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PLENARY SPEAKER  

Kitty Yan 

WHAT’S THE STORY? IDENTIFYING KEY IDEA(S) IN PROOF IN 

UNDERGRADUATE MATHEMATICS CLASSROOMS 

The mathematics education literature reveals an ongoing interest in fostering 

students’ ability to construct and reconstruct proofs. One promising tool is the concept 

of “key idea”. This study investigates how and how well undergraduate mathematics 

students identify key ideas in a proof and how they use them in reconstructing it. 

Drawn from an online survey and students’ work, the findings show that while most of 

the students reported that they consciously identified key ideas in proofs, they varied 

widely in their interpretation of the concept itself. When asked to identify key ideas in 

the proof, though the majority of the students came close to capturing a key idea of the 

proof, very few were able to point to an idea that helped them both understand the 

proof and reconstruct it. The findings suggest that mathematics instructors need to 

extend considerable support to students by drawing their attention to features of proofs 

that are candidates for key ideas. 
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ABSTRACTS  

Sandy Bakos 

FINGERING IT OUT MULTIPLICATIVELY  

This paper examines the design of an iPad touchscreen application that provides 

children with the opportunity for direct mediation through fingers and gestures. 

Explorations of a pair of third-grade students with a digital technology (TouchTimes) 

is described, in which engagement with number in a multiplicative sense draws on a 

singular interaction between the eyes and the hands. Using a theoretical perspective 

informed both by tool use and by embodiment in mathematical thinking and learning, I 

seek to gain insight into the affordances of the TouchTimes app in the development of 

multiplicative awareness in young children, with a specific focus on the multimodal 

nature of their mathematical interactions.   

 

Jason Forde 

THE (IMPLICIT) MATHEMATICAL WORLDVIEW OF RICHARD SKEMP: AN 

ILLUSTRATIVE EXAMPLE  

In order to further advance a perspective in which mathematics is reconceived as the 

science of material assemblage, this paper deconstructs the implicit mathematical 

worldview of Richard Skemp, using it as an illustrative example of the ways in which 

problematic classical dualisms still impact modern thinking in the space of 

mathematics education.  Inconsistencies within Skemp’s articulations about the nature 

of mathematics are identified and critiqued from a non-classical viewpoint that 

extends forward from a radical enactivist perspective and aligns with a new 

materialist approach to embodied cognition.  Alternative interpretations are given that 

more closely attend to the fundamental role that mathematics plays in both the 

structure and restructuring of all matter. 

 

Leslie Glen 

STUDENT-CENTRED COMMUNITY COLLEGE MATHEMATICS: AN RME 

EXPERIMENT  

Because students at the tertiary level benefit from a student-centred, rather than a 

teacher-centred classroom approach as much as those in primary or secondary 

school, the theory of Realistic Mathematics Education (RME) was used to trial a 

modified Teaching Experiment in a remedial community college class where students 

are expected to learn the algebra of linear equations in two variables. The experiment 

is described and student responses to both team and individual assessments are 

analysed. The results strongly indicate that the theory of RME and a modified 

Teaching Experiment approach can be a successful combination in improving 
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community college student uptake of the concepts in a unit covering linear equations in 

two variables. 

 

Canan Güneş 

LINGUISTIC CONFLICTS IN TEACHING POLYGONS IN A BILINGUAL 

MATHEMATICS CLASSROOM  

This case study investigates language related conflict situations which occurred 

between students’ expected and actual responses to mathematical tasks about 

polygons in a bilingual classroom. The data were created from a video record of a 

mathematics classroom in Hong Kong. Data analysis was based on Schoenfeld’s 

framework “Teaching for Robust Understanding” and was focused both on the nature 

of the conflicts and on the teacher’s reactions to these conflict situations. The results 

show that language conflicts occurred during the delivery of mathematical content and 

during the assessment of students’ mathematics knowledge. The teacher used linguistic 

strategies, gestures, and vocabulary exercises when the conflicts arose. 

 

Victoria Guyevskey 

CONSTRUCTION IN DGE: LEARNING REFLECTIONAL SYMMETRY 

THROUGH SPATIAL PROGRAMMING  

The goal of this paper is to gain insight into the construction process in a Dynamic 

Geometry Environment (DGE) and to see how, through modelling with geometric 

primitives, students come to understand the abstraction embedded in the concept of 

reflectional symmetry. Closely following a team of two upper elementary students as 

they construct a Leonardo da Vinci (or mirror-writing) machine in Web Sketchpad 

using geometric primitives, I describe and analyse several computational thinking 

(CT) practices that have emerged during the construction process. I then show how 

these practices supported the development of spatial reasoning skills and learning of 

geometry. 

 

Judy Larsen 

SOURCES OF COMMUNITY COHERENCE IN A SOCIAL MEDIA NETWORK 

OF MATHEMATICS EDUCATORS  

An unprompted, unfunded, and unmandated mathematics teacher social media 

community is thriving and is touted by members as one of the best forms of 

professional development they have experienced. However, newcomers often find it 

confusing and difficult to navigate due to the frequency and mass of content shared. 

Although the space can seem chaotic, order emerges, and is informing of mathematics 

teacher needs, interests, and issues. This paper explores how order emerges in this 

community and considers the implications it has on the space of possibility it offers. 
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Wai Keung Lau 

ACTUAL INFINITY AND POTENTIAL INFINITY: A CASE OF 

INCONSISTENCY 

Despite the notion of infinity having been studied since ancient Greece, results are still 

controversial among academic circles, including the schools of philosophy, theology, 

logic, and mathematics. This paper provides a brief synopsis of the notion of infinity, 

including actual infinity and potential infinity, which is motivated by two views. First, 

high school students have cognitive conflicts when they are comparing different sizes 

of infinite sets. Second, actual infinity (e.g. Platonic or Cantorian) and potential 

infinity (e.g. Aristotelian or Kroneckerian) seem different. However, in reality, they 

are often treated as identical. This paper attempts to use Dubinsky’s APOS theory and 

Sfard’s dual nature of mathematical conceptions to indicate that cognitive conflict can 

improve students’ intuitive thinking skill and argues that actual infinity can coexist 

pragmatically with potential infinity. 

 

Minnie Liu 

REDUCING REALITY AND REDUCING COMPLEXITY 

When students work on modelling tasks, they simplify and idealize the situation to 

generate a real model to represent the situation. This study investigates the strategies 

students employ during the simplification process and finds two categories of 

strategies: reducing reality and reducing complexity. 

 

Sam Riley 

HISTORICAL CONTEXT IN MATHEMATICAL TEXTBOOKS  

This paper analyses a linear algebra textbook to determine the reasons behind 

inclusion of historical sidenotes. Viewed through the lenses of Constructivism and 

Situated Cognition, the data is coded for either a mathematical purpose or a 

humanizing purpose. These codes are expanded on to explain how the sidenotes could 

specifically be used by a student to either situate the mathematics in history, construct 

the mathematics themselves, or to invite the student to do mathematics.  

 

Sheree Rodney 

EMBODIED CURIOSITY IN THE MATHEMATICS CLASSROOM USING 

TOUCH-SCREEN TECHNOLOGY  

In this paper, I use data collected through video recordings from K-2 children aged 

between five and eight years old to discuss how touch-screen technology TouchCounts 

and its unique capabilities provide an outlet for students’ bodily movement. In doing 

so, I draw on a self-generated theoretical construct called Embodied Curiosity (EC), 
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which has its roots in embodied cognition, to show that human bodies are essential 

components of shaping the mind and that students experience mathematical 

understandings through their bodies. I argue that human curious behaviour translates 

into bodily movements due to human and non-human agency, which leads to 

possibilities of constructing mathematical meanings. 

 

Annette Rouleau 

INSIDE TEACHER TENSIONS: EXAMINING THEIR CONNECTION TO 

EMOTIONS, MOTIVES, AND GOALS  

This paper examines tensions faced by mathematics teachers and their effect on 

teachers’ actions using constructs from activity theory. Findings suggest that 

emotionally laden tensions can reveal motives, and impact teachers’ goals by altering, 

prioritizing, or strengthening them. Therefore, in the relationship between emotions, 

motives and goals, tensions can be understood as drivers of teachers’ actions.  

 

Robert Sidley 

ARE THEY GETTING ANY BETTER AT MATH?  

While the goal of improving how students do mathematics is fundamental to the 

endeavour of mathematics educators, how and in what ways students improve over 

time is unclear. This study examines a Calculus 12 lesson on differentiation strategies 

to identify how students mathed and, through Variation Theory, contrasts the 

likelihood of improvement given the opportunities afforded students who worked alone 

compared to those who collaborated on white boards to work through practice 

questions.  

 

Max Sterelyukhin 

EXPERIENCING LEARNING MATHEMATICS AND REFLECTION: 

CALCULUS 12 PARTICIPANTS’ STUDY 

This study focuses on the assessment strategy that was designed in the 2017-2018 

academic year in two Calculus 12 classes. Students’ affect was at the centre of the 

research questions thus clinical interviews were used to create data on the relationship 

with mathematics as well as personal reflections on the learning of mathematics in the 

given year and overall in students' experience in school. Grounded Theory guided the 

research approach as themes began to emerge following with the analysis and 

conclusion of usefulness of these types of questions for students to reflect upon as the 

results were surprising and pleasing from the mathematics educator point of view. 
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Arezou Valadkhani 

AN EXTENSION OF TOULMIN’S SCHEME TO DISCUSS THE WAY A 

MATHEMATICIAN DETERMINES A CONDITIONAL STATEMENT IN 

DIFFERENT CONTEXTS 

The aim of this paper is twofold. Firstly, to explore how a successful mathematician 

determines conditional statements in different situations, namely mathematics, logic, 

and everyday context. Secondly, to extend Toulmin’s argumentation model in order to 

prepare the created data to be analysed. 

 

Milica Videnovic 

TENSIONS BETWEEN THE VIEWS ON WRITTEN AND ORAL ASSESSMENTS 

IN MATHEMATICS, AND MATHEMATICS ASSESSMENT PRACTICE  

In this paper, seven mathematics professors share their views and experiences with 

teaching and studying mathematics in oral and non-oral assessment cultures. These 

participants come from Bosnia, Poland, Romania, Ukraine, Canada, the United 

States, and Germany. The results show that schooling and teaching experience as well 

as the lack of schooling and teaching experience with oral assessments in 

mathematics, institutionalized mathematics assessment norms, and socio-cultural 

assessment norms can influence views on oral assessment in mathematics. 
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FINGERING IT OUT MULTIPLICATIVELY 

Sandy Bakos 

Simon Fraser University 

 

This paper examines the design of an iPad touchscreen application that provides 

children with the opportunity for direct mediation through fingers and gestures. 

Explorations of a pair of third-grade students with a digital technology (TouchTimes) 

is described, in which engagement with number in a multiplicative sense draws on a 

singular interaction between the eyes and the hands. Using a theoretical perspective 

informed both by tool use and by embodiment in mathematical thinking and learning, I 

seek to gain insight into the affordances of the TouchTimes app in the development of 

multiplicative awareness in young children, with a specific focus on the multimodal 

nature of their mathematical interactions.   

INTRODUCTION 

Multiplicative reasoning is the ability to work flexibly and efficiently with “the 

concepts, strategies and representations of multiplication (and division) as they occur 

in a wide range of contexts” (Siemon, Breed, & Virgona, 2005, p. 2), concepts that 

include direct and indirect proportion. Such reasoning involves learners viewing 

situations of comparison in a multiplicative sense rather than an additive one. As 

students progress to larger whole numbers and to decimals, fractions, percentages, 

ratios and proportions, multiplicative reasoning becomes key to many mathematical 

situations found in middle school (Brown, Küchemann, & Hodgen, 2010). 

In the primary grades (K–3), however, repeated addition is commonly used for 

introducing multiplication and becomes firmly entrenched as the dominant perception 

of multiplicative situations (Askew, 2018). This can and does become problematic 

when students begin to engage with mathematics that requires a direct capacity to think 

multiplicatively (e.g. Siemon et al., 2005). Consequently, it appears that multiplication 

may prove a crucial turning point in student learning, possibly a turnstile for future 

mathematical competence. Rather than rely exclusively on repeated addition, 

approaches need to be developed and implemented earlier that highlight the function 

aspect of multiplicative reasoning that is so critical to success with mathematics. 

Since Vergnaud (1983) wrote about the conceptual field of multiplicative structures, 

considerable attention has been given to the comparison of quantities using 

multiplicative thinking. Extensive research has documented difficulties students have 

with employing it in middle school and beyond, which Brown et al. (2010) claim has 

not improved since the 1970s. Limited student experience with different multiplicative 

situations is also proposed as a contributing factor to this problem (e.g. Downton & 

Sullivan, 2017). Furthermore, Askew (2018) contends that the lack of development of 
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multiplicative reasoning in the primary grades is “a consequence of predominant 

approaches to teaching multiplication limiting access to opportunities through which 

thinking functionally can emerge” (p. 1). 

Multiplicative reasoning and digital technology 

Digital technology is providing new resources and means that show promise in 

supporting the mathematical learning of young children. The multitouch affordances 

of TouchCounts (TC) enable children to produce and transform objects through direct 

contact on an iPad screen. In their analysis of video excerpts of young children 

working with TC, Sinclair and Pimm (2015) describe new counting and early 

arithmetic opportunities enabled by the visible, audible and tangible design of this app. 

Digital technology allows children to create the “visual images of composite unit 

structures in multiplicative situations” (p. 306), that Downton and Sullivan (2017) 

argue are fundamental to the development of multiplicative reasoning.  

In an extension of TC to include multiplication (provisionally named TouchTimes 

(TT)), children will be able to identify certain aspects of multiplication with distinct 

handedness, thus enabling new gestural experiences that provide direct feedback 

through both symbolic and visual representations. This paper describes an exploratory 

study of the affordances of TT for young children’s multiplicative thinking, with a 

particular focus on the multimodal and joint nature of the mathematical activity of two 

girls working together on a single iPad. 

Brief description of TouchTimes 

The iPad application, TouchTimes, initially displays a blank screen split in half by a 

vertical bar. A user can place and hold fingers on one side of the screen to create 

coloured discs, called “pips”. Each finger that maintains continuous contact with the 

left side (LS) produces a different coloured pip (Figure 1a) and the corresponding 

number symbol appears on top of the screen. When the user taps her finger(s) on the 

right side (RS) of the screen, a unit of coloured discs appears. These units, called 

“pods”, are comprised of the coloured pips that correspond to the pips being created by 

the user’s fingers on the LS at that moment (Figure 1b). The shape of the unit reflects 

the configuration of the fingers on the LS. As each tap creates a new pod, TouchTimes 

displays the number sentence that corresponds with the pips and pods created by the 

user. When a finger is taken off a pod, the pod remains on the screen, becoming slightly 

smaller, so that users can create many pods. As long as at least one finger remains in 

contact with the LS, the pip(s) are maintained within the pods, but when all fingers are 

removed, the pods disappear (“multiplying by 0”). Contact with the screen can be 

made one finger at a time or several fingers simultaneously.  

TT ‘takes care of the multiplying’, both in terms of making sure that the pods are 

reflective of the number of pips on the LS, and in terms of ensuring that the equation on 

the screen corresponds to the pips and pods that have been created by the user. 

Embodying a model similar to Figure 1c (Boulet, 1998, p. 13), TT is designed to be a 

gesture-based, multimodal environment for multiplication that is multiplicative rather 
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than additive. While the latter is privileged in approaches that rely on repeated 

addition, the former involves the co-ordination of two quantities. One way to 

conceptualise this action is to see the LS touches as the number of pips which are 

unitised into pods, with the pods then unitised into the product, as in the Davydovian 

approach (see Boulet, ibid.). In this view, 3 x 4 = 12 is read as the multiplicand times 

the multiplier equals the product, which reverses the typical North American approach 

(3)(4x). It is also possible to see the pods as groups of pips, which can be understood in 

terms of repeated addition. However, the simultaneity of the two-handed touching 

retains less of the temporal, sequential sense of repeated addition.  

   

Figure 1: (a) Creating 3 pips (b) Creating 4 pods (c) Multiplicative model 

THEORETICAL FRAMEWORK 

The theoretical orientation of this study draws upon theories of embodiment and the 

relation between bodily movement and mathematical meaning-making (see 

Nemirovsky et al., 2013; Radford, 2009). I take the monist ontological position found 

in inclusive materialism (de Freitas & Sinclair, 2014) on the nature of body and mind, 

which does not subordinate sensorimotor actions to thinking, but instead recognizes 

that new ways of moving one’s body are new ways of thinking. Given this orientation, 

and the gesture-rich design of TT, I am particularly interested in the structured acts of 

gesturing that arise through the use of TT. The epistemic and communicative nature of 

gestures has been well documented in the literature (see Sinclair & de Freitas, 2014) 

and warrants attention to gestures as particularly relevant structured acts of moving. 

Since multitouch environments enable children to work together, jointly structured 

acts of moving will also be a focus. Therefore, I will be investigating how a pair of 

students’ interactions with TT prompts new gestures and how these new structured acts 

of moving are related to multiplicative thinking. 

METHODS 

The data for this paper comes from an exploratory conversation conducted as part of an 

iterative design experiment aimed at refining the TT prototype and developing 

appropriate tasks for use with grade two and three children. Two girls, whom I refer to 

as Jacy and Kyra, were chosen by their classroom teacher as a pair of students who had 

not yet used TT (three pairs of children had already participated). This interaction 

occurred in an elementary school in a culturally diverse and affluent neighbourhood in 

British Columbia, where the interviewer worked for approximately 30 minutes with 

the pair, in a setting separate from their classroom and teacher. A video-recording of 

the interaction was created, and the drawings produced by the girls were retained. The 
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children were initially given time to become familiar with TT through independent 

exploration prior to any specific requests from the interviewer. Given that this was the 

pair’s first encounter with TT, it provided an opportunity to observe how the girls made 

sense of the app and if their interactions with TT would lead to an ability to identify 

certain multiplicative aspects with distinct handedness.  

After a period of about seven minutes for free exploration, the interviewer began to use 

prompts to focus the attention of the children on certain features of their creations on 

the iPad screen. Using TT, in conjunction with the significant presence of an adult, the 

aim of this research was to explore the influence of using gesture-based means for 

conceptualising, visualising, experimenting with and communicating about 

multiplicative relationships with students in primary grades (K–3).  

Data analysis 

In order to account for the multimodal, distributed nature of the phenomenon seen in 

the video-recordings, an orchestral transcription was produced, of ten-second 

increments involving three separate, but interacting, modalities: voices, hands and the 

iPad screen itself (Figure 2). The top three rows were designated for the voices of each 

child and the interviewer, thus providing a way to sequence the speaking visually in a 

manner that would effectively display overlapping voices. The section beneath the 

voices contains descriptions of what the children’s hands were doing on the left and 

right sides of the iPad screen, in time to the speaking above.  

