavour at the time of 
their writing (barring mismatches between ideology and practice).  Educational policy, 
curriculum mandates, and greater social factors influence not only the contexts within 
which school textbooks are produced, but also the content that is ultimately included 
within (and excluded from) those same textbooks.  Such judgments make an important, 
though perhaps under-acknowledged, contribution to the mathematics discourse. 
The impetus for the current paper stems largely from an interest in the scope and 
applicability of the four conversational maxims of Quality, Quantity, Relation, and 
Manner characterized by H.P. Grice in 1975 and utilized by numerous subsequent 
researchers to explore particular facets of the discourses manifested within a range of 
different fields/disciplines (i.e. linguistics, pragmatics, sociology, mathematics, 
education, et cetera).  Considering the potential Grice’s Maxims might have for 
revealing more about core values, ideological stances, and tacit assumptions 
underlying the broader mathematical discourse, I seek herein to more closely examine 
some of these factors by exploring the extent to which Grice's Maxims and their 
supervening Cooperative Principle may be relevant to the genre of school mathematics 
textbooks. 
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THE GRICEAN FRAMEWORK 
As explicated by Grice (1975), “talk exchanges do not normally consist of a succession 
of disconnected remarks, and would not be rational if they did” (p. 45).  To some 
degree, at least, they are “cooperative efforts; and each participant recognizes in them, 
to some extent, a common purpose or set of purposes, or at least a mutually accepted 
direction” (ibid.).  These conjoined notions of cooperative effort and recognition of 
common purpose or direction set the foundation for the Cooperative Principle upon 
which Grice’s Maxims of Conversation are constructed.  While I recognize that school 
textbooks do not necessarily evoke “talk exchanges” in the sense intended by Grice, I 
will suggest that there is a sense in which the Maxims of Conversation are still 
applicable in the analysis of written textbook content. 
Textbook resources may not, at first glance, seem an appropriate genre into which to 
extend the Gricean framework, in large part because textbooks are not exactly a 
conversational medium.  They do not involve speech acts exchanged by two or more 
participants in real-time, nor do they adapt to an emergent conversational flow between 
interlocutors.  They do, however, entail a form of linguistic interaction between 
author(s) and reader(s), wherein the intratextual content itself serves as the interface 
between those parties.  This is akin to what John Fauvel (1988) would refer to as the 
“triangle of writer, text, and reader, whereby the writer is taken to be trying to 
communicate something to the reader via a text” (p. 25).  Similarly, textbooks can also 
be considered as having voices, or as giving voice to their respective contents, if even 
those voices are to be “heard” only within the minds of readers, or issuing forth from 
readers’ lips when spoken.  Thus, I would caution against a view of textbooks merely 
as vessels for the transmission of information, for they do embody and voice aspects of 
mathematics discourse, and exist within a larger corpus of disciplinary 
communications. 
Indeed, by virtue of the educative intent underlying textbook publications, one could 
presume that observance of the Cooperative Principle would be inherent to the design 
of all textbook materials, for textbooks are developed, produced, and disseminated as 
informative/didactic tools with specific pedagogical aims at their cores.  This latter 
notion in particular has led me to wonder if Grice’s Maxims of Conversation 
(supervened by the Cooperative Principle) might actually underlie the writing of 
school mathematics textbooks as well or if Grice’s Maxims are in fact violated by such 
publications in particular ways.  To that end, this paper focuses upon the question of 
how closely school mathematics textbooks adhere to Grice’s Cooperative Principle. 
Grice’s Maxims of Conversation are spread across four primary categories.  The 
maxims of Quality, Quantity, Relation, and Manner each embody different facets of 
the Cooperative Principle, and offer guidelines for the interpretation of conversational 
implicatures (or suggested meanings) that arise through speakers’ interactions.  Grice 
(1975) articulates the Cooperative Principle itself, as follows: “Make your 
conversational contribution such as is required, at the stage at which it occurs, by the 
accepted purpose or direction of the talk exchange in which you are engaged” (p. 45).  
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From this foundational imperative, the four categorical maxims are then derived.  I 
briefly summarize them below, giving full acknowledgement and credit to Grice 
(1975, pp. 45-46) for their basic wording and structure. 

The Maxim of Quality: Try to make your contribution one that is true.  Do not say what 
you believe to be false.  Do not say that for which you lack adequate evidence. 
The Maxim of Quantity: Make your contribution as informative as is required (for the 
current purposes of the exchange).  Do not make your contribution more informative than 
is required. 
The Maxim of Relation: Be relevant. 
The Maxim of Manner: Be perspicuous.  Avoid obscurity of expression.  Avoid ambiguity.  
Be brief (avoid unnecessary prolixity).  Be orderly. 

While I mean to extend Grice’s conversational maxims toward the author/reader 
interactions of mathematics textbooks, I also acknowledge that only two of the four 
will be addressed.  As I have already intimated, it seems reasonable to assume that at 
least some aspects of the Cooperative Principle would be innate to the genre of school 
textbooks.  More specifically, I suggest that the maxims of Quality (wherein one 
should strive to make contributions that are truthful) and Relation (wherein one should 
strive to be relevant) may be taken as a priori conditions when discussing textbooks in 
general.  Such resources would be of little use, and essentially antithetical to their 
intended educational purpose if these guiding principles were not, in fact, heeded.  
That said, I do not believe that adherence to the maxims of Quantity and Manner can be 
as easily assured.  It does not seem a trivial matter to determine how much/little 
information can be deemed sufficiently informative in a given context, nor does it seem 
entirely clear what criteria might be used in deciding whether or not ambiguity and 
obscurity have been avoided whilst brevity achieved.  Thus, the maxims of Quantity 
and Manner invite much broader interpretations of their core meanings.  It is for these 
reasons that the ensuing discussions focus on the paired maxims of Quantity and 
Manner whilst offering little further commentary on Quality and Relation. 

THE RESEARCH APPROACH 
Deliberations concerning the selection of textbook materials to be used as sources of 
data were influenced by three primary factors: the choice of a mathematical 
concept/topic upon which to overlay the Gricean framework, the age range and grade 
level(s) at which to explore representations of the chosen concept/topic, and the option 
to utilize textbooks produced by multiple publishers or a single publisher.  In terms of 
selecting a mathematical concept/topic that could be fertile ground for the 
investigation, I gravitated toward mathematical themes that students might encounter 
and revisit multiple times throughout their junior high and high school experiences 
with mathematics (potentially in different contexts or extended forms).  The intent was 
to target mathematical material that I anticipated appearing with textual descriptions 
and explanations, and not simply diagrammatic or pictorial visualizations within the 
textbook pages.  Where possible, I hoped to compare key descriptions and definitions 
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of the chosen concept/topic across the selected texts, so as to determine whether or not 
the Gricean Maxims of Quantity and Manner were adhered to or violated in each case.  
The chosen concept was ultimately the general notion of division by zero.  Not only is 
division by zero a concept that recurs in a variety of contexts throughout students’ 
experiences with school mathematics, it also presents a foundational problematic with 
significance both to associated number theoretical issues and practical action.  In 
addition to its relevance to rational number construction (which students are likely to 
encounter via simple fraction work in the primary grades and revisit in the Grade 9 
curriculum), the notion of division by zero also relates to work with rational 
expressions (which can appear in the Grade 9 and Grade 10 curricula), and resurfaces 
with more complex explorations of trigonometric functions/expressions (in Grade 12).  
Many other instances of its recurrence are likely. 
This choice of mathematical topic informed subsequent decisions regarding age range, 
grade level, and publisher specifics.  As opposed to framing my investigation within a 
single grade level across multiple publishers’ textbooks, I instead chose to explore 
recurrences of the selected topic across multiple grade levels and texts whilst keeping 
the publisher consistent.  The decision to remain within a single publisher’s line of 
textbooks was largely motivated by the wish to preserve some amount of consistency 
in both the structure of and approach to the language used across grade levels, and to 
(attempt to) reduce the number of parameters that might influence the overlaying of the 
Gricean framework.  Admittedly, it remains unclear if this choice ultimately helped or 
hindered the analytical process.  For the purposes of this provisional analysis, I 
acquired a set of three secondary level mathematics textbooks from the 
Addison-Wesley Publishing Group: Mathematics 9 (Kelly, Alexander, & Atkinson, 
1987a), Mathematics 10 (Kelly, Alexander, & Atkinson, 1987b), and Mathematics 12 
(Alexander & Kelly, 1999).  Interestingly enough, differences in publication years 
notwithstanding, Kelly and Alexander share authorial credits in all three of the chosen 
textbooks.  This repeated authorial collaboration seemed notable, and offered a 
particular point of commonality that I had not expected yet now believe might have 
facilitated a more consistent reading of the texts as a result of the fairly uniform 
stylistic and technical choices on the part of the authors. 
Given that the primary features of the textbooks in which I am interested are already in 
written textual form, I did not find it necessary to apply transcription protocols to the 
texts, or otherwise “prepare” the data in any real sense.  The core analytical approach 
mainly involved engaging with selected excerpts from the texts in as open and 
thoughtful a way as possible, whilst continually “bouncing” those excerpts off of the 
maxims of Quantity and Manner and attempting to situate the represented content 
within the larger curricular treatment of division by zero.  To that end, three specific 
focal points around which to construct my data were identified: a brief introductory 
discussion of the trigonometric tangent function in Mathematics 12 from Alexander & 
Kelly (1999), considerations associated with simplifying rational expressions 
presented in Mathematics 10 from Kelly et al. (1987b), and a definition of the rational 
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numbers in Mathematics 9 from Kelly et al. (1987a).  A condensed data analysis and 
discussion of findings appears in the following pages. 

CONDENSED DATA ANALYSIS & DISCUSSION OF FINDINGS 
While an introductory discussion of the tangent function appears in the initial pages of 
Section 3.7 in Kelly & Alexander’s Mathematics 12 textbook, the first text directly 
linking the topic to potential divisions by zero is found shortly thereafter under a 
heading entitled Relating tanθ with sinθ and cosθ (p. 207).  See Figure 1 below. 

 

Figure 1: A textual and diagrammatic treatment of the connections between the tangent 
function and the sine and cosine functions (Kelly & Alexander, 1999, p. 207) 

In addition to being the first instance in the textbook where the sine, cosine, and 
tangent ratios of a variable angle (θ) are characterized according to their 
interrelationships, the text contained in Figure 1 is also notable for a number of other 
reasons.  At no point before this, do the authors explicitly frame the tangent function in 
terms of proportional equality (by reference to similar triangles).  Both representations 
rely upon fraction notation that students will presumably have encountered in their 
previous school mathematics, yet this may well be the first instance in which students 
encounter a textbook representation of a trigonometric function involving ratios of 
other trigonometric functions.  While students may have already dealt with algebraic 
manipulations where trigonometric functions appear as denominator terms in more 
complex expressions, it is unlikely that many will have encountered function 
definitions with that same property.  Granted, there would seem to be little need for the 
authors to address links between the tangent function and the reciprocal functions of 
secant, cosecant, or cotangent (or the inverse trigonometric functions), for these would 
likely be deemed irrelevant or extraneous to the current exchange.  Inclusion of such 
information at this point in the textbook could also be viewed as a violation of the 
Maxim of Manner (for it would be adverse to the desired perspicuity), as well as the 
Maxim of Quantity (in that it would be providing more informative than required).  One 
would anticipate, then, that the authors felt that the given description of the tangent 
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function was sufficiently informative for the purposes of this exchange and that no 
further description was required.  On these counts, I suggest that the given text does, in 
fact, adhere to both the maxims of Manner and Quantity.  Not surprisingly, the authors 
seem to have adopted a cooperative stance. 
Interestingly, while the final text of Figure 1 establishes the constraint that cosθ ≠ 0, the 
rationale behind that constraint is not spoken to in any way.  The written information 
does not offer any insight into what happens if/when cosθ = 0. Again, presumably, the 
authors’ judgment might have been that students would recognize (from previous work 
with rational expressions and fractions) that instances involving variable terms could 
potentially lead to zero-valued denominators yielding undefined cases.  In fairness, 
graphical representations of the tangent function and its asymptotic behaviour do occur 
in a later section of the Mathematics 12 textbook, but even then, nothing is offered that 
directly links asymptotic behaviour to the notion of the undefined case.  At this stage in 
students’ mathematics learning, it could be said that explicit discussion of the issue of 
“undefinedness” resulting from division by zero might be superfluous, and could 
constitute a violation of the Maxim of Quantity (by providing too much information for 
the current exchange), but I would suggest otherwise.  As I shall make clearer in the 
remaining discussion, a core piece of reasoning seems to have been omitted throughout 
the iterative treatment of division by zero in this particular textbook series.  What 
interests me is that the nature of the undefined case is not elaborated upon in any way, 
and the question of WHY an expression with a zero-valued denominator would be 
considered to be undefined still remains. 
Chapter 4 of Mathematics 10 (Kelly et al., 1987b) introduces rational expressions, and 
the premiere section of that chapter (4-1) treats the simplification of rational 
expressions.  It is here that the authors delineate key characteristics of such expressions 
and draw parallels to students’ (presumed) past mathematical experiences with 
polynomial expressions and rational numbers.  See Figure 2 below. 

 
Figure 2: An introduction to the notion of rational expressions by way of reference to 

arithmetic and algebraic parallels (Kelly et al., 1987b, p. 110) 
One could imagine the authors’ perspective to be one in which students are already 
largely familiar with the mechanics of rational number arithmetic and polynomial 
algebra.  From that perspective, no further explanation of those background concepts 
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would be necessary, and the maxims of Quantity and Manner will have been properly 
adhered to.  In a sense, that appears to be the unspoken assumption guiding the 
introduction to rational expressions; however, the veracity of that assumption is 
difficult to assess.  Nevertheless, I would contend that Kelly et al. (1987b) are still in 
full observance of the Cooperative Principle here, for they deliberately direct readers 
of the text toward the associated arithmetical and algebraic subject matter.  This 
reminder of relevant background contexts helps to ensure that students can relate the 
current mathematics to previous mathematical experiences.  In the event that students 
are unable to do so, relevant background matter has been identified. 
A direct follow-up to the introductory matter of Figure 2 involves a worked example 
and the simplification of a rational expression, which leads to a crucial addendum: “A 
rational expression is not defined when its denominator is equal to 0” (Kelly et al., 
1987b, p. 111).  This explicit statement regarding the case of the zero-valued 
denominator is especially intriguing, particularly in light of the omission apparent in 
the tangent function description offered in the Mathematics 12 textbook.  That said, the 
same question of WHY an expression with a zero-valued denominator is considered to 
be undefined still goes unanswered in this text.  Moving further back to Mathematics 9 
(Kelly et al., 1987a) reveals that this lingering conceptual question also goes 
unaddressed when dealing with the basic definition of the rational numbers. 
While the three selected mathematics textbooks are fairly consistent in terms of stating 
denominator constraints in their respective cases, none of them directly address the 
conceptual nature of the undefined case, or what it means for a function/expression to 
be undefined.  The three scenarios alluded to within this condensed analysis (an 
introductory discussion of the tangent function in a Grade 12 textbook, considerations 
associated with simplifying rational expressions in a Grade 10 mathematics textbook, 
and a formal definition of the rational numbers in a Grade 9 mathematics textbook) 
seem to observe Grice’s Cooperative Principle in a very broad sense, provided one 
makes allowances for likely authorial assumptions about students’ prior knowledge 
and familiarity with terminology, yet there seem to be certain nuanced ways in which 
judgments about maxim adherence and violation are more ambiguous. 
Insofar as the Maxim of Manner concerns the selected examples, it would appear that 
the textbook authors have achieved the broad goal of being perspicuous.  I do not 
question the orderliness of their presentation, nor their brevity of expression.  It is 
difficult to offer any real commentary on the ambiguity or obscurity of their textual 
contributions, though, for those factors would seem to be very much contingent upon 
the prior knowledge of the students concerned (or their familiarity with the background 
mathematics referred to by the authors).  That said, there are some instances (as in 
Figure 2) in which it is clear that the authors have assumed a very particular stance with 
regard to students’ prior mathematical knowledge.  Unfortunately, the small sampling 
of text that I have explored for this provisional analysis is not substantial enough to 
allow for more definitive statements here.  Ultimately, it is the Maxim of Quantity that 
has proven to be the most concerning as a result of these tentative explorations.  Again, 
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with respect to the notion of division by zero, I have attempted to characterize a 
conceptual omission that I can, at best, only describe as a sort of retroactive violation 
of the Maxim of Quantity (in that the nature of the undefined case is never fully 
explicated, but later entries in the textbook series carry forward as though it had been).  
Although Alexander, Kelly, and Atkinson's contributions to the given Addison Wesley 
textbooks do, at times, incorporate terminology that describes when certain 
functions/expressions/numbers are and are not defined, it is never made clear to the 
reader what the nature of the undefined case actually is, what it might “look like”, or 
what its implications are in a number theoretical sense.  This might constitute a 
violation of the Maxim of Quantity, by being insufficiently informative, but one could 
easily question (both as a researcher/analyst and as a pedagogue) if these textbooks 
constitute the appropriate space within the mathematics discourse to provide that 
particular informational contribution.  As a result, it is difficult to supply a Gricean 
interpretation of the overall textbook treatment of the notion of division by zero. 
As I have previously acknowledged, textbooks are not exactly conventional examples 
of a conversational medium.  By extension, it is debatable whether or not the assertions 
and textual contributions found within the pages of mathematics textbooks actually 
constitute speech acts of a type assessable via the Gricean Maxims of Conversation.  I 
do not doubt my earlier presupposition that textbooks can be seen as innately 
cooperative resources (by virtue of the educative intent underlying their development, 
production, and dissemination), however, I now suspect that it may not be appropriate 
to apply the standard Gricean framework to mathematics textbooks when treating them 
in isolation from the full conversational discourse of the mathematics classrooms in 
which they are typically embedded.  This is not to suggest that the Gricean framework 
is flawed; rather, it speaks to the possibility of exploring/developing a non-standard 
formulation of the Gricean framework for use within the genre of mathematics 
textbooks.  Precisely what characteristics such a framework might have is not yet clear; 
however, analyzing a more substantial corpus of mathematics textbook data (from a 
wider sample of publishers) could be of value in this regard. 
References 
Alexander, R., & Kelly, B. (1999). Mathematics 12: Western Canadian edition. Don Mills, 

Ontario: Addison Wesley Longman. 
Fauvel, J. (1988). Cartesian and Euclidean rhetoric. For the Learning of Mathematics, 8(1), 

25-29. 
Grice, H. P. (1975). Logic and Conversation. In P. Cole & J. Morgan (Eds.), Syntax and 

semantics volume 3: Speech acts (pp. 41–58). New York: Academic Press. 
Kelly, B., Alexander, R., & Atkinson, P. (1987a). Mathematics 9. Don Mills, Ontario: 

Addison Wesley Longman. 
Kelly, B., Alexander, R., & Atkinson, P. (1987b). Mathematics 10. Don Mills, Ontario: 

Addison Wesley Longman. 



35 

I WONDER AS I WANDER 
Leslie Glen 

Simon Fraser University 
 
In this paper, I describe an informal self-study experiment during which I use an 
unfamiliar DGE (Geometer’s Sketchpad). The use of previously identified dragging 
modalities in predictable ways is obvious, but I wanted to explore the possible need for 
an additional modality and examine how it might fit into this familiar landscape. I use 
the framework of instrumental genesis to explore the differences between the modality 
known as wandering dragging and a potential new modality I call “wondering 
dragging”. The results of the experiment are discussed, not in terms of squeezing the 
new term in to the old lineup, but of creating a new “dimension” in which to use this 
term and making room for others. 
INTRODUCTION 
Dr. David Pimm, currently of Simon Fraser University, has been heard many times to 
say that no matter how many classifications have been determined within a set, it is 
always well worth asking if there are others. The impetus for this investigation was a 
happy accident. A chance conversation occurred between this author and Dr. Pimm, 
who was at the time editing an article in which the authors, Muteb Alqahtani and 
Arthur Powell (2016), had inadvertently used the spelling “wondering” instead of 
“wandering” while summarizing the different types of dragging identified by F. 
Arzarello, F. Olivero, D. Paola, & O. Robutti (2002). I found myself considering 
whether “wandering” dragging might be split into two types, or whether “wondering” 
dragging might be a completely different type than any so far delineated. 
THEORETICAL FRAMEWORK 
During the time that you are exploring how a new tool works, you will likely spend 
some time failing to accomplish what you set out to do, because of your unfamiliarity 
with the tool. You may know, for example, that you want to break open a hard nut with 
a hammer. If you have never used a hammer, you might try first to press the nut 
between the hammer and a hard surface in an attempt to break the shell under pressure, 
or you might try to use the hammer’s claw to pry open the nut. These attempts will not 
likely reveal the nut’s contents, but they are not in vain. You are learning what the tool 
does, and as importantly, what it does not do, under certain conditions. Once you try 
hitting the nut with the hammer once, even if by accident, you are likely ever after to 
tackle cracking a nut with the same approach.  
Once you know how it functions, a tool becomes available to you for future tasks as 
well, and you will come to each new nut with greater confidence than all the ones 
before; you are no longer experimenting when you pick up the tool; you are applying a 
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known feature to a known task with a known outcome. After the breakthrough, you can 
approach the breaking of any nut with confidence.  
This is the epitome of instrumental genesis. As you use the tool for more tasks, it 
shapes you; it gives you power and flexibility. By seeing that it can be used for more 
than one thing, you more readily look for additional features and uses than those you 
already know. This shaping of the user by coming to know the tool was labelled 
instrumentation by Trouche (2004). We have “instrumented” (equipped) the user with 
the artefact. 
By using it often, you may discover uses which may not have been part of its original 
design. Arguably, a hammer was not designed to break nuts, but to drive nails. It is well 
within the realm of possibility however, that one can be used in this way, and Trouche 
(2004) called this process instrumentalization. The user has “instrumentalized” the 
hammer artefact; given it a (new) instrumental use. 
Instrumental genesis attempts to explain the evolution an individual undergoes as she 
attempts to use a new artefact, and the new uses the item can be seen to have as the 
individual becomes more familiar with it and with its properties. The way one uses a 
hammer evolves over time and with use. The way one uses a computer mouse will 
likewise evolve, and this is the area in which I am interested; considerable 
investigation has already taken place around the types of modalities available to mouse 
users (e.g. F. Arzarello, F. Olivero, D. Paola, & O. Robutti (2002), F. Arzarello, M. 
Bairral, & C. Danè (2014), M. A. Mariotti (2012)), but none appears to have been done 
about the different possible reasons a modality is chosen. There is a strong symbiosis 
between instrumentation and instrumentalization; both the user and the instrument 
change over time. While it is natural to label the processes involved, it is essential to 
recognize that neither occurs without the other. Moreover, once the user has evolved, 
the instrument cannot help but be used differently, and in return, the user is changed 
again, and so on.  
Instrumentalization is something that happens to the hammer, and there is no sentience 
on its part; it changes neither the hammer’s structure nor its makeup. Instrumentation, 
on the other hand, causes the user to change. One might argue this change occurs at the 
cellular level; it certainly occurs at the cognitive level. I will leave it to philosophy to 
discuss whether these are the same or different.  
The question, then, is whether instrumentation can happen through the user’s own 
motivation or whether it can be imposed through external forces (e.g. task instructions 
for which the user has no particular interest). Perhaps it does not matter, and the 
learner’s motivation is irrelevant (or differently relevant) to whether an action is 
performed due to her curiosity or due only to her having been told to do so. 
THE STUDY 
I recorded a learning session during which I undertook to complete a task in the 
dynamic software The Geometer’s Sketchpad (GSP) (Jackiw, 2014). I had not used the 
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software before this with one brief exception. No instructions were given save those 
that came with the activity. The recording was analysed, and segments selected that 
contained incidents in which I used wandering dragging as well as other types of 
dragging. The “other” types were then scrutinized, and held up against the definition of 
“wondering dragging” I hoped to propose. I was initially looking for evidence that 
“wondering” dragging might be an addition to the types of dragging already extant in 
the literature, but discovered instead that if it were to be included, it would more likely 
be in a different way altogether.  
The task was to construct a triangle within the DGE Geometer’s Sketchpad, then to 
construct a segment from one vertex to the midpoint of the opposite side, and use the 
resulting diagram to show that the two smaller triangles can be made to be separable 
and to determine under what conditions.  
RESEARCH QUESTION 
Arzarello et al. (2002) define “wandering dragging” as  

moving the basic points [of a shape in a Dynamic Geometry Environment (DGE)] on the 
screen randomly, without a plan, in order to discover interesting configurations or 
regularities in the drawing [emphasis added]. (p. 67) 

Alqahtani and Powell (2016) nicely summarize the definition given by Arzarello et al. 
as “dragging that aims to look for regularities”.  
“Wondering dragging” has no such definition in the literature. It is not a term thus far 
conceived to describe an action not already described by another term. “Wondering” in 
the most general sense has a distinctly different meaning from “wandering” however. 
The conversation that started this investigation quickly gave rise to the desire to review 
the definitions of this word in both the general sense and in its capacity in the world of 
instrumental genesis. 
Wonder is defined in part in the Oxford English Dictionary (OED) as  

to feel some doubt or curiosity (how, whether, why, etc.); to be desirous to know or learn. 
(OED)  

All of Arzarello et al.’s dragging categories are described as dragging, moving, 
drawing or linking points (2002). It is the purpose for which the points are moved that 
helps to distinguish them one from another. Wandering dragging is done “to discover”; 
bound dragging is done just to move a point; guided dragging is done “in order to give 
[an object] a particular shape”; dummy locus dragging is done “so that the drawing 
keeps a discovered property”; line dragging is done “in order to keep the regularity of a 
figure”; linked dragging is done to link a point to an object; dragging test is done “in 
order to see whether the drawing keeps the initial properties” (p. 67). 
I initially conceived that “wondering dragging” might be an action that aided 
conjecture, but Arzarello et al. seem nicely to have encompassed the possibility that 
one might be dragging for any reason, intrinsic or extrinsic, and still fit neatly into one 
of the dragging modalities they provide.  
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If there were a different dimension however, one for which the definition hinged on 
one’s desire to learn, there might be room for wondering, and perhaps for many other 
types of auxilliary states as well. In such a realm, wondering dragging could be 
described as being done not only “to discover” or “to see whether” the shape does 
something, keeps a property or takes on a shape or feature, but because one is “desirous 
to know or learn” whether a shape did something or took on a feature.  
In this light, it is worth investigating Arzarello et al.’s definitions again. Some of them 
require a prescribed action, while others a combination of an action and a desire to 
uncover information, but not necessarily an intrinsic desire to learn. For example, 
bound dragging is simply “moving a (semi-dragable) point”, not moving it 
(necessarily) for any particular purpose or to a specific end. Guided dragging is 
performed “in order to give [an object] a particular shape”, but again, not (necessarily) 
because the user is intrinsically desirous to know. Wandering dragging is performed 
“in order to discover”; discovery implies that the dragger actually wants to learn 
something, while “moving” and “giving a shape” only require an action, and say 
nothing explicit about the user’s desire. This is not to say that she does not have a 
desire; only that it is not necessary in order to work in that modality. 
We should be looking then, not only at the learner’s actions, but at her inspiration while 
performing that action. Let us formally define wondering dragging then as any 
dragging that is performed by the learner due to, or alongside her intrinsic interest in 
the result produced by the action. Of Arzarello et al.’s dragging types, then, all might 
be types of wondering dragging if while the learner is performing them, she is forward 
or laterally thinking about the result of the action she is undertaking not only because 
she has been told she must accomplish this task not just for a grade, or so as not to lose 
favor with the teacher, etc., but because she wants to learn.  
If she is performing an action because she has been told to do so, and is not interested 
in the result, her action might be considered task dragging, as it only satisfies an 
extrinsic requirement to perform a task, and not to fulfil her own desire to learn. Thus 
one can perform wandering task (or task wandering) dragging or wandering wondering 
(or wondering wandering) dragging, and so it can be said that one can wonder while 
one wanders (or, indeed, vice versa).  
OBSERVATIONS 
In the recording, I use The Geometer’s Sketchpad version 5. In order to help 
distinguish between the software as a tool and the tasks each button performs within 
the software, I shall refer to GSP as the “instrument” and to the buttons as “tools”. For 
example, GSP has a button that, when selected, will produce a point when a user clicks 
in the workspace; when she clicks again, another point is produced, and so on. This is 
the Point tool.  
A different button, when selected, will produce a point on the first click, but a second 
click produces not only another point, but a line segment between the two points. A 
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third and fourth click produce a second line segment, and a pair of clicks is always 
required to create one shape. This is called the Straightedge tool.  
A third button, when selected, will produce a point on the first click, a segment on the 
second, a closed triangle on the third, and will continue to create polygons with more 
and more vertices until the first point is clicked again to “finish” the shape. This is 
called the Polygon tool. 
Early in the session, I am attempting to create a triangle. On my first attempt I manage 
to fix the first vertex, then have to experiment in order to learn how to fix the second 
endpoint of the first side. This experimentation is “wandering dragging”. After 
discovering the method for creating polygons and fixing their endpoints, I manage to 
create the triangle, but do not know how to finish it; without anchoring the last point 
somehow, the tool wants to continue to produce points with the fixing of each new 
side. Further experimentation, and thus further wandering dragging, is necessary 
before I learn, seemingly accidentally, that in order to close a polygon, I must select the 
first point again. With each new function learned, the next part of the task, or the next 
attempt at it, can be performed more quickly and with more confidence than the times 
before.  
More importantly to our purpose however, the self-narrative captured with the video is 
very revealing. From the beginning of the session, I relate the physical setup of the 
activity, and read aloud the instructions. At 00:40:00, I determine that I need to 
construct a triangle. I am doing so purely because the task is required in order to satisfy 
the need to produce a recording and I am performing it by following written 
instructions. My statement, “…so I need to construct that first” indicates that I know 
what I am required to do, and that I understand my purpose. The action and narrative 
that follow show that I do not necessarily have a plan, since I am unfamiliar with the 
instrument (GSP), and I select various tools from the options available and experiment 
with them to determine what they do and how they can be used to accomplish my aim. 
Here is an excerpt of an early piece of the session: 

1 I could do it with a polygon, I guess. I think I just want the outline.  
2 Click, drag, (release mouse button). I guess I need to click again.  
3 Oh, and then I can just click; third point.  
4 And then if I wanted to, I could put a second point, or I mean a fourth point, but I 

don’t want that, so I’m going to see what happens if I do that (clicks on arrow tool, 
and shape disappears from screen.)  

5 Well that didn’t work, so let’s try again: One, two, three points (counting out points 
as they are fixed to the workspace; this is what might be called “construction 
dragging” as I am not exploring, discovering or keeping regularity, but constructing 
an object with known procedures.) 
I hover the cursor over various tools in an attempt to decide which one to try next. I 
then drag the cursor back onto the workspace and inadvertently pass over the first 
fixed point and it “highlights” to indicate a live state; wandering dragging.)  

6 Oh, there we go. (click on first point) [You] have to click on the starting point. 
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None of the above actions indicates any desire to learn. One might argue that I am 
desirous to learn how to do my task, but even that has no particular motivation other 
than completing an assigned task, and I am clearly not engaged in any mathematics at a 
cognitive level. I am simply doing what I have been told to do without thinking about 
why, without wondering about the features of my creation, without caring if I learn 
anything about triangles. All of the above is task dragging. 
Not much later in the session, the following narrative is produced: 

1 I’m supposed to consider the point – the midpoint P, on AB, so, how can I figure out 
… I can put a point here (approximately halfway along AB), but how do I know it’s 
the midpoint?  

 She selects the Point tool, hovers over AB, slides a new, unfixed, semi-dragable 
point back and forth (bound dragging) along AB 

3 It’s just going to be somewhere on there; how do I know it’s the midpoint? 
After some failed attempts at placing a point on AB, I succeed in this task, but am still 
trying to determine its correct location to be the midpoint of AB. 

4 I can put a point on there (AB) and select (selects arrow tool, clicks on new point 
and on AB, so that both are highlighted, then unselects both and selects only the 
segment AB, and selects “Measure” from the pull down menu.) 

5 Measure (most menu items are unavailable) 
 Unselects AB and selects new point instead 
7 Measure (most menu items are unavailable) 
8 [garbled] do this… 
 After a brief pause, I discover that the new fixed point will move along AB while 

staying attached to AB (bound dragging) 
10 You could eyeball it, but that’s [garbled] 

The above monologue differs from the first in that while the I am still attempting to 
perform the assigned task, I have begun to engage with the shape I have produced in a 
way that indicates that I want to know something. In this case I want to understand how 
you can guarantee that a point on a line segment is the midpoint of that segment. I have 
identified a desire to prove (if only to myself) that a given point has a particular feature. 
While I express this interest, I move the mouse all about the workspace, hover over and 
select various tools, try, and fail, and try various tasks again, but all the time I am 
thinking about how the instrument can be used to answer a question. I apply dummy 
locus, “phantom1”, wandering and guided dragging, but I do so with a desire to learn. I 
am wondering dragging.  
Instrumental genesis is at work here: by using the instrument, and more importantly by 
failing at my task, I am learning how the instrument behaves and how to make it do my 
                                           
1 A term coined during discussion about observations made of different types of dragging; phantom 
dragging can be defined as dragging an invisible, or yet-to-be-selected point. (Rouleau & Sinclair, 
personal communication, 2016) 
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bidding. But the instrument is also shaping how I interact with it, and my response it to 
change how I approach the problem with each new attempt. I try different tools, and in 
so doing, even when they fail to do what I need from them, I learn more about the 
instrument. I am shaped by it, and it can be used by me in ways that I could not use it 
before. 
SYNTHESIS 
Wondering is a common misspelling of wandering, and I suspect Drs. Alqahtani and 
Powell of having made this error in the pre-published version of their article. In their 
defence, in one particular instance they use the term “wondering dragging” followed 
by a casual definition. In that instance at least, they genuinely mean it to be used 
differently than the well-established “wandering dragging”. In a section titled 
“Technological Tools”, Alqahtani and Powell (2016) say: 

The co-action between the teachers and the environment helped the teachers develop an 
understanding of the dragging functionality in DGE. This event also evidences how the 
teachers used reactive or wondering dragging (dragging to conjecture about objects and 
figures) to explore the figure and used the environment’s reactions to reflect on their 
dragging. 

Wandering dragging as defined by Arzarello et al. is not necessary for conjecture, so 
Alqahtani and Powell have appropriated a term similar to one already known, in order 
to distinguish it from that term. This is not the same way in which they used 
“wondering dragging” elsewhere. One can only assume that while the other instances 
were in fact oversights, this one, at least, was intentional.  
Types of dragging are discrete. they may occur simultaneously, but you would not be 
able to perform 3/5 dummy dragging. On the other hand, you might be a little bit 
desirous to learn or a lot. Thus during a session a subject might perform wandering 
dragging at a low level of curiosity, and guided dragging at a high level of curiosity, or 
vice versa, or a bit of both.  
If we assign wondering (or curiosity) a scale, say from 0 to 10, and if we can measure a 
subject’s level of curiosity, then instead of a timeline such as Figure 1, we might see a 
timeline such as Figure 2, where in addition to labeling intervals of time with the 
modality used, we can indicate the level of curiosity the subject experiences. In 
addition to the way in which a student carries out the physical and even the mental 
demands of a task, there is a psychological element, a motivation. If we are to 
understand learning fully, we must explore the reasons students do things as well as 
how they do them. 

 

Figure 1: A sample timeline that records intervals of modality use 
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Figure 2: A sample timeline that records intervals of modality use as well as levels of 
curiosity 
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WORDS IN CONTEXTS: ‘PROOF’ AND ‘PROVE’ IN A COURSE 
OF MATHEMATICS LECTURES 

Andrew Hare 
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This paper addresses the question: "what do the lexemes PROOF and PROVE mean 
when they are uttered in a course of undergraduate mathematics lectures".  35 lectures 
of a third-year abstract algebra course were videotaped and transcribed. The 
transcript was broken into units called stanzas, and the stanzas into units called lines.  
A corpus linguistic approach to the transcript is taken, and we use the surrounding 
stanza as the context for our lexemes. We find that: 1. 'Proof' gets explicitly defined by 
the professor. 2. Two written proofs are often explicitly compared and contrasted. 3. 
Whether or not some argument constitutes a proof is contested on a few occasions by 
the students and the professor. 4. 'Proof' gets contrasted with conceptually close but 
distinct notions, including illustration, model for a proof, outline, and main idea. 

THE MATHEMATICS LECTURE AND PROOF 
Speer, Smith, and Horvath (2010) lamented how few research studies there were of the 
undergraduate mathematics lecture. They highlighted the work of Weber (2004) as a 
rare exception: he performed a case study of a lecturer in real analysis, with a focus on 
his proofs. Nardi (2008) conducted interviews with a number of mathematicians, 
eliciting from them fascinating and thoughtful comments on their pedagogy and 
strategies in the classroom. The work in this paper is derived from a larger case study 
of a lecturer in abstract algebra. The topic of proof has been central to mathematics 
education research at the undergraduate level for many years (Mejia-Ramos & Inglis, 
2009). 

THEORETICAL FRAMEWORK 
The work of John Sinclair, arguably the leading proponent of corpus linguistic theory 
and methodology when the field was in its nascent state, emerged out of a tradition of 
empirical linguistic analysis associated with figures such as John Firth and Michael 
Halliday. Three principles can be said to have guided his work, which we adopt here. 
Firstly, he preferred as often as possible not to mark up or tag his texts, but to leave 
them clean. His argument was that it is too easy to find the structures that our linguistic 
theories predict ought to be there if we tag the text using these theories. This principle 
he refers to as "trusting the text" (Sinclair, 1991). Secondly, he stressed that patterns 
that operate on the level of phrases, which with smaller data sets are very hard to find, 
with larger data sets are possible to spot. Thirdly, he underscored the importance of 
frequency of co-occurrences of words, which indicate special meanings of words or 
phrases - many more than were found in the dictionaries at that time (Sinclair, 2004). 
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Our goal in this paper is to tease out the meanings of proof for a member of the 
community of research mathematicians who teach undergraduates. 
Chafe (1994) has emphasized the importance, in spoken discourse, of local contexts 
where a specific topic is being discussed. He notes that beginnings and endings of these 
contexts are communicated by speakers in a variety of ways: intonation, volume, pitch, 
tempo, pauses, body movements, eye gaze, gestures. In the context of mathematics 
education research, Staats (2008) defended the division of transcripts of classrooms 
into poetic lines, citing workers in linguistic anthropology such as Dell Hymes and 
Dennis Tedlock who helped develop the field of study known as ethnography of 
communication.  

DATA COLLECTION AND METHOD 
35 50 minute lectures in group theory were videotaped. A 240 000 word corpus was 
constructed from this data. The transcript was divided into 3004 stanzas, using the 
tools described by Chafe. Searches for the words proof, proofs, prove, proving, and 
proved, yielded 378, 50, 240, 27, and 48 hits respectively. The stanzas that these words 
appeared in were carefully examined to determine the local meaning of the word, and 
any frequently co-occurring words.  
Quotations from the transcript contain the following special characters: the backslash 
character, /, in the positions that indicate the end of a line; opening and closing square 
brackets, [ and ], surrounding words spoken by a student; a short dash, -, at a moment 
when the speaker cuts themselves off in order to start their thought again. Following 
the quotation, in parentheses, will be the lecture number followed by the stanza number 
within that lecture, separated by a period.  

FINDINGS AND DISCUSSION 
Definition of proof offered by the professor 
The professor himself offers, on multiple occasions, a definition of the word proof.  
The first occasion is in the opening lecture: "ok so we're gonna be working on 
constructing convincing arguments / also known as proofs / for the statements that we 
make" (01.13). Here the phrase "also known as" is a strong marker for definition.  The 
definition contains two parts: a proof is an argument; it is an argument that convinces.  
Surrounding the two key words "convincing arguments" are a cluster of words that 
reveal more about the nature of proofs beyond their definition. We learn that proofs are 
constructible and that they as a class will be constructing them. Although it is not quite 
said outright, he appears confident that proving is more or less a single verb, and not an 
activity that is wildly different every time you encounter a statement you want to 
prove. What they will be proving is some statements they will make, which suggests 
some questions: which statements will need to be proved, and which not; and whether 
different values are attached to these different sorts of statements. It would be 
misleading to limit the professor’s definition of proof, then, to ‘convincing argument’. 
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Indeed the professor returns to his definition a few minutes later:  
you know imagine having a really belligerent conversation / with the textbook author ok / 
as you read everything say / are you sure / convince me ok / if you have that kind of attitude 
to the way that you learn / and the way that you write / you're gonna come out with clear 
persuasive prose ok / clear persuasive convincing arguments also known as proofs. (01.22) 

Two new adjectives make an appearance: "clear" and "persuasive". “Clear” tells us 
something about the manner in which some argument can be convincing; it can be 
clear, and therefore not confusing, not ambiguous, not complicated, not hard, not too 
detailed. These five negatives are obviously not synonymous with each other, and it is 
notable that the single value clarity can repel multiple dangers. “Persuasive” is 
interesting in that it not only can connote a persuasion that is full and complete, but 
also a persuasion that is in progress, and whose full and complete success is not yet 
clear. A persuasive argument may have fully convinced someone, but to another it 
might just be starting to push them in that direction.  All in all, "convincing" seems like 
the stronger and more committed word, and the professor switches to it in the next line. 
In this passage the professor also reveals how he believes an ability to write proofs can 
develop: by reading the textbook aggressively. He advises a manner of reading that is 
combative and sceptical, and not congenial and forgiving. This manner of reading is to 
be kept up at all times: as the student reads everything they should say "are you sure", 
they should doubt. The student, as reader, is advised to imagine themselves in 
conversation with the textbook author, and uttering the key phrase "convince me". The 
direct implication is that if one playacts the role of someone who sets a high barrier to 
being convinced, then one will develop whatever the power is that allows one to write 
arguments that convince others.  
Who are these others? On two other occasions the professor returns to his conscious 
attempt to characterize the word proof: "proof is an argument that convinces someone 
who's never seen it before" (05.70); "whereas I say that proof is an argument that 
convinces someone who's never seen it before" (14.24). Here the power of the 
argument is truly made clear: even someone who has never seen the proof before, will, 
when they read it, become convinced. 
Explicitly contrasting two written proofs 
In the opening lecture the professor advises the students to carefully compare their 
written solutions to homework problems to his written solutions:  

compare what you wrote with what I wrote / comp- ok first of all did I get the same answer 
/ secondly which argument is more convincing / mine or his / why is that / ok what's 
different about what my instructor thinks is a convincing argument / and what I submitted 
/ ok is mine better than his / maybe it is / is his wrong / yeah that happens too. (01.26)  

Comparing two written arguments side by side, and deciding which one is to be 
preferred, is a theme that runs through the course.  There are numerous references to 
rewriting: "now obviously I've cooked this proof up / this is not my first attempt or 
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even my second / I've worked through it” (05.72); "that’s like the third rewrite or 
whatever" (18.72).   
Rewritings involve the writer comparing two of their own writings side by side. On 
three prominent occasions the professor compared his own written proof to the proof 
offered in the official textbook of the course.  On each occasion, the professor 
highlights a specific contrast:  

Gallian gives a short little argument / which I blithely followed the last time I taught it / and 
when I came to look at it this time I thought ‘says who?’ / I think he skipped a big step. 
(21.16)  

The contrast here is that Gallian considered some statement in his proof as not 
requiring explicit justification, expecting the reader to supply it. Presumably, Gallian 
expected such a justification to be quickly forthcoming in the reader, either instantly, 
or relatively instantly by jotting down a couple of lines.  To the professor the omitted 
justifications seemed to him to be significant enough to be written down in full in the 
proof. The proofs are otherwise of course very similar.  
The second occasion features two proofs that are quite dramatically different: "let me 
show you Gallian’s proof of theorem 5.2 / proof starts here and ends here / and look 
how many symbols he’s got / now what is he doing?” (14.23). His own proof is a single 
sentence that is 2 lines long, contains only words and no equations and only 5 symbols. 
He goes on to speculate that in his experience students, when they first write proofs, get 
seduced into thinking that enough symbols thrown around will eventually coalesce into 
a proof. He stresses on the other hand the "argument that convinces", and repeatedly 
asks the class if they are convinced by his argument. 
The next class, a student returns having carefully thought about his own reactions to 
both proofs:    

[I agree with your proof / I just think you have to think about yours a lot more] really ok / 
[than the one in Gallian / Gallian's just like- / grabs your hand- / and then takes you through 
/ the whole thing] right / [whereas yours you have to like / think about it and convince 
yourself / that's what I found]. (15.03)  

The professor’s response is to ask for what the student thinks needs to be added to the 
professor’s proof in order to make it a clear proof.  After some back and forth, and with 
the help of another student, the professor proposes a new clause to insert into his one 
sentence proof, which the student accepts as being a marked improvement. The 
professor then repeats his contrast with Gallian’s proof, by saying that even with the 
additional clause, his proof emphasizes a verbal argument as opposed to a 
symbol-heavy approach. 
We have seen two written proofs being contrasted in order to indicate that one has a 
gap, and also two written proofs contrasted in order to show a difference between a 
proof dominated by words and one dominated by symbols. A third type of contrast 
occurs much later in the course, and serves as a more sophisticated example.  Here the 
contrast is between a proof that refers to a previously proved lemma, whose statement 
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he can look up quickly and unambiguously, and a proof that appeals to a similar 
argument that occurs within another proof (which forces the sceptical reader to look 
through that other proof and figure out what is similar and what is not, and make the 
relevant adjustments, and decide whether the argument stays sound):  

I remember working very hard on this proof / trying to make it as clean as I could / I found 
it uh- / and again that went back to how we had- / that's why this lemma- / cause we didn't 
just use this once / we used it twice / that's why I pulled it out as a lemma / I got fed up with 
Gallian saying / oh by the innards of some working- / by a previous argument we know or 
whatever / I was like no / state it explicitly. (33.90)  

To extract from a proof a portion of material that can be arranged into a lemma 
statement and proof of that statement is a standard part of the work that a research 
mathematician does, and it is noteworthy that some modelling of this practice occurs in 
this upper year undergraduate course. The students hear their professor valuing 
explicitness (and therefore checkability), and if they imitatively adopt his value 
system, will learn to avoid arguments that include justificatory lines of the sort "by the 
same argument as in the proof of Theorem 2.1, we have…".  
Students contest whether a proffered proof actually constitutes a proof 
It is not surprising that after so many lectures of observing their professor assess how 
convincing a particular argument is that episodes developed where it was the students 
turn to flag a proposed argument (that their professor was fine with) which they 
believed required more justification. The finest example of this occurred when the 
professor drew a quick diagram on the board in order to justify a certain set theoretic 
statement. It was obvious that for the professor this was convincing, as he likely felt 
very confident in his ability to translate the diagram into the required few lines of proof 
– so much so that the diagram itself constituted enough justification for him.  Not so for 
one student, who was capable of performing the same translation of diagram into 
words and symbols, but felt morally required to include these lines in the actual proof:  

[shouldn't we prove that?] yeah I just- / well I just did / [proof by picture?] / are you 
convinced? / who's convinced? / hands up / see a proof is an argument that convinces- / I 
don't know / should I / maybe / I don't know / I think it's ok here / I th- I think that's ok / but 
I grant you that's a little bit borderline. (29.51) 

Throughout the course there were ongoing comments about the sorts of lines they used 
to include in proofs near the beginning of the course, when they were first getting 
accustomed to properties like associativity, and cancellation, and which gradually and 
then more rapidly began to be dropped from proofs as too obvious to mention.  
Matters of Style in Writing Proofs 
Although an absolute distinction can be difficult to draw, it seems clear that while there 
is a category of comments, considered above, that deal with values, and in which the 
professor has a strong opinion about which value to cherish the most, there is also a 
category of comments that deal with matters of style, and in which he allows that there 
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can be legitimate disagreement, even though he has a marked preference for one style 
over another:  

so I want someone to see where I'm going at the outset / as quickly as possible / I want the 
reader to try and understand / the structure of my argument / I find it really difficult and 
annoying to read a proof / where I'm in the nitty gritty detail / and I have no idea why 
they're doing what they're doing / I find it very very hard to follow / so I try when I'm 
writing a proof / to give the big picture up front if I can. (05.72) 

The stylistic preference is for the main structure of the proof to be presented at the 
beginning, so that the reader is clear on the overall strategy as soon as possible.  This is 
a theme the professor returns to frequently.  Here he defends this practice by noting 
that he himself can easily get lost trying to follow a proof if the architecture of the 
argument is unclear, and he doesn’t understand on a global level where the argument is 
headed or why.  A little later he elaborates on his reasons:  

but- so one reason I like to write proofs like this / is I find it easier to follow / but the second 
way- / reason I like to write my proofs like this / is cause I find it easier to do the proof 
right?  (05.83) 

So to the ease of reading a proof whose structure is set out at the beginning is added the 
ease of actually coming up with a correct proof when this writing procedure is 
followed. The point is later made more forcefully using the contrapositive: 

a different style would be to go all the way through to the end and say / hey look! we did it! 
/ and then you have to say / we did? really? when? how?  (11.21) 

Moments of needless surprise in reading a proof are to be avoided. This sounds so 
reasonable that one might wonder why anyone else would develop a different writing 
style. However, this neglects the important role of compression in writing proofs noted 
above. All things being equal, the shorter punchier denser proof, to the more 
experienced reader, will be preferred to a longer one that includes too many lines 
which that reader finds self-evident.  So to those readers to whom the sort of structure 
of the ensuing proof is tediously familiar, an opening line or paragraph that states this 
obvious-to-them structure will be unnecessary and perhaps even get in the way. 
In addition to setting the structure out up front, the professor frequently discusses the 
visual layout of the proof on the board, or on the page, with a view to making 
transparent the structure of the proof: "and there we go / the structure of the proof 
jumps out / even if we glance at it / because of the two headings / and the fact that I'm- 
/ indent my writing" (14.37). The word "glance" is significant, as it repeats the theme 
of speed and economy in reading and understanding a proof. A longer proof can be 
read in a shorter time given the appropriate typography.  Comments about headings, 
titles, bulletpoints, numbered claims, vertical alignment using indentation, and 
underlining, occurred often in the course: "and as usual / notice that I'm trying to make 
it easy to read the proof / with my case 1 and my case 2 and my underlining" (09.48). 
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Whereas the professor confidently asserts his belief in the importance of these stylistic 
choices, he is less declarative about the stylistic choice between a direct proof and a 
proof by contradiction:  

so how do we want this / I'm gonna write this as a contradiction / suppose for a moment for- 
/ you don't have to do this as a contradiction / you could go forward way / but I just thought 
that this was clearer for- for- / for my reading it was clearer to set up a contradiction. 
(10.55) 

He seems to see both approaches as valid options, although he remarks that one is 
slightly preferable.  Later he comments that a former student suggested he proved too 
many theorems by contradiction, and he acknowledges the truth of this:  "I was like 
yeah you're right / I turned that whole thing back to front for no good reason." (18.07).  
Proof/proving distinguished from conceptually nearby noun/verb 
Some forms of writing on the board serve a purpose close to the purpose that a proof 
would serve, but can be conceptually distinguished from proofs. For example, if a 
result is true for all integers, and if the statement is carefully studied in the case of a 
single integer, then the professor terms this as "illustrating" rather than "proving":  

if I want to prove that in general / I need to make a statement for every possible case / I'm 
just gonna illustrate one case / ok so I'm not proving this statement / I'm illustrating this 
statement. (04.50) 

Sometimes the consideration of a single case does not lead to enough insight so as to 
prove the general statement. In this example it turned out however that the argument 
justifying the single case could easily be rewritten into a proof of the general statement, 
so the professor introduces another term: "but the example I give you will give you a 
model / which you could use to prove the statement in general" (04.50). So sometimes 
a mere illustration can be promoted to a model for a proof (while still not constituting a 
proof itself, for this professor). 
Another distinction introduced is that between a proof and an outline of a proof:  

and the proof / well it's an outline / I'm not actually gonna- / I'm gonna define two maps / 
and then I'm going to say they are isomorphisms / and I'll leave you to check that they are 
isomorphisms / it's just a bit painful to do it all in class. (23.20) 

Note that the professor’s preference for setting out the structure of a proof up front 
dovetails nicely with leaving oneself the option of writing only an outline of a proof 
rather than the entire proof. Details that would back up one or another claim can either 
be proved later by the author, or left for the reader to fill in if there is no time.  In 
practice, as the professor himself comments, the parenthetical command "(check!)" 
can substitute for the writing which would have appeared in that location and which 
would have constituted a justification for the current claim in question. As the course 
goes on, and the theorems become harder and the time left grows shorter, more of these 
shorter justifications are left for the student to provide.  
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The last key distinction the professor draws is between a proof and the main idea or key 
idea of the proof. Often this main idea can be communicated, perhaps relying more on 
intuition and less on rigor:  

the proof according to Gallian is long and difficult / and it certainly looks long and difficult 
the way he writes it out / we're gonna skip that and focus on applying the theorem / but I 
will note in passing that Nathan Carter has a field day with this / and says you know the 
proof of the fundamental theorem of finite abelian groups / is pages long and it looks so 
complicated / but it's such a simple idea / if only you would start thinking about things 
visually. (31.72) 

The professor is referring here to a second book that though not the official textbook is 
a book he recommended at the start of the course and one that he frequently refers to in 
the course (and indeed some of the material he presents in class originates in that book, 
which he tells that class he worked through carefully in preparation for teaching an 
earlier incarnation of this course). So again, as the course gets further along, another 
choice the professor can make is to substitute a careful proof of a theorem (in this case 
the Fundamental Theorem of Finite Abelian Groups) with a discussion (along with 
accompanying diagrams) of why one might have expected this result to be true. Here 
the belligerent sceptical reader invoked in the first lecture would of course not be 
satisfied, but this manner of reading is not appropriate for a discussion of a main idea, 
nor for a discussion of other situations in which one might expect to see more 
applications or consequences of this main idea. 
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YOUNG CHILDREN’S UNDERSTANDING OF BENCHMARK 
ANGLES IN A DYNAMIC GEOMETRY ENVIRONMENT 

Harpreet Kaur 
Simon Fraser University 

 
This paper examines young children’s thinking about benchmark angles in a dynamic 
geometry environment. Using the dynamic sketches in Sketchpad, kindergarten 
children were able to develop an understanding of angle as “turn”, that is, of angle as 
describing an amount of turn. Children experienced different realizations about the 
benchmark angles and showed a shift from context specific descriptions to more 
general descriptions. Children’s gestures, motion and environment played an 
important role in their thinking. 

INTRODUCTION 
Angle is a basic concept that is used by humans in analysing their spatial environment. 
Even though children show sensitivity to the concept of angle from very early years 
(Spelke, Gilmore, & McCarthy, 2011), the multi-faceted nature of angle concept can 
pose challenges to learners, even into secondary school (Mitchelmore & White, 1995).  
Angles are normally introduced to children quite late in formal school settings. For 
example, in British Columbia, they are introduced in grade 6 (11-12 years old). The 
strong capacity of young children to attend to and identify angles in various physical 
contexts motivated the present study which aims at exploring the learning of angle 
concept at the K-1 grade levels. This paper reports on the working of 
Kindergarten/Grade 1 split class children on the concept of angles using sketches 
pre-constructed with The Geometer’s Sketchpad (Jackiw, 1991/2009). The focus of 
this research is to study how the use of this Dynamic geometry environment (DGE) 
affects the children’s thinking about angles as a “turn”. This paper, in particular, 
discusses the episodes where children attempt to explore the benchmark angles, after 
the ‘angle as a turn’ notion was developed in the first few episodes.  

CHILDREN’S UNDERSTANDING OF ANGLE 
In the research literature, the concept of angle is shown to have different perspectives, 
namely: angle as a geometric shape, union of two rays with a common end point 
(static); angle as movement; angle as rotation (dynamic); angle as measure; and, 
amount of turning (Henderson & Taimina, 2005). An understanding of angle 
incorporating all three definitions is a complex task that can be slowly developed over 
a long time (Lehrer, Jenkins, & Osana, 1998). Much research has been conducted on 
the development of the concept of angles, focusing at the grades 3, 4 and higher levels. 
Mitchelmore and White (1995) suggest that angles occur in a wide variety of physical 
situations that are not easily correlated, which makes it difficult to understand the 
concept of angle. Students also think that the length of the arms is related to the size of 
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the angle (Stavy & Tirosh, 2000). Most studies on benchmark angles are with older 
students, fourth and higher grades (Browning, Garza-Kling, & Sundling 2007; 
Millsaps, 2015; and Crompton, 2015). These studies mainly focus on comparing the 
relative size of angles using the terms acute, obtuse and right with reference to the 
benchmark angles and they used the standard units of angle measurement (degrees). 
The present study is different from the above studies in the sense that it does not focus 
on the standard measurement using dynamic protractor and classification of angles; 
rather it focuses on promoting and developing the interpretation of benchmark angles 
as a full turn or part of a full turn using dynamic sketches in Sketchpad. 