Voices 

Jacy                                                                            Laughs…………………………                                   

Kyra Wait, now I’ll make a three.     And then… laughs      They’re dancing! Laughs 

Interviewer  

Hands 
Left Screen 3 finger simultaneous touch (RH) Middle finger repetitive taps (RH) 

Right Screen                    Pointer finger touch (RH)                                         Pointer finger touch (LH)                                  

iPad 

Screen 

Top of Screen 3                 3x1=3 2x1  2x2   3x2    2x2     3x2     2x2    

 

 
 

Left Screen 3 pips 2 pips      3 pips  2 pips  3 pips  2 pips 

Right Screen                     1 pod         2 pods 

Figure 2: Orchestral transcription 

When the importance of the iPad screen itself became apparent, additional rows were 

included to describe what could be seen on the top, left and right sides of the screen, 

supplemented by screen shots. The orchestral transcription enabled patterns within the 

structured acts of moving to be more easily identified throughout the interaction. 

RESULTS 

From the orchestral transcript, two intervals were chosen that illuminate some of the 

gestures made by the girls that are relevant to multiplicative thinking. Prior to 

presenting these two intervals, however, I will describe the pair’s initial interactions 
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with TT, which began with the researcher giving the pair permission to “play a little 

bit”. Each girl placed and removed her pointer finger on and off the screen in random 

motions. After approximately fifteen seconds, Jacy placed her thumb on the screen in 

addition to her pointer finger, creating two pips. Kyra touched the screen next, creating 

a pod containing two pips (Figure 3a). Jacy then began to use both hands. It is shortly 

thereafter that Jacy said, “How do you get those mini ones?”, thus marking a transition 

from random tapping to more intentional actions on the iPad screen.  

Disappearing pips and ‘dancing’ pods 

After five minutes of exploration, Jacy instructed Kyra to “Wait, just press a lot. Press 

your whole hand”. Kyra responded by placing all five RH fingers simultaneously on 

the LS and waited while Jacy created pods on the RS one at a time with her index 

finger. Kyra abruptly removed her hand from the screen, causing both girls to laugh. At 

this point, Jacy began directing the creation of pips through the placement and removal 

of Kyra’s fingers on the LS. After Kyra returned her five fingers to the iPad, her pinky 

and thumb were physically lifted from the screen by her partner. Possibly confused, 

Kyra briefly removed all fingers, then placed them onto the iPad once more. Jacy tried 

again, telling Kyra to “Wait. Put those [indicating Kyra’s RH] and then take up your 

pinky and thumb”. Kyra placed three fingers on the LS, while Jacy created one pod on 

the RS. This clearly was not what Jacy was after, and she further instructed Kyra to 

“Press your pinky and thumb away. No wait. Put your pinky and thumb down [Jacy 

physically pressed Kyra’s pinky and thumb down (Figure 3b)], and now take them 

away”. The pod that Jacy was ‘holding’ on the RS changed from a composition of three 

pips to five pips and back to three pips as Kyra alternated rhythmically, which in turn 

made the pod look like it was swinging back and forth (Figure 3c). Each time Kyra’s 

pinky and thumb touched the screen, the resulting pips changed colour. After Jacy 

created a second pod, Kyra used her free hand to point to the pods and declare with a 

laugh that “They’re dancing!”.     

   

Figure 3: (a) Two fingers (b) Pinky and thumb down (c) Pinky and thumb up 

Throughout this brief episode, Jacy became interested in exploring how the creation 

and deletion of pips affected the shape and colour of the pods. This complex interplay 

between the girls and TT involved a co-ordination of two pairs of hands, resulting in a 

joint holding and repetitive-tapping gesture. The appeal of the ‘dancing’ pod seemed 

to draw the girls’ attention to the relation between the RS and LS finger touches, which 

is significant in terms of co-ordinating two quantities: the multiplicand (three or five 

pips) and the multiplier (one pod).  
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Moving backwards   

After seventeen minutes, the researcher asked how the four, in the product (2 x 2 = 4) at 

the top of the screen (Figure 4a), could be made into a 12. Kyra said, “Okay, just let go 

Jacy” and nudged Jacy’s hands off the screen, which reset TT. Maintaining control of 

the iPad, Jacy counted and placed her fingers, "One, two, three, four” on the screen. On 

“four”, however, two fingers made contact with the screen rather than one, resulting in 

five pips. Kyra pointed out, “No, that’s more than four”, and tried to lift Jacy’s pinky 

finger from the screen. After removing all fingers, Jacy placed four fingers sequentially 

on the LS, while using her pointer finger on the RS to create a single 4-pod, stating, “I 

created a four”. Kyra echoed, “You created a four”. Jacy reset TT, created four pips by 

simultaneously placing four fingers on the LS, and then each girl created a pod, with 

Kyra quickly adding a third and final pod on the RS.  

Again, resetting the app by removing her fingers, Jacy instructed Kyra to put four on 

the screen, which Kyra did with a simultaneous four-finger gesture. Using her pointer 

finger on the RS, pods were sequentially created by Jacy, while the equations flashed 

across the top of the screen…4 x 1= 4, 4 x 2 = 8, 4 x 3 = 2, 4 x 4 = 16. Jacy did not 

appear to notice these numbers until she asked, “What number are we going to?” 4 x 5 

= 20, 4 x 6 = 24, 4 x 7 = 28. When the researcher responded, “Twelve”, Kyra said, 

“Four, eight, twelve”. Not seeming to hear this, Jacy looked at the equation, appearing 

unsure how to proceed. The researcher suggested, “You can put them in the trash if you 

want”, and Kyra counted her fingers in what seemed to be four, eight, twelve. 

Meanwhile, Jacy dragged pods to the trash (Figure 4b), while commenting on the 

equations at the top of the screen, “Twenty, sixteen and then it will be twelve”. Kyra 

stated, “Yes, four times three is twelve”. Kyra again pointed to and counted three of her 

fingers (Figure 4c), while confirming, “Yeah look…four, eight, twelve”.  

   

Figure 4: (a) Pointing to the product; (b) Pods to the trash; (b) 4, 8, 12 

The girls had transitioned away from single touches and were now making a 

simultaneous touch gesture, as in the four-finger gesture described above. The 

interviewer’s question was meant to prompt the girls to notice the effect of increasing 

pods on the product displayed at the top of the screen. However, rather than creating 

the desired product of 12 by creating additional 2-pods (Figure 4a), which were on the 

screen at the time of the interviewer’s question, the girls started over, changing the 

number of pips, which is reflected by the composition of the pods. A product of 12 can 

be created in multiple ways, however right from the outset, when counting her fingers, 

Jacy seemed oriented towards creating four pips, thus thinking of 12 as a multiple of 

four (though it is possible she was counting to four because of the 4 on the screen).  
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After Kyra confirmed that Jacy had made four pips, each girl added a pod on the RS. 

When Kyra created a third and final pod, the pair had a product of 12, though Jacy did 

not seem to be aware of this. Instead, she directed Kyra’s hand placement, which 

induced a joint skip-counting gesture in which Kyra was responsible for holding pips, 

while Jacy’s sequential touches created pods. Unlike the skip-counting that occurs in 

many classrooms, where children count intransitively or read off a number line, the 

skip-counting in TT requires a co-ordination of the pips and pods. In the case of the 

skip-counting by four, each new pod created a new 4-pip unit and Jacy’s comment, “I 

created a four”, rather than “I created four” indicates some awareness of this.   

When Jacy realized that she had a product of 28 instead of 12, she removed the extra 

4-pods by dragging them to the trash. This self-correction is evidence of her attempt to 

co-ordinate the joint skip-counting gesture (tangible expression) with the products 

(symbolic expression). Kyra, who was responsible for maintaining the four pips on the 

LS and did not create the pods that stand for the unit, perhaps needed to physically 

create her own units, which she did by skip-counting on her fingers. As a result of the 

co-ordination of two quantities required in the joint skip-counting gesture, the 

skip-counting in TT is more multiplicative than additive.  

DISCUSSION 

The intent of the TT design is for learners to notice the relation between the number 

and colour of the pips, and the shape and content of the pods, as this is the basis for the 

multiplicative operation. Although numerous pips and pods were created, it was not 

until the joint holding and repetitive-tapping gesture that the girls seemed to 

co-ordinate this relation. Indeed, it seemed to be the shifting pod shape, and then the 

changing pip colour that initially drew their attention to this relation. The joint holding 

and repetitive-tapping gesture, which arose from manipulating the screen in 

exploratory ways, became a gesture for expressing the relation between pips and pods. 

The girls could make visible the effect of changing the unit through tapping on and 

releasing pips, which produced the changing size, shape and colour of the pods. When 

there were multiple pods, the joint holding and repetitive-tapping gesture used to 

create pips produced a multiplicative effect in which each tap also produced a new pip 

in every pod simultaneously.  

The joint skip-counting gesture was more multiplicative than additive, although a 

gestural shift from tapping one finger at a time, to tapping several fingers 

simultaneously to create pods would provide an even stronger multiplicative effect. 

Since the girls rarely created multiple pods simultaneously, such a gesture may involve 

a more difficult co-ordination and need to be prompted by a particular task.   

CONCLUSION 

Designed to support the development of multiplicative thinking, TT provides young 

learners with ways of thinking about multiplication that are not solely dependent upon 

repeated addition. In the 30-minute episode reported above, two intervals in which the 



MEDS-C 2018                                                                                                         Bakos  

16 

girls created and sustained a particular structured way of moving their hands were 

described as being relevant to the development of multiplicative thinking. The two 

primary gestures discussed were the joint holding and repetitive-tapping and the joint 

skip-counting gestures. The former prompted and enabled the girls to attend to the 

relation between the number/colour of pips and the pods, and thus the co-ordination of 

the two quantities. The latter enabled the girls to produce multiples of a number 

determined by the pip count. Attention to the symbolic expression available on the 

screen was particularly salient in the second interval. In future experiments, the 

insights gathered here will be used to design tasks that can effectively prompt and 

support similar types of gestures, and to link these gestures to other TT-based actions. 
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THE (IMPLICIT) MATHEMATICAL WORLDVIEW OF RICHARD 

SKEMP: AN ILLUSTRATIVE EXAMPLE 

Jason T. Forde 

Simon Fraser University 

 

In order to further advance a perspective in which mathematics is reconceived as the 

science of material assemblage, this paper deconstructs the implicit mathematical 

worldview of Richard Skemp, using it as an illustrative example of the ways in which 

problematic classical dualisms still impact modern thinking in the space of 

mathematics education.  Inconsistencies within Skemp’s articulations about the nature 

of mathematics are identified and critiqued from a non-classical viewpoint that 

extends forward from a radical enactivist perspective and aligns with a new 

materialist approach to embodied cognition.  Alternative interpretations are given that 

more closely attend to the fundamental role that mathematics plays in both the 

structure and restructuring of all matter. 

INTRODUCTION AND THEORETICAL ORIENTATION 

While numerous perspectives concerning the nature of mathematics have been 

proposed within the discourse of our field, I highlight here an especially salient one set 

out within the work of Richard Skemp.  Skemp’s articulations are of particular interest 

because of the manner in which they present a tentative and somewhat unconventional 

perspective on the nature of mathematics whilst simultaneously being bound to 

problematic (classical) dualisms.  Certain internal inconsistencies inherent to Skemp’s 

mathematical worldview ultimately highlight foundational characteristics of 

mathematics that are worth attending to more closely.  To be clear, Skemp’s worldview 

is a singular example that I leverage in order to illustrate how classical modes of 

thought still pervade modern thinking within our field.  Considering the prominence of 

Skempian thought in the more recent history of mathematics education, it also presents 

an opportunity to demonstrate the value of implementing an alternative perspective.  

Thus, it is through the upcoming discussion that I not only identify inconsistencies 

embedded within Skemp’s notion of what mathematics is, but also aim to rectify those 

inconsistencies through an interpretation aligned with the sense in which I see 

mathematics as the science of material assemblage. 

The discussion to follow advances Campbell’s (2001, 2003) radical enactivist view of 

mathematics as the science of organisation, as well as the approach to embodied 

cognition espoused by de Freitas and Sinclair (2013), both of which call for significant 

changes to the ways we characterize the unified, embodied experience of mathematical 

structures and processes. 
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RESEARCH METHODOLOGY 

Though this paper does not employ a formal critical discourse analysis, it does engage 

with and address curiosities identified through a close reading of selected excerpts 

from Skemp’s seminal work The Psychology of Learning Mathematics.  In effect, the 

primary strategy has been to attend as closely as possible to the implicit, and to use a 

more contemporary analytical lens to revisit Skemp’s assertions (essentially reading 

between the lines, as it were).  As opposed to focusing on the lineage of ideas 

underlying the identified curiosities, I instead take Skemp’s implicit mathematical 

worldview as it is given and explore the implications associated with the articulated 

perspective(s).  Where possible, efforts are made to provide a new interpretation with 

the capacity to overcome inconsistencies/deficiencies found within Skemp’s 

worldview. 

I purposefully emphasize the value of more recent theories of embodied cognition and 

their accompanying connotations about the nature of mathematics; however, the intent 

is not to discard or detract from Skemp’s work in any way.  Rather, the aim is to use 

Skemp’s collective assertions and conjectures about the nature of mathematics as a 

valuable starting point upon which to ground, and with which to inform, the 

discussions to follow.  While the notion of mathematics as the science of material 

assemblage is crucial to my overall discussion, a concise summary of what this entails 

shall not be offered immediately.  Rather, the notion shall be elaborated upon 

throughout this paper, with Skemp’s implicit mathematical worldview acting as a 

conceptual foil.  Summative comments will be provided toward the end of the piece. 

ANALYSIS AND DISCUSSION 

There are various instances throughout the expanded American edition of his seminal 

work, The Psychology of Learning Mathematics, in which Skemp (1987) orbits around 

the nature of mathematics without speaking to it explicitly.  Mathematical concept 

formation, for instance, is addressed within Chapter 2.  Discussions of mathematical 

symbolism and structure appear in Chapter 5, with the communication of surface 

structure and deep structure of mathematics treated much later in Chapter 14.  With all 

of these subthemes helping to illuminate Skemp’s mathematical worldview, his notion 

of what mathematics actually is takes shape as the book progresses, with less incisive 

remarks appearing in formative chapters and more telling comments in ensuing ones.  

As an example of the former, Skemp (1987) alludes to the nature of mathematics 

through non-example when he makes the following simple distinction: “The automatic 

performance of routine tasks must be clearly distinguished from the mechanical 

manipulation of meaningless symbols, which is not mathematics” (p. 62).  The 

subsequent discussion revolves around the meaning making that accompanies 

mathematical work, and while the point Skemp makes here is not especially revelatory 

when taken at face value (i.e. it is one that the vast majority of mathematics educators 

are likely to agree upon), it is his quiet assertion of what is not mathematics that poses 

something of a problem. 
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When reinterpreted through a view of mathematics as the science of organization 

(Campbell, 2001, 2003), and as the science of material assemblage more specifically, 

even the “mechanical manipulation of meaningless symbols” ought to be considered 

mathematics (or mathematical).  That is, in terms of the organization and 

reorganization of material processes and structures, even basic symbol manipulation 

unaccompanied by understanding is inherently mathematical activity.  To be fair, 

Skemp frames his own discussion around the psychology of learning mathematics, and 

his primary interest is in the role that work with mathematical symbols plays in 

developing understanding of mathematical concepts.  Thus, the distinction he makes 

between the automatic and the mechanical (the former being attributed to 

knowing/thinking mathematicians, and the latter to machines that are unaware of the 

processes they enact) is a convenient foreshadowing of the way in which he eventually 

adopts and applies Stieg Mellin-Olsen’s notions of relational and instrumental 

understanding; but it ultimately conflates the understanding of mathematics with the 

nature of mathematics. 

In establishing his view of instrumental understanding, Skemp (1987) offers that: “I 

would until recently not have regarded [it] as understanding at all.  It is what I have in 

the past described as ‘rules without reasons’ […]” (p. 153).  Through use of the 

qualifying phrase “until recently”, he acknowledges the change to his own 

preconception, essentially conceding recognition that instrumental understanding is 

still a form of understanding, if only one that is less meaningful than the relational (i.e. 

less full of meaning).  In light of this, I would suggest that Skemp’s earlier statement 

about what is not mathematics requires a similar amendment.  Granted, the 

“mechanical manipulation of meaningless symbols” may not be particularly 

meaningful mathematics, but it is mathematics nonetheless.  Its grounding in processes 

of material organization and reorganization assures this, and making such an 

amendment would bring Skemp’s earlier remark about the nature of mathematics more 

in line with his later assertions about mathematical understanding.  Indeed, reading 

between the lines of Skemp’s writing bears out the interesting entanglement between 

the material and the meaningful, both of which are closely linked to (and possibly 

emergent from) the mathematical. 

Skemp’s Type 1 and Type 2 Theories 

A type 1 theory is an abstract, general, and well-tested mental model of regularities in the 

physical world.  It embodies what are sometimes called laws of nature, and to qualify for 

this description it must have explanatory and predictive power. 

(Skemp, 1987, pp. 129-130) 

A type 2 theory is a model of regularities in the ways in which type 1 theories are 

constructed […] It is a mental model of the mental-model-building process. 

(Skemp, 1987, p. 130) 

Following Skemp’s (1987) discussions of type 1 and type 2 theories in Chapter 10, it is 

in Chapter 11 that he probes more deeply into the heart of his mathematical worldview 
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by posing to readers, and possibly himself, a crucial underlying question: “What kind 

of theory is mathematics?” (p. 142).  It is notable that Skemp ultimately concedes that 

mathematics does not fit into either of the proposed categories, and the same query is 

reiterated elsewhere.  Though the question of theory is not answered in any conclusive 

sense by Skemp, his motivating educational concern is made clear: “[H]ow can we 

usefully think about teaching it [mathematics] if we do not know what kind of subject it 

is that we are trying to teach?” (p. 149).  Even within the readership comprised of 

mathematics educators and teacher-researchers, I imagine that much of Skemp’s 

intended audience might initially be taken aback by the posing of this question, if only 

momentarily; for a nondescript yet somehow taken-as-shared sense of what 

mathematics is seems fairly commonplace/ubiquitous and the question itself is rarely 

raised by practicing mathematics educators or teacher-researchers.  Skemp further 

notes that theories about the teaching and learning of mathematics, as “theories about 

how we construct mathematical theories” (ibid.), should be distinguished from theories 

about mathematics itself.  This is consistent with his working definitions of type 1 and 

type 2 theories given above, but it more importantly makes clear Skemp’s conviction 

that a taken-as-shared sensibility about the nature of mathematics is not sufficient.  

This is a conviction that I share.  As I see it, this broader question from Skemp does 

align with some of my own reasons for perturbing common notions of what 

mathematics is; however, there are also ways in which Skemp’s view diverges 

significantly from my own, or rather mine from his. 

Just as I invoke Wigner’s (1960) reference to the unreasonable effectiveness of 

mathematics in the natural sciences, Skemp (1987) draws upon a similar query 

attributed to Einstein: “How can it be that mathematics, as a product of human thought 

independent of experience, is so admirably adapted to the objects of reality?” (p. 149).  