THEORETICAL PERSPECTIVE 
This study draws on the participationist view of learning as proposed by Sfard (2008) 
that recognizes a close relationship between thinking and communication. Sfard 
(2008) offers a communicational approach in her discursive framework, which is well 
suited to this study and has been shown to be effective by other researchers (Sinclair & 
Moss, 2012; Kaur, 2015) because it enables researchers to make claims about students’ 
thinking in terms of how students communicate. Sfard views thinking as a form of 
communication and knowing of mathematics as synonymous with the ability to 
participate in mathematics discourse. Thus, mathematical learning is the development 
of a mathematical discourse. According to Sfard, the mathematical discourse has four 
characteristic features: word use (vocabulary), visual mediators (the visual means with 
which the communication is mediated), routines (the meta-discursive rules that 
navigate the flow of communication) and narratives (any text that can be accepted as 
true such as axioms, definitions and theorems in mathematics). Learning geometry can 
thus be defined as the process through which a learner changes her ways of 
communicating through these four characteristic features. In this paper, it will be 
interesting to see whether or not there is a change of discourse about benchmark angles 
when children, along with their teacher, interact in a DGE. Sfard’s four features of 
mathematical discourse are described mainly in terms of verbal discourse. Since 
spoken discourse is multimodal, sometimes it fails to account for the full set of 
resources used by young children to communicate. Given the importance of gestures in 
communication of abstract ideas (Cook & Goldin-Meadow, 2006), and their potential 
to communicate temporal conceptions of mathematics (Núñez, 2003), it is necessary to 
focus not just on the words or the visual mediators that the children use, but also on 
their gestures. 

RESEARCH CONTEXT 
Participants and tasks 
We (research team and class teacher) worked with 22 kindergarten/grade1 children 
(aged 5-6) from a school in a rural low SES town in the northern part of British 
Columbia. The lessons related to angle were designed along with the classroom 
teacher, who has been developing her practice of using DGEs for a couple of years. 
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The teacher and children worked with angles in different ways, using Sketchpad for ten 
sessions (30-40 minutes each) in a whole class setting with children seated on a carpet 
in front of an IWB (Interactive Whiteboard). The children have worked with the 
sketchpad prior to the instruction of angles, where they explored the concept of 
symmetry using the sketchpad. All the sessions were videotaped and transcribed. This 
paper will focus only on the two (seventh and eighth) sessions, where students 
explored the benchmark angles.  
Dynamic angle sketches 
Using The Geometer’s Sketchpad, different sketches were designed to explore the 
concept of angle with the children during ten sessions. The concept of angle was 
introduced using the ‘driving angle sketch’. The ‘driving angle’ sketch (Figure 1a) 
shows both a static as well as dynamic sense of angle. It includes a car that can move 
forward as well as turn around a point. The turning is controlled by two small dials 
(each of which has two arms and a centre) - one dial allows clockwise turns and other 
counter-clockwise turns. No numbers are used. Five action buttons (Turn 
counter-clockwise, Drive Forward, Turn clockwise, Erase Traces and Reset) control 
the movement of the car. In this sketch, the turn of the car is associated with the amount 
of angle adjusted in the small dials. The traces of a turn offer a visible, geometric 
record of the amount of turn. So, in the first few sessions the children explored and 
understood the turning of the car and its association with the dial. 

   

1(a) Turning trace of car 
after pressing Turn 
clockwise button 

1(b) Benchmark 
angles sketch 

1(c) Traces after pressing ¼ 
turn button 

Figure 1(a, b, c): Dynamic sketches created in Sketchpad 
After the children developed some sense of angle as a turn, they were presented with 
benchmark angles sketch. For this purpose, a sketch shown in Figure 1(b & c) was 
designed using four different coloured squares positioned in a way so that there is a 90° 
angle between any two consecutive squared boxes. There is a circle in the centre, 
which is attached to another circular ball using a ray. There are four action buttons (¼ 
Turn, ½ Turn, ¾ Turn and 1 Turn) that control the movement of the ball. When you 
press any action button, the ball moves clockwise from one square to another, tracing 
its associated turn in the central circle. For example, pressing ¼ Turn button moves the 
ball by 90° (to next square) and generates the traces in the central circle (see Figure 1c). 
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The purpose of this sketch was to help children understand the commonly used 
benchmark angles without referring to any standard measurement units of angles such 
as degree, radian etc. 

EXPLORING THE BENCHMARK ANGLES  
To begin the seventh session, the teacher hid the ¾ turn button and presented the 
benchmark angles sketch with three buttons (1 turn, ½ turn and ¼ turn buttons). The 
following excerpt outlines the initial interaction with the benchmark sketch. 

No. Who said/did What was said/what was done 

887 Teacher (T) How many… I see a blue box, a purple box, a yellow box, a green box 
(pointing one by one at each box in Figure 2a)? How many boxes does a 
full turn going to touch?  

888 Larry Four  

889 Sss  Four  

890 T Four. Okay let’s see if you are right. (Neva presses the 1 turn button) 

891 Larry, Kia Five  

892 T Why five? 

893 Pat  Because it touch the same one 

894 T Because it touch the same one…two times.  

Then the teacher asks children to guess how many boxes will a half turn touch. 

897 Pat  Three  

Teacher asks Larry to press ½ turn button. 

899 Larry (Larry presses ½ turn button) <Figure 2b> 

900 T How many boxes did it touch? 

901 Sss Two, two, three 

902 T It was touching that one too (pointing at the top blue box and gesturing half 
turn clockwise with right hand, Figure 2c), so we will go three 

To begin with, the teacher drew children’s attention to all the four coloured boxes and 
asked, “how many boxes a full turn is going to touch”? Larry and other children’s 
responded with utterance “four” as in [888], [889]. The utterance “four” might be due 
to the fact that there were only four boxes on the screen. It is worth noting that the 
children showed interest in turning the car by full turn during the first session. So, they 
were familiar with the notion of full turn to some extent. So, maybe Larry and other 
children visualized the one turn and concluded that the ball would touch the four boxes. 
When Neva pressed 1 turn button, Larry and Kia uttered the word “five” [891], hence 
changing the initial utterance of “four” [888]. It seems like the rotational movement of 
the ball from blue box to purple, then yellow, then green and finally blue again acted as 
a visual mediator and provoked Larry and Kia to change their response to five. This is 
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confirmed by Pat’s utterance, “Because it touch the same one” [893]. Thus, the traces 
of turning ball provided a visual mediator for the children to count the boxes touched 
by the ball to five, although there were only four boxes present on the screen. This 
description of full turn in terms of number of boxes is very situated and is the result of 
the design of the sketch.  

(a) 

 

(b) 

 

(c) 
 

Figure 2 (a-c): (a) The benchmark angles sketch with three buttons (¼ turn, ½ turn and 
1 turn); (b) Traces after Larry presses ½ turn button; (c) The teacher’s gesture of half 

turn 
Later, when teacher asked the children to guess the number of boxes touched by a half 
turn, Pat responded with “three” [897]. This shows that Pat had developed a routine of 
counting the starting box. The children’s mixed responses “two, two, three” [901] on 
seeing the half turn taken by the ball suggests that some children counted the starting 
box for the ball, while others did not. Both the responses are correct depending upon 
the inclusion or exclusion of the starting box. The teacher’s utterance “It was touching 
that one too, so we will go three” [902] with her gesture (Figure 3c) suggests that she 
endorsed the routine of inclusion of the starting box while counting the number of 
boxes for a particular turn. Her half turn gesture from blue box, then purple and finally 
yellow box provided another visual mediator for the children to count three boxes for a 
half turn. Later, for quarter turn, the children gave mixed responses of “one” or “two” 
depending on their inclusion or exclusion of starting box. Thus, in the above episode, 
the children developed a routine of counting the boxes for describing the different 
benchmark turns. This routine is first initiated by teacher’s specific questions about 
how many boxes would be touched by a particular turn.  

DEVELOPING CONCEPTIONS OF ONE FULL TURN 
After the initial discussion of the benchmark turns in terms of number of boxes, the 
teacher asked the children to predict the colour of the box on which the ball would land 
after a particular turn. To start with the ball was at blue and the teacher pressed the 1 
turn button and the ball went back to blue again. The following excerpt describes the 
episode, when the ball was at the green box (Figure 3a) and the teacher asked the 
children to predict its position after one turn. The children gave mixed responses of 
yellow, purple and green. 
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No. Who said/did What was said/what was done 

965 T  Why purple, why green, why yellow, if I move it by one full turn? 

Maria’s response for green is as follows: 

967 Maria Because last time when it went around, it went to the blue again (making a 
full turn gesture with her right hand, Figure 3b), it might go back to the 
green again. 

After a little class discussion, teacher asks Peter to press the 1 turn button to verify the thoughts of 
everybody. The ball lands on green. 

978 T  It landed on the green. So what does one full turn mean? 

979 Maria  It means it goes back to the same colour.  

980 T  It means it goes back to the same colour. What else can one full turn mean? 
Maya 

981 Maya Full (Gesturing a full turn with her right hand 3 times repeatedly, Figure 
3c)  

After little more discussion, the teacher moves the ball to the purple box (Figure 3d) and asks what colour 
will it land on? 

990 Sss Purple 
991 T  Why?  
992 Maria  Because it goes back to the same colour (making a full circle gesture with 

right arm, same as Figure 3b) 

993 Larry It goes back to the start 

Maria predicted that the ball might land on the green box. Her utterance, “Last time 
when it went around, it went to the blue again, so it might go to the green again” [967] 
along with the full turn gesture with her right arm (Figure 3b) suggests that she 
projected the ball on different starting position (colour) and she was using her 
embodied gesture as a visual mediator which helped her to predict the position of the 
ball after one full turn.  She associated her description of the full turn with the words 
like “around” and “again”. The word “around” suggests the movement and the word 
“again” suggests the recurrence of something. Thus, Maria’s description of one full 
turn is dynamic in nature, which might be partly due to the dynamic nature of the 
learning environment.  Maria’s later statement about full turn, “It means it goes back to 
the same colour” [979] is more general and is independent of any particular colour.  
Upon asking about other ways to describe a full turn, Maya did a repeated circular 
gesture (Figure 3c) with her right arm. Maya’s this description of full turn can be 
considered as a general gesture for the full turn, as she didn’t start her circular gesture 
from the side (pointing towards the green colour) rather she started her circle from the 
top and finished towards the top direction after going around the full circle. Maya’s 
circular gesture is associated with the motion and hence suggests a dynamic sense of 
angle.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3(a-d): (a) Ball on green box when teacher asked the question; (b) Maria’s 
gesture for one full turn; (c) Maya’s description of a full turn; (d) Ball at purple  

If one compares Maria’s utterance [992] and Larry’s utterance [993], it can be noticed 
that Maria’s description is context specific as she uses the words “back to the same 
colour”, whereas Larry’s utterance, “It goes back to the start” is independent of any 
context.  
After the initial review of the realizations of the full turn, quarter turn and half turn in 
terms of number of squares passed by them, the teacher proceeded to the discussion of 
three quarter turns. 
1213 T  One quarter touches how many squares? 
1214 Sss  One  
1215 T  One more. So it touches two of the squares. This one (pointing at blue square) and 

this one (pointing at purple square) 
1216 T  Okay, so a half-turn goes past how many… touches how many? 
1217 Sss  Two  
1218 T  It goes past two. Okay. And then three quarters is going to go past how many? 
1219 Sss  Three, three 
The teacher’s question, “then three quarters is going to go past how many?” (1218) 
invited the children to predict the number of boxes covered by the three quarters turn, 
to which the children responded “three” (1219). The response “three” might be 
initiated due to different factors for different children. First, it might be due to the 
sequence in which the teacher asked the questions. The teacher asked about the number 
of boxes covered by a quarter turn (1213), half turn (1216) and three quarters turn 
(1218) respectively. The increasing number of boxes for each subsequent response 
(1214, 1217, 1219) might have triggered the use of word “three”. Secondly, the 
presentation of the four turn buttons in the sketch follows the increasing sequence (¼ 
turn, ½ turn, ¾ turn and 1 turn), which might have initiated the use of word “three” for 
three quarters turn. Thirdly, the utterance “three” might be occurred due to the number 
“3” on the ¾ turn button in the sketch. Fourthly, because the children had enough 
practice with the quarter turn, half turn and full turn in the previous session where they 
saw one, two and four boxes covered by these turns respectively, so the only choice left 
was “three”. Lastly, the children might be visualising a quarter turn three times to see 
how many boxes would be covered by a three quarters turn.  
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After some practice with the use of the ¾ turn button, the teacher asked the children if 
they can reach at a particular colour with the use of two turn buttons. 

No. Who said/did What was said/what was done 
1237 T  Okay come on up and do it Maria. I want it to land on the purple, but I want you to 

take two turns to do it. (The ball was on the yellow box, Figure 4a) 
1238 Maria  (Maria presses the ½ turn button first (Figure 4b) and the she presses the ¼ turn 

button (Figure 4c) 
Later the teacher asks the children to articulate the combination turns for three quarters turn. 

1242 T  So the three quarters is the same as what? It is same as what other ones? 
1243 Maria  Half and quarter   

To make the ball turn from yellow box to green box, Maria used the combination of ½ 
turn and ¼ turn buttons (1238) respectively.  After Maria’s physical manipulation on 
the sketch, the teacher invited the children to verbalise her actions. The teacher asked 
about the other turns that are equivalent to three quarters turn. Maria responded “half 
and quarter” (1243) were the same as the three quarters turn. Thus, for the realization 
of a three quarters turn as a combination of a half and a quarter turn, Maria’s physical 
manipulation was followed by her verbal actions.  

(a) 

 

(b) 

 

(c) 

 

Figure 4 (a-c):  (a) the position of the ball when Maria started the task; (b) the position 
of the ball after Maria pressed the ½ turn button; (c) the position of the ball after Maria 

pressed the ¼ turn button. 

DISCUSSION AND CONCLUSION 
Thus, in the above episodes, initially the children developed a routine of counting the 
boxes for describing the different benchmark turns. They formed a mixed routine of 
inclusion or exclusion of the starting box for their counting. This description of 
benchmark angles was very context specific. The realization of signifier one full turn 
unfolded in a series of steps. Maria first described one full turn as starting at a 
particular colour and then ending at that particular colour again. Later, her description 
of full turn was replaced with more general description as going “back to the same 
colour”. The use of words “same colour” in [979, 992] encapsulates all the four colours 
(blue, purple, yellow and green), thus turning the different coloured boxes in a single 
entity. And finally Larry’s context free description of full turn as going “back to start” 
covers all instances of a full turn, thus reifying the discourse about one full turn to 
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some extent. Maya and Maria also described one full turn through their embodied 
actions. It seems like their gestures (Figure 3b, c) are perfect descriptions for one full 
turn and these can be treated as “embodied narratives” for the signifier full turn.  
The teacher’s move of not presenting the ¾ turn button in the sketch initially was 
helpful in arousing the need to use the combination of two turns together and in setting 
the stage for introducing the concept of three quarters turn. The children demonstrated 
that a three quarters turn was same as a half turn and a quarter turn together.  
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DISCURSIVE PATTERNS IN THE MATHEMATICS TEACHER 
BLOGOSPHERE 

Judy Larsen 
Simon Fraser University 

 
Teacher collaboration is essential for improving teaching, but is often difficult to 
establish and sustain in a productive manner.  Despite this, an unprompted, unfunded, 
unmandated, and largely unstudied mathematics teacher community has emerged 
where mathematics teachers use social media to communicate about the teaching and 
learning of mathematics. This paper presents an analysis of one episode where 
teachers engage in a prolonged exchange about responding to a common 
mathematical error. Analytical tools drawn from variation theory are used to explain 
generative moments of interaction. Results indicate that discursive patterns signal 
taken-as-shared pedagogical approaches, which can extend the space of possible 
variation while establishing a range of permissible change. 

INTRODUCTION 
Teacher collaboration, community building, and networking are indispensible 
components of effective teacher professional development (Lerman & Zehetmeier, 
2008). However, due to time, funding, and facilitation constraints, teacher professional 
development initiatives are commonly limited to sparse one-time workshops held in 
face-to-face synchronous settings. Such workshops, due to their temporal nature, are 
generally unconducive to building sustainable communities in which teachers 
collaborate daily.  
In contrast to centrally organized and synchronous professional development 
initiatives, teachers from across North America are participating in decentralized, 
virtual, and autonomous professional communities. One such community involves 
hundreds of geographically separated mathematics teachers who regularly use Twitter 
in conjunction with blog pages to publicly communicate their musings and practices, 
and have come to be identified as the Math Twitter Blogosphere (MTBoS) (Larsen, 
2016). These teachers participate frequently, and hold prolonged conversations about 
mathematics teaching that are longer than typical interactions on Twitter. Most Twitter 
reply threads do not extend past two replies deep, meaning that most Twitter posts are 
not likely to get a reply followed by a reply to that reply (Sysmos, 2010). However, 
conversations among mathematics teachers on Twitter can at times extend more than 
20 replies deep. As such, Twitter is providing space for asynchronous mathematics 
teacher collaboration in an unmandated virtual environment. 
This unprompted, unfunded, and unevaluated teacher community is a rich 
phenomenon of interest that is largely unstudied. Only one empirical investigation into 
the nature of this community has been undertaken by Parrish (2016), who identifies the 
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MTBoS as “a promising avenue for providing support to teachers in selecting and 
implementing cognitively demanding tasks” (p. ii). Parrish (2016) indicates that 
further study is needed to explore the nature of interactions in the MTBoS community, 
and to identify what receives attention in this community. As such, this paper aims to 
investigate the nature of prolonged interactions between mathematics teachers on 
Twitter that extend past three replies deep. This investigation is part of a larger study 
on the affordances of the mathematics teacher blogosphere for teachers who engage in 
it regularly. This paper is not concerned with teacher knowledge (Ball, Thames, & 
Phelps, 2008; Shulman, 1986), but rather with the discursive elements that promote 
prolonged social interaction around issues of mathematics teaching in the Twitter 
environment and the issues that these interactions illuminate. 

THEORETICAL FRAMEWORK 
The underlying theoretical framework in this study is that of communities of practice 
(Wenger, 1998) because it is a mid-level theory that accounts for situated participation. 
Communities of practice is a social theory of learning where learning is considered as 
increasing participation in the pursuit of valued enterprises that are meaningful in a 
social context. Practice is at the heart of Wenger’s (1998) communities of practice, and 
a key aspect of practice is the ability to motivate the social production of meaning. The 
continuous production of meaning is termed as the negotiation of meaning, which in 
the blogosphere happens through continued interactions (Larsen, 2016). In the search 
for meaning within mathematics teacher interactions on Twitter, a more specific lens is 
necessary to examine how and what teachers co-constitute when engaging in 
prolonged interaction on Twitter. To this end, a theory that reveals the space of 
possible learning within a set of interactions, such as variation theory (Marton & 
Booth, 1997; Runesson, 2005; Watson & Mason, 2006), is desirable.  
Variation theory is fundamentally interested in identifying the space of possible 
variation and the range of permissible change (Watson & Mason, 2006). Watson and 
Mason (2006) explain that by identifying aspects that are kept constant and aspects that 
are varied (space of possible variation), as well as how they are varied (range of 
permissible change), the object of learning may be revealed. According to Runesson 
(2005), “the enacted object of learning [is seen] as a space of variation . . . [and] as a 
potential for learning” (p. 83). That is, by looking for variance and invariance within 
exchanges, it is possible to identify what is available for participants to notice.  
Further, Watson and Mason (2006) note that sensing the possible variation in a 
relationship is considered an act of generalization, which requires a heightened level of 
awareness. Mason and Pimm (1984) note that such awareness develops through 
experience, and may be brought forth through stressing and ignoring various features 
through variance and invariance. Although these notions are theorized within 
mathematical contexts, I suggest they may be extended to examples of mathematics 
teaching. As such, constructs from variation theory are used to analyse moments in 
which teachers engage in prolonged moments of negotiation in the MTBoS.  
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METHOD 
Given that the MTBoS began developing as early as 2006 when mathematics teacher 
bloggers began to incorporate the use of Twitter into their blogging practice, and that 
there are over 500 self-identified MTBoS members, many of whom post multiple times 
a day, the sheer mass of data that has accumulated over the past few years makes the 
phenomenon too large to study within the confines of this paper. As such, a very 
specific subset is chosen as the data set for this paper. This subset contains all 
responses to a given Twitter post made by one particularly well-followed member. 
This conversation reflects the breadth and depth of MTBoS because it includes both 
very brief responses that do not continue conversation, and responses that initiate 
further conversation, both of which are generally encountered within the MTBoS.  
Since Twitter is an ultra-personalized environment where users only see posts made by 
members they subscribe to as ‘followers’, I have taken an ethnographic approach as 
participant observer by immersing myself in the MTBoS community and subscribing 
to over 400 mathematics teachers who engage in the MTBoS. Without such an 
immersion, noticing and identifying the data set would be near to impossible. In 
addition, Twitter offers a feature which gives updates on the most relevant and most 
replied-to tweets one has missed. This feature enabled me to identify a particular post 
that generated a significant number of replies from mathematics teachers around the 
world.  This post was made by Michael Fenton, who has over 4000 followers, and 
asked users about how they would respond to a mathematical error (see fig. 1). 

 

Figure 1: Fenton’s initial math mistake query 
Fenton’s post elicited 254 replies from a total of 87 users, 52 of whom identify 
themselves as mathematics teachers. Replies included explaining the error, explaining 
why the error could have been made, describing a teaching approach to help the student 
come to a deeper understanding about the nature of the error, and generating activities 
to use with students to help mitigate this error. With an effort to maintain the reply 
structure and the chronological order of posts, the data was organized into threads. 
Some of these threads were considered as non-continuing replies because they were 
made by one user and spawned little to no discussion. Other threads were considered as 
continuing because they included conversation between at least two users and elicited 
more than four subsequent replies. Out of the total 254 tweets, 84 were identified as 
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non-continuing, 155 were identified as continuing, and 15 were irrelevant. Since 
prolonged negotiation is of interest in this study, the 155 continuing tweets were 
reconstructed based on both chronology and logical conversation order into ten threads 
ranging from 5 to 45 tweets in depth. A thread of depth 29 was chosen for analysis 
because it consisted of discussion pertaining directly to Fenton’s original inquiry and 
was adequately deep. These 29 tweets form the data set for this paper. 
With an aim of understanding the meaning that is made within prolonged interactions 
among mathematics teachers on Twitter, this data was analysed for variance and 
invariance (Marton & Booth, 1997; Runesson, 2005; Watson & Mason, 2006), which 
in turn helped identify moments of stressing and ignoring (Mason & Pimm, 1984), and 
the enacted object of learning (Runesson, 2005). In what follows, a reduced version of 
the selected conversation thread is presented, and is then reviewed in terms of the 
analytical framework. Conclusions are then drawn to illuminate the nature of 
prolonged interactions between mathematics teachers on Twitter.  

RESULTS 
On June 10th, 2016, Michael Fenton (@mjfenton) asks his followers to think about how 
they would respond to a mathematical error made by a student as shown in Figure 1. 
One of the reply threads is initiated by Max Ray-Riek (@maxmathforum). Ray-Riek 
begins exploring the ideas around the prompt, and doesn’t end at his first response, but 
rather, continues his thinking in a journal-like fashion.  

June 10  07:50 @maxmathforum  @mjfenton (x-3)(x-2) = 2 still only has 2 answers 
... there is only one set of factors of 2 that make 
this true. Why those? Hmm ... 

June 10  07:56 @maxmathforum  @mjfenton I think the direction I'd go is to look at 
solving a bunch of quadratics that = 2. They all 
have different factors. Compare to = 0  

June 10  08:22 @maxmathforum  @mjfenton I think I'd look at (x+8)(x+4) = 12, 
(x-1)(x-2) = 12, and (x-6)(x-10) = 12. Analytically 
we could come up w/ different sol'ns … 

Five days later, Michael Pershan (@mpershan) replies to one of Ray-Riek’s tweets 
with an example of an instructional routine activity referred to as an ‘equation string’. 

June 15  17:19 @mpershan  @maxmathforum @mjfenton How does the 
approach this equation string aims at compare to 
what you'd be aiming for? 

 
June 15  19:19 @maxmathforum  @mpershan @mjfenton not thinking of it as eqn 

string. Idea is that each has solns at different 
factors of 2. 
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June 15  19:30 @maxmathforum  @mpershan @mjfenton oh now I see the string 
you are talking about. Is the idea here that 1) is 
easy and 2) is not b/c hard to get 7*5? 

June 15  19:33 @maxmathforum  @mpershan @mjfenton oh! Now I see the whole 
string. X=7, A=0, A=10,Y=3 or 10 ... No, I don't 
think your string gets at the same idea I had. 

June 15  19:56 @mpershan @maxmathforum @mjfenton Interesting. I 
thought it might be the same idea because I'm 
urging you to go back to multiplication here? 

June 16  03:35 @maxmathforum  @mpershan @mjfenton definitely related, but it 
matters to me that I'm focused on three problems 
that all = 12 but in different ways. 

June 16  03:48 @mpershan  @maxmathforum @mjfenton Do you think we're 
aiming to support learning the same sort of 
thinking? Different paths to same goal? 

After another set of interactions between Ray-Riek and Pershan where Pershan 
proposes another equation string example, they discuss their intentions more broadly. 

June 16  05:06 @maxmathforum @mpershan @mjfenton I see value in exploring 
multiple examples that = x and also multiple 
examples that factor easily in only one way 

June 16  05:08 @mpershan  @maxmathforum @mjfenton I don't quite yet 
understand why we want multiple examples that = 
x, but I think I'm getting there. 

June 16  05:55 @maxmathforum  @mpershan @mjfenton mainly bc kids ignore the 
negative/non-obvious solutions, hence different 
problems that obviously factor differently 

Ray-Riek then suggests an instructional routine called ‘which one doesn’t belong’. 
June 16  05:55 @maxmathforum @mpershan @mjfenton I wonder about a #wodb 

with  
    A: (x-2)(x-1)=12, 
    B: (x-2)(x-1 )=0, 
    C: (x-5)(x+2)=0 
       What might kids notice? 

This sparks a discussion that draws Kate Fisher (@K8Fisher) into the exploration. 
June 16  08:15 @K8Fisher @maxmathforum @mpershan @mjfenton B/C are 

equal to 0, A/B have same factors 
June 16  10:21 @maxmathforum @K8Fisher @mpershan @mjfenton Is there a 

reason why B doesn't belong? 
June 16  10:29 @K8Fisher @maxmathforum @mpershan @mjfenton B's 

solutions are both positive. 
June 16  13:33 @maxmathforum @K8Fisher @mpershan @mjfenton How do you 

know that A's solutions aren't both positive? 
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June 16  13:45 @K8Fisher @maxmathforum @mpershan @mjfenton Factors 
have a diff of 1, so pairs must be 3,4 or -3 ,-4. x can 
either be 5 or -2. 

June 16  14:42 @maxmathforum @K8Fisher @mpershan @mjfenton Oh, that's 
neat -- that means A and C have the same 
solutions, too. 

June 16  13:46 @K8Fisher @maxmathforum @mpershan @mjfenton I hope 
my Ss would see the difference in the factors to 
simplify solving. 