Though the heart of this question may be likened to that of Wigner’s, I find both the 

disembodiment and depersonalization of mathematics within to be concerning, and I 

would submit that neither of these is tenable.  Moreover, Skemp himself also refers to 

mathematics as “an activity of our intelligence” (p. 142).  Though there is some value 

in this second claim, I amend it and the Einstein quote quite strongly by noting that 

mathematics should not be seen as an activity of our intelligence alone.  This is to say 

that mathematics is as much of the body as it is the mind; for both are integral to the 

material assemblage that underlies our embodied and unified experience of 

mathematical structure. 

de Freitas and Sinclair (2013) provide a powerful counterpoint to the Einsteinian and 

Skempian perspectives expressed above when they elaborate their notion of "the body 

in and of mathematics" (p. 454), and clarify that this new materialist approach to 

embodied cognition is one that “helps us rethink the body in/of mathematics so that 

embodiment entails mathematical concepts and artifacts, as well as human learners” 

(p. 468).  The view they forward is one in which mathematics is neither divorced from 

experience, nor entirely driven by the intellect.  Rather mathematics is not only imbued 

within, but closely entangled with the material self.  “Instead of seeing [mathematical] 
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concepts as entirely discursive or abstracted and dislocated from an inert matter, we 

have argued that activity should be studied for the way that new leaner-concept 

assemblages emerge" (ibid.).  Thus, by entangling the mathematical with the material, 

de Freitas and Sinclair shift the emphasis away from the purely/exclusively 

intellectual, negating the senses of disembodiment and depersonalization that 

characterize the Einsteinian and Skempian perspectives. 

Indeed, much of the present document is devoted to justifying a perspective in which 

mind and body are taken to be ontologically indistinct.  To speak of mathematics only 

as a function of intellect and as independent of experience reverts us back to the 

classical dualisms that have already proven so problematic.  To be fair, Skemp 

acknowledges that he does not fully answer Einstein’s question; so I admit that there is 

a possibility he may not be entirely committed to these dualisms and that the 

overarching issue may be more related to, or grounded in, the dualism-preserving 

Cartesian phrasings that permeate the English language. 

In close proximity to the excerpts discussed above, Skemp also claims that 

mathematics is not, itself, one of the natural sciences.  While this could be considered 

true from a traditional perspective that maintains strict boundaries between the 

disciplines of physics, chemistry, biology, astronomy, geology, et al., it is inadequate 

within my characterization of mathematics as the science of material assemblage.  It 

not only deprives mathematics of a primacy that I aim to emphasize, but also elides any 

sense of mathematics being natural, of being innate to the structure (and restructuring) 

of all matter.  In contrast, from the perspective I am working to develop, it would 

actually be much more appropriate to conceive of mathematics as the most 

foundational natural science.  If only to acknowledge the decidedly Pythagorean roots 

underlying this sensibility, I will even suggest that reinstating it as such would not be 

at all unreasonable.  In fact, this alternative view of mathematics as the most 

foundational natural science (i.e. the science of material assemblage) rightly restores 

mathematics to a position of prominence that supersedes even the philosophy-physics 

of the atomists Democritus and Leucippus, who many consider to have laid the 

foundations for modern Western science. 

Interestingly, Skemp (1987) does offer that mathematics: 

can be regarded as a conceptual kit of great generality and versatility, so valuable to 

anyone who wants to construct a scientific theory as to be almost indispensable.  Did I say 

“almost”?  Francis Bacon wrote: “For many parts of nature can neither be invented with 

sufficient subtlety, nor demonstrated with sufficient perspicuity nor accommodated into 

use with sufficient dexterity without the aid and intervention of mathematics.”  Likewise, 

Jeans: “All the pictures which science now draws of nature and which alone seem capable 

of according with observational fact are mathematical pictures.” 

(Skemp, 1987, pp. 149 & 150) 

Unlike Skemp’s allusion to the almost-indispensable conceptual kit of great generality, 

the more evocative excerpts from Bacon and Jeans suggest that mathematics is indeed 



MEDS-C 2018                                                                                                         Forde 

22 

much more fundamental than the natural sciences of which we normally speak, and the 

above excerpt consequently sets out a slightly inconsistent pairing.  Bacon and Jeans 

would seem to be pointing toward the primary status of mathematics, or its 

significance/immanence as the underlying structure of material reality, whereas 

Skemp’s characterization of it as a conceptual kit is more suggestive of a convenient 

toolset that simply happens to be incredibly efficacious.  This is to say that it implies a 

coincidental utility much more than it does a fundamental status.  Again, it is notable 

that Skemp admits that mathematics does not fit the criteria for either the type 1 or type 

2 theories outlined earlier in his work.  As he says of type 1 theories: “Collectively, 

they form the natural sciences” (p. 130).  Via his conceptual kit analogy and the quotes 

from Bacon and Jeans, Skemp also appears to be saying that the natural sciences are 

built upon mathematical foundations, yet mathematics is not itself a type 1 theory, nor 

is it characterized by Skemp as a collection of type 1 theories.  I ultimately choose to 

favor the voices of Bacon and Jeans, which Skemp also gives more prominence than 

his own in the cited passage.  Nevertheless, Skemp’s overall message here is somewhat 

mixed. 

Revisiting the Question of Theory 

So, as does Skemp (1987), let us also return to the inciting question: “What kind of 

theory is mathematics?” (p. 142).  In spite of the fact that the previous inconsistencies 

are not addressed by Skemp himself, his exploration of this query continues.  He 

ventures into a space to which his choice of language does not seem entirely suited, yet 

it is worth quoting him at length. 

[…] I suggest that we regard mathematics as a theory of a unique kind, having all the 

characteristics of a type 1 theory except mode 1 testing.  It is the mental stuff of which type 

1 theories are made; or to put this differently, it is pure form […] I have said on many 

occasions that I regard mathematics as a particularly pure and concentrated example of the 

functioning of human intelligence.  This suggests that it is a kind of essence […]. 

It is still hard to say why this should be.  I still have not answered Einstein’s question, so I 

offer the following as a beginning.  Here is another quotation, this time from Galileo.  

“Where our senses fail us, reason must step in.”  With the help of our senses, we perceive 

regularities of our physical environment.  These regularities are embodied in what I have 

called primary concepts.  Next, by the use of our intelligence, we find regularities among 

these regularities – we form secondary concepts.  In mathematics, we repeat this process to 

form more abstract concepts, representing regularities of great generality, and relations 

between these.  All this time we are getting further away from what is accessible to our 

senses; yet, paradoxically, we seem to be getting closer to the essential nature of the 

universe. 

(Skemp, 1987, p. 150) 

As with his earlier description of mathematics as an activity of our intelligence, Skemp 

still adheres to an exclusively mental characterization, belying the classical 

underpinnings of his perspective, and a bias toward (if not a compete commitment to) 

Cartesian dualism.  That said, his interpretational extension of Galileo in the final 
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paragraph above reworks the perspective by speaking to a more circulatory exchange 

between sense and intellect, and a more complementary interplay between inner and 

outer experience.  The repetition of the process that he characterizes is reminiscent of 

the continuous circulation back and forth between the Husserlian natural and 

phenomenological attitudes, the double-embodiment encapsulated by Merleau Ponty's 

(1962) ontological notion of "flesh”, and even the entangled state of 

being/becoming/knowing that I align with the enactive monist approach to cognition. 

In my reading of Skemp, it is the curious combination of his classically dualistic 

statements about the exclusively mental character of mathematics, and the subsequent 

assertions regarding abstraction and generality that suggest he might have one foot 

planted on fairly classical Cartesian ground, with the other inching toward terrain 

where the ontological distinctions already addressed hold less sway. 

At least with respect to his articulations about the nature of mathematics and its 

relation to the material world, I sense a sort of indecision on Skemp’s part.  In his 

discussions of abstraction (1987), he clearly states that ‘more abstract’ means ‘more 

removed from experience of the outside world’, which fits in with the everyday 

meaning of the word ‘abstract’ (p. 14).  He also notes that mathematical concepts are 

“far more abstract than those of everyday life”, such that the “communication of 

mathematical concepts is therefore much more difficult” (ibid.).  At a certain level, his 

concession that mathematics is neither a type 1 theory, nor a type 2 theory, but a theory 

of a unique kind, the stuff of which type 1 theories are made, and pure form raises even 

more questions than his inquiry into what mathematics is.  While it does seem 

reasonable that mathematical abstraction initially draws us further from the everyday 

experience of the outside world (i.e. into the idealized spaces of the inner world), I 

would also suggest that the subsequent capacity to generalize from abstraction and to 

use generalizations as the bases for further abstractions (possibly under different 

contexts) ultimately brings us right back to the outer world again, and I hesitate to 

break apart these two processes, preferring instead to envision something cyclic or 

circulatory and potentially even self-perpetuating. 

For Skemp, it is paradoxical that the simultaneous move away from sensory experience 

in the outer world into the abstracted inner space of the intellect should draw us closer 

to the essence of the universe (I have paraphrased heavily here).  However, from a 

perspective that reconceives mathematics as the science of material assemblage, there 

is really no need to consider this circumstance as paradoxical at all; for just as mind and 

body are already ontologically unified, so too are inner and outer experience.  From a 

classically-grounded perspective, there may be a certain irony accompanying the sense 

that higher order abstraction simultaneously distances us from the outer world whilst 

bringing us closer to our experience of the inner world; but from the conjoined 

enactivist/new materialist perspective that underlies my broader mathematical 

worldview, that irony dissipates completely.  Even reconceptualising Skemp’s notion 

of schema such that it is not driven solely by intellect should not be overly problematic, 
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particularly in light of the manner in which scholars like de Freitas and Sinclair 

re-imbue the cognitive with the material. 

Essentially, Skemp’s paradox is only paradoxical when one’s mathematical worldview 

is constrained by classical modes of thought.  Even Einstein’s question of how 

mathematics can be so admirably adapted to the objects of reality can be revisited and 

revised in a similar way.  In fact, I completely co-opt Einstein’s phrasing by asserting 

that mathematics need not actually be “adapted to the objects of reality”; for it is 

already innate to those very same objects (i.e. it is immanent in matter).  It is the 

viewpoint that divorces mathematics from the material in which the ontological 

problems rest.  As the science of material assemblage, mathematics embodies the 

essential framework upon which material reality is built, from which its objects 

emerge, and according to which they (co-)evolve.  This is to say that mathematics 

embodies the very principles according to which matter organizes and reorganizes 

itself, and in that sense, the unreasonable effectiveness of mathematics spoken to by 

Wigner is not unreasonable at all.  In this view, mathematics not only underlies the 

material structure of reality, but also encapsulates the conditions and constraints 

through which the dynamic processes of material assemblage are manifested. 

CLOSING REMARKS 

I acknowledge that the space of this paper is insufficient for a full explication of the 

sense in which I envision mathematics as the science of material assemblage; however, 

it is hoped that this abbreviated deconstruction of excerpts from Skemp’s seminal work 

has prompted the reader to consider the nature of mathematics somewhat differently.  

Additional work will be necessary in order to more fully/clearly demonstrate how 

mathematics relates to the entanglement of the material and the meaningful. 
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STUDENT-CENTRED COMMUNITY COLLEGE MATHEMATICS: 

AN RME EXPERIMENT 

Leslie Glen 

Simon Fraser University 

 

Because students at the tertiary level benefit from a student-centred, rather than a 

teacher-centred classroom approach as much as those in primary or secondary 

school, the theory of Realistic Mathematics Education (RME) was used to trial a 

modified Teaching Experiment in a remedial community college class where students 

are expected to learn the algebra of linear equations in two variables. The experiment 

is described and student responses to both team and individual assessments are 

analysed. The results strongly indicate that the theory of RME and a modified 

Teaching Experiment approach can be a successful combination in improving 

community college student uptake of the concepts in a unit covering linear equations in 

two variables. 

INTRODUCTION 

This paper examines some of the outcomes of teaching the algebra of linear equations 

in two variables to community college remedial algebra students using a modified 

Teaching Experiment approach. The concepts addressed here are first seen in a 

secondary school elementary algebra course, but the audience receiving instruction in 

the study reported by this paper were community college students enrolled in a 

“remedial” or “pre-college” course. Community colleges have endured a reputation as 

subordinate educational institutions. As a result, there is little research about 

community college teaching and learning. One of the aims of this paper is to redress 

that deficiency; another is to examine the uptake of the concepts being taught when the 

audience is community college students, and the approach is not the conventionally 

accepted lecture model, but a student-centred approach.  

THEORETICAL PERSPECTIVE 

Realistic Mathematics Education (RME) is the theory that rather than teach an abstract 

concept in a manner that emphasizes mechanical manipulation, the concept should be 

embedded in a “realistic” problem so as to make its solution, and the emergent 

mathematics, meaningful (Cobb, Zhao, & Visnovska, 2008). The core tenets of the 

RME theory were adapted and extended in 2000 by van den Heuvel-Panhuizen to six 

principles; it is from these that RME can be identified in a contemporary setting: 

• the activity principle: “students are treated as active participants in the 

learning process [and] ...mathematics is best learned by doing mathematics” 

(van den Heuvel-Panhuizen & Drijvers, 2014, pp. 522-523) 
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• the reality principle: “the importance [of] students’ ability to apply 

mathematics in solving ‘real-life’ problems….” (van den Heuvel-Panhuizen 

& Drijvers, 2014, p. 523) 

• the level principle: “students pass various levels of understanding” (van den 

Heuvel-Panhuizen & Drijvers, 2014, p. 523; see also Treffers, 1987) 

• the inter-twinement principle: “mathematical content domains…are not 

considered as isolated curriculum chapters but as heavily integrated” (van den 

Heuvel-Panhuizen & Drijvers, 2014, p. 523) 

• the interaction (or interactivity) principle: “learning mathematics is not only 

an individual activity but also a social activity” (van den Heuvel-Panhuizen & 

Drijvers, 2014, p. 523) 

• the guidance principle: students have “a ‘guided’ opportunity to ‘re-invent’ 

mathematics” (van den Heuvel-Panhuizen, 2000, p. 9) 

It is important to clarify the meaning of “realistic” in the sense in which it was 

originally meant in the RME context. In English, the word “realistic” will likely be 

interpreted to mean “real”, “actual”, or “factual”. In RME, however, “realistic” is more 

accurately interpreted as “imaginable”.  

“The Dutch translation of ‘to imagine’ is ‘zich REALISEren.’ It is this emphasis on 

making something real in your mind, that gave RME its name. For the problems presented 

to the students, this means that the context can be one from the real world, but this is not 

always necessary. The fantasy world of fairy tales and even the formal world of 

mathematics can provide suitable contexts for a problem, as long as they are real in the 

student’s mind” (van den Heuvel-Panhuizen, 2000, p. 4, emphasis in original).  

Realistic Mathematics Education, then, is a theory that allows for the exploration of the 

mathematical elements of a real or realistic situation.  

Also utilized in this study, the Student-Centered Learning (SCL) approach ensures that 

students’ learning is prioritized over the teacher’s needs or desires. A broad spectrum 

of methods is available to the instructor wishing to use SCL. 

THE STUDY 

“Elementary algebra” curriculum in Washington state community colleges includes 

linear equations in two variables. Students enrolled in such a course are expected to 

acquire the concepts of Cartesian coordinates, solutions to linear equations in two 

variables, slope, intercepts, and linear graphs. This course, like most college courses, is 

conventionally lecture-based.  

Using a modified Teaching Experiment approach (which teaches to a whole class 

rather than a small group, and for which iterations were implemented from one whole 

class to another rather than from one session to another with the same small group), all 

of the concepts in this study were taught by presenting a scenario in which a distal goal 

is described. Students worked in teams to accomplish tasks and reach proximal goals, 

each of which aligned with a course objective. Each task was embedded within the 
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scenario, and while many of the chapters of the story are fantastical, each is sufficiently 

believable to be considered realistic by RME’s definition of that term. In the interest of 

brevity, only the concepts of Cartesian coordinates, slope, and slope-intercept form of 

an equation are discussed here. 

At the start of the unit, a story is told about a missing artefact requiring students’ 

expertise to locate. Teams are given maps of a country with about a dozen cities; the 

map is overlaid with a grid of indeterminate unit, and a few cities fall neatly at 

intersections of grid lines. The land mass is not identifiable, so any activities requiring 

measurements to be taken, for example, cannot be researched on the Internet. Several 

activities were developed, and tasks designed and delivered around the same distal 

goal of finding the missing item. 

PARTICIPANTS 

The study was implemented with a class of 23 students representing diverse 

populations in terms of sex, age and ethnicity. Some students entered the course with 

previous exposure to linear structures; however, the curriculum calls for a rigorous 

treatment of the subject, and as such, the unit of interest in this paper addressed the 

concepts of Cartesian coordinates, slope, intercepts, points on a line, graphical 

interpretation of linear equations, and writing linear equations.  

The aim of the study was to determine whether students would take up conventional 

concepts if presented as embedded in a narrative. A series of activities was designed 

that were intended to capture students’ imagination while requiring them to utilize 

concepts about which they had read before arriving in class. Upon finishing each 

activity, teams were asked to document their analysis in a “log entry”. 

Cartesian Coordinates: A local “convention” used in the fantasy location was 

explained: the capital city is known as the “origin” of commerce, labelled with 

coordinates  and other locations on the map can be identified by referencing their 

distance east and north from there. Teams were given a chart containing the 

coordinates of a few cities and towns on the map and asked to fill in the coordinates for 

the others. 

Slope: Referred to in the narrative as the “directional command”, the fundamental idea 

of the average rate of change was explained in words rather than through a formula. 

The description of a programmable drone, too primitive to accept anything but a single 

value as its directional command, was meant to encourage students to see that while 

there are two components to the direction of flight, they work together as a single ratio 

of values. 

Slope is a concept that many students struggle with, and this difficulty is extremely 

well documented (e.g. Barr, 1980; Bell & Janvier, 1981; Leinhardt, Zaslavsky, & 

Stein, 1990; Orton, 1984; Simon & Blume, 1994). The hope in introducing slope via a 

realistic scenario was that students would see the slope as a relationship first and a 
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numerical value second, but also that the connection between these two modes of 

expressions would become apparent. 

Slope-Intercept Form of Equation: The slope-intercept form of the equation of a line 

is a linear combination of slope and -intercept. Teams were required to find the 

particular combination of the two values they need in order to create an equation. 

Students were expected to have read an introduction to the concept in the textbook, so 

in addition to the terminology used in the narrative, they had seen the nomenclature 

used in the conventional setting. This preparation meant that they already knew the 

form in which the equation they were asked for should be, and they were determining 

the combination they needed based on work they had done to find the slope and the 

-intercept. 

RESULTS AND ANALYSIS 

In addition to finding that the approach described here more actively engaged students 

than does lecture, it also appears to have held up under conventional assessment. This 

is not to say that the modality described by this report guarantees that all students will 

learn better and remember longer, nor that there are no students who learn better by 

listening passively to a lecture, but the vast majority of students who end up in 

pre-college algebra at community college have already been let down and put off by 

the traditional academic model. For these students, delivering the same content the 

same way is unlikely to result in a different outcome. If students have any chance of 

progressing, something needs to change in order for them to learn algebra in this course 

when they could not learn it before. While multiple reasonable alternatives exist, and 

others are being investigated, Realistic Mathematics Education is one which has been 

tried and found to be a strong influence for positive change, not only in the primary 

classroom, but also in secondary and, as shown by this study, tertiary classrooms as 

well. 

Team Activities 

To convey the concepts required of the curriculum, students read from the textbook 

before coming to class and worked in teams to complete activities that used the 

concepts about which they had read. The expectation was that students would 

collaborate to answer the questions presented within the activities, but submissions 

were graded individually. Students in the study were required to submit their work 

individually; but, as they were not being assessed individually (at this point), it is not 

surprising that within any team, the responses were often identical. If a student was not 

present, he could still submit the required worksheet, but he would either need to work 

out the solution on his own or ask his team for help.  

What follows is an analysis of the activity in which teams in the study were required to 

establish the equation of a line from two points on that line, although in keeping with 

the narrative, the instructions were given in that spirit. The activity in its entirety 

required teams to find the “directional command” (the slope) and the “longitudinal 
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crossing point” (the -intercept) and then to put these values into their correct 

positions in the slope-intercept form of the equation of a line.  

Finding the Slope: Teams were easily able to interpret “directional command” to 

mean “slope”, and most used the coordinates of the points they had recorded in the 

Cartesian Coordinates activity (not described here due to lack of space) and the slope 

formula to find the desired value of . All teams but one gave an answer 

consistent with the value . One team gave the fraction , having been more 

exacting in establishing their coordinate locations in the “coordinates” activity. These 

responses were deemed correct given that students were measuring with very coarse 

tools, and the goal was to capture the idea of slope rather than accuracy of 

measurement.  

Another team did not parse the information in the narrative correctly and ended up with 

a slope of . This error is based on their having selected the wrong destination for 

their calculations, but the calculations they did do were correct for the purpose of 

finding the slope. 

Finding the -Intercept: Determined algebraically, the -intercept in the scenario 

had a value of , or approximately . Only one team arrived at this value; they 

did so by using the slope-intercept form of a line ( ), replacing  with  

and  and  with  and  respectively (from a location set by the narrative); 

solving the resulting equation for  returned the correct -intercept.  

In general, during guided instruction following on from self-exposure and group 

discussion and negotiation, teams found the slope easily, the vast majority of them 

through the use of a formula (two found the slope by counting). On the other hand, only 

a few teams found the -intercept by using a formulaic approach; several found the 

intercept by observation. 

The Equation of the Line: Having determined the slope and the -intercept, most 

teams were able to use these values to construct the equation of the line. A few used 

some form of formula which resulted in re-computation of a value or values that they 

had already found. Re-computation is common during exam conditions, but during the 

activity, students were working not only in a casual environment, but collaboratively, 

and with no restrictions on the resources they might use to help them answer the 

questions they were asked. That students can correctly find a slope given two points, 

but then re-compute the same slope when asked to write the equation of a line suggests 

that they have not made the connection between the slope of a line and the role that it 

plays within the equation of a line. It may be that these students are so used to finding 

the equation of a line by purely mechanical means that on being asked to do so, their 

only way forward is to work through the steps “find the slope”, “plug in  and ”, 

“solve for ”, “write out the equation”. That they have already found “ ” eludes them 

because it does not fit into the process that they have memorized for this task. 
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Summary of Team Activity 

Although some teams did not correctly interpret the instructions given, all but one 

individual student submission showed correct interpretation of the directional 

command as “slope”; more importantly, all of these students correctly analysed and 

computed the slope, insofar as its meaning was identified. Several also exhibited 

competence in finding the -intercept, although some did so with incorrect 

replacement values. Finally, the vast majority correctly used the slope and -intercept 

to create the equation of the line that went through the two given points, even if some 

of these had to recalculate the slope in order to do so. In comparison to lecture-based 

courses taught by this author, the collaborative and narrative-based approach to 

delivering this concept was considerably more successful in producing student work 

that correctly used the information they were given to accomplish the requested task. 

Because of the nature of the collaborative group, it is impossible to say whether each 

individual student successfully grasped the concepts from the activities, or whether 

some of them simply copied out the work of their team mates. This behaviour was not 

forbidden, and in fact the group activity was designed to allow it; it is not unusual for 

understanding to follow mechanics, (Skemp, 1987) and the collaborative environment 

was intended to ensure that every student would be able to submit work with 

confidence. To determine whether individuals had achieved understanding, the 

students were also assessed individually. 

Individual Assessment 

At the end of the series of activities on linear equations in two variables, students were 

assessed by a conventional exam to determine their uptake of the concepts in that unit. 

Assessment is a common method of determining a student’s ability to perform the 

mechanics of the concepts in question, but in this case another reason was to determine 

whether students had successfully learned the concepts under the RME delivery 

modality. While the activities were team endeavours and individual grades were based 

on the efforts of the team, the exams were individual assessments and grades were 

based on individual performance. The questions addressing coordinates and the 

equation of a line included in the examination are analysed below: 

Question 1: …plot the points  and  and sketch the line that goes 

through these two points. 

All students were able to plot a Cartesian point one of whose coordinates was a 

negative integer and the other of which was a non-integer value. Plotting a Cartesian 

point is a simple task for the expert, but for the novice, this task holds several traps. 

This task is usually mastered by most students, but a large minority do not conquer it 

early on. That 100% of students in this study successfully answered this question is 

noteworthy. 
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Question 4: Write the equation of the line that goes through the points  

and . 

Eight students arrived at the correct solution to this question by finding the slope of the 

line between the two points (or writing the ratio of differences), replacing the “ ” in 

the equation of a line, replacing  and  with the values from one of the given points, 

solving for  and rewriting the equation. An additional six would likely have returned 

the correct response had it not been for an error in rounding, arithmetic or algebraic 

manipulation. 14 out of 24 students, therefore, responded essentially correctly, a 

greater ratio than is normally realised in this unit. 

Summary of Individual Assessment 

It is impossible to know whether the students using analysis in this class are doing so 

because they are more engaged or whether it is because they are required to pre-read 

the text; certainly, the combination of pre-reading and RME appears to be very 

effective. Anecdotally, many students in courses such as this one, when unprepared for 

class, simply do not attend. Students in this class did occasionally miss a session, and a 

few did so chronically, but not at the rates common in classes at this level. This class 

was also no exception to the well-known attrition problem, but attrition occurred at a 

much lower rate than usual.  

DISCUSSION AND CONCLUSION 

The question of Student-Centered learning (SCL) is not new; it has been around since 

at least 1951 (Rachman, 1987), although it can be argued that it became a “modern” 

phenomenon in the early 1970s (e.g. Foster, 1970; Clasen & Bowman, 1974). That 

SCL is more effective than lecture has become difficult to dispute, given the ongoing 

and increasing research into its benefits (e.g. Wilson, Sztajn, Edgington, & Myers, 

2015; Dondlinger, McLeod, & Vasinda, 2016; Osmanoglu & Dincer, 2018). One area 

that would benefit from additional research is in determining which approaches work 

best for which audiences. In particular, there is a great deal of room for more research, 

and for specifics, such as whether RME, designed for use in elementary classrooms, 

can be effective in other environments. This paper demonstrates that RME is a valid 

approach for the remedial college classroom. It is critical that more college and 

university instructors become informed of the benefits of SCL. Certainly, as more 

instructors use such methods, their students who themselves become educators are 

more likely to employ alternatives to lecture, but the field is resistant to this type of 

change. It is hoped that this paper helps to convince the reader that SCL is an approach 

that benefits students, but also that it need not mean reinventing the wheel. If the RME 

and Teaching Experiment combination can be successfully modified for use in the 

college classroom, then there must be many other such theories and approaches that 

can be similarly modified. 
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LINGUISTIC CONFLICTS IN TEACHING POLYGONS IN A 

BILINGUAL MATHEMATICS CLASSROOM 

Canan Güneş 

Simon Fraser University 

 

This case study investigates language related conflict situations which occurred 

between students’ expected and actual responses to mathematical tasks about 

polygons in a bilingual classroom. The data were created from a video record of a 

mathematics classroom in Hong Kong. Data analysis was based on Schoenfeld’s 

framework “Teaching for Robust Understanding” and was focused both on the nature 

of the conflicts and on the teacher’s reactions to these conflict situations. The results 

show that language conflicts occurred during the delivery of mathematical content and 

during the assessment of students’ mathematics knowledge. The teacher used linguistic 

strategies, gestures, and vocabulary exercises when the conflicts arose. 

INTRODUCTION 

Linguistically diverse mathematics classrooms involve participants, either learners or 

teachers, who are potentially able to draw on more than one language in their 

engagement in mathematical activities. Speaking more than one language involves 

cognitive advantages, but it also brings compound challenges in learning mathematics 

(Truxaw & Rojas, 2014).  

Bilingual classrooms have two kinds of problems in learning mathematics: Type A and 

Type B problems (Berry, 1985). Type A problems typically occur when the language 

of instruction (e.g. English) is not the student's mother tongue, whereas Type B 

problems result from the "distance" between the cognitive structures natural to the 

student and implicit in his mother tongue and culture, and those assumed by the 

teacher. The severity of both problems correlates positively with the student's lack of 

fluency in the classroom language. 

Truxaw and Rojas (2014) found that learning mathematics in another language is 

challenging due to both cognitive and affective factors. It is exhausting to understand 

academic instruction in a second language. Public participation in classrooms might 

decrease because asking or answering meaningful questions is intimidating for 

bilingual students. Students might get confused with unfamiliar representations and 

contexts. 

This study focuses on the language related confusions that influence teaching 

mathematics in a bilingual classroom. Specifically, I answer the following research 

questions: 
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1. When does language involve in conflicts between students’ expected and 

actual responses to mathematical tasks in a bilingual mathematics 

classroom? 

2. How does a mathematics teacher respond to language conflicts in a bilingual 

mathematics classroom? 

THEORETICAL FRAMEWORK 

Successful mathematical classrooms which enhance student learning consist of five 

dimensions: mathematics; cognitive demand; access; formative assessment; and 

agency, ownership, and identity (Schoenfeld, 2017). According to this framework, 

students should engage with mathematical content which represents best current 

disciplinary understanding. Classroom interactions should create and maintain 

intellectual challenges for students to develop cognitively. Mathematical activities 

should invite and support engagement of all students in the classroom. Subsequent 

instruction should respond to students’ ideas by building on productive beginnings and 

addressing misunderstandings. Students should have opportunities to build on each 

other’s ideas to develop agency and ownership over the content. 

In each dimension, language acts either as a tool to share ideas or as a mediator to build 

mathematical knowledge. The mathematical content appears in the classrooms via at 

least one of oral, written, or symbolic language. Therefore, language plays a role in 

students’ access to the mathematical content. In addition to information transfer, 

language mediates verbal interactions in the classroom, which are necessary to create 

cognitive demand and agency and to assess student thinking.  

This framework suggests that success in learning mathematics is based on success in 

using language. The importance of language in each dimension can explain why 

mathematical instruction with a second language is challenging. 

METHODS 

In this case study, I created my data from a classroom video taken from The Third 

International Mathematics and Science Study (TIMSS) 1999 Video Study. This study 

investigated eighth-grade science and mathematics lessons from seven countries, three 

of which were English-speaking countries.  

Hong Kong was the only bilingual country among the English-speaking countries 

within the study. The official languages of Hong Kong are both English and 

Cantonese. English fluency is 53% while Cantonese fluency is 94% (Mair, 2017). 

Therefore, I chose a video from Hong Kong. It was the first session in a sequence of 

four lessons working towards the more advanced concepts of polygons. It was in 

English and lasted for 34 minutes. It was reported that there were 41 students in the 

class.   

The TIMMS video is provided with additional resources. One of the resources is the 

lesson graph which separated the lesson into nine episodes based on the type of 
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classroom activity. According to this graph, there are five public classworks and four 

private classworks. In public classwork, the teacher invites students to the board to 

answer some questions and makes explanations based on students’ drawings. In private 

classwork, students make some drawings and solve some problems in their notebooks 

individually. I focused only on the public classworks because interaction between the 

teacher and students occurred only in these episodes. 

DATA ANALYSIS 

I conducted a video analysis by following Powell, Francisco, and Maher’s (2003) 

analytical model. They claimed that there is no proper model for video analysis in 

mathematics education. Therefore, they devised this model to study the development 

of mathematical thinking. It consists of seven phases: (1) Viewing the video data 

attentively, (2) describing the video data, (3) identifying critical events, (4) 

transcribing, (5) coding, (6) constructing a storyline, (7) composing a narrative. 

I tried to get familiar with the video content at first. During my viewing, I audio 

recorded my comments about some moments which were interesting to me. Some of 

these moments were related to classroom routines, such as the students’ way of 

greeting the teacher and seating arrangement. Others were related to language use in 

the classroom. After I watched the video, I described the video content with 

time-coded notes about transitions of situations and activities. According to my 

research questions, I identified the critical events which included moments where 

language constituted a problem. I transcribed both audio and visual data separately, but 

combined them in the same transcript to perform synchronous coding. The visual data 

were indicated both with parenthesis and smaller font size in the transcript (see Figure 

1). 

(1) I= I=I= I= I wa:nt you to draw--an= another type of the 

(2) Polygon 

(3) (Camera focused only on the student who drew a convex pentagon) 
(4) U::h= okay= thank you (.)  
(5) (Teacher gazed at the student’s drawing. Teacher raised his both hands on 

(6) shoulder level with palms towards him and moved his palms approximately about 

(7) 90 degrees toward the student until they were parallel to the ground while he was 

(8) smiling and nodding) 
 

Figure 1: The combined transcript of audio and visual data 

TIMMS video is supplied with the transcript of the lesson. TIMMS transcription 

includes the time stamps of utterances and punctuation marks. Punctuation marks are 

used not only to follow writing rules, but also to represent repetition of words and long 

breaks between utterances. I extracted the relevant parts of the TIMMS transcription 

into a word document. I discarded the existing punctuation marks and modified the 

transcription based on Jefferson (2004) by adding relevant punctuation marks to 

indicate above characteristics of a speech. Moreover, I discarded time stamps and 

added line numbers to help readers to follow the analysis. 
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I read the transcript line by line and typed my codes next to the relevant line. First, I 

coded teachers’ actions according to Schoenfeld’s (2017) framework, to analyze which 

dimensions involved language conflicts. Then I color coded teachers’ gestures together 

with the verbal data. The same color means that the teacher utterance and the gesture 

happened at the same time. Finally, I colored each kind of punctuation mark differently 

to code sounds.  

RESULTS 

In this study, linguistic conflict refers to the moments where students’ interpretations 

of a mathematical expression do not match the teacher’s interpretation. Below, I 

introduce an incident which involved linguistic conflict and then provide the teacher’s 

reactions after the incident.  

Moments of Conflict 

The linguistic conflict resulted from the mismatch of interpretation of the expression 

“another type”, as in the following example:  

1 T: I= I=I= I= I wa:nt you to draw--an= another type of the polygon 

2  (Camera focused only on the student who drew a convex pentagon) 

3 T: U::h= okay= thank you (.) 

4  (Teacher gazed at the student’s drawing. Teacher raised his both hands on 

5  shoulder level with palms towards him and moved his palms 

6  approximately about 90 degrees toward the student until they were parallel 

7  to the ground while he was smiling and nodding) 

Before this incident, one student drew a convex hexagon on the board. Then the 

teacher asked another student to draw another type of polygon (line 1). The student’s 

drawing of a convex pentagon (line 2) indicates that student is aware that she should 

draw something different from the convex hexagon.  

Convex pentagon and convex hexagon seem to be different types of polygons for the 

student. She changed the number of sides of a polygon to change its type. Thus, the 

characteristic which separates polygons for the student seems to be the number of sides 

of a polygon. 

When the teacher said “another type”, he intended to direct students’ attention to 

interior angles of a polygon not to the number of sides. This intent is evident from the 

description of the episode and from the teacher’s response to the student’s drawing. 

According to the lesson graph, this episode is a revision of convex and concave 

polygons. Therefore, the teacher most likely expected the student to draw a concave 

polygon, which is not the same type as a convex polygon.  

The teacher’s reaction after the student’s drawing of the convex pentagon (line 2) 

indicates surprise. When the student drew the pentagon (line 2), the teacher gazed at 

the pentagon (line 4) while he was saying “uh” in a prolonged manner (line 3). The 
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prolongation might have given the teacher some time to think what to say next because 

this surprise might have created uncertainty in the teacher in terms of how to proceed 

with the classroom. It seems that the teacher did not expect the student to draw a 

convex pentagon. In other words, he did not expect the student to change the number of 

sides of a polygon to make it another type. Instead, he might have taken for granted that 

the student would draw a concave polygon.  

In addition, the teacher’s body language also signaled a mismatch between the 

student’s response and the teacher’s expectation. The teacher made a particular gesture 

when students did not answer his questions correctly (lines 4, 5, 6, & 7). The teacher 

made the same gesture in this lesson when students could not recall the name of a 

pentagon: 

8 T: Do you=do you know the name of thi:s uh polygo::n (Teacher bounced his  

9  fist below the pentagon with a sound “tik tik” and kept his hands on the  

10  board until the pause) 

11 T: You forget it (He suddenly raised his hand to his shoulder level with palm 

12  showing upward parallel to the ground, smiling) 

13  Okay=it is a pen:tagon—It is a pentagon 

The word “forget” (line 11) refers to being unable to remember something. Therefore, 

it indicates that the teacher assumed that the students knew the name of that certain 

kind of polygon and he expected them to answer him correctly. However, the students’ 

inability to answer him surprised the teacher. The teacher’s utterance “you forget it” 

(line 11) and his gesture (lines 11 &12) happened at the same time. Since this moment 

of surprised is accompanied with a gesture, it might be asserted that this gesture 

reflects surprise which result from the mismatch between the students’ responses (or 

lack thereof) and the teacher’s expectation.  

The phrase “another type” (line 1) seems to represent different meanings for the 

teacher and the student. This mismatch prevented the teacher from assessing the 

student’s knowledge about the difference between convex and concave polygons 

because the meaning of the word “another” for the student did not resonate with the 

teacher’s intention. 

The phrase “another type” indicates a categorization based on a specific characteristic. 

However, the teacher used the expression without explicitly specifying the relevant 

property to categorize. The reasons to do so might be several but the result of the 

incomplete use of the mathematical expression is related to Schoenfeld’s dimension of 

mathematical content. This utterance exposed students to deficient use of 

mathematical terminology.  

This linguistic conflict occurred while one student was participating in a mathematical 

task. In other words, linguistic conflict corresponded to the development of student 

agency in the classroom. Since the student’s mathematical interpretation was not 
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aligned with the teacher’s and it was not reinforced, this mismatch might influence the 

student’s agency negatively.  