ANALYSIS AND DISCUSSION 
In the initial journal-like thread where Ray-Riek tweets out his thoughts in response to 
the original prompt, Ray-Riek stresses factors that have a product of 2 by keeping it 
invariant. He introduces variance in the quadratics, and generalizes that he would 
solve “a bunch of quadratics that = 2”. Next, he produces an example according to this 
approach of generating a “bunch of quadratics” equal to a constant value: “I think I’d 
look at (x+8)(x+4) = 12, (x-1)(x-2) = 12, and (x-6)(x-10) = 12”. Here, Ray-Riek is 
stressing the factored quadratic equation structure as well as the notion of product. 
Ray-Riek introduces a space of possible variation by holding the equation format and 
product invariant, and varying the factors. He also exemplifies an approach for 
responding to the original query with a sequence of examples, contributing to a range 
of permissible change and setting the object of learning as that of producing examples. 
In the next passage, Pershan works within the confines of this range of permissible 
change by holding the format of the equations invariant and maintaining an ‘equation 
string’ approach. Within this structure, he varies the values of the factors and the 
products in a way that stresses the importance of 0 as a product. Pershan not only 
varies the values, he also varies the pedagogical approach and associates it specifically 
with an instructional routine referred to as a ‘problem string’. A ‘problem string’ is 
known as a practice where “students answer related questions, the teacher models 
student thinking, [and] students construct relationships and connections” (Harris, n.d., 
para 3). It is a structure that exists elsewhere in the data and is used by members who 
are relatively active in the MTBoS. Using the term ‘equation string’ signals an 
associated implementation and structure. It also continues to play a role in the 
subsequent tweets, forming a discursive pattern of invariance around a notion that is 
taken-as-shared between Ray-Riek and Pershan.  
Although Ray-Riek entertains the idea of Pershan’s suggested ‘equation string’, he 
concludes that there is variance not just in the specific values, but also in the intention 
of what the string of equations is designed to elicit for a hypothetical student. Ray-Riek 
draws attention to this variance around intention by stating, “No, I don’t think your 
string gets at the same idea I had,” which prompts further conversation about 
approaches towards guiding student thinking. Pershan then responds by asking, “Do 
you think we’re aiming to support learning the same sort of thinking? Different paths 
to same goal?” At this moment, it seems that they are negotiating what is variant and 



MEDS-C 2016  Larsen 

67 

what is invariant in terms of their pedagogical approaches. This prompts Ray-Riek to 
restate his intentions of keeping the product the same so that students can potentially 
have their attention drawn to the notion of how to get products to be the same in 
different ways. They establish that their object of learning is to guide student thinking 
through a sequence of related mathematical examples, but that there is variance in 
what they are working to illuminate within the examples. 
Eventually, Ray-Riek proposes an alternate example, introducing another instructional 
routine that is commonly referred to as ‘which one doesn’t belong’, a discursive 
pattern used by many members of the MTBoS signalled by the hashtag #wodb. A 
‘which one doesn’t belong’ problem typically has three or four different problems or 
images from which students are asked to identify similarities and differences with an 
aim to prove how each option could ‘not belong’. In this case, Ray-Riek holds the 
format of the equations and the general structure of a sequence of equations invariant 
as compared to previous examples, but strategically varies the product and the factors 
in such a way that every pair of equations has some variance and some invariance. He 
also chooses to vary the instructional routine in a way that remains within the range of 
permissible change that has been negotiated through these interactions. In doing so, 
Ray-Riek has taken the ideas he began expressing initially around holding the product 
invariant, while also incorporating Pershan’s ideas around drawing attention to the 
product of 0. Through their continued negotiation in which various features and 
intentions are stressed and ignored using variance and invariance, Ray-Riek and 
Pershan have extended the space of possible variation and developed novel examples 
for helping guide student noticing in relation to solving quadratic equations. 
Interestingly, the use of the #wodb discursive pattern attracts a new member to 
participate in further negotiation. In subsequent tweets, Fisher explores the variance 
and invariance between equations provided by Ray-Riek in his #wodb example. In 
doing so, she stresses what students may see and reinforces the taken-as-shared 
understanding of what it means to work through a #wodb example. The object of 
learning is therefore not only to produce examples, but also to interpret them. 

CONCLUSION 
The above transcript and analysis illustrates a prolonged negotiation in response to a 
specific query. By observing the sources of variance and invariance between 
interactions, it is evident that these members are extending the space of possible 
variation while inadvertently establishing and working within a range of permissible 
change. Sources of invariance, such as holding the structure of the equations constant, 
allow for attention to be drawn to sources of variance, such as the taken-as-shared 
pedagogical approaches used to enhance the tasks. These taken-as-shared pedagogical 
approaches, including ‘equation strings’ and ‘which one doesn’t belong’, form 
discursive patterns that signal a pattern of interaction that shapes the conversation and 
allows for novel ideas to develop and continue within the parameters of the familiar. In 
this way, the space of possible variation is extended while maintaining a sense of a 
range of permissible change and establishing the object of learning as that of 
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innovating and interpreting. The key implications of this are that interactions between 
mathematics teachers in this virtual social media space can foster novel ideas for 
teaching mathematics in classrooms. An important aspect found in the case presented 
in this paper is the use of taken-as-shared pedagogical practices signalled by 
discursive patterns that are recognized by MTBoS members. Further investigation into 
the roles of such discursive patterns as they occur within prolonged exchanges between 
mathematics teachers of the MTBoS is necessary because they seem to be a 
contributing factor in the continued collaboration among teachers and the development 
of novel approaches to teaching mathematics. 
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On October 23, 2015, CBC radio host Rick Cluff conducted an interview with cognitive 
neuroscientist Daniel Ansari on developmental dyscalculia, discussing what it is, its 
effects and its treatments.  The purpose of this paper is to apply the methods of critical 
discourse analysis to examine the interaction between host and interviewee to see what 
lines of inquiry emerge.  The intent is to demonstrate how the nature of the medium 
positions the host and interviewee in relation to dyscalculia, and how the medium 
represents developmental dyscalculia, those who have it, and its treatments to the CBC 
audience.  Analysis suggests that the radio interview enables certain traditional 
storylines regarding developmental dyscalculia to be told while also allowing some 
alternative ones to emerge. 

INTRODUCTION 
This study is part of a larger research project aimed at analyzing the various 
representations of mathematical learning disabilities (MLD) in various media such as 
the Internet, textbooks, policy documents, and academic articles.  This paper is a brief 
analysis of a CBC radio interview conducted the morning of October 23, 2015.  Rick 
Cluff is the host and his interviewee is cognitive neuroscientist Daniel Ansari.  Daniel 
would be speaking that day in Vancouver at the Eaton Arrowsmith Neuroplasticity and 
Education Conference.  The topic of the interview is developmental dyscalculia (DD) 
and the interview can be listened to in its entirety at 
http://www.cbc.ca/news/canada/british-columbia/programs/theearlyedition/dyscalculi
a-needs-more-attention-says-neuroscientists-1.3286224 (5:13 in length).   
The purpose of this study is to examine how various discourses on MLD used in this 
interview help shape our “common sense” understandings of what MLD, particularly 
DD, are and if there are also any competing meanings.  While much has been written 
about reading disabilities such as dyslexia, much less has been written about 
dyscalculia (Mazzocco, 2007).  By applying the methods of critical discourse analysis 
(CDA) to this interview, I aim to explore how language in use creates certain identities, 
relations, and realities around the concept of MLD.  My concern is less about finding 
the “truth” about DD than about investigating how competing “truths” about the nature 
of DD struggle for hegemony within the same social domain. 
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THEORETICAL AND METHODOLOGICAL FRAMEWORK 
Norman Fairclough’s (1992) CDA is a useful framework for analyzing discourse as 
social practice and, in particular, the discursive practices used in the CBC interview.  
The main objective of Fairclough’s approach to language analysis is to study social and 
cultural change.  Shifts in language use play a central role in the understanding of 
changes in social phenomena.  Fairclough’s CDA synthesizes two different senses of 
discourse—the social-theoretical sense (such as Foucault’s) and the 
“text-and-interaction” sense—and forms a three-dimensional model in the following 
way: 

Any discursive “event” (i.e. any instance of discourse) is seen as being simultaneously a 
piece of text, an instance of discursive practice, and an instance of social practice.  The 
“text” dimension attends to language analysis of texts.  The “discursive practice” 
dimension, like “interaction” in the “text-and-interaction” view of discourse, specifies the 
nature of the processes of text production and interpretation, for example which types of 
discourse (including “discourses” in the more social-theoretical sense) are drawn upon and 
how they are combined.  The “social practice” dimension attends to issues of concern in 
social analysis such as the institutional and organizational circumstances of the discursive 
event and how that shapes the nature of the discursive practice, and the 
constitutive/constructive effects of discourse referred to above.  (Fairclough, 1992, p. 4) 

This synthesis of the socially and linguistically oriented views of discourse is what 
Fairclough calls a “social theory of discourse.” His multi-dimensional approach 
emphasizes the importance of text and language analysis such as systemic functional 
linguistics (see Halliday, 1994) in discourse analysis and has developed an explicit and 
operational approach for researchers to analyze discourses.  There are two key focal 
points of any analysis in Fairclough’s CDA:  the order of discourse (the totality of 
discursive practices of an institution, and the relationships between them) and the 
communicative event (an instance of language use).  Due to the small scope of this 
paper, the focus will be on the communicative event (the radio interview), and 
Fairclough’s three-dimensional model of discourse (as text, discursive practice, and 
social practice) will be applied to it.   
My analysis of these three dimensions for the radio interview will be done separately.  
Firstly, the analysis of discourse as text involves a focus on the linguistic features of a 
text (linguistic analysis) and looks at eight analytical properties:  interactional control, 
modality, politeness, ethos, connectives and argumentation, transitivity and theme, 
word meaning and wording, and metaphor.  I will examine each of these eight 
properties in turn.  The analysis of discourse as discursive practice concerns how 
authors draw on existing discourses and genres to create a new text.  A key question to 
ask is:  Are discourse types (genres and discourses) used conventionally or creatively?  
Conventional discourse practice involves a normative use of discourse types and helps 
to reproduce the relationships in the order of discourse.  On the other hand, creative 
discourse practice often mixes together a number of genres and discourses and helps to 
restructure the boundaries of the order of discourse.  The last dimension to be 
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considered when analyzing a discourse sample is discourse as social practice:  What is 
the relation between this discourse practice and the larger social structure to which it 
belongs (is it conventional and normative or creative and innovative)?  Does it 
transform or reproduce existing social practices?   

TEXT ANALYSIS 
Note that prior to analysis, the radio interview was transcribed in detail noting any 
pauses, interruptions, changes in intonation and other things of possible significance.   
Interactional Control 
This interview is a cordial exchange between Rick Cluff and Daniel Ansari and follows 
a formulaic interaction.  Both participants play their assigned roles:  Rick as the 
interested host who asks the types of questions an audience member might ask, and 
Daniel as the expert who must describe this disability to the lay public in a way they 
may understand.  The line of questioning follows a similar pattern to that of other 
interviews with medical experts that often begin with a definition of the condition, 
followed by its characteristics and treatments.  Rick has full control of the line of 
questioning and goes through his list of questions and Daniel his responses with little 
interruption. 
There is no veering off topic and little follow-up or evaluation of responses.  The only 
follow-up that Rick makes to one of Daniel’s responses is when he points out that 
“’Awareness’ is the key word there.”  Similarly, Daniel’s only evaluation of one of 
Rick’s questions is when he says, “That’s absolutely right Rick,” early on in the 
interview when he agrees that there is a reason for many people not getting math.  Rick 
and Daniel must “stick to script” as both are aware there is limited time in the radio 
interview and that the purpose of the interview is to raise some awareness of the 
disability and to promote the upcoming conference.  While Rick introduces all topics, 
the interview feels so formulaic from both parties that questions of control and policing 
seem irrelevant and there seems to be no motivation for controversy or to delve too 
deeply into the disability. 
Modality 
Modality refers to the affinity one has with a particular proposition.  Daniel stands 
strongly behind his statements and says them clearly and confidently.  However, there 
are two notable instances of modality that indicate some degree of uncertainty.  The 
first occurs when he talks about the causes of dyscalculia:  “We and others think that 
developmental dyscalculia is caused by deficit in the ability to deal with very simple 
magnitudes.”  The cause of dyscalculia is not one hundred percent certain but his 
research suggests that it may be due to this particular deficit.  It is not clear however 
what causes this deficit in the ability to deal with very simple magnitudes in the first 
place.  Is it due to a particular disorder in the brain?  This is unclear and Rick does not 
pursue the matter any further. 



MEDS-C 2016  Lee 

72 

The second notable instance of modality occurs when Daniel talks about the 
interventions for dyscalculia.  In his response to Rick’s question, “Is this something 
that can be treated?”, Daniel hedges in almost every sentence of his response:  “I 
believe so”; “You know, we are still working on the best interventions”; “We need 
more randomized control trials”; “I do think you can remediate developmental 
dyscalculia to some extent”; “There’s no reason to expect that that might not be the 
case for math.”  Daniel does not suggest any specific treatments for dyscalculia either, 
although he seems hopeful there will be interventions developed in the future.  His 
response is reminiscent of a medical specialist couching his response with an element 
of cautious optimism.  
Politeness 
Politeness strategies used in discourse implicitly suggest particular social and power 
relations.  As mentioned, this is a very cordial exchange.  Right from the beginning of 
the interview, Rick defers to the expert by asking, “Am I saying that correctly?” with 
regards to the pronunciation of “dyscalculia.” Throughout the entire interview, Rick 
never interrupts the professor and demonstrates his respect towards the professor 
through the interested tone of his questioning.  This respect seems mutual however.  
The addressing of each other by first names “Rick” and “Daniel” suggests a 
friendliness and equal power relation between host and interviewee.  Rick only 
addresses Daniel as “professor” in the introduction and at the end of the interview.  
This has the affect of making the neuroscientist seem more accessible and likable to the 
layperson compared to the stereotypical stodgy and impenetrable professor.  This 
friendly tone of the interview is carried right to end in the closing salutations.  Rick:  
“Daniel, fascinating topic.  Thank you for joining us this morning.  Enjoy your stay 
here in Vancouver.”  And Daniel’s response:  “Thanks very much for having me.” 
Ethos 
Ethos considers not just discourse but the whole body in constructing “selves” or social 
identities.  While this is a radio interview and audiences only hear the audio it is worth 
noting Rick’s comment that Daniel “joins us here in studio ten this morning.”  Rick’s 
use of the word “us” is ambiguous and can imply the workers in the studio or the entire 
listening audience.  The latter would suggest that it isn’t just Rick who’s interviewing 
Daniel but Rick as a representative of the wider CBC audience hence metaphorically 
shortening the distance between listener and interviewed.  Moreover, while this is a 
formal interview setting in the sense that the interviewer is on one side of the table and 
the interviewed is on the other side, the interview takes place “in studio” as opposed to 
over the phone which makes the interview seem more intimate and lowers the barrier 
posed by such a technical topic such as dyscalculia. 
Connectives and Argumentation 
This analytical property is related to cohesion.  Fairclough (1992) notes that “text types 
differ in the sorts of relation that are set up between their clauses, and in the sorts of 
cohesion they favour, and such differences may be of cultural or ideological 
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significance” (p. 174).  Fairclough distinguishes three main types of relation between 
clauses:  elaboration, extension, and enhancement.  He also distinguishes four main 
types of explicit cohesive markings:  reference, substitution and ellipsis, conjunction 
and lexical cohesion (e.g. word repetition or the use of synonyms).  (See Halliday, 
1994 for a more thorough discussion.)  Analyzing all such relations and markings in 
this interview would be beyond this paper, although I will note a couple of them.  
Firstly, this interview is a very cohesive interview overall in the sense that Rick asks a 
question and Daniel proceeds to elaborate on it (e.g. “Tell us about dyscalculia,” 
“What are some of the tell-tale signs?” or “Is this something that can be treated?”).  
There is little in the way of probing or critiquing on the part of Rick and neither does 
Daniel do any qualifying or enhancing of his questions.  One exception is when Rick 
repeats Daniel’s use of the word “awareness.”  This affirmative speech act suggests 
that Rick is keen to listen and that Daniel is worthwhile to listen to.  Indeed, the very 
tight and logical structure of this interview is consistent with interviews where the 
interviewer (as lay person) is asking an expert about a foreign subject with little 
interruption or veering off topic. 
Transitivity and Theme 
Fairclough (1992) notes that “the ideational dimension of the grammar of the clause is 
usually referred to in systemic linguistics as ‘transitivity,’ and deals with the types of 
process which are coded in clauses, and the types of participants involved in them” (p. 
178).  He distinguishes four types of clauses:  relational, action, event and mental.  In 
the interview, the individuals with dyscalculia are often talked about, but are rarely 
described as agents or knowing and feeling individuals.  When dyscalculics are the 
subject of a clause, they are often described as deficient (e.g. “individuals with 
dyscalculia will struggle” or “individuals with DD will calculate, they will use their 
fingers, they will use strategies other than retrieving it from their memories.”)  The 
“thinkers” and “knowers” are the researchers or educators often denoted with the 
ambiguous use of the pronoun “we” (e.g. “we and others think that DD is caused by,” 
“we’ve done a lot of research into the reasons behind,” or “we need more randomized 
control trials”).  The voices of individuals with dyscalculia remain unheard throughout 
the interview, but the voices of the psychologists and scientists dominate the interview.  
Even the feelings of parents are hinted at (“I get emails all the time from parents who 
are concerned.”)  This imbalance is not unexpected as this is an interview with a 
researcher of dyscalculia.  A panel interview including parents and students with 
dyscalculia may contain different varieties of clauses.          
In his discussion of transitivity, Fairclough discusses two other aspects of grammar:  
theme (referring to the initial part of a clause) and nominalization (the conversion of 
processes into nominals often leaving who is doing what to whom implicit).  However, 
I will omit a discussion of these two aspects due to space limitations. 
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Word Meaning and Wording 
Fairclough (1992) points out that “the meanings of words and the wording of meanings 
are matters which are socially variable and socially contested, and facets of wider 
social and cultural processes” (p. 185).  The choices that text producers and interpreters 
make with words and word meanings may hint at some of these “wider social and 
cultural processes.”  Consider first the various ways in which the concept of a MLD is 
labelled throughout the interview.  The medical/technical terms “dyscalculia” and 
“developmental dyscalculia” are both used throughout the interview although there is 
no distinction made between them.  It is also interesting to note at the beginning of the 
interview how Rick asks if he is saying “dyscalculia” correctly suggesting the opacity 
or unawareness of the concept perhaps to the general public.  
Later in the interview, dyscalculia is described as a “learning disability” and then a 
“specific learning difficulty.”  It is worth noting here the use of the term “difficulty” 
rather than “disability” perhaps suggesting a shift in the way researchers think about or 
categorize the concept.  The medical connotation of dyscalculia is furthered when 
Daniel begins talking about the treatments for the condition.  Terms and phrases such 
as “formally diagnosed,” “treated,” “remediated,” “interventions,” and “randomized 
control trials” all suggest that dyscalculia is not unlike other medical conditions that 
have specific definitions, causes and treatments.  Despite the use of this 
pseudo-scientific terminology throughout the interview, dyscalculia is sometimes 
described generally and less formally using everyday language as merely “being bad at 
math” or having “trouble with math.” 
Metaphor 
Fairclough (1992) notes that, “When we signify things through one metaphor rather 
than another, we are constructing our reality in one way rather than another.  
Metaphors structure the way we think and the way we act, and our systems of 
knowledge and belief” (p. 194).  There are some notable uses of metaphor throughout 
the interview.  According to Daniel, individuals with dyscalculia “struggle with the 
most basic aspects of math.”  They have a “problem with simple arithmetic.”  Rick 
relates dycalculia with people who have “trouble with math” or “being bad at math.” 
(Italics are my addition.)  This common metaphor associates dyscalculia with a deficit 
model of learning.  Alternative ways of thinking about dyscalculia as a learning 
disability are overshadowed by this metaphor.  Can dyscalculics sometimes exhibit 
strengths that may overcome their deficiencies?  Is there something in the way that 
school mathematics is taught or assessed which exacerbates the mathematics 
difficulties for dyscalculics?  Alternative realities can sometimes be masked by the 
metaphors that we use in our everyday language without even thinking. 
The metaphor of mathematics as something that resides within the individual versus 
something more social is evident in Daniel’s response to Rick’s question:  “What are 
some of the tell-tale signs?”  Daniel responds that the signs are “an inability to retrieve 
the solutions to very simple problems from memory.” For individuals who don’t have 
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dyscalculia, solutions to simple problems “will pop into your head.  It’s stored in your 
long-term memory.” (Italics added.) The terms “retrieve” and “store” suggest much of 
basic arithmetic is a matter of memorization and solutions are retrieved and stored like 
objects in a box.  It is interesting to note that Daniel suggests people with dyscalculia 
“will use their fingers, they will use strategies other than retrieving it from their 
memories.”  These alternative “strategies” used by dyscalculics are made to seem 
inferior to that of memory retrieval.   

ANALYSIS OF DISCOURSE AND SOCIOCULTURAL PRACTICE 
Discourse Practice 
Analysis of discourse practice focuses on how a text is produced and consumed.  I will 
focus only on text production in this section as text consumption requires research into 
reader response which is beyond the scope of this paper.  One approach to text 
production is to identify the types of discourses that the text draws upon.  There is a 
strong interdiscursive mix within the interview.  For example, a traditional academic 
discourse runs throughout the interview when Daniel talks about the causes of DD, 
diagnostic criteria, how DD is in the DSM, its relation to dyslexia and treatments.  But 
there is also the discourse of “everyday life.”  For example, Daniel explains how 
individuals with DD will struggle with “how much change they might get back when 
they buy their coffee.”  He describes how “all hands go up” when he asks a group of 
educators “how many of you know about developmental dyslexia?”  Moreover, he 
notes how poor math skills may lead to such things as “unemployment and 
imprisonment and mortgage default.”  This use of the language of everyday life mixed 
with technical/academic language in radio interviews is not uncommon as it is difficult 
for a purely academic discourse to be taken up in the media. According to Fairclough a 
high level of interdiscursivity is associated with change, while a low level of 
interdiscursivity signals the reproduction of the established order.  While this brief 
interview in itself cannot indicate wider societal change, there is the suggestion 
perhaps that the “traditional closed off university” is making better attempts to 
communicate what goes on there to the general public. 
Sociocultural Practice 
According to Fairclough (1992), “the general objective here is to specify:  the nature of 
the social practice of which the discourse practice is a part, which is the basis for 
explaining why the discourse practice is as it is; and the effects of the discourse 
practice upon the social practice” (p. 237).  A key question is what kinds of 
institutional and economic conditions are the discursive practice subject?  This CBC 
interview was conducted the morning of the 3rd annual Neuroplasticity and Education:  
Strengthening the Connection Conference hosted by the Eaton Arrowsmith School.  So 
the interview serves as a bit of a promotion for the conference and ultimately the school 
itself.  According to the eatonarrowsmith.com website, the Eaton Arrowsmith School 
follows a particular teaching method:   
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We teach our students a series of exercises to help them strengthen their brains and address 
the cognitive weaknesses that cause their specific learning difficulties.  All of our schools 
operate on the principle of neuroplasticity – the brain’s ability to be strengthened over time 
with targeted training. This sets us apart from other learning intervention programs. 
Traditionally, a student who struggled with handwriting, for example, would learn to use a 
keyboard or be given more time to write tests.  We don’t teach students to work around 
their difficulties; we help them address them. 

The philosophy of the Eaton Arrowsmith school helps to explain some of the 
discursive practices used in the interview and is consistent with the academic discourse 
that Daniel uses throughout (e.g. that dyscalculia is a disability located within the 
individual brain and that such a disability can possibly be remediated or treated much 
like dyslexia can).  The fact that the interview serves as a bit of a promotion for the 
school is also consistent with Daniel’s use of everyday language as such a discourse 
will be accessible to a wider audience beyond just educational professionals but also 
parents whose children the school would like to attract.  Thus, the interview reproduces 
the traditional medical interview that defines and characterizes certain disorders or 
illnesses to the lay public. Yet it is also transformative in the sense that it implicitly 
touches on the relative new field of neuroplasticity and its application to education and 
dyscalculia in particular. 

SUMMARY AND CONCLUSION 
This preliminary analysis of a CBC radio interview applying Fairclough’s 
three-dimensional social theory of discourse combines the analysis of text, discourse 
practice and sociocultural practice.  The analysis of text and discourse practice suggest 
a high level of interdiscursive mix of academic/medical discourse with the discourse of 
everyday life.  Moreover, at the level of sociocultural practice there is the suggestion 
that there may be a promotional/consumerist element at play in the interview.  Finally, 
this study shows that this interview contains a mix of traditional storylines (dyscalculia 
as a medical condition located in the brain), new storylines (neuroplasticity), and also 
suggests omitted storylines (voices and lived stories of individuals with dyscalculia).  
Only by analysis of further texts, however, will it become clearer how these types of 
discursive practices take part in constituting and changing (if indeed they do) particular 
aspects of the social world. 
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In this paper I discuss a case study where two grade 8 students worked collaboratively 
to solve a modelling problem. Their modelling process shows that rather than closely 
following the modelling cycle suggested by modelling literature, where they develop a 
real model, a mathematical model, a mathematical solution, and a real solution for the 
entire situation and repeat the modelling cycle to improve their solution, these students 
broke down the modelling problem into smaller pieces and went through the modelling 
cycle multiple times in order to generate a realistic solution to the modelling problem. 
INTRODUCTION 
Modelling tasks are problems situated in the real world. They require students to 
approach the problem from a real-world perspective and to use mathematics as a tool to 
produce a mathematical solution. The process of which students solve modelling 
problems can be described by modelling cycles (Figure 1). Students begin with 
understanding the situation. They then simplify the situation and create a real model to 
represent the situation, mathematize the real model in reality into a mathematical 
model in the world of mathematics, determine a mathematical solution using the 
mathematical model, and verify the mathematical solution by comparing it to the 
original situation (for example, see Borromeo Ferri, 2006; Blum and Borromeo Ferri, 
2009). Research has shown that students may repeat the modelling cycle multiple 
times to improve their solution (Stender and Kaiser, 2015). 

Figure 1: Modelling Cycle proposed by Borromeo Ferri (2006) 
This study investigates the process of which students generate a realistic mathematical 
solution to a modelling task and their ability to draw on their extra-mathematical 
knowledge (EMK) to evaluate their solution from a real-world perspective. More 
specifically, I intend to take a closer look at students’ modelling process when the 
modelling problem involves a number of aspects. Do students work on the problem 
situation holistically, consider all aspects of the problem at once to develop a solution, 
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and repeat the modelling cycle to improve their solution? Conversely, do they break up 
the problem into something more manageable and put together a complete solution 
afterwards? 
PARTICIPANTS AND METHODS 
This study is part of a larger project which looks at students’ developments in 
mathematical literacy skills through a modelling practice. In this article I present a case 
study of two grade 8 (age 13-14) mathematics students’ modelling process. The two 
students are Amy and Anna1. At the time of this study, these students have little 
experiences with such tasks.   
This case study took place in a grade 8 mathematics class, where students were given a 
modelling task and were asked to work as a group to solve the task, “Designing a new 
school”2. Data include in-class observations, field notes, impromptu interviews, post 
task interviews, and audio recordings of students’ work in their group. The following is 
a summary of “Designing a new school”:  

Your city is building a new 11000m2 school building, an all-weather soccer field 
(100m×75m), 2 tennis courts (15m×27.5m each), and a 30 car parking lot on a 200m × 
130m lot. Create a design and layout of the school grounds using the grid provided. 

The mathematics skills required for students to complete the task is fairly minimal: 
basic computations, conversions between actual measurements and measurements on 
the grid, etc. However, to be successful, students also need to draw from their 
extra-mathematical knowledge (EMK) and make various assumptions about the 
situation. These EMK include an understanding that buildings could be taller than 1 
floor, that it is possible to incorporate some of the facilities mentioned in the question 
in other buildings, etc. In what follows I present these 2 students’ modelling process, 
and analyze their modelling process using Borromeo Ferri’s (2006) modelling cycle.  
STUDENTS’ MODELLING PROCESS  
Amy and Anna began their modelling process by carefully reading the instructions, 
paid specific attention to the area on the gird which they could use and the length each 
square on the grid represents: All buildings should be at least 12.5m away from the 
property lines; each square on the grid is 10m×10m. They divided 12.5 by 10 and got 
“one and one-fourth”, and outlined a rectangle 1.25 squares away from the edge of the 
grid to represent this space. 
Afterwards, they used the measurements given in the instruction to draw the soccer 
field and the tennis courts on the grid. They divided the length and width of the soccer 
field and those of the tennis courts by 10, and drew a rectangle that is 10 by 7.5 squares 
to represent the soccer field.  

                                           
1 Pseudonyms are used to protect students’ identities. 
2 The task is taken from: http://www.peterliljedahl.com/teachers/numeracy-tasks 
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After pencilling in the soccer field, Amy and Anna realized they could not fit the tennis 
courts beside the short edge of the soccer field. In order to accommodate for the tennis 
courts, they rotated the soccer field 90° and put the tennis courts (two rectangles that 
are 2.75 by 1.5 squares long) beside the soccer field towards the bottom of the grid. 

 

Figure 2: Students’ design of the soccer field and the tennis courts.  Left: Amy and 
Anna put the soccer field on the left side of the grid (green) inside the “usable space” 

(red).  Right: They later on rotated the soccer field (green) to accommodate for the 
tennis courts (purple). 

After drawing 3 rectangles to represent the soccer field and 2 tennis courts, Amy and 
Anna read the instructions again and focused on the parking lot. They drew a quick 
sketch of a few parking spots and tried to visualize what the parking lot might look like 
(Figure 2). However, they had difficulties visualizing the parking lot and were not 
certain what else they needed to consider other than the areas taken up by parked 
vehicles.  