The Teacher’s Strategies for Language Problems 

The teacher devised linguistic strategies for language problems. After the student drew 

a convex pentagon (line 2), the teacher asked the same question with different wording 

(line 14): 

14  T: I (.) I want you to draw an::other ty:pe of the polygon=another property  

15  (.)Okay (Teacher raised his hand to shoulder level with palm showing  

16  students. He moved his hand from shoulder level to belly level quickly  

17  palm downward as if he throwed a ball towards the ground. His hand went  

18  up and then pushed an imaginary point in the air. The palm which was the  

19  towards students was shaken right and left quickly) 

The teacher used the phrases “another type” and “another property” almost in a row 

(line 14). This successive utterance indicates that the teacher tried to indicate the same 

concept with different wording. This shows that the teacher likely thought that the 

student did not answer the question correctly, because she did not interpret the 

meaning of “type” correctly.  

The teacher used gestures all throughout the lesson. Apart from the above example, the 

teacher used at most two different gestures between two pauses during the lesson. 

However, when he referred to the same concept with a new word, he used four 

different gestures between two pauses. This increase in the way of gesturing might 

indicate that gestures were denser when he tried to solve linguistic conflicts. However, 

it is not clear how these gestures were related to the words they accompanied.  

The teacher resorted to vocabulary exercises when students could not recall 

“pentagon” a second time. The main vocabulary exercises are spelling the word and 

reading it aloud with the students altogether at the same time. The teacher might have 

used them to strengthen the memorization of the word “pentagon”. The teacher 

associated students’ failure to answer his question with an inability to remember the 

term. Instead of asking “how is it called”, he asked about the name of the polygon by 

saying “Do you still remember how to call this”.  

DISCUSSION 

In this video, the conflicts related to language occurred both in formative assessment, 

agency, and mathematics dimension within Schoenfeld’s TRU framework. The 

difference between the teacher’s and students’ interpretation of the word “type” 

prevented the teacher from making a valid assessment of student knowledge. The 

teacher’s deficient use of the word “type” does not represent best current disciplinary 

understanding of mathematics.  

The teacher’s strategies to cope with language problems in the mathematics lesson 

reflects the literature. As in Kasmer and Billings (2017), the teacher devised mostly 
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linguistic strategies for language-related problems. This suggests that the teacher does 

not associate communication difficulties either with mathematical understanding or 

with cultural issues (Adler, 1995; Gorgorió & Planas, 2001). Different from Kasmer 

and Billings (2017), this study shows that instead of translating math terms into the 

students’ mother tongue, the teacher resorted to other English words when there 

seemed to be misunderstanding. 

This study suggests that, Schoenfeld’s (2017) framework could be modified in two 

ways. First it could be enlarged to include “language use” as another dimension. The 

language dimension could refer to the extent of language use which minimizes 

possibilities of miscommunication. Second, since language is both a tool and a 

mediator for success in each dimension, it might be added as a prerequisite dimension. 

This would change the nature of the framework. Schoenfeld suggested it in a 

non-hierarchical manner. However, adding the language dimension as a prerequisite 

would make the framework hierarchical.  

It is difficult to separate the sources of these conflicting situations from language 

problems in learning mathematics to language problems in learning at linguistically 

diverse classrooms. However, this paper aimed to document conflicts without 

investigating the reasons. Future work can focus on this separation.  
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CONSTRUCTION IN DGE: LEARNING REFLECTIONAL 

SYMMETRY THROUGH SPATIAL PROGRAMMING   

Victoria Guyevskey 

Simon Fraser University  

 

The goal of this paper is to gain insight into the construction process in a Dynamic 

Geometry Environment (DGE) and to see how, through modelling with geometric 

primitives, students come to understand the abstraction embedded in the concept of 

reflectional symmetry. Closely following a team of two upper elementary students as 

they construct a Leonardo da Vinci (or mirror-writing) machine in Web Sketchpad 

using geometric primitives, I describe and analyse several computational thinking 

(CT) practices that have emerged during the construction process. I then show how 

these practices supported the development of spatial reasoning skills and learning of 

geometry. 

INTRODUCTION AND THEORETICAL BACKGROUND 

Hoyles and Noss (2015) suggest, “It is impossible to be a citizen of the 21st century 

and not have some idea of what it means to write a computer program, of what it means 

to build a mathematical model”. Kotsopoulos et al. (2017) underscore the benefits of 

integrating computational thinking (CT) and mathematics:  

When children write code, they come to (1) understand in a tangible way the abstractions 

that lie at the heart of mathematics, (2) dynamically model mathematics concepts and 

relationships, and (3) gain confidence in their own ability and agency as mathematics 

learners. (p. 1)  

Computational thinking and mathematics 

Wing (2006) defined CT as “an approach to solving problems, designing systems, and 

understanding human behaviour that draws on concepts fundamental to computing” (p. 

34). Among the plethora of CT definitions available today that are non-specific to 

mathematics (e.g., Weintrop et al., 2016), the frameworks of Hoyles and Noss (2015) 

as well as Brennan and Resnick (2012) were found helpful in analysing DGE-based 

programming.  

Hoyles and Noss (2015) identified that all CT attributes fall into either practices or 

concepts, and defined CT as entailing abstraction, algorithmic thinking, 

decomposition, and pattern recognition. Similarly, but with a slightly different focus, 

Brennan and Resnick (2012) defined CT as involving three key dimensions: 

computational thinking concepts, computational thinking practices, and computational 

thinking perspectives. Within practices, Brennan and Resnick observed four main sets: 

being incremental and iterative, testing and debugging, reusing and remixing, and 
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abstracting and modularizing. It is this group of practices that is of main interest to me, 

due to its potential to help explain the programming process live. 

Spatial programming 

Jackiw and Finzer (1993) studied the potential of DGE as a problem-solving domain, 

which involved exploration of the process of expressing geometric relationships 

visually and by demonstration. They developed a notion of “spatial programming”, 

which they defined as “visual identity between a program and its output” (p. 295) and 

found that in DGE, there was no distinction between the geometric content domain and 

the spatial programming domain; students using it encountered programming as the 

central activity. “The distinction between programmer and user disappears; the two 

coalesce into one – the student” (p. 294). 

Jackiw and Finzer (1993) argue that: 

Constructing a sketch in GSP [The Geometer’s Sketchpad] is programming, in the 

straightforward sense of building a functional system which maps input to output. The 

unconstrained elements of the sketch […] constitute the program's inputs or parameters. 

The relationships between parts of the sketch […] correspond to a program's production 

statements. In GSP's case, the semantics of the production language are governed by 

traditional Euclidean constructions. (p. 295) 

They further state that a program’s structure and its output were isomorphic, and that 

by manipulating the program’s inputs, the student generated further output, meaning 

that manipulating is performed in the same domain as constructing the initial sketch.  

Sinclair and Patterson (2018) argued that Sketchpad can be an effective programming 

language in the context of complex high school tasks. After analysing finished DGE 

sketches created by high-school students in Belgium, they conclude that many CT 

practices associated with the use of propositional programming languages were also 

featured in the more spatial and temporal register of the geometric ‘language’ of 

DGEs. While their analysis was focused on already-made sketches in high school 

settings, I am interested in observing the construction process live in hopes that it will 

provide additional insight into the phenomenon of using DGEs as CT tools that support 

learning of geometry. My research question thus is: What kind of programming might 

be involved in an elementary school construction task and how does this programming 

support learning of geometry? 

METHOD 

The project described in this paper took place in a Grade 6/7 classroom in the spring in 

a high-density, affluent neighbourhood elementary school in British Columbia, 

Canada. Students participating in the project had been exploring geometry with DGE 

using iPads for approximately one hour per week since the beginning of the school 

year. Two researchers, of whom I was one, led the project. We employed a 

team-teaching model, with one of us always being engaged with either the whole class, 

a small group, or individual students. Isometric transformations were selected as the 
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content backdrop for these explorations, as they are part of the provincial curriculum 

for this grade level (though are usually presented through coordinates). From the topic 

of transformations, a sub-topic of reflection was chosen as a starting point, with the 

hope that the concept of reflectional symmetry could offer a low-floor entry into the 

world of transformations.  

The first lesson was introductory and “unplugged”: students verbally created 

definitions of transformations based on knowledge from previous years. The second 

lesson involved introduction of the concepts of symmetry and reflection. The third and 

fourth lessons revolved around students working with reflectional symmetry. 

Following this, the students were told Leonardo da Vinci’s story, were shown a picture 

of the mirror-writing machine that he designed to encode his writings, and then they 

were invited to create such a machine using a Basic Geometric Tools websketch: 

http://www.sfu.ca/content/dam/sfu/geometry4yl/sketchpadfiles/BasicGeometryTools/

index.html.The researchers suggested that they start by placing a point (for the “pen”) 

and a segment (for the “mirror”) as a possible first step. The Continuous Symmetry 

sketch was the “black box”, which code students had to uncover. 

In this paper, I examine the work of one pair of students, Danny and Dexter, as they 

created their construction of a mirror-writing machine. They were good friends and 

since the beginning of the year, both were very keen on working with Web Sketchpad. 

The boys worked together for approximately fifteen minutes during each of two 

sessions that were one week apart. At the end of the first session they reached a partial 

solution, and by the end of the second session, they were finally able to carry out a 

workable procedure to their own and the researchers’ satisfaction, creating a machine 

“that can write stuff backwards”. This teamwork was documented via audio-recording 

and screen capture tool, and later transcribed and analysed for the presence of 

prominent computational thinking practices identified by Hoyles and Noss (2015), as 

well as Brennan and Resnick (2012).  

MIRROR MACHINES 

Along with myself (the classroom teacher), the boys worked in a small office adjacent 

to the main classroom, so as to make clear audio-recording possible. I was mainly 

observing, but occasionally offered suggestions and scaffolds, especially during the 

“being stuck” phases. I will now briefly summarise thirty minutes of work, while 

highlighting two pivotal points. 

The boys had to do multiple restarts during the two sessions: they tried to use two 

intersecting circles, one circle with a diameter, and two perpendicular lines, but had not 

been successful in creating a mirror-writing machine, either getting the translation as a 

result, or no transformation at all.  

At one point, the boys decided to start from scratch. Dexter constructed two parallel 

lines, each running through the two centres of the circles, one small and one large. He 

added tracers to the centres of two smaller circles and attempted writing with the right 
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tracer, but no transformation happened. Danny took over and added tracers to the 

intersections of the larger circles. He dragged the pen around, but his writing was now 

rotated twice, with the angle of rotation being 60 degrees. The boys silently watched 

the action (see Figure 1). 

Dexter: Try making an L. 

Danny: No, it does the same thing. 

Dexter: No, look at this one. [Dexter took over and tried to draw an L.] See, this one. 

Danny: Yeah, but it’s not backwards, it’s just a different angle. 

Dexter: Oh yeah, but it’s close. It’s closer. 

Danny: No, it’s not. 

  

Figure 1: Rotations of letter “L”. 

The boys could not yet see that if they added another 60-degree rotation increment, 

their L would be at 180-degree rotation, which would make it upside down, and it 

would be an upside-down mirror-writing machine. Danny saw the same shape even 

after a 120-degree rotation, but Dexter thought it was different enough to be considered 

“closer” to mirror writing. It is not too early to mention that this was the first 

significant step towards reflectional symmetry: the boys began using their spatial 

reasoning skills and contemplating what degree of an angle constitutes a reflection.  

The boys came back to the segment-point starter, but instead of either a perpendicular 

line or a circle, they constructed two loosely symmetrical right triangles. That attempt 

failed to produce any transformation. Then another attempt to start with a 

segment-point bundle followed, but this time with a line perpendicular to the vertical 

segment, which ran through the free-standing point. After that, another vertical line 

was added, which was parallel to the one already there. This did not produce the 

desired result, so the boys started anew.  

They constructed a circle and a segment for the diameter and added tracers to the 

endpoints of that segment. When the circle dilated, the tracers drew a diagonal line in 

opposite direction.  

Danny: Yeah, see, if you spread the circle [Dexter expanded the circle and the pen drew a 

             horizontal line that was now reflected.] see, it goes different ways. That’s it. 



MEDS-C 2018                                                                                                  Guyevskey  

45 

Dexter then moved the entire circle without dilating it, so the tracers were now 

translating rather than reflecting; he shrunk the circle and the line was reflected again. 

Dexter saw the limitations of Danny’s construction, but Danny was so excited they had 

the solution, that he did not even notice how the reflection turned back into a 

translation until later, when he had a chance to watch the video of it (see Figure 2). It 

seems helpful to say now that it was the second major turning point, when the boys 

realised that moving in the opposite direction was not enough, and the relation of the 

two circles was needed. They here demonstrated further development of their spatial 

reasoning skills. 

  

Figure 2: “That’s it!” …Or is it? 

The second session was more productive. Dexter interlocked two circles in a horizontal 

orientation, then oriented the structure vertically and wrote “Hi”, but it translated 

again. Dexter then reluctantly constructed a segment and a point suggested earlier by 

the researchers as a way to jumpstart the construction. Danny centered the circle on the 

endpoint of the segment and connected the circumference to the arbitrary point. After 

adding the second circle and tracers, Danny first dragged the lower endpoint of the 

segment to cause only the left point to leave a trace. Then he dragged the left 

intersection point and the writing finally reflected on the other side. 

Dexter: Oh my gosh, we did it! We created a machine that writes stuff backwards! 

ANALYSIS AND DISCUSSION 

Upcoming analysis of the data described above will demonstrate that CT practices 

such as being incremental and iterative, testing and debugging/decomposition, and 

abstraction were all part of the DGE construction process to varying degrees. 

Debugging/decomposition practices were especially prominent. 

Being incremental and iterative 

Brennan and Resnick (2012) emphasized that students move forward non-sequentially 

and in increments. This definitely holds true for the project being described here as 

neither Dexter nor Danny had a well-devised plan as to how to proceed – to the point of 

being reluctant to make use of the starting hint suggested by the researchers. I have 

chosen to refer to their experience as “computational wandering”, as they generated 

many unplanned, seemingly random designs before arriving at the correct solution. 

Often, they would repeat the same buggy procedure over and over again (like their 

persistent attempts to use the two interlocked circles). Other times, they would come 
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very close to the correct solution only to abandon it for something less promising, 

because they were not yet able to see the relationships at hand. For example, at one 

point, Danny saw the potential of one of the two parallel lines to serve as a line of 

symmetry, but he was not yet clear on how to do it and abandoned it half-way, letting 

Dexter to take over. Overall, the journey to the solution could be described as two steps 

forward and one step back (or sometimes sideways). Having to debug paid off as the 

experiences were getting richer, and ultimately scaffolded the boys to the solution. 

Testing and debugging/decomposition 

According to Brennan and Resnick (2012), testing and debugging practices emerge 

when there is a breakdown in code. Most testing and debugging practices they 

described were developed through trial and error, transferred from other activities, or 

initiated by knowledgeable others. Sinclair and Patterson (2018) also found that 

breakdowns in the behaviour of the constructions were the primary source of 

debugging. Students had to determine why the relationships between objects were 

compromised under motion: “Such breakdowns can be seen as bugs if we consider 

them to be wrongly expressed relationships between the different objects in the sketch” 

(p. 69). 

In the case of Danny and Dexter, testing and debugging was the most frequent practice 

observed. Both boys were relatively new to GSP, being in their first year of its usage. 

However, both boys had by now become comfortable interlocking two circles – circles 

intersecting each other’s centres – for various purposes (e.g., to construct equilateral 

triangles or perpendicular lines) and then if needed, iterating further circles centring 

them on the intersection of any two circles, which would afford further construction of 

congruent segments and regular polygons. Interestingly, debugging did not happen 

within this context. However, using less frequently explored widgets, like adding a 

perpendicular line or constructing a three-circles design, often resulted in soft 

constructions with variable angles, causing spatial relationships to be affected in 

undesirable ways.  

Jackiw and Finzer (1993) wrote: 

In the programming of a sketch, a bug may be considered as an inaccurately or 

insufficiently expressed relationship between two or more objects. Bugs occur most 

frequently with novice GSP students, who readily arrive at a drawing of what they want, 

only to have the desired relationships between objects disappear when they drag a free 

node.” (p. 303) 

Overall, the boys encountered a bug twelve times throughout the two 15-minute 

sessions, hoping to see mirror writing to occur, and instead seeing either a sole trace, 

translation or rotation rather than reflection. It prompted them to keep searching for a 

solution. This resonates with the practice of decomposition, described by Hoyles and 

Noss (2015) as solving a set of smaller problems prior to solving a problem – unless 

one solves how to get the two tracers moving in opposite directions, one cannot move 

on to producing mirror writing. 
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One of the benefits of constructing in DGE is access to immediate visual feedback: 

breakdown in code could be seen immediately as the boys dragged the design, which 

would not behave in the desired way. They would take a couple of seconds to ponder 

over it and start over, and instead of having to fix the alphanumeric code first, they 

would make adjustments right there in the sketch. That saved a lot of time and led to 

the correct design after twelve restarts during 30 minutes of work. 

Abstraction 

When Dexter and Danny were designing a procedure for the mirror-writing machine, 

there was abstraction involved in that they had to see the relationship between the 

writing pen and the movement and position of the circle, as well as how that circle 

related to the other circle or the line perpendicular to the line of symmetry. When the 

boys first encountered the finished model of the mirror-writing machine, it looked like 

two symmetrical points of different colour, and there were no geometric objects 

visible, so it was difficult – if not at that point impossible – for them to see the 

relationship between the objects that comprised the inner mechanism of the machine 

and the writing the pen was producing. In spite of being jumpstarted into action by 

being constrained by the available widgets of the web sketch, and knowing the 

suggested starting point, the procedure was not at all obvious to them. However, a 

couple of pieces of the puzzle were in place from the very beginning by mere 

presentation of the finished product of the mirror-writing machine, which did not 

reveal the mechanisms, but vividly demonstrated what the machine was capable of. 

This “black box” experience was very important in helping the boys understand the 

behaviour they had to model: they already knew that movement had to be symmetric, 

but it was not at all obvious to them what was the relation between the two points. 

The relationship was becoming more and more palpable, however, as they observed 

the mirrored pen in action: it either remained static, or it would follow its own 

trajectory, or it would translate or rotate the shape produced by the main pen. From all 

this the boys painstakingly extrapolated the intricate and complex relationships 

between the objects involved: for example, that mirrored writing meant needing to 

have a point on the opposite side, that circles had to be connected but not locked, that 

the perpendicular line needed to move up and down, or that there had to be a line of 

symmetry that would anchor the entire machine. At first, they heavily relied on 

intuition. For example, at one point, Dexter referred to the perpendicular widget as 

“maybe we could use this somehow, ‘cause it has the right angle tool”, not being quite 

sure why he would want the right angle.  

Their reasoning was becoming more grounded (e.g., “dot will have to go to the other 

side, since it will be backwards”, or “if you spread the circle, writing goes in different 

ways”). Even though the boys did not rely on the use of CT or mathematical 

terminology, their ability to abstract was evident from their gestures and on-screen 

behaviour. This ability did not necessarily translate into full understanding of the 

relationships, but certain utterances indicated that many pieces of the puzzle were 

already in place. Consider, for example, how Dexter, after having written another 
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translation remarked: “It doesn’t work, because there are no circles moving up and 

down”. Of course, the up-and-down movement is not enough to produce a string of 

letters, and the relational dilation of the two circles was required, but nevertheless, it 

was a solid step towards being able to abstract. 

CONCLUSION 

In this paper, I focused on the process of construction in DGE, hoping that it would 

provide additional insight into the phenomenon of using DGEs as CT tools that support 

spatial reasoning. I also carried out analysis of the CT live, and demonstrated what 

kinds of programming might be involved in an elementary school construction task. 

The process of debugging/decomposing was very salient in this example, yielding 

twelve attempts with various tools and various configurations. The boys were able to 

test out directly whether the construction worked, and they could get visual feedback 

of what they constructed. The available tools of the Web Sketchpad were providing 

hints for the boys of the kinds of things they could try just by being there and 

provoking curiosity, and they were responding to those more than to the researchers. In 

order to crack the “black box” code and get access to the hidden geometric relations of 

reflectional symmetry, the boys needed to develop the ability to abstract, and they 

managed to do it through extensive testing and debugging. 
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SOURCES OF COMMUNITY COHERENCE IN A SOCIAL MEDIA 

NETWORK OF MATHEMATICS EDUCATORS 

Judy Larsen 

Simon Fraser University 

 

An unprompted, unfunded, and unmandated mathematics teacher social media 

community is thriving and is touted by members as one of the best forms of 

professional development they have experienced. However, newcomers often find it 

confusing and difficult to navigate due to the frequency and mass of content shared. 

Although the space can seem chaotic, order emerges, and is informing of mathematics 

teacher needs, interests, and issues. This paper explores how order emerges in this 

community and considers the implications it has on the space of possibility it offers. 

INTRODUCTION 

Teacher professional development is essential for enhancing the quality of teaching 

and learning in schools (Borko, 2004), and the robustness of a professional 

development initiative is dependent on ensuring activities reflect and are driven by 

teacher needs and interests, and that community building and networking are at the 

core (Lerman & Zehetmeier, 2008). However, initiatives are commonly limited to 

sparse, one-time professional development workshops facilitated in face-to-face 

synchronous settings, which are not typically supportive of ongoing professional 

growth (Ball, 2002) and are generally driven by facilitator perceptions of what teachers 

need rather than by what teachers want (Liljedahl, 2014). 

In contrast to these centrally organized, and sometimes compulsory, professional 

development initiatives, teachers from across North America are participating in 

decentralized, virtual, and autonomous professional communities. One such 

community involves mathematics teachers who regularly use Twitter and blog pages to 

asynchronously communicate their musings and practices, and have come to be 

identified as the Math Twitter Blogosphere (MTBoS) (Larsen, 2016). MTBoS 

participants often have very promising statements about the possibilities for 

professional growth they experience in the space and are found suggesting that 

MTBoS is a safe space to share ideas and to find others who help improve these ideas. 

Following this weird #MTBOS hashtag on twitter has changed my teaching practice in so 

many ways. (@MrOrr_geek, 6 Feb 2018) 

That's what the MTBoS is all about... Sharing ideas and having others improve it! 

(@mathymeg07, 10 Sep 2017) 

I love that Twitter can be a safe space for learning. (@mavenofmath, 2 Sep 2018) 
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Although communication through Twitter is generally random and unprompted, the 

MTBoS seems to be treated as an established space, one that is determined by 

participation from members who contribute and continue to use the MTBoS hashtag. 

This rich phenomenon of mathematics teacher professional development is largely 

unstudied and deserving of attention. As such, the study presented in this paper is 

driven by the overarching question – How does the MTBoS continue to thrive and 

what can it teach us about mathematics teacher professional learning? And more 

specifically, how does order emerge in the MTBoS and what does this order teach us 

about mathematics teacher professional activity? 

THEORETICAL FRAMEWORK 

With an aim to understand the autonomous organism of the MTBoS, this study is 

guided by complexity theory (Davis & Simmt, 2003; Davis & Sumara, 2006). 

Complexity theory provides the tools to describe a system of individual agents who 

seem to generate emergent macro-behaviours. Complex systems do not merely exist, 

they also learn and adapt. In complexity theory, learning is expanding the space of the 

possible and is primarily concerned with “ensuring conditions for the emergence of the 

as-yet unimagined” (Davis & Sumara, 2006, p. 135). The goal of complexity theory is 

not to identify interpersonal collectivity, as do other social theories of learning, but 

rather to understand ‘collective-knowing’, where knowledge is not attributed to any 

one member, but sits atop the social network. 

To this end, Davis and Simmt (2003) identify five interdependent conditions necessary 

for complex emergence; that is, for a complex system to learn and thrive. These 

conditions include diversity, redundancy, neighbour interactions, decentralized 

control, and organized randomness. Davis and Sumara (2006) further theorize these 

conditions into complementary pairs: specialization (tension between diversity and 

redundancy), trans-level learning (neighbour interactions through decentralized 

control), and enabling constraints (balancing randomness and coherence). 

Specialization has to do with agent attributes. Diversity among agents allows for novel 

actions and possibilities, while redundancy allows for stability and coherence. Without 

redundancy, agents may not be able to communicate, but without diversity, agents may 

never have anything to communicate about. However, trans-level learning has to do 

with ideas. This means that neighbour interactions are ideational rather than social, 

even if they require a physical component such as oral or written expression to provide 

means for interaction. Similarly, decentralized control has to do with the emergent 

conceptual possibilities among ideas, and typically emerges a scale-free network that 

has the same structure at smaller scales as at larger scales (Davis & Sumara, 2006). 

Scale-free networks are prone to developing topological hubs with many links that are 

topologically central in the network (Mitchell, 2006). Finally, liberating constraints 

refer to the space of possibility emergent from systemic activity. That is, randomness is 

the unexplored space of possibility, and coherence is the explored space of possibility 

that allows the collective to maintain focus of purpose and identity (Davis & Sumara, 
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2006). These work together to occasion the system’s capacity for 

‘collective-knowing’, which allows it to adapt to changing conditions (Davis & 

Sumara, 2006). As such, the purpose of this paper is to explore the 

‘collective-knowing’ of the MTBoS by considering how neighbour interactions 

through decentralized control contribute to sources of coherence and randomness.  

METHODS 

To explore neighbour interactions, which are ideational interactions, it is necessary to 

consider what ideas are being communicated, and how these ideas are interacting. 

Twitter allows users to post publicly available ‘tweets’ up to a maximum of 280 

characters along with weblinks, photos or videos, tagged users, and hyperlinked 

hashtags. When users post a tweet, they may be communicating several ideas, and by 

posting these ideas together they may be bringing about new meanings. For instance, 

the tweet in Figure 1 states, “I ‘love’ #playwithyourmath! Perfect activity for after a 

test!” (@hbolur7, 20 Sep 2018). This tweet presents the ideas of #playwithyourmath, 

engaging students in an activity after a test, and the MTBoS/iteachmath community. In 

doing so, it is positioning #playwithyourmath as something for students to work on at 

desks after a test. In this way, new links between ideas are created that link 

#playwithyourmath and post-test activities. This sort of analysis is pursued to develop 

an ideational network formed from a selection of tweets made in the community.  

 

Figure 1: #playwithyourmath tweet 

Since the #MTBoS community began developing as early as 2007 and has grown to 

more than 800 self-identified members who post multiple times a day, it is impossible 

to pursue analysis of the entire corpus of data due to its sheer mass. Instead, a smaller 

selection of tweets that include the hashtag #MTBoS is chosen for analysis. This 

selection is formed from taking every second tweet made with the hashtag #MTBoS 

from one randomly selected school day, Sept. 21st, 2018. It includes 129 tweets made 

by 107 unique users from all over North America and forms the dataset for this paper. 

Each of these 129 tweets was coded according to the ideas, or ideational artefacts, that 

were evident in the tweet, which may have come from any part of the tweet’s text 

including hashtags and user handles, or from associated links and media in the tweet. 

Relationships between the ideational artefacts from each tweet were recorded in a 

spreadsheet equipped with NodeXL Pro software, which allows for building a network 

graph from the relationships. The software tabulates the codes from the relationships 
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into a nodes tab, which lists all the ideational artefacts that were coded throughout the 

dataset. Each of these artefacts was in turn coded recursively into categories to emerge 

a typology of ideational artefacts. 

It is important to note that the researcher has participated in the community for almost 

five years and takes the ethnographic stance of a participant observer (Jorgensen, 

2015). The insider experience helped with the interpretation of some of the hashtags or 

nuanced community references in tweet content. Without becoming an insider, these 

observations would have been more difficult, if not impossible, to make. However, 

careful consideration was given to maintain an observational perspective in identifying 

the ideas that each tweet is communicating. All ideational artefact codes and 

relationships were code checked with a second pass before continuing analysis.  

The ideational artefact codes and relationships were then used to create a network 

graph that showed the artefacts as nodes and the relationships as edges between nodes. 

Colours were used to indicate types of artefacts. However, since the graph became very 

dense with over 600 relationships and 250 nodes, a new graph was created by 

removing all relationships that included #MTBoS, the central node. This allowed for a 

network diagram that showed the residual ideational network, one not dependent on 

the community hashtag. The connectedness and density of this residual network 

revealed the robustness of the ideational network that thrives atop the social network. 

To pursue further analysis of the ideational network, topological hubs were identified 

by looking at their node degrees as well as their topological centrality in the network 

diagram. The top two hubs for each ideational artefact category were chosen, and the 

tweets for each of these nodes were drawn from the data to map out how each tweet 

highlighted a set of nodes and relationships on the graph. Observations of how each 

ideational artefact hub attracted relationships were made to emerge themes about how 

sources of coherence emerge in the MTBoS and what space of possibility they offer. 

RESULTS 

The ideational artefacts identified for all the tweets in the dataset fell into eight 

categories: math topics, people, practices, resources, teaching issues, teaching values, 

community values, and community identities. Math topics ranged from place value to 

calculus and were most often the context of an activity a user was sharing about, but 

sometimes was the direct object that was being communicated about. People were only 

included if they were treated as resources, and not if they were part of the conversation. 

Practices ranged from quiz games to creative projects, and indicated approaches used 

in teaching. Resources included tools or sources that could be used in various teaching 

contexts. Teaching issues were things teachers were faced with, such as standardized 

testing, that they had to grapple with. Teaching values were things they valued such as 

generating student discussion or making math homework meaningful. Community 

values were values of the community such as not sharing answers to problems and 

informing practice through research. Community identities were things the community 

is known for or associated with, such as math jokes or chats like #edchat.  
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With #MTBoS, the network diagram (Figure 2) revealed a robust decentralized 

network with many cross-categorical connections, particularly between teaching 

values, practices, math topics, and resources. Without #MTBoS, the residual ideational 

network resulted in a robust major connected component with several topological 

hubs, mostly in the categories of practices, resources, and teaching values (Figure 3).  

 

Figure 2: Network diagram of all data with #MTBoS 

 

Figure 3: Residual ideational network without #MTBoS 

The top two hubs were identified for each category by looking at the nodes with 

highest degree (number of relations to other nodes) for each category (Table 1). 

 

Table 1: Ideational artefact hubs 

Tweets related to each of these hubs were mapped onto the subgraphs that each hub 

generated. However, for purposes of brevity, only a select number of hubs are 

presented in this paper based on their representativeness of the themes that emerged 

from the complete analysis. Namely, hub mappings revealed that certain hubs attract 

more overlapping relationships, while others attract less. The hubs that attracted more 
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overlapping relationships indicated more ideational coherence than those that had 

fewer overlapping relationships with more randomness. Exemplars of each of these 

cases are presented in what follows. 

Randomly connected ideational hubs 

Some hubs were formed by several tweets among which the only overlapping idea was 

the hub artefact itself. The math topic of calculus exemplifies this and is seen in Figure 

4, where each colour represents a different tweet. The only idea in common with each 

tweet is that it had to do with calculus. 

 

Figure 4: Ideational hub around calculus 

One of these tweets states, “@Desmos Marbleslides are such a great way to check that 

Ss have a solid understanding of functions. Calculus Ss will be doing all of them to 

refresh their memory before we move on.” (@Abaziou, 21 Sep 2018). This tweet is 

relating the math topic of calculus with the resource desmos, and more specifically, the 

resource called Marbleslides, which is an activity within desmos that prompts students 

to write equations that graph along given structures of stars so that a marble that slides 

along the graph runs into the stars. But it not only relates a resource to a math topic, but 

also associates it with the practice of using it as a review activity for the math topic of 

functions so that students build a ‘solid understanding’, which is a teaching value. The 

rich network of connections among various ideational categories makes the post very 

specific in how it relates a resource, a teaching practice, math topics, and a teaching 

value. However, none of these relationships repeat in other posts within this hub.  

Another one of these tweets states, “How can we verify that the derivative of 

y=abs((cos^2x)(sinx)) does not exist at the points where absolute value turns graph 

around? @geogebra helps. Can we do it without?” (@mrdardy, 21 Sep 2018). This one 

relates the math topic of calculus to a different subtopic of derivatives, and relates it to 

a different resource, this time, geogebra. So, it is less specific in terms of the ideational 

categories it draws together: it associated a math topic with a resource but does not 

indicate a teaching value or practice. It is more mathematically oriented rather than 

teaching oriented. The nature of the tweet is also different than the first in that it is 

asking for input rather than sharing the result of using a resource. This shows the 

diversity that this hub attracts. 

The other tweets in this hub contributed even more randomness, with one relating the 

math topic of calculus to the teaching issue of curriculum order by stating how the 

teacher organized their calculus course content. Another related the math topic of 
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calculus with the teaching practice of using a Notice Wonder instructional routine, 

stating that it prompted great discussion, yet another teaching value. As such, although 

calculus seems to be a hub in this network, it is attracting more ideational randomness 

than ideational coherence. 

Coherently connected ideational hubs 

In contrast, a hub that attracted a lot of coherence among its relations was around the 

person @fawnpnguyen, who was referred to as a resource more than someone that 

conversation was directed to. @fawnpnguyen is known for developing the 

continuously growing resource of #visualpatterns, which has a website, and has 

become quite popular in the community. This is evident in the relationships around this 

hub, even though it only includes three tweets. All three of the tweets relate the person 

@fawnpnguyen with the resource #visualpatterns. Two of the tweets position 

#visualpatterns as a warmup activity, a practice, that targets the math topic of 

sequences. Another two tweets position #visualpatterns as something that allows 

students to solve in many ways, which is a teaching value (Figure 5).  

 

Figure 5: Ideational hub around @fawnpnguyen 

In this way, the relationships that repeat relate the person @fawnpnguyen with the 

resource #visualpatterns, with the practice of using it as a warmup, with the teaching 

value of solving in many ways, for the math topic of sequences. This hub therefore 

emerges a sense of coherence in that there are many overlapping relations between 

nodes. The recurrences among overlapping relations are also specific enough to 

continue attracting these same relationships in future posts. That is, there is generative 

possibility in this hub, which is seen in the data as one of the posts provides a new 

example of a coloured square visual pattern that teachers can use as a warmup activity. 

DISCUSSION AND CONCLUSIONS 

Two important themes emerge out of this analysis: recurrence and association. The 

fact that ideas and combinations of ideas are recurring through various tweets from 

different users sets the stage for the possibility of coherence. However, through the 

analysis, it’s evident that recurrence is necessary but insufficient to occasion 

coherence. Rather, it is the recurrence of associations that are specific enough that 

creates a sense of coherence. The randomness within the coherence allows for 

generative activity that prompts further activity in the same direction.  

Fundamentally, the social media space of the #MTBoS is defined by people making 

posts. However, these posts communicate ideas, and these ideas become linked 
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through living together in a post, thus forming an ideational network. The nodes and 

connections in this network encounter recurrence over time as ideas and idea 

combinations are repeated by various agents in the space. Whether intentionally or 

unintentionally, agents are building an ideational network greater than the sum of any 

of their individual posts, a network that reveals the emergence of sources of coherence 

in the community.  

These sources of coherence are reinforced when ideas are associated together 

repeatedly, and they begin to travel together. The implication here is that these sources 

of coherence can shape what mathematics educators can perceive as possible activity 

in this space. Sources of coherence limit the space of possibility, but can allow for 

nuanced differences to be made, which include adaptation of ideas into diverse 

teaching contexts. This begs the question of what other sources of coherence emerge in 

the MTBoS space, and how these sources of coherence direct agential activity, and in 

turn, adaptation to various teaching contexts.  
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ACTUAL INFINITY AND POTENTIAL INFINITY:  

A CASE OF INCONSISTENCY 

Wai Keung Lau 

Simon Fraser University 

 

Despite the notion of infinity having been studied since ancient Greece, results are still 

controversial among academic circles, including the schools of philosophy, theology, 

logic, and mathematics. This paper provides a brief synopsis of the notion of infinity, 

including actual infinity and potential infinity, which is motivated by two views. First, 

high school students have cognitive conflicts when they are comparing different sizes 

of infinite sets. Second, actual infinity (e.g. Platonic or Cantorian) and potential 

infinity (e.g. Aristotelian or Kroneckerian) seem different. However, in reality, they 

are often treated as identical. This paper attempts to use Dubinsky’s APOS theory and 

Sfard’s dual nature of mathematical conceptions to indicate that cognitive conflict can 

improve students’ intuitive thinking skill and argues that actual infinity can coexist 

pragmatically with potential infinity. 

HISTORY OF INFINITY AND COGNITIVE CONFLICT 

The notion of infinity can be traced back to the pre-Socratic thinker Anaximander 

(~600 BC), who first used the word apeiron to represent the concept of infinite, 

boundless, and unlimited. Zeno’s paradox of Achilles and the tortoise (c. 490–430 BC) 

is one of the famous arguments involving the notion of infinity and has drawn the 

attention of mathematicians and philosophers. In this paper, I will focus on the 

conceptions of infinity at the high school level, including the notion of cardinality but 

avoiding the philosophical debates around how those concepts are cognitively 

attainable or unattainable (Dubinsky et al., 2005a). 

One of the cognitive conflicts regarding infinitely large (infinity) or infinitely small 

(infinitesimal) is that, whenever action is regarded as to ‘infinity’, we are involving 

both psychical and physical causal laws. For example, consider “the equation 

” (Dubinsky et al., 2005b). On one hand,  

is psychically an infinite process without a last counting number. On the other hand, 

one may use the sum of geometric series as a mathematical ‘proof’ to show that “1” is 

physically reached or, at least, the equation is pragmatically correct. That is: 

 

Note that the above equation does apply the rule . In other words, the 

actual ones, “1”, is based on axiomatic arithmetic on an infinite quantity  which is 
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very controversial, for to arithmeticize an abstract notion  by the usual arithmetic is 

not immediately perceived. This is because   is neither a finite quantity 

nor an infinitely small quantity. Bishop George Berkeley (1685-1753) coined the 

phrase "ghosts of departed quantities" to describe infinitesimals such as these. More 

details about , as well as the common inconsistencies for students when 

they are comparing two different infinite sets will be discussed later in this paper. 