Figure 2: Amy and Anna drew 5 parking spots based on the assumption that each 
parking spot is 4m long and 2m wide. 

A brief discussion with the researcher led Amy and Anna to realize that there are more 
to consider other than the area each parked vehicle takes up. 

Amy The car space… 4 by 2.  Because, there are bigger cars. 
R Okay.  So that’s the size of a car.  But once I parked the car… 
Amy  You can’t get out. 
R  Ahuh.  I need to get out.  So… would I need… what does that mean? 
Anna  You need some extra space! 
R You need some extra space!  So, how much is that extra space? 
Amy Like, 0.5 metres between each car. 
Anna Oh okay. 
Amy You [also] need to be able to go behind a car 
R You need to go behind the cars and to… 
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Amy/Anna Drive 

In this conversation, Amy pointed out that cars in parking lots do not park right next to 
each other. Rather, there is a gap between each car to allow for drivers and passengers 
to enter and to exit their vehicles. Amy and Anna also pointed out they needed to 
include a driveway for vehicles to drive into and out of the parking spots. After 
discussing their work with each other, Amy and Anna created an outline of their 
parking lot. It is 60m long and 5m wide. All 30 parking spaces are lined up along the 
long edge of the parking lot, and each parking space is 2m wide and 4m long. The 
driveway, which runs along the long edge of the parking lot, is 1m wide and 60m long. 
They divided these measurements by 10, and drew a rectangle that is 6 by 0.5 squares 
on the grid. Afterwards, they began to work on the school building.  Very soon, they 
were stuck. Anna complained that she couldn’t fit the school building on the grid 
because there was not enough space. Amy described Anna’s frustration as a “mental 
breakdown”, and called the researcher over for help. During their discussion with the 
researcher, Amy had an “AHA” moment (Liljedahl, 2005) and realized that she could 
“stack” the school building because in reality, it is possible to have buildings taller than 
one floor. 

Anna I have no more space left! 
R You have no more space left to fit what? 
Anna Um… the rest of the school. 
R The school is not big enough and you don’t have any more space.  Oh 

my…  Oh no…  Oh no… so we need more space. 
Anna But there is no space! 
R Oh there is always space. 
Amy Stack them! 
R What do you mean stack them? 
Amy Two floors! 

While Amy’s “AHA” led them to realize that they could design a school building taller 
than 1 floor, Amy and Anna have not quite grasped what the building might look like 
and how much space they wanted for each floor. They joked about creating a “110 
floors” building, to which the researcher took the opportunity and discussed with them 
building shapes and floor area. During the discussion, Amy and Anna explored the idea 
of having a two floors tennis court building, and the idea of incorporating the tennis 
courts into the school. They also discussed with each other the possible designs of the 
school building. They toyed with the idea of a three-floor school building where each 
floor takes up 36.7 squares. They interpreted their solution, 36.7 squares, as a rectangle 
with an area of 36.7 squares, but quickly dismissed their solution as they couldn’t see 
an immediate solution, a length and a width that would result in this area. As they 
further chatted with each other, they drew from their experiences and concluded that 
the areas on each floor of their school building do not need to be the same. They 
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eventually settled on a two floor building. The main floor is 100m by 70m, and the 
second floor is 80m by 50m, a total of 11000m2. They then drew 2 rectangles to 
represent the school building, and assigned the remaining space on the grid as green 
space. Looking at their work, Amy and Anna wanted to make modifications to improve 
students’ school life, and added a garden next to the parking lot. The garden is 20m 
wide and 60m long, and has a gate (~3m wide) on one side of the garden. As a final 
touch, they added two 20m wide doors to the school building, and a path that leads to 
the school’s front entrance (Figure 3). The 2 doors are located on the second floor of 
the school building, and the path connects the edge of the school grounds to the second 
floor of the school building rather than the ground floor. This could simply be an 
oversight as they mistook the second floor of the school building as the first. After 
installing these additional features, Amy and Anna submitted their solution. 

 

Figure 3: Amy and Anna’s final solution 

A BRIEF DISCUSSION OF AMY AND ANNA’S MODELLING PROCESS 
Amy and Anna began by reading the instructions carefully and focused on one of the 
rules of the situation: All fields, courts, buildings, and parking lots must be no closer 
than 12.5m to any of the property lines. They interpreted this rule as a restriction to the 
“usable space” on the grid. This interpretation represents their mental representation of 
the situation (MRS) of the usable space aspect of the problem. To solve the problem of 
usable space, they drew from the instructions the information they needed (every 
square on the grid is 10m × 10m), and recognized the need to convert 12.5m in into 
number of squares in order to outline the usable space on the grid. Together, these 
recognitions and decisions of what needed to be done formed their real model. Amy 
and Anna converted the distance away from the property line into number of squares 
on the grid by dividing 12.5 by 10 (mathematical model), carried out the calculations to 
determine the number of squares that they needed to stay away from the property line 
(mathematical solution), interpreted the solution as an outline on the grid 
(interpretation), and then drew the outline on the grid to represent the space they could 
use (real solution). This represents Amy and Anna’s first modelling cycle (MC1), in 
which they focused on the usable space of the grid. The outline helped them organized 
and built real models for the rest of the problem situation. Since Amy and Anna 
focused only on the usable area here, they were forced to repeat the modelling cycle a 
few times. 
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After outlining the usable space, Amy and Anna focused on the soccer field (MC2) and 
the 2 tennis courts (MC3). They understood that they needed to create outlines of these 
structures on the grid (MRS) and took a similar approach as the usable space: they took 
the measurements of the soccer field given, combined this with the understanding that 
the length of each square on the grid represents 10m, and decided to draw a rectangle 
on the grid to represent the soccer field (real model). They then divided these 
measurements by 10 (mathematical model) to get a mathematical solution, interpreted 
this as the length and width of the rectangle they needed to draw (interpretation), and 
drew a rectangle on the grid to represent the soccer field (real solution). Afterwards, 
they worked on the tennis courts (MC3) and repeated the process, and made changes to 
their real solution of the soccer field to accommodate for the tennis courts. 
Afterwards, Amy and Anna worked on the parking lot (MC4), but experienced 
difficulties in visualizing the relationships between the vehicles, the parking spots, and 
the parking lot. It seemed that they were not able to visualize what the parking lot 
might look like. It is possible that both Amy and Anna had troubles accessing their 
EMK in this area since they were under the legal driving age at the time of the study. 
They never experienced parking lots from a driver’s perspective and therefore never 
paid much attention to the parking spots and the driveways in parking lots although 
they understand the existence of these features. A brief discussion with the researcher 
helped them realize that they needed to extend their measurements of their parking 
spots to allow for drivers and passengers to enter and to exit their vehicles. This 
discussion also helped them see the need of a driveway in the parking lot to allow for 
vehicles to reach these parking spots. All these understanding and realizations formed 
a new MRS. They then created a real model to represent the designs of their parking lot 
based on this understanding, a design that includes 30 parking spots and a driveway; 
and a mathematical model, in which the length of the parking lot (in terms of number 
of square on the grid) is the width of a parking spot × 30 ÷ 10, and the width of the 
parking lot is the length of a parking spot plus 1 and then divided by 10. They then 
generated a mathematical solution, 6 and 0.5, based on their mathematical model. They 
interpreted 6 and 0.5 as the length and width of the rectangle to represent the parking 
lot (interpretation). Afterwards, they drew the rectangle on the grid to represent the 
parking lot (real solution). This concludes their fourth modelling cycle.  
Unfortunately, despite their hard work, Amy and Anna did not create a realistic 
parking lot design. They put the parking lot on the school grounds close to the property 
line, but did not include any driveways that connect the edge of the property line to the 
parking lot. Also, the driveway is only 1m wide. Based on Amy’s measurements, a 
vehicle is at least 1.5m wide. Therefore, the driveway they created is not wide enough 
to let vehicles through. Finally, Amy and Anna recognized that they needed additional 
space between vehicles, but did not consider the extra space when they designed the 
parking spots. 
After they finished their parking lot design, Amy and Anna proceeded to work on the 
school building (MC5), and determined the area of the school building using the 
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information given in the question. This understanding served as their MRS. As they 
converted 11000m2 into the number of squares on the grid, they quickly got stuck, as 
Anna believed they had “no more space left” for the school (MC5 incomplete). During 
their discussion with the researcher, Amy had an “AHA” moment (Liljedahl, 2005) 
and realized that they could extend the vertical height of the school building to satisfy 
the floor area and to decrease the construction area required (MC6). This realization 
allowed Amy and Anna to draw from their past experiences to think about the various 
shapes and possible height of the school building. Their conversation also led them to 
examine the possibility to design a two floor tennis courts building and to in-cooperate 
the tennis courts into the school building. These discussions formed Amy and Anna’s 
MRS and these understanding helped them to re-organize their MRS of the entire 
problem situation and eventually allowed them to build a real model of the school 
building. 
As they moved forward, they settled on the idea of a three floor school building where 
each floor has an equal floor area. This idea represents their first real model of the 
school building. They then built a mathematical model to determine the number of 
squares they required on the grid by dividing 11000 by 100, and then by 3. They 
carried out the calculations and generated a mathematical solution (36.7). Amy and 
Anna interpreted this solution as a rectangle with an area of 36.7 squares. Upon 
discussing with each other the possible length and width of this rectangle, they realized 
that their school building did not need to have an equal floor area on each floor, and 
they went back and modified their real model. They eventually settled on a two floor 
building where the main floor (100m by 70m) is larger than the second floor (80m by 
40m). They did not explain how they arrived at these measurements. The researcher 
speculates that they first reduced 11000m2 to 110 squares, picked 10 and 7 squares as 
the length and width of the main floor to generate an area of 70 squares, and chose 8 
and 5 squares as the length and width of the second floor to make up for the 40 squares 
they needed to make up for 110 squares and to satisfy the 11000m2 area requirement. 
Finally, they outlined two rectangles on the grid, one within the other to represent the 
two floors of the school building. These two rectangles represent their real solution to 
the school building aspect of the problem situation. 
Finally, Amy and Anna verified that they satisfied all the requirements and added 
additional features to their solution: green space, a garden, a path that leads to the 
school building, and 2 doors to the school building. These doors are approximately 
20m wide. The width of these doors was out of proportion, as a 20m door is about the 
height of 10 interior doors. It seems that they lack experiences and knowledge in 
spatial orientation and did not use their EMK to help them design these doors. After 
making all these adjustments and verifying that they have satisfied all requirements, 
Amy and Anna submitted their work and this concluded their modelling process. 
CONCLUSION 
Modelling literature suggest that students would spend time understanding the problem 
situation (MRS), create a real model, a mathematical model, a mathematical solution, 
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and a real solution, and repeat the modelling cycle to improve their solution if 
necessary. If students were to follow the modelling cycle closely, they would have read 
and focus on all the instructions given, recognized that they need to draw outlines of all 
building structures, created a design for both the school building and the parking lot, 
converted all measurements provided into number of squares on the grid, and finally 
drew the outlines of these building structures on the grid. However, this was not the 
case. 
In this case study, Amy and Anna broke down the problem into its individual aspect, 
and worked on one aspect at a time.  This resulted in them repeating the modelling 
cycle 6 times, and they pieced together these real solutions from each modelling cycle 
to create an overall solution for the problem. These results are different from what 
modelling literature suggest. This could be the results of the problem involving 
multiple aspects.  While the mathematics skills required to solve the problem is simple, 
piecing together all the information or real solutions all at once is rather difficult. 
Therefore, it becomes logical for students to break the problem down into smaller 
pieces and worked on one aspect of the problem at a time, generate a solution for one 
aspect at a time, and piece together everything at the end to generate an overall solution 
for the problem.   
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Trigonometry is one of the fundamental topics taught in high school and university 
curricula, but it is considered as one of the most challenging subjects for teaching and 
learning. In the current study Mason’s theory of attention has been used to examine 
undergraduate students’ perception of the transformation of sinusoidal functions. Two 
types of tasks – (A) Recognizing sinusoidal functions and (B) Assigning coordinates – 
were used in this study. The results show that undergraduate students participating in 
this study experienced difficulties in identifying a period of a sinusoid, especially when 
it was a fraction of π radians. 

BACKGROUND 
Trigonometry has a long history. Ancient people used trigonometry for different 
purposes. For example, Egyptians applied trigonometry to determine the correlation 
between the lengths of the shadow of a vertical stick with the time of day. Astronomers 
also used trigonometry to find the longitude and latitude of stars, as well as the size and 
distance of the moon and sun. However, trigonometry was not an essential part of 
mathematics textbooks until a Persian mathematician named Khwarizmi introduced 
trigonometric functions to the world. Since then, trigonometry has become one of the 
main topics in high school and university mathematics books and students are required 
to assign time for learning trigonometry, especially trigonometric functions. This is the 
case since a strong foundation in trigonometric functions will likely strengthen their 
learning of various mathematical topics, such as Fourier series and integration 
techniques (Moore, 2010). It is also shown that understanding calculus and analysis is 
dependent on the learning of trigonometric functions (Hirsch, Weinhold & Nicolas, 
1991; Demir, 2011). However, learning and understanding trigonometric functions is a 
difficult and challenging task for students, compared to other mathematics functions, 
such as polynomial functions, and exponential and logarithmic functions. While other 
functions (e.g., logarithmic functions) can be computed by performing certain 
arithmetic calculations expressed by an algebraic formula, trigonometric functions 
involve geometric, algebraic and graphical concepts and procedures, simultaneously 
(Weber, 2005; Demir, 2011).   
Despite its importance and its complexity, research on trigonometry is sparse and quite 
limited. In the literature, only a small number of studies concentrate on students’ 
learning of trigonometric concepts, and in particular trigonometric functions (e.g. 
Brown, 2005; Weber, 2005; Moore, 2010).  Moore (2010) and Weber (2005) indicated 
that students often have difficulty using sine and cosine functions defined over the 
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domain of real numbers. Thompson (2008) also noted that students are unable to 
construct understanding of the trigonometry of right angles and the trigonometry of 
periodic functions. In a study of undergraduate students, Weber (2005) agreed that 
students could not rationalize various properties of trigonometric functions or 
reasonably estimate the output values of trigonometric functions for various input 
values. Kendal and Stacey (1997) concluded that students had difficulty interpreting 
trigonometric functions in the unit circle, recognizing that x and y coordinates of a 
point on the unit circle are cosine and sine values of corresponding angles compared 
with other determined trigonometric functions in terms of a right triangle.  
 In spite of all the research efforts in the area of teaching and learning trigonometry, 
especially trigonometric functions, there are still gaps in the literature. There is no 
research study that focuses on the concept of the transformation of sinusoidal 
functions; the current research attempts to fill this gap.  
In order to deal with the transformation of sinusoidal functions, students need to 
understand the notion of the ‘period of a function.’ The period of a function is the 
distance (x value) in which function values repeat themselves. In the case of the 
canonical sine function , the period is 2π, the circumference of the unit 
circle. Considering the standard format for the sinusoidal 
function , students are required to identify the relationship 
between the coefficient of x (B in the function) and the period when dealing with the 
transformation of sinusoidal functions. As such, the research questions are: How do 
undergraduate students identify period? How do they recognize the period on the graph 
of the sinusoidal functions?  

DATA COLLECTION AND ANALYSIS 
This study is part of a bigger project which examines undergraduate students’ 
perception of the transformation of sinusoidal functions. In the larger study, seven 
undergraduate students from a large North American university participated They were 
selected from among students who had either completed a Calculus I course and were 
enrolled in Calculus II (3 students) or they were in a Calculus I course (4 students) in 
the Mathematics Department. Participants volunteered their time to contribute in the 
study right after I made a general request from all the classes (Calculus I and II). For 
the purpose of this research report, I focus only on the performance of one of the 
participants, Emma. She was studying Applied Science and was enrolled in a Calculus 
II course at the time of her interview. 
A 60-minutes task-based interview was conducted and Emma was required to 
complete two types of interview tasks: A) Recognizing sinusoidal functions and B) 
Assigning coordinates. Both types of tasks were presented with the help of the 
Dynamic Geometry software, Sketchpad. For the ‘Recognizing sinusoidal function’ 
tasks, the sketches indicating the sinusoidal graphs were given and the student was 
asked to identify the sinusoidal functions represented in the given graphs (see Figure 
1). For the ‘Assigning coordinate’ tasks, a wavy displace (see Figure 2) along with the 
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sinusoidal functions were given and Emma was required to assign coordinates on the 
wavy curve such that it described the given functions. Type A tasks comprised of Task 
1: , Task 2:  and Task 3: . Type 
B tasks included Task 4:  and Task 5: .  

THEORETICAL FRAMEWORK 
The collected data in this study were analyzed and interpreted using the theory of shifts 
of attention (Mason, 2008). Mason’s theory provides opportunity to study the critical 
role of attention and awareness in learning and understanding mathematics and in 
particular the concept of the transformation of sinusoidal functions. Mason (2008) 
distinguishes five different structures of attention: 1) Holding wholes; 2) Discerning 
details, 3) Recognizing relationships; 4) Perceiving properties; and 5) Reasoning on 
the basis of agreed properties. Mason’s framework of shifts of attention is appropriate 
for analyzing the collected data in my research. Applying this framework supports me 
in gaining insights not only into ‘what’ Emma attended to when completing 
mathematics tasks related to the transformation of sinusoidal functions, but also ‘how’ 
she shifted her attention in identifying the period of sinusoids.  Mason’s terms for 
different structures of attention also provide a language for analyzing students’ work. 
For example, when a student considers a particular graph and recognizes its shape as 
representing a sinusoidal function, s/he is holding holes. A student who looks for 
particular details from the given sinusoidal functions or the given sinusoidal curve 
(e.g., she is seeking for the point the graph intersects the y-axis), she is, in fact, 
discerning details. The student is recognizing relationship when she able to find a 
connection between the graphical representation of the sinusoidal functions and their 
symbolic representations. When a student determines the particular parameters that 
determine the given sinusoidal curve by considering its periods, she is reasoning based 
on perceived properties. To investigate how the participant realized the transformation 
of sinusoidal functions, and in particular, how she identified period from the given 
graphs/functions, I reviewed the student’s answers and the transcripts several times.  
Please note that in all the five interview tasks the participant was required to connect 
the period of the given sinusoidal function or the given sine curve to a coefficient of x 
in the standard formula for sinusoidal functions (considering the sinusoidal function in 
the standard form ). For brevity, we refer to this 
connection as ‘recognizing the period’ (see Figure 3).  
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Figure 1: Graph presented in Task 1 

 
Figure 2: Graph presented in Task 4 

 
Figure 3: Recognizing the period 

RECOGNIZING PERIOD (COEFFICIENT B OF X) 
At the beginning of the interview, I showed Emma Task 1 in which the graph of the 
function   was given (see Figure 4) and she was asked to identify the 
sinusoidal function represented by the graph. In order to complete Task 1, Emma first 
focused her attention on the given graph and waited for visual feedback from the graph 
(her attention was on holding wholes according to Mason’s classification). Emma 
stated: 

 “It is . It is a sine graph because it starts at 0 and it should be . 

The sine graph start at 0 and then π and 2π, but in this one is 0, π, . This is half of sine 
graph, because the period here is π, while it is 2π in the original sine curve.”   
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The above statement indicates that the participant recognized incorrectly the function 
for the given graph, determining it to be . Analyzing the situation 
using Mason’s (2008) framework it can be concluded that Emma reasoned on the 
perceived properties of the sinusoidal functions and from there she determined 
(incorrectly) relationships between the visual representation and the symbolic 
representation. Emma recalled the fact that the period of a canonical sine function is 

, whereas the period of the curve given in Task 1 was  . She thus concluded that the 
given curve represented the function   Emma then connected the 
period of the sine curve, which was  radians, with the coefficient of x in her suggested 
sinusoidal function. Her statement illustrates that Emma, in fact, divided the argument 
x by 2 because the period of the canonical function (2π) was divided by 2 in the given 
graph (the period was π).  

 

Figure 4: Graph of function  
Detecting Emma’s mistake in recognizing the proper function for the given graph in 
Task 1, I showed her the graph of .  Observing the graph of the 

function  made the participant realize that the graph of the suggested 
function did not correspond to the given curve. At this time Emma stared at both 
graphs #1 and #2 (see Figure 5) for a while and she held the graphs (#1 and #2) as 
wholes. She then began to describe in detail the given graph (#2 in Figure 5) in respect 
to the graph of  Emma stated: 

“….so, if  is like this, so it is going to finish at 4π. So this is going to be 

the whole graph. So it should not be  it should be 2x. Because when we have  we can 
see that it ends at 4π. But if I put here 2x, I compressed it and I can…have this curve 
finishes at π π...The period of sine graph is 2π but this one is compressed, so it is 

, but  is expansion in fact.” 
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Figure 5: Graphs of  and  

As it is indicated from the above statement, Emma compared the end point (or the 
length of a full cycle) of the curve #2 with that of curve #1, considering the origin (0, 0) 
as a beginning of a cycle (“….  we can see that it ends at 4π. But…I can…have this 
curve finishes at 𝜋𝜋...”). In other words, by linking the end points of the full cycles (in 
both curves and comparing them with the graph of the canonical function), Emma was 
able to find relationship between the visual representation and the symbolic 
representations. She chose the number 2 (which was the reciprocal of the coefficient of 

 ) as a coefficient for x in the sinusoidal function. As such, she eventually 
recognized the correct period and thus the proper function for the given curve. 
Emma’s proper realization in Task 1 directed her to complete successfully similar 
tasks having a whole number for the coefficient of x. As an example, when 
approaching Task 4 in which the function was   and a wavy curve was 
given, Emma was able to assign correctly the coordinates in the given wavy displace 
such that it represents the graph of . After gazing at the given function 
in Task 4, she expressed:  

“…I know that 2π is here [see Figure 6] because 1, 2, 3, and 4 periods is between 0 and 2π 
and here are 1 and -1…” 

The above excerpt shows that Emma perceived properties of sinusoidal functions 
(“…period is between 0, 2π and here are 1 and -1”). The feedback she received from 
Task 1 (the fact that there is a direct relationship between the coefficient of x in the 
sinusoidal functions and the number of repeated full sine cycles between 0 and 2π) 
allowed Emma to assign coordinates properly in Task 4. In other words, Emma was 
able to realize period from the given function and therefore assign axes successfully on 
the sinusoidal curve. Considering Emma’s success in Task 1 and Task 4, one might 
conclude that she was able to recognize period and also sinusoidal functions, from their 
graphs, and vice-versa, successfully. However, Emma performed differently on the 
other interview tasks. 
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Figure 6: Emma adjusts coordinates for Task 4 
As an example, when completing Task 2, in which the graph of the function 

 was given,  after holding the graph as whole for a long pause, Emma 
did discern some details from the x-axis. She then stated: 

“…It is sine of x over something because if it is sine of x it would end here [at 2π]…ok, it 
is  because there are one, two and three spaces here between 0 and this 
point and again one, two, three here…” (see Figure 7).  

As it appears from the above statement, Emma counted the number of ‘blocks’ 
between 0 (the point A in Figure 7) and the point in which the curve intersected the 
x-axis (point B) and again from point B to another point in which the graph intersected 
the x-axis (point C). Since the distance between the points A and B, and B and C was 3 
blocks, Emma put the fraction  for the coefficient of x in the suggested sinusoidal 
function. It appears that she was eager to find an opposite relationship between 3π and 
the coefficient of x which was . This evidence illustrates that Emma was unable to 
recognize appropriately the relationship between graphical representations of the 
sinusoidal function and its symbolic representations.  
 

 

Figure 7: Emma counting the blocks between the points 
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Emma’s unsuccessful attempt in recognizing period and its relation with the 
coefficient of x in the sinusoidal function in Task 3 was typical of further errors in the 
other tasks having fractions for the coefficient of x. In other words, in Tasks 3 and 5, as 
in Task 2, Emma was unable to recognize period successfully. As it was mentioned 
previously, it seems that the fractional coefficient was problematic, because Emma 
often attempted to reverse the point in which a full curve was finished (which was 3π 
in the Task 3) in order to find a coefficient for x in the sinusoidal function. Although 
applying this method directed Emma to determine proper functions when the 
coefficient of x was a whole number, it did not work for the other tasks. Emma, in fact, 
should find the relation between the period of a canonical function which is 2π and the 
point 3π in the given graph (3π= , so B= ) in order to identify the coefficient of x in 
the sinusoidal function. 

DISCUSSION 
The findings of this study show that the student recognizes period and transformations 
in different manners when the coefficients of x in the sinusoidal function are whole 
numbers and when they are fractions. The data from this research demonstrates that 
Emma is capable in matching the algebraic representations with the graphical 
representations when the coefficient of x was a whole number. These results are in 
contrast with the findings of Leinhardt, Zaslavsky, and Stein (1990), Yerushalmy and 
Schwartz (1993), and Knuth’s (2000) studies in which a group of undergraduate 
students were unable to use graphical representations to complete mathematics 
problems in the symbolic form. The contribution of this  research is in connecting 
together the participant’s understanding of transformations, graphs and periodicity, 
whereas the previous research studies focused distinctly on the concepts of 
transformations (e.g., Yerushalmy & Schwartz, 1993), graphs (Brown, 2005) and 
periodicity (van Dormolen & Zaslavsky, 2003).  
The findings, however, illustrate that Emma was unable to recognize period correctly, 
when the factor of x was not a whole number in the sinusoidal functions. That is, she 
was unable to connect the graphs with the sinusoidal functions when the factor of x was 
a fraction. As such, further research studies are required to investigate how 
undergraduate students interconnect the three concepts of transformations, graphs and 
periodicity when the coefficient of x is a fraction. 
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IDENTIFICATION OF SURFACE MARKERS FOR POSITIONING 
OF MATHEMATICS IN STUDENT WRITTEN DISCOURSE  

Tanya Noble 
Simon Fraser University 

 
This study explores the actualization of mathematics learned within the secondary 
school classroom into extracurricular experiences of its students. The Positioning 
theory developed by Wagner & Herbel-Eisenmann (2014) is used to explore what 
student mathematical discourse reveals about the students’ relationship with 
mathematics. British Columbian students enrolled in a Workplace Mathematics 10 
class were given the task to pose a math question of personal interest and relevance yet 
the student responses mimicked the discourse of the dominant curriculum resources. 
Understanding student positioning within the discipline of mathematics is critical for 
guiding the application of mathematics beyond the classroom. 

INTRODUCTION 
Mathematical reform curriculum recognizes mathematical reasoning and mathematical 
skills as fundamental to an educated and engaged citizen (National Governors 
Association Center for Best Practices & Council of Chief State School Officers, 2010; 
British Columbia Ministry of Education, 2015). Skovsmose (2011) emphasizes “the 
meaning of a classroom activity is constructed by the students, and this construction 
depends on what the students may see as their possibilities; it depends on their fore- 
grounds and intentions”. Mathematical processes are interwoven in the extracurricular 
experiences of all students yet students express a profound incapability with subject. 
This phenomenon illuminates the underlying motive for this study and the importance 
of recognizing students positioning of mathematics within the context of their daily 
activity.  
The locus of this study is the belief that student positioning with respect to classroom 
mathematics is fundamental to the employment of mathematics beyond the secondary 
school classroom. In this context extracurricular experience is the students’ daily 
activity outside academic studies; home life, social situations, decision-making. Ways 
mathematical knowledge move out of the classroom into the students’ lived 
experiences is central to the effective application of mathematics in active citizenship.  