BRIEF DESCRIPTIONS ABOUT INFINITY WITH EXAMPLES 

Below are some informal descriptions that may be helpful for students to understand 

more clearly about infinity at the high school level.  

A. Infinity: infinity is a mental concept describing something without any bound. 

For example: 

1) If the number of elements in the set of natural numbers is infinite, we denote 

this set as , in mathematics convention, we use the 

symbol ∞ to denote infinity. Note that, ∞ is an abstract conceptual symbol. 

An infinite set may or may not be denumerable (countable).  

B. Cardinality: the term ‘cardinality’ was coined by Georg Cantor (1845-1918) 

who first defines the arithmetic for cardinality (or cardinal number) to measure 

the quantity (size) of two, or more infinite sets (see Dubinsky et al., 2005a, p. 

346, p. 355). Note that, application of ‘cardinality’ is not limited to infinite sets, 

it also works perfectly in finite sets. For example: 

2) Finite set  has a cardinality of 3, and finite set 

 has a cardinality of 5. In this case, despite  is an 

infinite set, “  can be seen as a single object” (Dubinsky et al., 2005b, p. 

261). 

3) The infinite set of all-natural numbers, , has a cardinality 

of  (notation is coined by Cantor in his Cantorian set theory). 

C. Property of cardinality: two sets have the same cardinality if there exists a 

one-to-one correspondence mapping (bijective mapping) between two sets. For 

example:  

4)  and  have the same cardinality of 3, because 

the mapping    is bijective between  and . 
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5)  and   {4, 8, 12, 16, …}  have the same cardinality 

because there is a one-to-one correspondence mapping   form  

to  , or pictorially,  is bijective between  and . 

D. Potential infinity: potential infinity means a procedure that gets closer and closer 

to, but never quite reaches, an infinite end. In other words, the procedure is 

always on going. For example: 

6) A sequence of positive integers 1, 2, 3, 4, ... means adding more and more 

numbers, we assume that this procedure will never be completed physically 

and mentally. This constitutes the concept of potential infinity. 

7) Sequences like   contain infinitely many divisions, and we 

assume this process is never completed. In this case, the infinitely many 

divisions constitute a potential infinite division. 

E. Actual infinity: actual infinity means an infinity that one truly reaches, its action 

is already done. For example: 

8) We assume that the sequence of integers  will never be 

completed physically and mentally. However, if we group it as a completed 

object , this completed entity,  , does constitute the 

notion of actual infinity of . 

9) In mathematics, the geometric sequence   becomes zero as 

steps of division ‘tend’ to infinity. Then zero is the actual outcome for this 

infinite sequence. Similarly, by using the formula that students use in 

secondary school, the sum of geometric series  

converges to 1. In other words, despite that the infinite summation 

 is potentially never-ending; its summation has an actual 

infinity of 1. 

BRIEF BACKGROUND ABOUT ACTUAL AND POTENTIAL INFINITY 

Historically, Plato (~ 428-344 BC) claimed that no matter if it is in the real world or in 

the heaven of God, infinity is the actual infinity, while Aristotle (384-322 BC) denies 

all actual infinities, and postulates that actual infinity is impossible in both reality and 

in mathematics. More details about why Aristotle made a clear decision in favour of 

potential infinity can be found in Körner (1968). Thus, a Platonic viewpoint of infinity 

is actual infinity whilst an Aristotelian viewpoint is potential infinity. Indeed, debates 
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on actual/potential infinity have been argued for more than two thousand years and 

seem to have no end. In addition, “their debate has dealt with and touched on many 

scientific disciplines, including philosophy, logic, the theoretic foundation of computer 

science, mathematics, and others” (Zhu, Lin, Gong, & Du, 2008, pp. 424-425). 

Moreover, the development of calculus since the mid-17th century heated the debate 

intensely; both Newton’s fluxions and Leibniz’ infinitesimals were being criticized 

heavily by philosophers and mathematicians. Bishop George Berkeley (1685-1753) 

was one of the most representative opponents against Newton and Leibniz; on his The 

Analyst or A Discourse Addressed to an Infidel Mathematician (1734), one may notice 

that Berkeley’s critiques were grounded on both philosophical and mathematical 

analysis, and his influential critiques lead the development of the concept of infinity.  

CONCEPTUAL FRAMEWORK ON DUBINSKY’S APOS AND SFARD’S 

DUAL NATURE OF MATHEMATICAL CONCEPTIONS 

There are many ideas about how to develop appropriate mathematical concepts for the 

students at elementary/high school level. To narrow down various good ideas and the 

amount of literature, this paper focuses on Dubinsky’s (2001) APOS theory 

(Actions-Processes-Objects-Schemas) and Sfard’s (1991) ideas regarding the dual 

nature of structural and operational conceptions on mathematics.  

Dubinsky’s APOS theory 

Initially, “Dubinsky developed this framework as an adaptation of some of Piaget’s 

ideas that are central to the study of advanced mathematical thinking” (Zazkis & 

Campbell, 1996, p. 544). Piaget focused on reflective abstraction in children’s 

learning, whilst Dubinsky extended this mental mechanism to advanced mathematics 

(Dubinsky, 2001). Regarding actual/potential, Dubinsky explicitly connects action, 

process, and object (actual/potential infinity) to develop the thematization of schema 

(see Figure 1).  

 

Figure 1: Diagram of Dubinsky’s APOS Schema 
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To do so, for example, if one revisits “the equation ”, the typical abstract 

object is potential (0.999…) vs. actual (the ones, “1”), and the action is a desire to 

understand this abstract object. Through mental interiorization, the action becomes a 

process, and one may then encapsulate the process into a new abstract object or a new 

higher cognitive stage. In this example, the process of conception of   may not 

directly produce the ones, “1”; however, if an individual can see the process as a 

totality, and then interiorize an action of evaluation on the series 

 , then the encapsulation of the process is the 

transcendent object, “1” (Dubinsky et al., 2005b). In other words, 0.999… and 1 can 

coexist. Surely, how to achieve the interiorization and encapsulation mentally and 

effectively is the turning point of cognitive learning. Dubinsky’s APOS theory does, in 

any case, provide a fruitful theoretical framework regarding learners’ mental 

mechanism.  

Sfard’s dual nature of mathematical conceptions 

APOS theory is not the only way to approach the abstract mathematical objects 

systematically. Sfard’s (1991) dual nature of mathematical conceptions also works 

well in mathematics education and has some similarities with Dubinsky’s 

action-process-object-schema. Sfard’s structural (as objects) and operational (as 

processes) duality is accomplished through three steps, namely interiorization, 

condensation, and reification, and does provide “a theoretical framework for 

investigation the role of algorithms in mathematical thinking” (Sfard, 1991, p. 1). For 

example, as Sfard states, “[t]he term ‘interiorization’ is used here in much the same 

sense which was given to it by Piaget: we would say that a process has been 

interiorized if it ‘can be carried out through [mental] representations’” (p. 18). Sfard’s 

condensation stage means “a person becomes more and more capable of thinking about 

a given process as a whole” (p. 19). It is fairly similar to how Dubinsky encapsulates 

the process on the sequence 0.9, 0.99, 0.999, … as the transcendent object because 

“0.999… is considered as an object” (Dubinsky et al., 2005b, p. 261). The stage of 

reification is the point where an interiorization of higher-level concepts begins; one 

may compare this stage to Dubinsky’s new abstract object (return to Figure 1). Note 

that Sfard’s duality is not equivalent to a dichotomy, as Sfard states that “the terms 

‘operational’ and ‘structural’ refer to inseparable, though dramatically different, facets 

of the same thing. Thus, we are dealing here with duality rather than dichotomy” (p. 9). 

Recall the case of  again; there is no evidence that actual infinity deserves 

higher esteem than potential infinity and vice versa.  Both are closely tied together with 

a special school of thought: for example, intuitivism or formalism. To decide which 

component is more significant is, in some sense, rooted in one’s philosophical 

viewpoint and the purpose. 

COMMON INCONSISTENCY BY COMPARING THE SIZE OF TWO 

INFINITE SETS 

There are two main ways to compare the size of two sets:  
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A) part-whole consideration (part/whole relationship) and  

B) one-to-one correspondence justification (bijective mapping)  

Part-whole consideration states that a part is less than the whole, “a whole greater than 

its parts” (Sutherland, 2004, p. 180), while one-to-one correspondence justification 

states that two sets (finite or infinite) contain the same number of elements if there 

exists a one-to-one correspondence relation between them.  

When dealing with finite sets, both part-whole consideration and one-to-one 

correspondence should work perfectly, and usually students have no cognitive 

conflicts once these two methods are introduced. But, when students are dealing with 

infinite sets, for instance,   and   , 

students might apply the part-whole consideration and claim that the size (or the 

magnitude) of  is strictly larger than the size of  because  is part of the . We 

denote it by .  

Pictorially,  {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …}  

yields  contains the elements 4, 8, 12, 16, … etc. which is surely the infinite set . 

However, if one changes the above representation from horizontal form to vertical 

form as shown below, 

 {1, 2, 3, 4, 5, …} 

 {4, 8, 12, 16, 20, …} 

some students might notice that there is a one-to-one correspondence relation between 

and  because ;  ;  ;  , … etc. 

i.e.,     {1, 2, 3, 4, 5, …} 

 {1 4, 2 4, 3 4, 4 4, 5 4, …} 

This bijective mapping  is indeed satisfying the criteria of one-to-one 

correspondence. Hence, set  and  should have the same size. In other words, the 

number of elements in  is equal to the number of elements in . If we denote it by 

, it seems to contradict the previous result from the part-whole 

consideration . This contradiction causes confusion and inconsistency for 

many high school students or even for university students. 

Despite Cantorian set theory, many students do prefer the one-to-one correspondence 

relation rather than part-whole consideration, and one-to-one version is also 

considered to be very normative in mathematics; however, both are not undebated.  

The purpose of this demonstration is to claim that students’ intuitive thinking can be 

enhanced by cognitive conflict, and that making critical thinking intuitive should be 

one of the important components in mathematics education. 
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SUBSEQUENT QUESTIONS 

Notions of infinity such as actual infinity and potential infinity can belong to the 

disciplines of philosophy and mathematics or even psychology; therefore, it is not 

unusual that students have a hard time understanding their meaning, especially merely 

in terms of discursive language. I think the following questions are also worth thinking 

about: 

1) Is ‘infinity’ definable by using a finite number of written words? 

2) Is the truth behind infinity beyond human perception and hence unattainable for 

human beings? 

3) How much do we know about infinity and infinitesimal? 

4) How much do we need to know about infinity at the high school level? 

CLOSING REMARKS 

As Körner (1968) notes, the concept of actual infinity may be separated into three 

schools, namely the finitists (such as Aristotle, Gauss, and the intuitionists), the 

transfinitists (aligned with Cantor and his followers), and the methodological 

transfinitists (like Hilbert). All of them are by no means easy for beginners to 

comprehend. However, after experiencing discrepancy, cognitive conflict, and 

inconsistency by comparing the size of two infinite sets, students will gain intuitive 

thinking and critical thinking skills on the notion of infinity. 

Both Dubinsky’s APOS and Sfard’s duality are indeed well-known theoretical 

frameworks for the studies on mental mechanism and conceptual understanding. 

Cantor indeed did fully understand the spirit of part-whole composition and one-to-one 

correspondence; his creation on ‘cardinality’ possibly passed through interiorization, 

condensation, and reification indirectly. However, how to turn theoretical frameworks 

into practice or into day-to-day curriculums are still critical issues.  
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REDUCING REALITY AND REDUCING COMPLEXITY 

Minnie Liu 

Simon Fraser University 

 

When students work on modelling tasks, they simplify and idealize the situation to 

generate a real model to represent the situation. This study investigates the strategies 

students employ during the simplification process and finds two categories of 

strategies: reducing reality and reducing complexity. 

INTRODUCTION 

Modelling tasks are problems situated in the real world. They require students to 

approach the problem from a real-world perspective and to use mathematics as a tool to 

produce a real solution that fits the original situation (Borromeo Ferri, 2006). The 

process by which students solve modelling problems can be described using modelling 

cycles (Figure 1). As students develop an understanding of the real situation and 

generate a mental representation of the situation (MRS), they simplify the situation and 

create a real model to represent the situation, mathematize the real model into a 

mathematical model, determine a mathematical solution and a real solution, and 

validate the real solution against the original real situation (Borromeo Ferri, 2006). The 

modelling process relies heavily on students’ use of their extra-mathematical 

knowledge (EMK), which includes students’ lived-experiences and their ability to 

consider the situation and to validate the generated solution from a real-world 

perspective. 

Figure 1: Modelling cycle proposed by Borromeo Ferri (2006) 

In this paper, I investigate the strategies which students employed to simplify the real 

situation and make the situation accessible to them prior to building a real model. 
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PARTICIPANTS AND METHODS 

Data for the research presented here was collected in a grade 8 (age 12-13, n=13) and a 

grade 9 (age 13-14, n=26) class in a high school in western Canada while students 

worked on a modelling task. Although it is not possible to know if the grade 8's had 

seen these tasks in their previous years, this was their first modelling task in the grade 8 

school year. Conversely, the grade 9’s had experience with modelling tasks in grade 8. 

Students worked on the Design a New School task in randomly assigned groups of 2-4 

during a 75-minute class. There were no instructions provided other than what can be 

seen in Figure 2. While the students worked, the teacher (the author) circulated 

naturally through the room and engaged in conversations with the students – 

sometimes prompted by her and sometimes prompted by the students. These 

conversations were audio recorded and transcribed. At the same time, photographs of 

students’ work were taken and students’ finished work was collected. These, coupled 

with field notes summarizing the interactions as well as observed student activities, are 

used to build cases for each group of students. Each case is a narrative of students’ task 

experience punctuated by significant moments of activity and emotive expression. 

These cases constitute the data. 

Given the natural and unscripted nature of the teacher movement through the room, not 

all of the cases are equally well documented. Regardless, each of these cases were 

analysed separately through the lens of modelling using Borromeo Ferri's (2006) 

modelling cycle, with a focus on the strategies which students employed to simplify 

the task. 

Design a New School 

Your city is getting a new 11000m2 middle school. 

It is going to be built on a lot (200m×130m) just 

outside of town. Besides the school, there will also 

be an all-weather soccer field (100m×75m), two 

tennis courts (each 15m×27.5m), and a 30 car 

parking lot on the grounds. The following 

requirements must be met: 

- all fields, courts, buildings, and parking lots 

must be no closer than 12.5m to any of the property lines. 

- any leftover property will be used as green space – grass, trees, shrubs. 

- good use of green space is an important part of making the school grounds attractive. 

To help you with your design and layout you have been provided with a scaled map of 

the property (every square is 10m×10m). Present your final design on a copy of this 

map. Label all structures and shade the green space. 

Figure 2: The Design a New School task 
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DATA AND ANALYSIS 

In the process of building a real model, students simplified, idealized and made 

assumptions about the situation. These actions are in line with those suggested by 

modelling literature (for example, see Borromeo Ferri, 2006, 2007). However, 

students’ modelling behaviours suggest different intentions in their simplification 

strategies. One type of simplification strategy led to a reduction in reality and retained 

the messiness and complexity of the original problem. Students who applied this type 

of strategy intended to simplify the situation enough for them to approach the problem 

from a real-world perspective. I refer to these strategies as reducing reality. Another 

type of strategy led to a reduction in complexity and changed the nature of the problem. 

Students who applied this type of strategy intended to change the nature or the goals of 

the problem. I refer to these strategies as reducing complexity. In what follows I 

describe students’ strategies to simplify and idealize the real situation and provide 

examples from four groups of students to illustrate these strategies.  

Reducing reality  

Reducing reality serves as a way for students to filter information and make decisions 

about the real situation during their modelling processes. This is similar to Borromeo 

Ferri’s (2006) descriptions of students’ modelling behaviours as they build a real 

model.  I use the following example to illustrate the idea of reducing reality: when 

asked to determine the height of a pile of straw bales (5 straw bales at the bottom, 4 on 

the next level, then 3, 2, and 1 on top), students simplified straw bales into cylinders 

but took into account the weight of the straw bales towards the top of the pile pushing 

down on the bottom ones (Borromeo Ferri, 2007). In other words, students simplified 

the situation but did not reduce the messiness of reality. They remained in the realm of 

reality and their assumptions idealized the situation and removed some negotiable 

aspects of the situation so they could proceed to solve the problem and arrive at a 

solution which fits or can be used to describe the original situation. My analysis shows 

that there are a number of scenarios which students reduced the reality of the Design a 

New School task. These scenarios can be classified as a mathematical approach, 

convenient assumptions due to insufficient EMK, and modification of the instructions. 

A mathematical approach 

Students took mathematical approaches to simplify the question without removing 

themselves from the realm of reality. They focused on converting the measurements of 

various building structures from metres to number of squares. This is especially 

observed in students’ treatment of the border, the soccer field, the tennis courts, and the 

school building. In these scenarios, students’ mathematical interpretation of the 

problem minimizes the realistic considerations of these building structures, such as the 

placement of the tennis courts and the lengths and widths of their school building in 

comparison to school buildings found in reality. Their mathematical approach to these 

building structures allowed them to simplify the problem and to generate a solution 

that satisfies the instructions quickly. I consider this reducing reality because while 
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students took mostly a mathematical approach, they satisfied the instructions and kept 

the messiness of the problem: some incorporated the tennis courts into the school 

building to reduce the ground space these buildings occupied, some discussed the 

possibility to create a 2-floor tennis court, and all students made use of vertical space 

and created a multi-floor school building. 

Convenient assumptions: insufficient EMK 

Another strategy which students applied to simplify the situation is by making 

convenient assumptions about the situation. Convenient assumptions have strong ties 

with students’ insufficient EMK, where students overcome their insufficient EMK by 

making convenient assumptions rather than research on the situation. These 

convenient assumptions are made to address the messiness of the situation, but they do 

not remove the messiness of the situation.   

An example of convenient assumptions due to insufficient EMK is noticed in group 

A-S’ work on the parking lot, where Amy and Angela added an additional 50cm to the 

width of the vehicles to accommodate for drivers and passengers opening the doors. 

They did not recognize the possibility to use a parking space as their unit of 

measurement, but assumed that an additional 50cm to the width of their measured 

vehicle would suffice. They recognized the situation is messy and made what they 

assumed to be realistic assumptions to deal with the messiness of the situation. 

Modifying the instructions 

There are a few scenarios where students deliberately modified the instructions during 

their modelling processes. For example, the border rule was in place to force students 

to consider using vertical space.  Without the border rule, students would have enough 

space for all buildings even if they were to build everything on ground level only. As 

group G-S worked on the task, they modified the border rule by reducing the distance 

between the property line and all buildings from 12.5m to 10m. 

I consider their decision a form of reducing reality because it allowed them to simplify 

the question, to outline the usable space using the lines on the grid rather than 

estimating or measuring 1.25 squares from the edge, but it did not remove the 

messiness of the question – they were already thinking to build a multi-floor school 

building. Conversely, if they were to change the rule to fit all things on ground level it 

would have been a case of reducing complexity. 