THEORETICAL FRAMEWORK 
This study takes the perspective that student positioning of mathematics is directly 
influenced by the intersection between the discourse inherent in curricular resources, 
the discourse of the teacher, and the discourse of the students’ extracurricular 
experience. This perspective is grounded in prior research attending to the positioning 
of mathematics with respect to the teacher, with respect to the textbook, as well as with 
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respect to the spoken mathematical discourse of the student (Kaur, Anthony, Ohtani, & 
Clarke, 2013). This study places the students’ written mathematical discourse at the 
centre of the exploratory lens. Attending to student written discourse enhances 
awareness of the role the student plays in the construction of their individual 
mathematical knowledge within the traditional assessment practices of the secondary 
school mathematics classroom. The students’ written discourse magnifies the 
intersection between the mathematics classroom and the lived experiences of the 
students revealing inconsistencies between the two contexts. 
Student authority, specifically personal latitude (Wagner & Herbel-Eisenmann, 2014) 
in relation to mathematics is the overt phenomenon of interest in this piece. The 
“characterisation of the practices of mathematics classrooms must attend to the 
learners’ practice with at least the same priority as that accorded to the teacher’s 
practice” (Kaur, et al., 2013, p. 7). This research offers insight into the movement of 
mathematics into the larger social context of its students recognizing that personal 
latitude is required of students to see possibilities for the application of mathematics 
beyond the classroom.  
The nature of the mathematical research in this study was an activity based in written 
language. The use of stance-bundles/lexical bundles offered by Wagner & 
Herbel-Eisenmann (2014) offered opportunity to access authority though student 
written discourse. Within the mathematics classroom their study identified four ways 
authority was marked: 1) personal authority, 2) discourse as authority, 3) discursive 
authority, and 4) personal latitude. The first three categories: personal authority, 
discourse as authority, and discursive authority exist externally with respect to the 
student. The fourth way authority exists, personal latitude, recognizes that classroom 
participants make decisions thus demonstrate authority (Wagner & Herbel-Eisenmann, 
2014, p. 873). This study emphasizes personal latitude in an attempt to explore 
different ways students of mathematics merge their classroom experiences into their 
community and social interactions. 
 The ideas in this research are explored through an analysis of students’ mathematical 
discourse in a classroom environment. This study focuses on the identification of 
superficial markers in student written discourse. With the markers identified the 
positioning of the students in relation to mathematics is hypothesized. This research 
attempts to instantiate authority and positioning within the limitations of students’ 
written work during a summative assessment. The research question central to this 
study is: How might a student position mathematics in relation to their extracurricular 
experiences? 

METHOD 
This paper draws on empirical data collected during a secondary school workplace 
mathematics course. The students were enrolled in their tenth and eleventh years of 
public school education. The course minimally met the requirement for high school 
graduation and is not applicable towards university entrance requirements. Students 
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were assigned the task to offer a question they were interested in solving. 
Mathematical questions authored by the students were analyses for insight into how 
mathematics learned in the classroom transferred to extracurricular contexts.  
In advance of data collection the student’s were offered a typical mathematics word 
problem printed on the classroom whiteboard. The problem read, “Judy drives 43 km 
to a campground and Robert drives 32 mi to the campground to meet Judy, who drove 
further?” The teacher allowed 10 minutes to pass after which “Who cares?” was 
offered as the solution.  The resulting disruption of the classroom norms opened space 
for discussion of the disconnect students experience with many textbook questions. A 
discussion parsing the mathematics in the question (unit conversion) apart from the 
assumptions inherent in the question (students drive, have access to a car, etc) emerged 
from the discordant nature of the comment “who cares”. After this group discussion 
students were informed of the task to offer a problem of personal interest on the written 
assessment scheduled for two days following.  
The data used in this research project was student generated during an individual 
pencil-and-paper summative unit test for the topic of Unit Conversions. The activity, a 
unit test, is a familiar mathematical experience in the high school mathematics 
classroom. The test was developed from an electronic test bank of questions purchased 
with the curriculum resources. The presence of English as-a-second-language-learners 
in the classroom motivated a repetition of the most common terms so as not to create 
confusion during the administration of the test. The dominant grammatical marker on 
the test was “convert” appearing in seven of fifteen questions. The superficial markers 
best distinguishing question type were: express, convert, how many, what is the, and 
which […] has higher. The final page of the test contained one question from which the 
data was drawn, “Since many word problems in math are not interesting to students I 
would like you to please share a question you are interested in answering.” 
Gathering data for this research directly from a written test contains inherent bias. 
Throughout this research there was underlying recognition that written summative 
assessments are a means of reinforcing student enculturation to the mathematics 
community dominant discourse. In turn, any attempt to have students author unique 
written mathematical application problems in the context of a unit test could be viewed 
as problematic. Therefore, these questions must be considered as an initial glimpse into 
the influences of mathematics both inside and outside the classroom. 
 The initial data was expected to reveal students’ authority relations with respect to 
mathematics. After the initial analysis as it seemed as though students had no 
individualized relationship with mathematics and thus the research was a failure. 
Stance bundles as identified by Wagner & Herbel-Eisenmann (2014) seemed to have 
more commonality with the mathematical discourse of the textbook and the teacher. 
Out of this frustration, new elements of language reminiscent of stance bundles entered 
into the foreground as a better unit to characterize the positioning of mathematics 
through the student-generated written data. Once these superficial grammatical 
markers of the student mathematical discourse were identified as anchors different 
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ways of student positioning emerged. The markers included the pronouns and adverbs: 
what, why, how, how many, which one, and convert. The grammatical markers in 
combination with contextual clues suggested five categories of student positioning. 

DATA  
Mathematics as facts 
Six out of forty-one students responded with mathematics questions reflecting math 
facts. A close study of the questions revealed the positioning of mathematics as only a 
fact-based effort. This was evoked from the lack of any grammatical markers. Student 
authored questions such as “3 680 214 x 65% = 2, 392, 139.1” were indicative of what 
appeared to represent mathematics as limited to facts. For these students mathematics 
did not have any socio-cultural connection to their experience. 
Mathematics as a tool 
Mathematics as a tool was identified through its utilization as a solution to a task. Two 
types of tasks were identifiable; 1) tasks without context reflected in straight forward 
conversions, and 2) tasks with a context in which there is a comparison between two 
different quantities or units. 
Seventeen out of forty-one students responded with mathematics questions that use 
mathematics as a tool for comparison. The concept of mathematics as a tool was 
identified by the use of mathematics in both contextual and non-contextual situations. 
Fourteen out of the seventeen students created questions marked by the verb convert. It 
was also notable that these questions had no context. “Convert 25000 ft to yards, feet, 
and inches” was indicative of these question types. These question types were also a 
reflection of the questions within the body of the test. This supported the hypothesis 
that students socio-culturally distanced themselves from the mathematics.   
Three out of the seventeen students offered questions prompting a calculation for best 
buy. These problem types were marked with a combination of adverb and adjective, 
How much, and How many, were the most common grammatical markers. When there 
was a clear comparison of two quantities this was viewed during data analysis to reflect 
a closer positioning of mathematics socio-culturally. This was especially since 
mathematics was a social connector between two distinct individuals. 
Mathematics as a problem 
Six out of the 41 students represented mathematics open problem to solve. These 
questions were marked grammatically by the adverb and adjective grouping of How 
many.  The openness of the question was identified from the nature of having greater 
than one possible answer. These criteria set the questions apart from the questions 
which represented Mathematics as a tool that otherwise might have been marked by 
the same grouping How many.  
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Mathematics as a tool to simplify complex problems, single Truth 
Six out of forty-one students represented mathematics at a distance. These questions 
were grammatically marked by isolated nouns and pronouns, Why and What. “Why is 
the world so complicated?” and “What is the meaning of life?” both contain the 
markers of this category. 

Category Example Superficial Grammatical 
Markers 

Disengaged 
(distant) from 
mathematics 

Blank entry; “I don’t know” Absence of grammatical 
markers 

Math as facts  
Absence of grammatical 
markers; mathematical 
symbols only markers 

Math as a tool 
(calculation; no 
social context) 

“Convert 1000 miles into yards” 

“Convert 500 km into millimetres and 
metres” 

convert 

Math as a tool 
(calculation; 
comparison in 
context) 

“Laurel lives 18 miles away from her 
school. Ron lives 3520 yards away from 
his school. Who lives the closest to their 
school?” 
“Both pizzas are $1.75. Which one is a 
better deal? (2 slices: diagram one 2” 
crust 5” long; diagram two 3” crust 4” 
long.” 

 
How much 

How many 

Who […] closest 

Which one is a better deal 

 

Math as a problem 

“How many pieces of bacon wold we 
eat if we eat 4 pieces for every mean for 
20 months?” 
“How many of our schools would you 
have to stack on each other to reach the 
moon?” 

How many 

Math a simplifier; 
Truth 

“Why is the world so complicated?” 

“What is the meaning of life?” 

Why 
What 
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DISCUSSION 
To be thoughtful citizens students are expected to fluidly apply the mathematics 
learned within the four walls of a classroom into the contexts of their extracurricular 
experiences.  Inherent to the success of this transfer of knowledge is an expectation that 
students see mathematics as relevant to their lives. The adaptation of 
Herbel-Eisenmann & Wagner’s (2007) positioning theory framework offered an 
effective instrument to initiate play with the complex layers of the data.  
This research suggests students position themselves with respect to mathematics in 
five ways; these ways seem to parallel the precision of calculation. Mathematics is 
closest when mathematics is represented as “best buy” and “calculate” problems found 
within the discourse of the classroom resources. The mathematics classroom tradition 
offered “all necessary information […] and the students […] solve the exercise while 
remaining seated at their desks. An exercise establishes a micro-world, where all 
measures are exact, and where the information given is both necessary and sufficient in 
order to calculate the one and only correct answer”(Skovsmose, 2011, p. 8).  As the 
mathematical context shifts between the classroom-based applications to 
extracurricular experiences, the students’ relationships with mathematics lost 
precision. The questions outside the walls of the classroom seemed incompatible with 
a single solution, yet students’ posing of those questions suggested that they felt 
mathematics still held the single solution. 

CONCLUSION 
These findings make a direct statement about the effects of the simplified goals set 
within the mathematics classroom. A student’s “working knowledge” of mathematics 
is the point where school mathematics merges with the student’s daily life. Any lack of 
continuity in the space where the two contexts approach one another contributes to the 
barrier students face regarding the thoughtful application of mathematics necessary for 
engaged-citizenship. It seems that students distanced from mathematics might not take 
any responsibility for utilizing mathematical work to solve problems. Students are not 
only disconnected from mathematics but completely disengage from efforts to problem 
solve. It might be suggested that this disengagement is the direct result of the 
simplification of mathematics application problems in the classroom to achieve one 
single correct answer. Outside the classroom application problems are never so simple 
but perhaps students have been trained to seek the single response. 
This research will contribute to studies of how students move the mathematics outside 
the classroom. Surface markers of the mathematical discourse were useful in the 
discussion of student-formulated questions. It would be helpful to seek a broader 
context for building a broader catalogue of questions. This would enable consideration 
of both similarities and differences between student-authored questions and questions 
drawn from the mathematics test bank and those question students ask in their daily 
experience. Furthermore, it would be of interest to create complex mathematics 
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problems within the classroom and reflect contexts students might use mathematics in 
their extracurricular experiences. 
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STARTING FROM SCRATCH: AN INVESTIGATION OF 
POLYGONS 
Sheree Rodney 

Simon Fraser University 
 

In this paper, I report on the work of one student in a computerized environment - 
scratch programming - and consider ways in which children learn to assign and 
internalize meanings to geometrical ideas, specifically polygons. I use the Vygotsky 
inspired theory of semiotic mediation as an analytical lens, to show how technology 
tools (as mediators) enable the invention and use of signs as auxiliary means of 
constructing mathematical meanings. I argue that scratch programs and the 
potentialities provide a deeper understanding and educe creative innovations which 
may not be possible in paper-and-pen environments. 

INTRODUCTION 
Despite the importance of Geometry to our physical surroundings and emphasis in 
mathematics curriculum, students face challenges in understanding the topic; 
polygons. They can find it difficult to express understanding about shapes, their angles 
and the properties that bind them together. In an effort to curtail this tension, many 
educators turn to technology as a redeemer for infusing deeper understandings about 
polygons in the mathematics classroom. Seymour Papert (1980) seems to have steered 
the ship of technology into the right harbour and decades later there is an influx of 
technological tools being used to enhance student’s learning of the subject. Scratch 
programming is one of many such tools which provide learners with the potential to be 
both innovative and interactive. Recently there is a call for computational thinking 
(CT) to be seen as important to a child’s development. “To reading, writing and 
arithmetic, we should add computational thinking to every child’s analytical ability” 
(Wing, 2006, p. 33). According to Wing (2006) “computational thinking involves 
solving problems, designing systems, and understanding human behaviour, by drawing 
on the concepts fundamental to computer science” (p. 33). Devlin (2012) proposed a 
perspective on mathematical thinking (MT) as a way of thinking about the world 
logically and analytically. He claimed that MT is not about “doing math” but rather 
involves quantitative reasoning as well. The aim of this paper therefore, is to 
investigate how children assign and internalize meanings to polygonal shapes. In 
carrying out this investigation I provide a brief description of scratch programming and 
report on the practical experience in which the student became engaged with the 
technology. I also use a scratch programming environment as a tool of semiotic 
mediation to better understand how children learn about polygonal shapes and their 
properties. In doing so, I show that the semiotic process promotes the emergence of 
mathematical and computational thinking (MT and CT) skills in ways that new 
mathematical meanings become possible. 



MEDS-C 2016  Rodney  

102 

BACKGROUND 
This mini-research was motivated by an assignment for a course and my participation 
at the CMESG 2016 conference where I became intrigued by the functionalities of the 
scratch programming. I was a member of the study group “Computational Thinking 
and Mathematics Curriculum”. In this forum, I gained experience with an innumerable 
amount of computer-based applications and was particularly drawn to Scratch because 
it was new to me. I explored its basic affordances on my own and found that while it 
had similar features to LOGO, it also offers multi-level dimensions of creating stories, 
games and animations which are different from LOGO. My first instinct was to 
become familiar with scratch for conversational purposes, but then, I realized the 
unlimited possibilities that it offers through my readings. In addition, I am a private 
tutor for a student and my partial role is to revisit the topics she pursues at school on a 
weekly basis. This important role, her parents believe, will assist her in maintaining a 
good pace in her regular class lessons. There was one predicament however; I had little 
knowledge about using scratch programming and Danielle had no experience with the 
computer as a mathematical learning tool, she has never used scratch and was hearing 
about it for the first time. 

SCRATCH  
Scratch is an innovative, visual programming environment which allows users to 
create interactive, media-rich projects. It has possibilities of allowing users to develop 
computer programming and thinking skills. Scratch was built on the ideas of LOGO 
where specific instructions are required to create actions. Unlike LOGO, where the 
instructions are “typed codes”, scratch uses “drag-and-drop codes” with features of 
building blocks to produce an object. This drag-and-drop approach was inspired by 
Lego blocks and was specifically chosen because of the “intrigued and inspired way 
children play and build with Lego bricks” (Resnick et al., 2009, p. 61).  
The scratch interface is a self-directed, constructive learning environment which 
strives to provide visual and instantaneous feedback and requires indirect interaction 
with the users, where input of data is dependent on the click of a mouse. In an effort to 
make interaction easy and aesthetically appealing, scratch uses colour-coded icons and 
a single-pane window with a multi-pane design to ensure that key components are 
always visible. (Maloney et al., 2010). In the single-pane there are four rectangular 
shaped blocks called “panes” as shown in Figure 1 below, each of which carries out 
different functions.  
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Figure 1: Single pane window with four operating panes along with script and action 
displayed. 

The middle pane (blocks palette) is used to select commands, the right pane (scripts 
area) displays the codes, the left upper pane (stage) where actions are carried out while 
the bottom-left pane (sprite list) displays all the “sprites” or “characters” within a 
project. In this example, the sprite is the tiger-shaped character and it functions 
similarly to the turtle in LOGO. Though scratch shares similar features to LOGO, one 
of the main differences is the colourful appearance of the scripts that can usually run in 
parts. That is, the script is able to display motion even when it is incomplete. Another 
built-in feature of Scratch which was adapted from LEGO blocks is that it has no error 
messages.  
Similar to parts fitting together in certain ways when building with LEGO, the code 
blocks fit together only in ways that are logical as shown in Figure 1. In this sense, if a 
script does not perform the correct action, it does something. Usually, what it does 
allows the user to think and make adjustments to the code. This process is referred to as 
‘debugging’ (Papert, 1980) and involves situating and fixing errors within a code 
which is useful in developing computational thinking skills. 

THEORETICAL FRAMEWORK 
Semiotic mediation, developed by Bartolini-Bussi and Mariotti (2008) is a term which 
emerged from Vygotsky’s (1978) idea that the use of tools (technical 1  and 
psychological 2 ) is essential in the learning process which contrasts with the 
behaviourist perspectives, that the direct link between subject (the learner) and object 
(knowledge) is a cognitive one. Vygotsky, instead presents the tool, with a dualistic 
role of artifact and sign, as a mediating (a middle man) force to enrich the cognitive 
activity between the subject and the object. According to Vygotsky (1978) “like words, 
tools and nonverbal signs provide learners with ways to become more efficient in their 
adaptive and problem-solving efforts” (p. 127). In other words, Vygotsky is adamant 
that it is not sufficient for genetic and social or cultural development by themselves to 
account for individual’s development-tools and signs-are also contributing factors. In 

                                           
1 Technical tools (artifacts) are usually the physical man-made object that is used in human activities. These are externally 
oriented  
2 Psychological tools (signs) are the internal representation of technical tools. 
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this framework, Bartolini-Bussi and Mariotti explained that, enfolded in an 
intertwining relationship between two dimensions (natural and socio-cultural) is the 
development of human cognition and within the socio-cultural dimension Vygotsky 
positions two main constructs; Zone of proximal development (ZPD) and 
internalization. ZPD refers to “the distance between the actual developmental level as 
determined by independent problem solving and the level of potential development 
through guidance from an adult” (1978, p. 86). Rooted in the process of ZPD is 
internalization; where the transformation from one level to another occurs. It is at this 
point that new mathematical ideas which are internally oriented are formed. The 
process of semiotic mediation then, involves a part of knowledge to be mediated. The 
teacher usually sets the task and chooses the mediating artifact which will aid in the 
emergence of this knowledge. The learner then uses the artifact along with the task to 
produce a solution that is usually within his or her experience to produce artifact signs 
which are later transformed to mathematical signs by the teacher.   

METHOD 
Participant and Setting 
Danielle*3 is a fourteen year old female student who is currently enrolled in a high 
school in the Coquitlam school district. I interact with her once per week - as a private 
math tutor. Each session was two hours long and is usually done without interruptions. 
Our sessions were done in her home, in a spacious, ‘classroom’ like room with various 
educational resources. Our interaction was done in two distinct ways, firstly, we met 
twice in our regular face-to-face meeting and secondly, online through Google Drive 
and Hangouts to share possibilities of shapes that were constructed outside of our 
meetings. I took on the role of participant observer due to the interactive nature of the 
scratch program.  
Data source 
This task was chosen because Danielle was doing her school assignment which 
involves using patterns to investigate the properties of regular polygons. I recognized 
that she was efficient with identifying the pattern but was uncertain about what it 
means to be a regular polygon (Figure 2 below). I used scratch program as a mediating 
tool to bridge the gap in her knowledge. The corpus includes field notes from data 
collected through observations and screenshots of her interactions with scratch. Work 
that was done outside of our face-to-face meetings was stored in Google Drive. In 
addition, Google Hangout was used four times to discuss new observations and share 
insights. The corpus for this mini project comprises field notes, the students work and a 
record of conversations in the social media forum (Hangout).    

                                           
*3 Danielle is a fictitious name given to conceal the student’s identity. 
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Task 
I found that Danielle demonstrated challenges with understanding concepts such as, 
“What it means to be a regular polygon?” She was unable to differentiate between the 
relationship of the sides of a regular polygon, its interior angles and the sum of the 
interior angles. She was also not capable of producing appropriate visual 
representation of some regular polygons. I saw these tensions as teachable moments 
where scratch could be introduced. She was particularly good at identifying patterns 
and was able to complete the table shown in Figure 1, except for drawing the pictorial 
representations of some shapes. I decided to have her examine what would happen to a 
regular polygon if the sides should increase to 100. This I believe would help her better 
understand the idea and properties associated with regular polygons and ultimately 
lead her to later mathematics experience of Archimedes contribution to mathematics, 
with the polygonal approximation of pi. 

 

Figure 2: Danielle working with polygons in paper-pen environment 
Data analysis 
Danielle was completing her homework (Figure 2) as is customary before I commence 
teaching. I watched her as she repeated line after line, making the necessary changes, 
when I noticed that she was merely following the pattern and did not comprehend what 
she was doing. I asked: 

S: What would happen to the polygon if you continue to increase the sides? 
D: I am not sure! What do you mean? Like eleven, twelve? 
S: Yes! What if you add another side here? (Pointing to the dodecagon) 
D: I am not sure! 
S: Let us explore it! 

Scratch is an online programming environment and at this point I provided her access 
using https://scratch.mit.edu. We went through the basic functionalities (all I knew) 
and asked her to find a strategy that would move the sprite. After many attempts she 
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was able to do so and demonstrated accomplishment in her ability. With the barrier of 
possible rejection of the technology out of the way, I proceeded.  

S: Let’s make a code to draw a triangle. What do you know about a triangle? 
D: It has three sides, three angles and three vertices? 

This represents the starting point of the dialectic cycle of the semiotic process where 
Danielle engages with the digital tool to produce her own signs. That is, mapping a 
particular code to the construction of a triangle. After several failed attempts, she 
scribbles the following algorithm on a piece of paper and expresses that “turn 360/3” 
will produce the three interior angles of the triangle. This is evidence of the role 
previous experience plays in the construction of personal signs. She did not realise that 
this angle represents the opposite exterior reflex angles and not what she expects. Her 
code is the emergent of a possible sign representing the geometric shape-triangle.  

Move 100 steps turn 360/3 
Move 100 steps turn 360/3 
Move 100 steps turn 360/3 

She knew it must be done three times but was uncertain of why the sprite was spinning 
around on the stage and was not drawing the triangle. I introduced her to the “wait one 
second” and “pen down” blocks (figures 3 and 4 below). She was able to insert them 
appropriately and the triangle was produced visibly showing the drawing of the lines. 
The next phase was utilizing the “repeat” command to ensure that the codes were 
shorter and more efficient as shown in Figure 4. This brought to the fore one of the 
possibilities of scratch to show that mathematics task can be achieved from varying 
strategies. 
     
 
 
 
 
 
 

 

Figure 3: Completed triangle in scratch  
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Figure 4: Failed attempt of the regular pentagon 
Danielle suggested that we utilize the repeat command and do random numbers to 
increase the sides each time. This resulted in a failed pentagon as shown above in 
Figure 4. Neither of us was pleased with this outcome. As a result, we revisited the 
code to see what was missing. I was perplexed about the simple detail of the sprite 
blocking my visibility to examine the shape in details, while Danielle’s focus was 
mainly on the code. She was convinced that it was what we did to the code that 
produced the object on the screen, demonstrating Bartolini-Bussi and Mariotti (2008) 
idea of the tool “embodying meanings”. This was the first indication of the existing 
possibilities of Scratch and the development of computational thinking skills, as 
Danielle and I tried to comprehend where in the code the error was located and how it 
should be corrected. This is the process of debugging which is involved in developing 
computational thinking skills. There was a great deal of mathematical thinking at play 
as well. In order to amend the error Danielle revisited the code for the triangle and 
square, which revealed the relationship(s) she saw between polygons. She recognized 
that there is a relationship with a full turn (360 degrees), the number of repeats and the 
angle through which the sprite turns. In completing the task Danielle transitioned from 
basic codes into more complex ones where she personalized variables and her coding 
algorithm changes. That is, sliders were introduced for side lengths and number of 
sides. At our second interaction Danielle knew that increasing the number of sides of a 
regular polygon is “getting closer” to a circle but not exactly a circle as she could still 
see impressions of straight lines. When asked if the polygon had 1000 sides if the 
polygon would eventually become a circle she said “I don’t know, perhaps not because 
you are just increasing the sides of the polygon with straight lines and not replacing 
curved ones.” 

DISCUSSION AND CONCLUSION 
In keeping with the semiotic process in order to investigate the properties of regular 
polygons, Danielle was given the opportunity to use the scratch program in two ways. 
Firstly, as an artifact to produce the regular polygons and secondly, as a sign to 
internalize the properties (equiangular and equilateral). In addition, the computer, 
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Scratch codes and the student written work all function as mediating tools throughout 
the semiotic process. The data revealed that her initial drawings of regular polygons 
were in fact representations of the psychological tools from her previous experience. 
By interacting with the codes she produced solutions that were either correct, partially 
correct, or wrong. This process is the construction of personal meanings which are 
situated in a category of signs called the artifact-signs. When I asked her what would 
happen if the sides of the regular polygons were to increase, I utilized the process of 
ZPD and Danielle was able to internalize that the polygons tend to a circle as the 
number of sides increase, demonstrating the emergence of a new mathematical 
meaning (mathematical signs) - that of limits. 
Today, technology-rich classrooms mean different things to different people. If we 
examine the past connections of mathematics education and technology we will find 
that over the decades they both share dependency on each other.  In this paper, I used 
Scratch programming environment as a tool of semiotic mediation to determine how 
new mathematical meanings were constructed. I argued that through the dialectic cycle 
of the semiotic process the student was able to visualize and internalize the physical 
appearance of regular polygons. Most importantly, through the affordances of the 
digital tool, scratch provides opportunities for deeper MT and CT skills that would not 
be possible in static environments. 
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CREATING TENSION BETWEEN ACTION AND INTENT 
Annette Rouleau                                                 Peter Liljedahl 

   Simon Fraser University                                   Simon Fraser University 
 
Pre-service teachers come to mathematics methods courses with well-established 
conceptions of what it means to teach and learn mathematics. Images of teaching 
reinforced by their own lived experiences shape their pedagogy. This can be 
problematic for a teacher educator for whom it may be necessary to offer a way of 
reframing traditional notions of teaching and learning. The research presented here 
examines that process of reframing. In this study we deliberately introduce a tension in 
pre-service teachers’ conception of timed drills and examine the resulting process of 
transition they undergo. Using a tension pairing from Berry’s (2007) framework, our 
findings suggest that the introduced tension provided the means for reflection on intent 
and resulted in a subsequent change in action. 

MOTIVATION FOR THE STUDY 
“Math facts are a very small part of mathematics but unfortunately students who don’t 
memorize math facts well often come to believe that they can never be successful with 
math and turn away from the subject… For about one third of students the onset of timed 
testing is the beginning of math anxiety.” (Boaler, 2015)  

First author narrative:  
It was my first foray into teaching an elementary mathematics methods course for 
pre-service teachers. Wanting to gauge their thoughts around the teaching and learning 
of basic facts, I broached the subject of timed drills. With timed drills being a common 
practice among elementary teachers, it was not surprising that a survey of my 
pre-service teachers revealed that they had all experienced timed drills as students and 
that the majority intended to utilize them in practice. While not unexpected, this was 
problematic for me. With their emphasis on memorization and speed, timed drills are at 
best ineffective, and at their worst, potentially harmful to students.  
Mindful that ‘telling’ my pre-service teachers about the detrimental effects of timed 
drills would have little impact on their practice, I decided to replicate a learning 
experience designed to reframe conceptions of timed drills (see Liljedahl, 2014). 
Gathering my pre-service teachers around me, I told them we were going to have a 
multiplication drill — they would be required to respond verbally to a random 
multiplication question within an allotted time frame. Correctly answering the question 
would allow them to ‘sit out’, essentially completing their role in the intervention; 
incorrect or slow answers meant the pre-service teacher had to continue playing. By 
default, the last person standing would be the ‘loser’. Although a handful appeared 
excited by the prospect of competing, the majority of the pre-service teachers were 
visibly anxious. The overwhelming relief in the room when I announced that this was a 
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ploy and they would not actually have to answer was palpable. And the ensuing 
discussion was rich and reflective — many underwent a transformative experience that 
they felt compelled to share.  
The comments during the debrief reflected a newfound awareness that the fear and 
anxiety experienced by the group would likely be the same emotions that the majority 
of children in their classroom would feel in a similar situation. This was expressed by 
both those who feared the intervention and by those who were excited by it. Their later 
journal entries reaffirmed that theme and also revealed that they would no longer 
consider using timed drills in their classrooms. This was despite the majority 
previously indicating that they had ‘no issue’ with timed drills.  
This shift from planning to use timed drills to an avowal never to use them was 
intriguing. It seemed clear that the intervention had achieved its intended goal of 
raising an awareness in the pre-service teachers that caused them to reflect and 
reconsider implementing timed drills in their future classrooms. What was less clear, 
however, was the mechanism by which this transition occurred. The aim of this paper 
is to explicate that transition process. Thus, our research question is: What is the 
process through which pre-service teachers shift from acceptance of an established 
teaching practice to a determination never to use it? 

THEORETICAL BACKGROUND 
Mathematics for many people is commonly associated with being able to get the 
correct answer quickly without the need for conceptual understanding (Boaler, 2015). 
It is not surprising then, that timed drills, in which students are required to answer basic 
fact questions in timed tests, are an accepted practice among elementary teachers 
(Kling & Bay-Williams, 2014). Drills are completed individually or, more commonly, 
as a group activity where the students are required to answer in front of their peers. 
With their emphasis on memorization and speed, these drills are unnecessary and 
damaging (Boaler, 2015; Harper & Daane, 1998). Instead, research suggests that 
effective teaching practices are those that promote conceptual understanding (NCTM, 
2014; Tirosh & Graeber, 2003). 
Yet the use of timed drills persists and a visitor to any Canadian elementary classroom 
is likely to encounter timed tests. Timed drills are iconic of established teaching 
practices, which have come to be commonly accepted, and little conscious thought is 
put into their continued use and implementation (Buchmann, 1987). Referred to as 
‘folkways’ of teaching, they cut across the experiences of students and are built up 
through collective participation. Accepted as the way mathematics is taught and 
learned, folkways are “capable of being practiced without understanding their point or 
efficacy, the folkways are widespread and emblematic, expressing in symbol and 
action what teaching is about” (Buchmann, p. 7). In order to disrupt the universal 
acceptance of folkways such as timed drills, it is necessary to provide a means of 
raising awareness and reflection.  
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One way to achieve this is to introduce a tension. Typically a byproduct of teaching, 
tensions are described as the inner turmoil experienced by teachers. They are the 
unintended yet inevitable consequence for teachers who find themselves pulled in 
differing directions by competing pedagogical demands; however tensions can be 
useful for those who accept the conflicts and use them to shape identity and practice 
(Lampert, 1985). It is tension that often propels teachers towards professional 
development and provide the impetus to improve their practice (Rouleau & Liljedahl, 
2015).  
However, teachers are not always attuned to these tensions and subsequently there is 
no reflection to provide that impetus (Berlak & Berlak, 1981). As with the pre-service 
teachers, whose previous experience with the established folkway of timed drills had 
deflected any awareness of a tension, a tension may need to be deliberately introduced 
for a change in practice to occur (Liljedahl, 2014). Berlak and Berlak (1981) suggest 
that because a person is capable of being made aware of tensions, they are capable of 
altering their practice. However, a caution regarding change is necessary here. As 
Mason (2002) suggests, “Effective change is something that people do to themselves; 
more radically, but more aptly when investigated closely, change is something that 
happens to people who adopt an enquiring stance towards their experience” (p. 143). 
Essentially, a teacher educator can provide the opportunity for change, but the agency 
of change must lie with the pre-service teacher. 
A framework for both identifying and understanding tensions emerged from the work 
of Berry (2007). Isolating six pairs of interconnected tensions, Berry used these as a 
lens to examine her practice. These pairs of tensions are: (1) telling and growth (2) 
confidence and uncertainty (3) safety and challenge (4) valuing and reconstructing 
experience (5) planning and being responsive (6) intent and action. The last of these — 
the tension “between working towards a particular ideal and jeopardising that ideal by 
the approach chosen to attain it” (p. 32) — is the tension that is most relevant to the 
phenomenon introduced at the beginning of this article. Until participating in the timed 
drill intervention, the pre-service teachers had expressed no conflict between their 
intent of having students learn basic facts through their chosen action of timed drills. It 
was difficult for them to recognize the pitfalls inherent in habitual ways of practice 
even though these ways were actually working against their intended goals for their 
students’ learning. The implementation of the intervention introduced the tension, 
which resulted in them making the transition from wanting to utilize timed drills to 
never wanting to use them. 
In what follows we use Berry’s (2007) tension pairing of intent and action to frame the 
transition process experienced by the pre-service teachers. In doing so, we examine the 
process of moving from their acceptance of an established practice to a determination 
that they will never use it in their practice. 
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METHOD 
The participants for this study were sixty-nine pre-service teachers enrolled in two 
sections of a fourth year elementary mathematics methods course taught by the first 
author. As the lead up to a lesson on the teaching and learning of basic facts, the 
pre-service teachers experienced an intervention designed to cause tension between 
their professed intent of having their students learn basic facts through the action of 
incorporating timed drills into their teaching practice. A whole group debrief of the 
experience followed immediately. The pre-service teachers were then required to 
complete a reflective journal entry composed of prompts modelled on Gibbs Reflective 
Cycle (1988). First, they were asked to describe the experience, then describe what 
they were thinking and feeling, then provide an evaluation and analysis of the 
experience. The prompts were assigned at the end of class with the expectation that 
they would be submitted, along with all their other journal entries, at the end of the 
semester. 
The core of the data comprises entries from sixty of the pre-service teachers’ written 
journals, which were submitted electronically. The remaining nine pre-service 
teachers’ journals were submitted in paper format and returned prior to data collection. 
Other data sources were a simple three question pre-intervention survey asking 
whether the pre-service teachers had participated in timed drills as a student, had used 
them (or observed them being used) during their practicums, and finally, whether or 
not they expected to use timed drills in their future classroom. Notes were also taken of 
the in-class discussion that occurred prior to the intervention and of the activity 
debrief. 
The data were coded and analysed using the methodology of modified analytic 
induction, which requires a phenomenon of interest and a working theory that can 
illuminate other similar situations (Bogdan & Biklen, 1998). It requires that data are 
coded and analysed for themes in order to develop or disconfirm the working theory 
(Gilgun, 1992). In this study, the phenomenon of interest was the pre-service teachers’ 
process of transition and the theory began with the assumption that introducing a 
tension creates a consequence that can alter one’s actions.  
The themes were generated using NVivo analysis and coding software. For example, 
for indicators of tension, we initially looked for utterances with emotional components 
such as mentions of anxiety, panic, or anger. Noticing that these utterances frequently 
contained phrases like “I never will” or “I remember”, we further divided the theme 
into tensions around future intentions and past memories. The latter underwent a 
subsequent iteration which resulted in subcategories of positive and negative 
memories.  

RESULTS AND ANALYSIS 
In what follows, results from the survey as well as excerpts from the pre-service 
teachers’ journals are used to exemplify the tensions that they are experiencing (or not) 
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and how these tensions evolve as a result of the intervention. These results, and the 
accompanying discussions, are broken into the three salient stages of the pre-service 
teachers’ evolution.   
No tension between intent and action 
Prior to participating in the intervention, fifty-seven of the pre-service teachers (n = 69) 
indicated that they would likely be using timed drills in their future classrooms and 
thirty-six (n = 69) had used them during their practicums. When questioned, the 
majority felt timed drills were an effective way of learning basic facts. They expressed 
no tension between their intent and their action; this was an accepted practice that they 
fully anticipated utilizing in their classrooms. This is exemplified in the following two 
excerpts: 

Julianne:  I have grown up doing them [multiplication drills] and I don’t see them as 
an issue. 

Cate: I have memories of having to spew out math facts as fast as possible. I hated 
it but I think it’s a good way to learn math facts.  

In the journal entries, seventeen of the pre-service teachers (n = 60) mentioned the 
enjoyment they experienced as young students participating in timed drills. They 
excelled at it and expressed positive emotions regarding the activity. It is not 
unexpected then, that their initial surveys indicated that they would be using timed 
drills in their future classrooms. What was interesting was the twenty-six pre-service 
teachers who wrote about their negative experiences with timed drills as young 
students. Despite this, in their initial surveys, they too, indicated their intention of 
using timed drills in their future classrooms. Their personal experiences were not 
enough to overcome their ingrained acceptance of this common yet pedagogically 
unsound teaching practice. 
Creating a tension between intent and action 
The intervention used to create a tension was a mock timed multiplication drill. 
Reliving the familiar experience of timed drills as an adult brought to bear not only 
intense anxiety but also all the negative feelings this type of intervention had caused 
them as a child. The journal entries contained vivid descriptions of the experience as 
seen in the following excerpts: 

Cate:   The minute you told us to stand up and that we will be doing multiplication 
questions; I went into a panic. My heart was racing, my stomach was 
clenching and I felt as if my brain was freezing. 

Jennifer:   It’s definitely eye opening, having that memory from almost 20 years ago, 
and then the feeling of panic that I had when I thought that it was going to 
happen all over again in a university class. 

Meryl:   I came home thinking about all of those students who were in my own 
grade three class years ago that must have just been riddled with anxiety. 
There is something incredibly disturbing about that. Moreover, there is 
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something even more disturbing that this is still a very, very commonly 
used practice. My own SA (mentor teacher) did it throughout my 
practicum. 

Natalie:   After you revealed that we actually weren’t going to do this activity, and 
we debriefed it, I realized just how unhealthy it was for me to think that this 
was a normal way of teaching. 

What emerged from the journals was that introducing the timed drill in an authentic 
manner was vital to the success of the intervention. Experiencing the activity as an 
adult learner highlighted the disconnect between their intent and their action. The 
excerpts reflect the recognition that the action of a timed drill interfered with their 
intent to have students master basic facts. In revealing the folkway of timed drills, we 
made room for doubt and uncertainty to creep into the pre-service teachers’ mental 
image of timed drills. This emerging awareness can ultimately create what we call a 
useful tension in that it can lead to reflection and change in practice. 
Consequence of the Tension on Action and Intent 
The anxiety experienced by the pre-service teachers during the intervention was 
intense and this was reflected in the journal entries where forty-seven of the pre-service 
teachers (n = 60) wrote about the negative effect they felt when asked to participate in 
a timed drill. Consequently, they were able to redirect this self-awareness to an 
understanding that children in their future classrooms would likely experience the 
same feelings — as we see in the following two excerpts: 

Sandra:  After we debriefed this activity I realized how many people in our adult 
class felt uncomfortable with timed drills and being out on the spot in front 
of the rest of the class. This definitely was comparable, over even more, to 
the type of feelings and nerves we may see in our own classroom while 
teaching children. Only a small amount of students would love this activity 
while the rest of the class would face nervousness, anxiety and worry.  

Marion:  When debriefing, I found it relieving and surprising to know how many 
other people felt the same way I did. Standing in a room full of adults who 
are becoming teachers, looking around at how much anxiety was caused by 
this one activity, I can only imagine in a room full of young students how 
they would feel. 

The journal entries revealed that the intervention served as a means of reflection on the 
pre-service teachers’ own future practice. The newfound pedagogical tension resulted 
in fifty-one of the pre-service teachers (n = 60) stating that they no longer felt that 
timed drills had a place in their classroom. As one pre-service teacher wrote: 

Reese: As a teacher of mathematics, I will never force my students to do timed 
drills. After experiencing anxiety when you suggested we do this and 
seeing the anxiety it provoked in my peers, I was able to understand the 
anxiety that this causes in our students when we do the same to them. 
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DISCUSSION AND CONCLUSION 
In answer to our research question, the shift from acceptance of an established teaching 
practice to a determination never to use it began with the introduction of what Berry 
(2007) describes as a tension between intent and action. This resulted in a consequence 
that disrupted the balance between the pairing, and we suggest that this will cause the 
pre-service teachers to seek out a new action.  
It was readily apparent that, prior to the intervention, there was an absence of tension 
between the pre-service teachers intent to help students learn basic facts through the 
action of timed drills. They believed it to be an effective technique that would help 
them reach their goal. Considering that tension can be the impetus for change in 
practice (Lampert, 1985); a lack of tension is a strong indicator that the pre-service 
teachers would utilize timed drills in their future classrooms.  
Participating in the intervention provided a new lived experience and created a tension 
that unseated the folkway of timed drills. In reflecting on that tension, the pre-service 
teachers realized that the action they were considering using to help students learn 
basic facts interfered with that very intention. The end result is that their initial action is 
no longer satisfactory for reaching their goals. The intent to have students learn their 
basic facts remains, but they will be searching for a new action to implement that will 
help them achieve that aim. While we cannot conclude that the pre-service teachers 
will never use timed drills, the presence of a tension, they have experienced first hand, 
may be enough to impede or curtail the activity. 
Berry’s (2007) tension between intent and action offers a way of reframing traditional 
folkways of teaching and learning through reflection on experience. As pre-service 
teachers are unlikely to reflect on practices, which they view as common and accepted; 
it is the teacher educator who must devise a way to make these ‘folkways’ self-evident. 
Analysis of the data in this study revealed that purposefully creating a tension was 
useful in altering pre-service teachers’ conceptions of timed drills. The intervention 
resulted in a useful tension which became a source of reflection and praxis. 
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ARE THEY GETTING ANY BETTER AT MATH? REFLECTIONS 
ON STUDENT EVALUATION AND MATHING 

Robert Sidley 
Simon Fraser University 

 
Conversations with stakeholders about students’ improvements in mathematics 
invariably focus on student grades and work habits. Further, research into 
improvements in mathematical performance focus almost exclusively on the 
acquisition of mathematical content and improvement in test scores. This narrow focus 
makes assumptions about what it means to know and do mathematics. By analyzing 
traditional evaluation data gathered from a year-long grade 10 mathematics class, I 
evaluate the usefulness of this data in determining student improvement and, by 
exploring the micro and macroculture of mathematics classrooms, reflect on the role 
traditional evaluation and pedagogy have in shaping how students “math”. 

ARE THEY GETTING ANY BETTER?  
I was having a conversation recently with a colleague of mine about her assessment 
practice. At the time, she was teaching English Language Arts, and we were discussing 
the practice of including marks from student writing from early in the year in the 
students’ overall grades. It was the practice in her department to average student 
writing grades from September to June. We both had questions about this practice. 
Shouldn’t the student’s grade be determined exclusively on how the student was 
writing at the end of the course?  After all, if the student’s writing had improved 
significantly over the year, what was the point of including early writing marks? We 
both agreed that one of the main purposes of the course was certainly to help students 
improve their writing, among other competencies, and that, while the student should 
receive feedback throughout the course, evaluation seemed to make the most sense at 
the end.  
 “Well what do you do in Math?”, she asked me. “Do you average over the year, 
or just give them a mark at the end?”  
 “We almost always average,” I said. “It wouldn’t make sense to just give them a 
mark at the end, because our grading is based on discrete units.”  
 “Well, how do you know if they’re getting any better at math then?” she asked.  
I can’t remember exactly how I answered at the time. It’s likely I said something about 
Math being different that English, and that we measure achievement by content 
acquisition, or something like that, but the question had been asked, and I knew as I 
answered it, I wasn’t satisfied.  “How do you know if they’re getting better at math?” I 
had no idea. How could this be? How was it possible that I wasn’t able to tell if 
students were getting better in the way she and I were talking about with respect to her 
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students? Certainly, my students were getting better at math throughout the year, 
weren’t they? Ah, I thought, I’ve got tests! Yes, that’s it. Look at what they can do that 
they couldn’t do before: factoring polynomials, reducing radicals, graphing linear 
equations.  They couldn’t do that stuff in grade 9, and now they could (mostly) after 
grade 10. There, they’d gotten better at math.  But somehow, the satisfaction of my 
answer rang hollow. Was that it? Was math just about learning content? Certainly, they 
must be getting better at something else?  But what? And how did I know?  
I decided to examine the evaluation data I had gathered from three students in a 
year-long Foundations and Pre-Calculus Mathematics 10 class in the hopes that this 
would help me better understand if and how these students had improved over the year.  

MY STUDENTS’ EVALUATION DATA 

 
 
 
 

 

 

Table 1: Student evaluation data 
The year-long Foundations and Pre-Calculus Mathematics 10 course is organized into 
three major organizers, which are further arranged into topics or chapters.  The 
Measurement organizer includes chapters on surface area and volume, and 
trigonometry; the Algebra and Number organizer includes operations on rational and 
irrational numbers, and factoring polynomials; the Relations and Functions organizer 
includes sections on graphing linear relations, including solving systems of linear 
equations. The organization of the course into discrete chapters is a familiar model to 
anyone who has ever taken a high school math course, as is my evaluation of student 
learning.  

 Volume & SA Trigonometry Radicals Relations 

Student Quiz Test Quiz Test Quiz  Test Quiz  Test 

Jesica 88 91 85 89 90 90 83 89 

Robbie 65 75 80 87 71 69 57 55 

Spencer 45 40 50 47 61 52 35 50 

 Graphing  Systems  Final Exam 

Student Quiz  Test Quiz Test   

Jesica 87 86 91 98 95  

Robbie 68 78 77 81 73  

Spencer 47 53 65 52 48  
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In the particular class in question, quizzes were administered after shorter periods of 
study, and tests given at the end of some units. The tests and quizzes were graded for 
correctness, with partial marks given for partial solutions.  Students were expected to 
justify their answers by “showing their work”.  Table 1 shows the grades of three 
students.  These grades, recorded as percent of total marks available, are representative 
of almost all the students in the class.  Jesica, for example, scored consistently well on 
all quizzes and tests. Robbie’s scores varied throughout, while Spencer struggled to 
maintain a passing grade. There is little, if anything exceptional or novel about my 
evaluation data.  In fact, I contend that if we examined most North American high 
school math teachers’ grade books, with some slight variance around number of 
quizzes and tests, we could extract virtually identical data.  
It is clear from the data, and the method by which it was collected (i.e. quiz and test 
scores), that no reasonable inferences can be made as to whether or not my students 
had gotten any better at math. None of the three data sets I’ve chosen to examine show 
improvement in scores over time; in fact, none of the students from this class showed a 
consistent improvement over time. Even if the data had shown trends towards 
improved scores over time, it is impossible to infer whether a student was getting better 
at math, or whether that student was simply getting better at writing the tests. 
The method of data collection, however, has broader implications. This data was used 
to measure, in large part, the success of students in my class. Parents, students, their 
next years’ teachers, and other stakeholders, look to this data as, in many cases, the 
only indication of mathematical competence and proficiency. But what does this data 
actually suggest about what it means to learn and to do mathematics in my classroom?  

MATHING AND MATHEMATICAL CULTURE 
The data gathering method for this discussion, or more importantly, the way in which 
my students were evaluated in my class, was meant, almost exclusively, to measure 
content acquisition. The “almost” in the last statement acknowledges that paper and 
pencil tests and quizzes, while intending to measure their acquisition of mathematical 
content, also act as an evaluative proxy for many other things such as work habits, 
student motivation, reading skills, etc. While these are important considerations, well 
worth exploring, they are beyond the scope of this paper. What I am interested in 
exploring here are the implications of using an evaluation scheme that is based on 
content acquisition, in terms of understanding how I can come to understand student 
improvement.  
As mentioned above, the evaluation data for students is viewed as a measure of both 
success and proficiency. What we measure has an implicit and explicit value attached 
to it, since, in my classroom and many like mine, the extent to which students can 
demonstrate their content acquisition is the most significant measure of their success.  
This is not to say that the instructional focus in my class was procedural; in fact, my 
belief was quite the opposite. I spent a great deal time guiding students towards 
conceptual understanding by engaging them in discussions, activities, and explorations 
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designed to deepen their appreciation and conception of the content. At some point, 
however, this focus narrowed, and the measure of their success became what they 
could do – what questions they could answer, how they could demonstrate their ability 
to perform skills, and how they could apply those skills to familiar questions on a test.  
I contend that this narrowing of focus defines for students what it means to know and to 
do mathematics. For my students, then, in spite of my efforts to focus on conceptual 
understanding and inquiry, the measure of their success was the degree to which they 
learned how to do the kind of mathematics that they could reproduce on a paper and 
pencil test, meaning that to improve in mathematics, one must learn to get better at 
performing on tests and quizzes.  
The difference between engaging in the process of doing math and engaging in the 
process of learning math content is significant. The question of what Mathematics is, 
much like the validity and efficacy of paper and pencil testing, is beyond the scope 
here; however, it seems that if I am interested in trying to determine whether my 
students are getting any better at math, the question necessarily comes down to 
distinguishing between the doing of math and the learning of math as content. Both are 
a kind of “doing” of math or mathing, i.e. considering math as a verb, or the act of 
engaging mathematically. I recognize that these are not mutually exclusive, but it is in 
the mathing that the processes involved in doing mathematics lie. I contend that what 
constitutes mathing in a classroom defines for most students what it means to know 
and do mathematics, and, perhaps, even what Mathematics is.   
According to Bauersfeld (1993), mathematical activity depends on social and cultural 
processes.  The classroom itself is certainly a dynamic system, in which social and 
cultural norms are introduced and reinforced by the teacher:  

[T]he understanding of learning and teaching mathematics ... support[s] a model of 
participating in a culture rather than a model of transmitting knowledge. Participating in 
the processes of a mathematics classroom is participating in a culture of using math or 
better: a culture of mathematizing.  (p. 4)  

Mathematizing, in this sense, defines, for each classroom, what it means to know and 
do mathematics. In their work on sociomathematical norms, Yackel and Cobb (1996) 
identify intrinsic aspects of a classroom’s microculture, defined by teachers’ and 
students’ activity. They argue that these classroom normative understandings are 
modified by the ongoing interactions of students and teachers, and are unique to 
specific classrooms. While Yackel and Cobb (1996) look specifically at those 
interactions that sustain a culture of inquiry and problem solving, I contend that 
sociomathematical norms are present in classrooms with a focus on content acquisition 
also. Further, it is the activities of students and teachers that define both what mathing 
is for a particular classroom, and what mathematics is for students in that classroom 
culture.  
Following the work of Richards (1991), Cobb et al. (1992) identify two classroom 
traditions: the school mathematics tradition, and the inquiry mathematics tradition. 
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While it is tempting to view each tradition as theoretically dualistic, with the school 
tradition exemplified by direct teaching to passive receivers of knowledge, and the 
inquiry tradition as a dynamic environment where students make and test conjectures, 
solve problems, and actively construct meaning, Cobb et al. (1992) argue that this is an 
oversimplification. In both traditions, the meaning of mathematical activity is based on 
mutually agreed upon classroom interactions that constitute acceptable discourse in 
each tradition. The fundamental difference, however, lies in what is accepted as 
meaningful mathing in the respective traditions. The interpretation of what is 
meaningful can be connected to Skemp’s (1976) discussion of instrumental and 
relational understanding, with respect to what constitutes normative activity in each 
classroom. In the school mathematics tradition, students view meaningful activities as 
those in which they can demonstrate correct procedures, while in an inquiry 
mathematics tradition, students see activities as meaningful when they facilitate the 
construction of personal meaning (Cobb et al., 1992). 
Both the microculture of sociomathematical norms and the macroculture of classroom 
traditions are negotiated by teachers and students (Yackel and Cobb, 1996; Cobb et al., 
1992) through an interactionist framework. This aligns strongly with my own 
experience. Classroom culture is a blend of my own philosophical, ideological, and 
epistemological perspectives, and those of my students. A profound tension exists, 
then, between an instructional approach that favours a tradition of inquiry and an 
evaluation plan that is grounded in a school mathematics tradition.  
If success is defined by paper and pencil testing of procedural competence, as is the 
testing culture of content acquisition, this goal dominates and overwhelms efforts 
towards a discourse that aligns with an inquiry tradition. How, then, does this relate to 
finding out if my students are getting any better at math? It is clear from the data I 
gathered that I cannot comment on students’ improvement by examining test data if I 
consider “doing” mathematics, or mathing, to be any more than acquiring content. 
Students, and teachers in many respects, are pragmatists, and will strive to improve in 
the areas in which they are measured. To know if students are getting better at mathing, 
I need to measure the processes students use to engage in mathematical inquiry, and 
not just measure their content acquisition.  
This presents an alternative way of examining the mathematics classroom – by 
separating the way in which students engage with the content, and the content itself – 
describing mathing separately from the content that is the context for that mathing. If, 
as the research suggests, the mathing is a function of the micro and macrocultures 
negotiated in the classroom, then it follows that this process is relatively stable 
throughout the course, and defines what it means to math in that classroom.  The 
content, on the other hand, is ever changing. As almost all math teachers know, the 
content is the clock; teachers and students both need to keep pace to be in certain 
chapters at particular times in the year. For example, if I don’t finish trigonometry by 
Christmas, I’m behind. Further, content is almost always unidirectional. Apart from 
review for mid-terms and finals, once we’ve finished a chapter, we almost never go 
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back to it. So, given that we have an ever changing part of the course, i.e. the content, 
and a consistent part, that is, the way students math, if I want to know if they’re getting 
any better, why do I measure that which is always changing? If I want to know if 
students are getting better at doing mathematics, and not just getting better at acquiring 
mathematical content, I need to find a way to measure and evaluate the mathematical 
processes that students use to math. Essentially, the normative culture of the 
classroom, the stable and consistent environment of doing mathematics, is what I need 
to measure, not the variable content topics. 

CONCLUSION 
Ultimately, in reflecting on my colleague’s question, how do I know if my students are 
getting any better at math, I can only conclude that, as long as I am only evaluating the 
dynamic part of the class, the content, my students’ evaluations are necessarily focused 
on narrow, procedural competencies, and not on the kind of mathing which is 
representative of the inquiry tradition I believe to be important. By re-visioning my 
student’s evaluation towards the processes they engage in inside an inquiry tradition, 
perhaps I can guide students towards getting better at actually doing math and not 
simply getting better at demonstrating their acquisition of content on a paper and pencil 
test.  
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Jeffrey Truman 
Simon Fraser University 

 
This study examines the mathematical learning of an undergraduate student on the 
autism spectrum. I aim to expand on previous research, which often focuses on 
younger students in the K-12 school system. I have conducted a series of interviews 
with one student, recording hour-long sessions each week. The interviews involved a 
combination of asking for the interviewee's views on learning mathematics, 
self-reports of experiences (both directly related to courses and not), and some 
particular mathematical tasks. In particular, I examine observations related to 
geometric reasoning that I have encountered.  

BACKGROUND 
The Autistic Self Advocacy Network (2014) states that autism is a neurological 
difference with certain characteristics (which are not necessarily present in any given 
individual on the autism spectrum). These include differences in sensory sensitivity 
and experience, atypical movement, a need for particular routines, and difficulties in 
typical language use and social interaction.  They also list “different ways of learning” 
and particular focused interests (often referred to as 'special interests'), which are 
especially relevant to this investigation. Over the past few decades, there have been 
many research studies about learning in students on the autism spectrum, such as those 
reviewed by Chiang and Lin (2007).  A large portion of these studies focus on K-12 
students, and particularly elementary students, pointing to an important gap in research 
which I am focusing on. 

THEORETICAL FRAMEWORK 
In Vygotsky's writing, there is some work that directly addresses the study of 
“defectology”. At the time, this was used to refer to studies involving children with 
certain disabilities (of a narrower scope than we might consider today) (Gindis, 1995).  
One of the main ideas Vygotsky used for this was overcompensation (sometimes 
referred to as just 'compensation', possibly due to shifting connotations of the original 
over time). Vygotsky's idea of overcompensation was explained initially in a 
framework of physical overcompensation, such as a kidney or lung necessarily 
strengthening when the other one is missing or by analogy to vaccination.  He argued 
that overcompensation also occurred in psychological development, both in its general 
course and in particular in the presence of various disabilities. However, he could not 
have made any assertions about it in terms of autism specifically, since the diagnosis 
did not exist when he wrote. 
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While my views are informed by the Vygotskian framework, there are some issues 
with using it directly.  Some parts that are particularly relevant in autistic people, such 
as the ideas about atypical development and concept formation, particularly concern 
things that have already must have occurred far before starting university coursework, 
and thus cannot be observed in my interview subjects.  Thus, I have introduced 
additional tools for the analysis of these interviews. 
One of these tools is to compare the observed performance of the students with traits of 
people on the autism spectrum that have been noted in the literature.  For instance, 
there is often an association between the spectrum and visualization or spatial 
reasoning (Grandin, Peterson, and Shaw, 1998).  In the Vygotskian framework, such 
an association may be related to overcompensation, using a stronger ability in spatial 
reasoning in place of the typical modes of reasoning that would be expected based on 
typical performance. 

PARTICIPANTS 
The first participant in this case study, Joshua (a pseudonym) received an Autism 
Spectrum Disorder diagnosis at age 18 (changed from a previous diagnosis of 
Obsessive Compulsive Disorder). He reported a strong interest in chemistry as well as 
a particularly low level of interest in subjects unrelated to his major and a strong 
inclination to work alone. He also reported a preference for visual interpretation and 
explanation that was reflected throughout the interviews. He was taking integral 
calculus and linear algebra courses, and I conducted interviews every week for the 
term of those courses. 
The second participant, Cyrus, received an ASD diagnosis at the age of 13. His 
mathematical background included a bachelor's degree in mathematics. In contrast to 
Joshua, he showed a fairly strong preference toward algebraic solutions rather than 
geometric ones, both in his stated preferences and in his given solutions. Since he was 
not taking any courses at the time, the focus of my interviews was on particular tasks 
(including ones used in the first set), which included many mathematical 
paradox-related items. 

INTERVIEW PROCEDURES AND TASKS 
All of the interviews were in person and audio recorded. In the transcripts, I use 'I' for 
the interviewer and 'S' for the interview subject. I have tried to capture how the 
dialogue went. '[?]' indicates something that was not clear, but by context is most likely 
not significant, and '(…)' indicates a significant pause. A ‘…’ on a line in brackets 
indicates that some lines have been omitted. 
In the part of my case study I am presenting here, I used the first of the Magic Carpet 
problems used by Wawro, Rasmussen, Zandieh, Sweeney, & Larson (2012).  The 
Magic Carpet tasks were designed for and used on students in a linear algebra course 
who had completed at least two semesters of calculus. Since they were used at the 
beginning of their course, the students had not been previously exposed to linear 
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algebra instruction, although all had been introduced to the idea of a vector in some 
capacity.  The first Magic Carpet task presents a situation where 'you' have two tools (a 
hoverboard and the magic carpet of the problem's name), each with movement 
restricted to a particular vector ((3,1) and (1,2), respectively).  The question presented 
is whether and how one can get to a cabin at (107,64) using these tools, and to explain 
either how it can be done or why it cannot be done.  Instructionally, the intent of the 
problem in the context of a linear algebra context seems primarily to introduce the idea 
of linear combinations, and to lead into other problems in the setting which introduce 
span and linear independence of vectors. 
My intent is to ask how students on the autism spectrum will respond to these tasks.  
The guiding idea for this research is to find particular areas of similarity in difference 
in their responses, and find possible explanations through my theoretical framework. 

INTERVIEW AND ANALYSIS 1: MAGIC CARPET TASKS WITH JOSHUA 
Despite the intent of the first Magic Carpet task, Joshua's initial idea to solve it is 
entirely geometric: 
J.1.1 S: 107- okay, so 107 x, 64 y, okay. (produces a drawing, using a ruler) 

So... could- isn't the 107 and 64- couldn't we just, uh, that would be equal 
to the determinant, wait, you can't really use- no, because what I'm 
thinking, Jeffrey, we could do is we could literally draw a parallelogram, 
so are we allowed to do that? 

J.1.2 I: Uh, okay. 
J.1.3 S: 'cause here's how I would do it. ...draw a sketch, Jeffrey, a sketch. 

(drawing) So, I mean, I don't know if this has to be explicitly done 
mathematically or whether it can be done, you know, by drawing a 
sketch but in physics I know that we always drew sketches. That way, 
whoever- the person knows how to, uh, knows what is going on in our 
heads. … 

J.1.4 S: So now we've got the vector that we wanted to, which... look like so... 
1, 2 we could scale up to 10, 20, so that's what I did here, and we have 
the vector 3, 1, which we could scale up to 30, 10, ... shit. Oh, that's right, 
the- and so now, how we could approach this is we could follow this 
vector here, ...we could follow the vector, this is the vector 30, 10, and 
this is the vector 10, 20, I just scaled it by 10, 

J.1.5 I: Okay. 
J.1.6 S: Each vector scaled by 10, then from this point here, what we could do, 

is we could slide this vector up, slide it up all the way up to here and 
then, so what we could do, is from this point here, we could draw, so if 
we have 64, 107, we could- go down 20, 20 units, and 10 units to the left, 
like so, and then, we have the same vector, we just literally transformed 
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the vector, [?] I guess not trans- we moved the vector, the point is that it's 
the same thing, 10, 20, and then, this point of intersection, is where we 
would shift our- we would change what instrument we were using, so I 
don't know- you want to look at that. 

J.1.7 I: Okay. Interesting. 
J.1.8 S: So that's how I would do it. I- I'd approach it literally geometrically. 

Yeah, there you go. (handing over paper) 
J.1.9 I: Hm. 
J.1.10 S: And so we've got two lines there, and that little point of intersection is 

where- and you can find that quite easily, on the x-axis, uh, and that 
point of intersection is where you would switch over, switch your 
instruments, ...and again, we have the vector 1, 2, um, we can find the 
slope of that vector, uh, and then we can move it over to the point 64, 
107 or what- [?] 107, 64, and then, you know, it- it wouldn't really be 
that hard to find that point of intersection but that's how I'd do it, literally 
just play around with those vectors. 

Here, Joshua provides an entirely geometric solution by sketching the vector 
corresponding to each tool (one from the starting point and one from the end point) and 
finding their intersection. This solution is unlike those of any of the students observed 
by Wawro et al. in their use of this task. The drawings used by Joshua were produced 
using a ruler and were very precise, enough to give a correct solution.  I measured the 
drawings after they were produced, and the point of intersection found by the drawings 
was the correct point. The interpretation as the location where the person in the 
problem changes from one instrument to the other is also correct. Thus, this solution 
accomplishes the stated goal of the problem perfectly well (although avoiding the 
intent to push the student toward a standard linear algebra solution, and providing 
nothing related to linear combinations of vectors). 
Later in the interview, I ask Joshua to find an algebraic way to solve the problem: 
J.2.1 I: Can you think of the algebraic way to solve the problem? 
J.2.2 S: Well, like I said, I'd probably find the slope of the vector 1, 2, uh, make 

that, once I have the slope, make a line with slope 1, 2, so literally it 
would be y is equal to m x plus b, um, so, our y and our x values would 
have been 64 and 107, um, six [?] we have 64, 107 with some slope, you 
find the b, you find- the b, the y-intercept, you'd have an equation y 
equals m x plus some y-intercept, you'd know the slope, you'd find the 
other slope, ah, you'd find the other equation, and that point of 
intersection is where the x and the y values are the same. Do you know 
what I mean? 

J.2.3 I: Mm... okay. Wait... hm. 
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J.2.4 S: You find two equations for both lines, so I found two lines there, find 
equations for both lines and then find a common- find the common 
solution for both lines. (…) 

J.2.5 I: So you're finding an equation that's sloped on one of the vectors and 
hits this point,  

J.2.6 S: Yes. 
J.2.7 I: and the other equation that's sloped on the other vector hits the origin. 
J.2.8 S: Yeah. Exactly. And then find a common solution to those. And that's 

where you would switch your implements. (writing) … 
J.2.9 S: Is there an easier way? […] 
J.2.10 I: The... both, the linear algebra algebraic way, is essentially to set up, ah, 

(writing) 
J.2.11 I: a system like this. 
J.2.12 S: Hm. 
J.2.13 I: Like, "what linear combination of vectors gives this?" 
J.2.14 S: Hmhm, okay, yeah. 
J.2.15 I: And then you have your two equations, two unknowns, system. 
J.2.16 S: Oh, that's a lot easier. See, I didn't think of that application. I literally, 

it's easier for me to just literally draw it out, Jeffrey. Yeah no, that didn't 
even come to mind. Goes to show you what I'm getting out of this class, 
[laugh]. Which I'm not saying it's his fault, it's- it's just the way it is. 

At J.2.2 in this part of the interview, we see Joshua's own algebraic solution to the 
problem, which is essentially his geometric solution put into algebraic form.  As he 
acknowledges later, he had been presented with the linear algebra material that one 
could use to solve it in the intended linear algebra way, but it appears that he adapted 
his geometric solution to its algebraic counterpart rather than trying to find an algebraic 
solution.  For comparison, Wawro et al. (2012) state in their paper that the student 
solution attempts they observed fell into three categories of “guess and check”, 
“system of equations first”, and “vector equation first”.  The third category fits most 
closely with the standard linear algebra solution, and its presence for the original 
study's students highlights the differences in Joshua's approach (which fits into none of 
the three): some students with no prior linear algebra instruction presented a 
vector-based solution, while Joshua did not despite linear algebra instruction. 
Another possible effect of the unusual tendency seen here is that it may pose a 
difficulty for an instructor's plan to confront students with a problem that would 
ordinarily necessitate another approach, as happened with this problem.  The intent 
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seen in the problem design by Wawro et al. was to push students into the use of a 
vector-based approach, which notably did not occur here (note particularly J.2.16). 
One possible line of explanation is that this tendency results from an instance of 
overcompensation, as defined by Vygotsky (1993).  Joshua may have particular 
strengths in areas related to the geometric reasoning he uses here that he is using to 
compensate for weaknesses in areas related to the algebraic reasoning that would be 
involved in the 'standard' solution to the problem.  However, since this is an idea 
relating to individuals' development, the observations in interviews with students of 
this age will most likely be of the end result of the compensation process that Vygotsky 
describes (and not the process itself).  It may also be possible to craft future interviews 
in order to investigate this possibility more closely. 
The use of a geometric/visual approach notably fits with what we see in other sources, 
such as a description of the thought process in Temple Grandin's work.  Grandin 
(1995) describes her own memory as being based on remembering static or moving 
images, and being able to both understand others' information and express her own 
better in writing than verbally (which may suggest an issue with the interview process).  
She also describes thinking of abstract ideas in terms of images or sequences of 
images.  However, the range of variation in autism as well as other interview 
experiences lead me to believe that the underlying mechanism is more complex and 
does not always push toward a geometric approach (although it may be common). I 
plan to conduct interviews with several other participants to more fully investigate this. 
Also, the concluding remarks by the student (J.2.16) not only point to a need for 
instructional intervention in the linear algebra class, but also suggest that there could 
be a more general pattern across multiple courses of using unexpected approaches that 
may avoid the general intent of the lesson.  I would suggest that while this can certainly 
be a problem if it goes unnoticed, with a well-tuned approach it could be turned to an 
advantage, much like with Vygotsky's conception of compensation  (although strictly 
speaking Vygotsky’s original conception of compensation was for development of 
more general reasoning abilities, rather than something like specific linear algebra 
skills). 

INTERVIEW AND ANALYSIS 2: MAGIC CARPET TASKS WITH CYRUS 
While Cyrus had taken courses in linear algebra, for him it had been several years. 
However, he immediately went to trying an algebraic method of solution. In fact, at no 
point did he produce a sketch of any kind, even though I presented the problem initially 
with a drawing of the destination point; all written work was algebraic.  

C.1.1 S: No, you c- I think you only can with the second one, because a 
hundred and seven is not divisible by- that's a hundred and seven, right? 

C.1.2 I: Yeah. 
C.1.3 S: A hundred and seven is not divisible by three. 
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C.1.4 I: We can use these in combination. 
C.1.5 S: Oh, we can use, 
C.1.6 I: Like we can use part of this one and part of that one. 

… 
C.1.7 S: Okay, um, so then that means... hmm... I'm not sure it can be done, 

hold on, think, ...okay. [?] am I allowed to write down on this, do some 
calcul- 

With this first attempt at thinking about the problem, Cyrus erroneously believes that 
the tools cannot be used in combination. However, for someone believing this, it is 
somewhat surprising to see the concept of divisibility invoked more readily than 
thinking about an extended form of the vectors.  
Once Cyrus has done some of the calculations, he explains his thought process: 

C.2.1 S: I'm treating it as, a, matrix algebra problem. Solving systems of linear 
equations. I'm going through the- uh, what do you call it, doing row 
operations to find out if this system actually has a solution or not. 

C.2.2 I: Okay. 
C.2.3 S: And for this problem I think both a and b have to be- they both have to 

be, what is it, they- they both have to be whole numbers, and definitely 
nothing negative, for it to work. 

C.2.4 I: Oh, ah, I should mention that, ah, the context of our problem actually 
doesn't require that. Uh, we could ride the magic carpet for, like, half a 
time unit, […] or we could ride it backwards. 

C.2.5 S: Okay, um, [writing] […] that's a mistake, alright, so... 
C.2.6 I: This is- is this a solution method that you, recall from, a course, or 

something like that? 
C.2.7 S: Yeah, this is a solution method I recall when I took a second year 

linear algebra course. 
Cyrus ultimately gave a solution which was not correct, and noted that the solution was 
not reasonable. The discussion of what it implied, and what a reasonable solution 
might imply, marked the only instance of any use of geometric methods of reasoning, 
although Cyrus did not initiate it on his own: 

C.3.1 S: Okay, I got one unique solution, but I'm really not sure it makes 
sense. Either I did something wrong somewhere along the way, or- so, I 
don't know, just based on the- I'm just gonna guess it's not possible to 
do this. 

C.3.2 I: Hmm... ah, if you got a solution that did seem reasonable, then would 
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your conclusion be different? 
C.3.3 S: Yes. If these two numbers were, um, if these two numbers were 

different, I would say it would make sense. 
C.3.4 I: Okay, but the- these numbers that you have, they don't make sense, 

ah, why in particular? 
C.3.5 S: Well they're both- they're both negative, that's why. 
C.3.6 I: Okay. So that would take you off, over there. 
C.3.7 S: Yeah. 
C.3.8 I: Quadrant three. And tha- that's right, that doesn't make sense, the- 
C.3.9 S: Mm-hm. I suppose that's like a little bit- I suppose that's a little bit of 

geometric thinking on my part there, 'cause you'd be all the way in 
quadrant, I forget it's one, two, three, four I think isn't it? 

C.3.10 I: Yeah. 
C.3.11 S: You'd be all the way in quadrant three. 

The concluding discussion of what sort of solution would indicate that reaching the 
point was possible returns to purely algebraic terms: 

C.4.1 S: Okay, that's fine. Okay, so, yeah, tha- that's pretty much what I make 
of this problem. If we were able to find- if we were- I th- there would be 
two cases. If- if these had both been positive numbers in there was a 
unique solution, then definitely there is- this is- the problem was asking 
if you can- you can reach this point. Using either the carpet or the 
hover-thingy. 

C.4.2 I: Not either-or. We can use part of one then part of the other. … 
C.4.3 S: But can we reach this as our destination and, if there was either one 

unique solution and it must be positive, or if there was infinitely many 
solutions, in either of those cases it would be possible to do this. 

Here, we see that even approaching the problem from a hypothetical standpoint, the 
interpretations provided are still entirely algebraic. Since Cyrus stated (C.2.7) that this 
was a method recalled from a linear algebra course, we can see evidence for both an 
inclination toward algebraic methods and an inclination for the use of recollection of 
previous solution techniques, which both stand in contrast to Joshua’s earlier solution. 

CONCLUSIONS 
From these interviews, there appears to be a strong tendency toward particular modes 
of thinking and problem-solving that differ from the typical student population, though 
the particular modes themselves differ. Some of these may initially appear to be a 
problem for the typical methods of instruction used. However, I believe that if they are 
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taken into account, they can be turned to the advantage of students on the autism 
spectrum, particularly in light of some cases of unexpected success using unorthodox 
methods of solution.  This fits with the general Vygotskian idea of overcompensation, 
as well as Vygotsky's original proposals regarding instruction based on that 
idea.  While these interviews were with only two students, the results suggest that 
interviewing more students could produce useful and interesting results in further 
research studies. 
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ORAL VS. WRITTEN EXAMS: WHAT ARE WE ASSESING IN 
MATHEMATICS? 

Milica Videnovic 
Simon Fraser University 

 
One of the most striking differences between the Canadian educational system and 
most European educational systems is the importance given to oral examinations, 
particularly in mathematics courses. In this paper, seven mathematics professors 
share their views on mathematics assessment, and their thoughts about the types of 
knowledge and understanding in mathematics that can be assessed on written and oral 
exams. With the increased emphasis on closed book written examinations, the results 
in this study show that written exams alone are not sufficient to assess students’ 
conceptual knowledge and relational understanding, and therefore, there is a critical 
need for implementing the oral assessments in mathematics courses.  

INTRODUCTION 
For many years the primary method of assessment in mathematics classroom has 
seemed to be strictly based on closed book written examinations. The USA in 
particular appears to be dominated by closed book examinations (Gold, 1999; Nelson, 
2011). Iannone and Simpson (2011) note that the majority of mathematics students in 
the UK seem to be assessed predominately using high stakes, closed book 
examinations at the end of almost every module. Joughin (1998) argues that the 
structure of the assessments today are either closed and formal, with little interaction 
between student and assessor(s), or open, with less structure and the opportunity for 
dialogue between student and assessor(s). Ernest (2016) believes that conversation lies 
at the heart of mathematics and that mathematical knowledge representations are 
conversational, consisting of symbolically mediated exchanges between persons as 
well as claiming that, “the ancient origins and various modern systems of proof are 
conversational, through dialectic or dialogical reasoning, involving the persuasion of 
others” (p. 205). When it comes to different types of oral assessment, according to 
Joughin (2010), they can be categorized into three forms: presentation on a prepared 
topic (individual or in groups); interrogation (covering everything from short-form 
question-and-answer to the doctoral viva); and application (where candidates apply 
their knowledge live in a simulated situation, e.g., having trainee doctors undertaking 
live diagnoses with an actor-patient). Although oral assessment is used in many areas, 
there is very little literature examining the use of oral assessments. Hounsell, 
Falchikov, Hounsell, Klampfleitner, Huxham, Thompson, and Blair (2007) note in 
their comprehensive review of the literature on innovative assessment that less than 
2% of the papers address the oral assessments. They reviewed the recent UK literature 
on ‘innovative assessment’ and of 317 papers considered, only 31 dealt with 
‘non-written assessments.’ Within this category, only 13% addressed the use of oral 
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examinations. Today, there are many countries that still maintain an oral assessment as 
an important part of their assessment diet, such as Hungary, Italy and the Czech 
Republic (Stray, 2001). Germany is also one of them.  
Oral Examination in Mathematics 
In most of the cases, students would have to take written exam first, and then after 
passing the written exam, they would go to the next stage, which would be taking an 
oral exam. During the oral exam, students would have access to a blackboard, paper, 
and pen. The exam would be conducted by the course instructor, and each oral exam 
session could last anywhere from 30 minutes to 1 hour. Occasionally during the oral 
exam three or four students would be invited at the same time. The instructor would 
have prepared in advance a set of cards with questions of approximately equal 
difficulty, so a student would step in, randomly draw a card from the set of cards, and 
then, he/she would take a scrap paper and go back to his/her desk and start working on 
the chosen question. After some time working on the question, each student, one by 
one, would go up to the board and present his/her answer to the instructor. In addition, 
the teaching assistant would be in the same room, monitoring students and taking the 
protocol. During the oral exams, usually students would be able to receive some help if 
needed and would receive a grade immediately following the exam. A typical card 
would have one theoretical question (for example ‘prove the fundamental theorem of 
calculus’) and one exercise (for example ‘show that ’). 

THEORETICAL FRAMEWORK 
Skemp (1976) introduced two perspectives of mathematics, relational understanding as 
knowing both what to do and why, and instrumental understanding as the ability to 
execute mathematical rules and procedures. On the other hand, Hiebert and Lefevre 
(1986) contrasted two perspectives of mathematics, conceptual and procedural 
knowledge, defining both of them as: 
Conceptual knowledge: 

Knowledge that is rich in relationships. It can be thought of as a connected web 
of knowledge, a network in which the linking relationships are as prominent as 
the discrete pieces of information. Relationships pervade the individual facts 
and propositions so that all pieces of information are linked to some network (p. 
3-4). 

Procedural knowledge: 
One kind of procedural knowledge is a familiarity with the individual symbols 
of the system and with the syntactic conventions for acceptable configurations 
of symbols. The second kind of procedural knowledge consists of rules or 
procedures for solving mathematical problems. Many of the procedures that 
students possess probably are chains of prescriptions for manipulating symbols 
(p. 7-8). 
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After having numerous discussions with some mathematics professors in Canada as 
well as in United States, I realized that oral examination in mathematics courses at 
university level is not present at all even though there is a number of research that 
indicate that oral assessments have a positive impact on students’ learning of 
mathematics (Boedigheimer, Ghrist, Peterson, & Kallemyn, 2015; Fan & Yeo, 2007; 
Iannone & Simpson, 2012; Iannone & Simpson, 2015; Nelson, 2011; Nor & Shahrill, 
2014; Odafe, 2006). Teachers’ views "can provide significant insight into what 
teachers value and the relative importance they assign to different aspects of 
mathematics or the teaching of mathematics" (Wilson & Cooney, 2002, p. 131). In this 
paper, the following research question was investigated: What are the mathematics 
professors’ views on the nature of mathematics assessment? 

METHODOLOGY 
The research design for this study is descriptive/qualitative. Seven participants were 
interviewed using open-ended questions to gather information about their personal 
experiences and perspectives on using written and oral assessments in mathematics 
classroom. These participants were selected based on the following criteria: each 
participant has been exposed to oral assessment either as a student, teacher, and/or 
professor. In terms of recruitment, I used a methodology of snowballing, wherein I 
started with mathematicians whom I knew professionally, and then asked them to 
recommend others in the mathematics department or elsewhere, for whom they 
suspected that they may have a history of experiencing or using oral assessment. Seven 
mathematics professors were selected for interviews: Melissa, Elisabeth, Van, Nora, 
Dave, James, and Jane. Melissa, Elisabeth, Van, and Nora are currently teaching at a 
Canadian university while Dave, James, and Jane are currently teaching at a university 
in Germany. With respect to familiarity with oral assessment, Van, Melissa, Nora, and 
Elisabeth had been previously exposed to oral examination in mathematics prior 
moving to Canada while Dave and Jane, who were educated in Canada and the US, had 
never been exposed to oral examination in mathematics prior moving to Germany. 
James was born and educated in Germany, and thus, he has had a lot of exposure to oral 
assessment in mathematics. The audio recordings of interviews were transcribed and 
transcriptions were used for data analysis. 

RESULTS 
There are three aspects of the results that will be discussed in this section:  

• What do participants value about oral assessment over written assessment?  
• Where do participants’ views on oral assessment come from?  
• What types of knowledge and understanding can be measured using oral 

assessment as compared to written assessment? 
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What do participants value about oral assessment over written assessment?  
When it came to the nature of mathematics assessment, it seemed that most of the 
participants valued students’ ability to explain their reasoning and understanding of 
mathematical concepts, in relation to the oral examination. The following comments 
exemplify this: 

 “I would still say that oral examination was better in assessing understanding 
not just the knowledge… oral examinations were to a deeper extent probing 
understanding of the concept” (Melissa). 
… “when there is an oral exam, there is an ability to show your logical thinking” 
(Nora).  
… “I often doubt if the written exam gives the complete picture… the oral exam 
can give an opportunity to students to show their knowledge better than the 
written exam….” (Van).  
… “the questions where I need to see if they understand the chain rule, the 
person has to explain to me in two words. They don’t need to solve the problem 
on twenty lines” (Nora). 
“I would say that during oral examination, it is easier to discover the level of 
your understanding” (Van). 

Where do participants’ views on oral assessment come from?  
It seemed that one of the main sources of participants’ views of mathematics 
assessment came from their own prior schooling experience. Oral examinations in 
mathematics were part of the educational system in some of the participants’ prior 
schooling and teaching experience, therefore, oral exams were considered to be an 
essential and natural part of examination process, from primary to higher education. 
The following comments support this: 

… “so, we were used to, it was natural, it was not something that different in 
high school, it was a continuation of high school” (Melissa). 
“Mathematics I think very much lives from discussions. So, for me the oral 
examination is much more natural and the written examination is just out of 
necessity” (James).  
“I have reasons that I feel are good reasons that I prefer written exams, but, you 
know, maybe I wouldn’t think those things if I had gone through a system with 
oral exams” (Jane). 

Another reason for believing that oral exams play an important part in assessment 
process in mathematics was related to the culture and study program of the university 
where they are teaching. The following comment exemplifies this: 

… “this is natural because it had this effect of getting to know those students 
who will continue into the higher level diploma courses, so much like you would 
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get to know those master students so to speak that come after…” (James). 
On the other hand, the oral exams could cause discomfort to those who had never been 
exposed to it, as being something that is not completely natural or familiar. Dave 
commented: 

“…[It] is primarily I guess if you like a cultural issue… I think there’s going to 
be a difference between me doing an oral exam and somebody who has grown 
up with oral exams doing an oral exam… I’m doing something that is not part of 
my cultural background that I don’t have any intuitions about it even if I have 
knowledge about it.” 

What types of knowledge and understanding can be measured using oral 
assessment as compared to written assessment? 
Based on the participants’ responses on what could be assessed in oral and written 
exams in mathematics, it seemed that there was a clear division between the views of 
participants who had previously been exposed to oral assessments in mathematics and 
the one who had not. Their views were presented in Table 1.   
Examination 

Type 
What Are We Assessing? Participants 

Written Procedural knowledge/Instrumental 
understanding 

Van; James; Melissa; 
Nora; Elisabeth 

Procedural knowledge/Instrumental 
understanding  
Conceptual knowledge/Relational 
understanding 

Dave; Jane 

Oral Conceptual knowledge/Relational 
understanding 

Van; James; Melissa; 
Nora; Elisabeth 

Table 1.  Written and oral exams: What are we assessing? 
All five participants, Van, James, Melissa, Nora and Elisabeth, who had been 
previously exposed to oral assessments in mathematics, agreed that written exams 
could mostly assess procedural knowledge and instrumental understanding while oral 
exams could better assess conceptual knowledge and relational understanding. On the 
contrary, the other two participants, Dave and Jane, who had never been previously 
exposed to oral assessments in mathematics prior coming to Germany, believed that 
the written exam alone could efficiently assess both procedural knowledge and 
instrumental understanding and conceptual knowledge and relational understanding.  
The following two subsections contain comments supporting each of these views. 



MEDS-C 2016  Videnovic 

137 

Oral Exams: Conceptual knowledge/Relational understanding 
Written Exams: Procedural knowledge/Instrumental understanding 

“In the homework written assignments I would say more procedural…. 
procedural in the sense of computational. So, conceptual in the sense of abstract 
arguments… more oriented towards prove this and that statement” (James). 
“I guess in written maybe you can assess procedural. You can see if they could 
follow a strategy for solving an equation. But I guess relation, yeah it's more-- 
You can do that I guess better with oral” (Elisabeth). 
“If I have oral assessment even in tutorial, I can very quickly get the picture 
across the class, how is the class doing… The drill part, the technical part, they 
can always pick up if they understood the concept” (Nora). 
“The oral exam was more of about theoretical questions…. to prove or disprove 
something or give me example or counter example or justify this or justify that 
or make a difference between this subject and this subject…. more in-depth. 
And, the written exam was with the type of question, you know, if this is given 
and this is given, then find this or find that” (Van).  
“In most cases those questions were sort of follow up of the written exam 
questions both to check understanding or maybe give students opportunity to 
correct but also to look deeper into student’s thinking.” (Melissa). 
 “If I ask you to do a proof of a theorem, and if I ask you to write that on a paper 
and read it later, I’m not going to get the same idea of your understanding of the 
stuff if I ask you to do this in the front of the board and if I can ask you the 
questions why and how at every step…proving and disproving, examples and 
counter examples, the meaning of the definitions, the oral exam is I would say 
much precise, a better tool than written one” (Van). 

Nora felt that conceptual questions could only be assessed orally and when asked for 
an example, she responded: 

“Explain to me what is the derivative…. Can you put this question on the written 
exam? No…. because nobody has the resources to mark it. It takes forever to 
read students’ poor handwriting and to see exactly what they discussed, from 
which position, is it a geometrical side… The understanding can be assessed 
only in oral exam.” 

Written Exams: Procedural knowledge/Instrumental understanding and 
Conceptual knowledge/Relational understanding 

… “for mathematics, the questions that can be answered quickly for me are 
mostly the sort of procedural questions… you need to think for a while to answer 
those questions and so I’m not sure in a context of an oral exam where you don’t 
have very long whether there’s such good questions” (Dave).  

Jane also felt that conceptual questions, theory, and proofs could be better assessed in 
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writing than orally and when asked for an example of a question that could not be 
assessed orally, she responded:  

“The ones that take more time to think about. Yeah… the time is a pretty big 
issue because you’re doing advanced Mathematics. You tended to need just 
more time to think about things.” 

DISCUSSION AND CONCLUSION 
Mathematical problems that could better assess procedural knowledge and 
instrumental understanding, participants considered types of problems that would 
require some sort of computational skills. On the other hand, when it came to 
mathematical problems that would better assess conceptual knowledge and relational 
understanding, participants considered theoretical type of questions in the sense of 
abstract arguments that would involve proving, justifying and defining given 
statements. Another interesting finding is that for Jane and Dave time played an 
important role in terms of choosing the most appropriate mathematical questions for 
the exam. Moreover, it was interesting to see that both Jane and Dave were relating 
“conceptual” types of questions in mathematics to the questions that would take more 
time to think about, and so, they could be only answered through written exam. On the 
other hand, they considered the questions that could be answered quickly to be sort of 
“procedural” questions, and only these types of questions could be assessed orally.  
Overall, if we acknowledge that each student learns differently, then having a common 
approach to assessment would be inadequate. Educators accept the need for 
differentiated instruction in order to deal with the individuality and variability of 
students, and thus, they also need to accept the need for differentiated assessment to 
represent the learning of the fractured student collective (Liljedahl, 2010). Also, it is 
very important for me to mention that in this paper I am not trying to depreciate written 
assessment, but merely to argue for a balanced diet of the most appropriate assessment 
methods for the students. I hope that the ideas and examples that I was able to present 
in this paper will encourage many mathematics educators to continue or to begin using 
oral assessment in their mathematics courses as well as to help promote discussion 
with their colleagues and students on this matter. 
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