Reducing complexity  

Another form of strategy which students employed to simplify the situation is reducing 

complexity, where they removed the founding criteria or the non-negotiable aspects of 

the original real situation to avoid answering the problem, or avoid reflecting deeply 

about the situation and to look for a possible answer to the question as quickly as 

possible by removing certain variables of the problem. For example, when asked to 

fairly split the bill between two people who made different amounts of purchase, 
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students may decide to split the bill evenly but the person who had a bigger purchase 

buys the other lunch to compensate for the cost 

Students’ actions in the above-mentioned example changed the criteria or the 

non-negotiable aspects of the original situation to avoid answering the question. In this 

scenario, the students’ decision allowed them to quickly find an answer to the problem 

while avoiding answering the original question – to split the bill fairly. While this is a 

possible solution to the problem, the students avoided the messiness of the question 

and they oversimplified the question. There are a number of scenarios in which 

students reduced the complexity of the situation. These scenarios can be classified as 

breaking rules and convenient assumptions to finish quickly.  

Rules are meant to be broken 

There are a few scenarios where students interpreted the instructions of the task to their 

liking to reduce the complexity of the problem. This is especially observed when 

students dealt with the school building and the parking lot. These scenarios are 

different from modification of rules as a form of reducing reality, as they remove the 

non-negotiable aspects of the situation and avoid answering the original question. 

In particular, group B-S did not bother to calculate the floor area after a decision was 

made to build a 4-floor school building; group F-S removed the 11000m2 school 

building constraint and claimed that their school building exceeds 11000m2 without 

any verification; and group G-S did not like their 2-floor school building (55m×100m) 

and modified the dimensions to 90m×70m. In these scenarios, students deliberately 

disregarded what the question had asked them to do. They avoided the messiness of the 

question but produced an answer that fits the question based on their interpretation that 

the modifications of the instructions were acceptable.   

Also, group G-S wanted to assign the entire basement of their school building 

(90m×70m) as their parking lot with an understanding that the area exceeds what a 30 

car parking lot requires. They attempted to lift the 30 car constraint so their solution 

could be considered an acceptable solution.  

Convenient assumptions: to finish quickly 

Unlike making convenient assumptions due to insufficient EMK, these convenient 

assumptions are made to remove the messiness of the situation, especially towards the 

end of students’ modelling processes. For example, all students except for group A-S 

assumed all remaining space as green space. Students’ assumptions allowed them to 

satisfy the instructions and to produce a complete solution quickly and to avoid 

reflecting on how they could distribute the green space to make the school grounds 

attractive, which was an original goal of the original problem. 

DISCUSSION 

It is no surprise that students’ actions to reduce reality are in line with modelling 

literature during the stages where students build a MRS and a real model to represent 
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the real situation. Students’ modelling behaviours suggest that students intended to 

simplify and idealize the problem so it becomes accessible to them while retaining the 

messiness of the problem.  

As I reflect deeply on students’ actions to reduce complexity, I notice that students in 

this study reduced the complexity of the problem for reasons more than making the 

problem accessible.  These include the avoidance of work, students’ insufficient EMK, 

and an attempt to keep themselves in flow. 

Avoidance of work 

Some scenarios in this study suggest that students actively avoided the complexity of 

the problem or the messiness by reducing complexity. In these scenarios, reducing 

complexity by making convenient assumptions provided students with an easy way out 

and allowed them to finish solving the task as soon as possible. Examples of students 

avoiding work include students removing the constraints such as the school building’s 

floor area and assuming any leftover space as greenspace. 

Beyond reach 

In other scenarios, students reduced the complexity of the problem when the problem 

was beyond their reach. Some examples are groups G-S’ work on the parking lot and 

their school building, and group F-S’ work on their school building. Students in these 

scenarios likely reduced the complexity of the problem because they had insufficient 

EMK, or little understanding of the situation. As such, reducing the complexity of the 

problem allowed them to simplify the problem and to produce a solution.  

Because students’ actions have roots in their insufficient EMK, it is possible to change 

students’ behaviour by providing them with guidance and the EMK required to solve 

the problem so that the problem is now within their reach.  This is observed in group 

G-S’ progress as they worked on the parking lot, where they went from designating the 

basement of their school building as their parking lot to a proper and reasonable 

parking lot design.   

Flow theory and reducing complexity 

Csíkszentmihályi (1990) uses the state of flow to encapsulate the essence of optimal 

experience, during which “people are so involved in an activity that nothing else seems 

to matter; the experience is so enjoyable that people will continue to do it even at great 

cost, for the sheer sake of doing it” (p.4). The state of flow is only created when there 

exists a balance between challenge and ability.   

If students’ ability exceeds the challenge offered by the activity students easily become 

bored. Conversely, if the challenge offered by the activity far exceeds students’ ability 

then students are likely to feel anxious and become frustrated.  The balance between 

challenge and skill could be represented in Figure 3. 

Liljedahl (2018) extends Csíkszentmihályi’s (1990) flow theory and finds that there 

exists a state of tolerance between flow and boredom, where students work on 
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repetitive tasks but do not feel bored or quit, and a state of tolerance for the mundane 

between flow and frustration, where students find the challenge provided far exceeds 

their abilities but do not feel frustrated or quit.   

 

Figure 3: Csíkszentmihályi’s (left) and Liljedahl’s (right) modified graphical 

representation of the balance between challenge and skill  

The states of tolerance and perseverance act “as buffers between flow and quitting by 

delaying the transition to boredom or frustration long enough for the imbalance 

between ability and challenge to be rebalanced. In the case of tolerance, this 

rebalancing was the result of an increase in complexity while in the case of 

perseverance, rebalancing could happen as a result of either a decrease in challenge or 

an increase in ability” (Liu & Liljedahl, in press).  

Many students experienced an imbalance of the challenge found in the Design a New 

School task and their abilities to determine a reasonable solution. Some examples 

include group F-S’ work on their school building and group G-S’ work on their parking 

lot. Instead of increasing their abilities, these students aimed to recreate the balance of 

challenge and ability and to keep themselves within the band of flow by decreasing the 

challenge. In doing so, they reduced the complexity of the problem.  

SUMMARY 

Reality is messy. Students in this study purposefully simplified the situation or 

approached the situation in a specific way to achieve a goal. In some scenarios students 

aimed to simplify the situation and retain the realistic aspects of the situation. These 

assumptions removed some of the freedom found in the problem in order to devise a 

plan to solve the problem and resulted in the removal of some of the negotiable 

constraints of the problem. In other scenarios students made assumptions to reduce the 

complexity of the situation by removing the non-negotiable aspects of the situation to 

avoid work, to remove the messiness of reality, and to keep themselves in flow.   

As I reflect on these strategies, especially reducing complexity, I do not think that 

reducing complexity is necessarily a strategy which we want students to completely 

avoid. Reducing complexity represents students’ interpretation of the problem and the 

way which they determine a solution based on this interpretation. Reducing complexity 

provides students with a way out when they are stuck and a way to solve the problem.  
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However, reducing complexity allows them to avoid the original problem, and it may 

remove or change the intended purpose of the original problem.   

Does reducing complexity make the solution wrong? Not necessarily. But the results of 

reducing complexity often have lots of room for improvement. In some cases, students 

over-simplified the situation and it removed students from the realm of reality. In other 

cases, reducing complexity provided students with a way to solve the problem. It is not 

necessarily the way I wanted them to solve the problem or what the problem intended 

for students to do. But it sheds light on students’ insufficient EMK and possibly their 

misunderstanding of the situation. I do not think reducing complexity is avoidable, nor 

should it be avoided. Although it is not how I want students to approach and solve the 

problem, reducing complexity serves as a way for students to access the problem, and 

possibly a way for students to discuss their difficulties with me or with each other. 
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HISTORICAL CONTEXT IN MATHEMATICAL TEXTBOOKS 

Sam Riley 

Simon Fraser University 

 

This paper analyses a linear algebra textbook to determine the reasons behind 

inclusion of historical sidenotes. Viewed through the lenses of Constructivism and 

Situated Cognition, the data is coded for either a mathematical purpose or a 

humanizing purpose. These codes are expanded on to explain how the sidenotes could 

specifically be used by a student to either situate the mathematics in history, construct 

the mathematics themselves, or to invite the student to do mathematics.  

INTRODUCTION 

There has been much research into using history in mathematics classrooms, and it is 

even part of the curriculum in certain parts of the world, such as the Nordic countries 

(Jankvist, 2010). While the purpose can be to impart the historical aspects of 

mathematics, more educational bodies use the history to apply meaning to the 

mathematics (Jankvist, 2009). This meaning can include introducing the contexts 

behind mathematical discoveries or the arguments over different approaches (Liu & 

Niess, 2006). In a roundup of studies about using history in mathematics education, 

Fauvel (1991) presented a list of reasons why using history in mathematics could be 

beneficial, which I summarize below:  

• Following the history of mathematical progress can be a template for 

students’ mathematical progression. 

• Historical problem areas may point to problems students are still having 

today. 

• Historical context can pique students’ interest and provide motivation. 

• Stories about the people behind mathematical breakthroughs can make 

mathematics more accessible. 

• Mathematics comes from all cultures and all peoples; exploring that can build 

students’ confidence that they too can do mathematics. 

The majority of the studies have focused on the classrooms and how teachers 

incorporate the historical aspects; less have looked at the historical content in 

textbooks. Of those that did, it was found that the historical content in textbooks was 

largely superficial, and light on any mathematical purpose, which caused instructors 

and students to skip over it (Smestad, Jankvist, & Clark, 2014).  
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RESEARCH QUESTIONS 

My research question started with the authors’ purpose of including historical context 

in a current linear algebra textbook. Specifically, how does this context support the 

mathematical concept that it accompanies? After reviewing the data, I extended my 

query to include the humanizing aspects of historical stories: How do they help the 

students see themselves as mathematicians? 

THEORETICAL FRAMEWORK 

The theory used in this study draws from both Situated Cognition and the 

Constructivist viewpoint espoused by von Glasersfeld. In von Glasersfeld’s (2002) 

description of Constructivism, he focuses on how students build knowledge, while 

highlighting their need to take ownership of the material and build off their current 

knowledge base. We can apply his theories to the study of historical context by 

suggesting that including this context can humanize mathematics, inviting students to 

see themselves ‘doing math’ while also building up the knowledge base of 

mathematics in the same manner that mathematics was formed. This recapitulation 

argument asserts that “to really learn and master mathematics, one’s mind must go 

through the same stages that mathematics has gone through during its evolution” 

(Jankvist, 2009, p. 239). 

“In situated cognition, one cannot separate the learning process from the situation in 

which the learning takes place” (Caffarella & Merriam, 2000, p. 59). This idea is most 

often discussed in the terms of apprenticeships or learning in a lab setting, but it has 

been argued that information is best understood if taught in a way that embraces the 

entirety of its history from its origins to its current use. Brown, Collins, and Duguid 

(1989) believe that to understand a new concept, students should understand the 

context of its creation, how it is used now, as well as the cultural aspects of both.  

METHOD 

To do this study, I analysed the first three chapters of a linear algebra textbook that is 

currently in use at Simon Fraser University in British Columbia, Canada. I reviewed 

the chapters on Vectors, Systems of Linear Equations, and Matrices and Matrix 

Algebra from Contemporary Linear Algebra (Anton & Busby, 2003). I chose these 

chapters as each introduces some content that should be completely new to the students 

and does not necessarily build off previous mathematical knowledge. I focused on the 

sidebars, information that was considered external to the main mathematical content 

and was embodied in a highlighted area in the margins of the text. These sidebars were 

a running series called Linear Algebra in History.  

I looked into some common analysis types used with literature and decided on thematic 

analysis as laid out by Braun and Clarke (2006). Thematic analysis is a reflexive way 

of looking over data; the researcher can come into the data with some pre-established 

ideas, but will code the data according to those and other themes that arise. Each piece 
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of data is looked at repeatedly to fit into any themes that do emerge, which means that 

each piece of data can end up with multiple codes. 

DATA ANALYSIS 

There were a total of 17 sidebars, but I found 42 instances where meaning could be 

derived from the discussions within that I wanted to code. I went into the data with the 

pre-determined themes of ‘situating the data into historical context’ and ‘assisting 

students in constructing their own meaning’, but quickly realized that the sidebars were 

performing many more functions than just those two.  

 

Figure 1: Sidebar from chapter on Matrices and Matrix Algebra (Anton & Busby, 

2003, p. 82) 

For example, I coded the content of Figure 1 (above) as both contextual, in that it 

explained why matrix multiplication came into existence, and constructivist, in that the 

authors have already discussed linear systems, so by including that information 

students could construct their own idea of why matrix multiplication would be 

necessary. But the sidebar continues with a discussion of mathematicians that were 

involved in the development of this concept. I used two different codes for this part. 

The fact that Cayley expanded on the idea of matrix multiplication means that, as 

brilliant as Eisenstein was, there were parts that he missed, just like there will be parts 

of mathematics that the students will miss. I called this ‘Humanizing Mathematics’. 

The further information about Eisenstein, that he had bad health and died early, was 

humanizing him as a mathematician. 

Overall, I ended up with two main themes, “Humanistic” and “Mathematical”, with 

five subthemes. There were nine instances that just named a person or a book that a 

term or concept referred to.  For the purpose of this study, I coded them as references, 

but did not analyse them further. 
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Humanizing Mathematics 

The overall purpose of this category was to make mathematics and mathematicians 

more relatable to students. There were three ways that the authors aimed to achieve this 

goal. The authors were evenly split among telling stories that depicted mathematicians 

as people who had lives outside of their discoveries, which I have called ‘Humanizing 

Mathematicians’, and telling stories around the difficulties and foibles that surround 

the mathematics in new discoveries, which I have labelled ‘Humanizing Mathematics’. 

Under Humanizing Mathematicians, students learn that these historical figures had 

other interests, health issues, legal troubles, and other incidents that give the 

impression of a full life. As discussed by Fauvel (1991), it can seem to some students 

that mathematics can only be done by the greatest minds solely focused on the 

material; so by seeing that these people had full lives, students can imagine that they 

too can do mathematics. 

There were a number of instances in Humanizing Mathematics, where the authors took 

a mathematical discovery and talked about either: how another mathematician 

expanded it; how, at the beginning, a certain part was left out; or how it took a few 

people working together to come to a discovery. In these stories, the mathematics is 

shown to be something that even famous mathematicians struggle with and get wrong, 

so it would follow that students would also struggle. In all of these anecdotes, though, 

the person (or people) does succeed, which gives a hopeful pathway to the student on 

how to continue in mathematics. Mathematics is something that is often thought of by 

students as always being perfect, and having always been perfect; so these examples 

show that humans worked hard to create mathematics, with many bumps along the 

way. It shows students that what they are learning now is where we currently are at this 

point in the history of mathematics, and that there is still so much more mathematics 

for them, and for all of us, to learn. 

The last theme under this heading had half the amount of the other two; I called this 

‘Diversifying Mathematics’. The purpose of this heading was to open up mathematics 

to groups that, in Western Education, are not generally thought of as mathematicians. 

The sidebars that were coded under this heading highlighted that the mathematicians in 

question were in a minority category; in these specific instances that included 

individuals who were Jewish, gay, female, or Asian. Highlighting the minority status 

of mathematicians invites students that share that status into the conversation. If a 

student can see others like them have succeeded, then they are more likely to believe 

that they can succeed in that endeavour. 

Mathematical Purpose 

Within the sidebars, almost half of the content included was mathematical in nature. Of 

that content, it was almost evenly split between giving context to the term or idea being 

discussed, which I called ‘Situated Concept’, and giving information that could help a 

student construct meaning for themselves, called ‘Construct Meaning.’ Often both 

were included at the same time.  
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Under ‘Situated Concept’, the vast majority situated it in the localized history of 

mathematics or the wider historical context. These examples ran the gamut from the 

example in Figure 1, where the idea of matrix multiplication is used to make 

substitutions in linear equations easier, to the one below in Figure 2, where Graph 

Theory is born from the placement of bridges in an old city.  

 

 

 

Figure 2: Sidebar from 

chapter on Vectors (Anton 

& Busby, 2003, p. 12) 

Figure 3: Sidebar from 

chapter on Systems of 

Linear Equations (Anton & 

Busby, 2003, p. 54) 

Figure 4: Sidebar from 

chapter on Matrices and 

Matrix Algebra (Anton & 

Busby, 2003, p. 101) 

 

These sidebars delve deeper into the history of mathematics and the history of our 

world, in trying to show where a discovery came from and why it was needed. It helps 

students see that these discoveries were often made to solve problems, usually to make 

a mathematician’s life easier. So, while these examples give historical context to 

mathematical concepts, they also have a humanizing quality where students can see the 

trajectory of the mathematics they are learning. 

Under those sidebars that allowed the students to ‘Construct Meaning’ for themselves, 

most did it in terms of situating the concept. As in Figure 1, while students can follow 

the progression of the mathematical discoveries, they also can see how it mirrors their 

own progression. By now, they have learned of linear systems and practiced 
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substituting into those systems, so they can use this information to work out why 

matrix multiplication would simplify this process. In Figure 2, the same could be said.  

The sidebar gives the wider historical context behind graph theory; but, by including 

the diagram, it lets students attempt the same problem and start to understand the 

power behind this theory.  

There were a few sidebars that only fit under ‘Situated Concept’ or ‘Construct 

Meaning’. They are above, labelled Figure 3 and Figure 4. In the first of these, the story 

behind the historical usefulness of Gaussian Elimination is shared, but does not give 

enough information applicable to the students’ background to where they could try to 

replicate the actions. In this case, the mathematical purpose of the sidebar is to just give 

a context for the new concept in history. Students have an understanding of space and 

could see how knowing the orbits of certain celestial beings could be useful; so, even 

without grasping how Gaussian Elimination helped in this instance, they can determine 

the overall usefulness of the method and the reason it was so important at the time. 

The sidebar in Figure 4 does not situate the concept in history, other than to let students 

know that this subject has been a matter of study for thousands of years.  However, it 

does use history to introduce an activity that they could use to further their own 

understanding. This also has the side benefit of ‘Humanizing Mathematics’, as even 

Cayley missed some things that the students can prove and understand. Of the 42 

instances where I could code meaning from the sidebars, only 4 were of an historical 

activity, such as the one just described and the one in Figure 2; the rest were more 

anecdotal. 

DISCUSSION 

The textbook analysed did provide historical context for some of the new terms and 

concepts that students encountered. The ones that I reviewed were in the form of 

sidebars, therefore off to the side of the main content. In the guide in how to use the 

textbook, these historical perspectives are listed last of all the things in the text (see 

Anton & Busby, 2003, p. viii). We can assume, then, that while the authors saw a need 

for this type of content, they felt it was of lesser importance than the mathematics that 

they were presenting; the historical notes were more incidental than a focus. That said, 

the authors were careful to draw the eye to these sidebars by having them next to the 

concepts discussed and by using similar typesetting in the text and the sidebars for the 

word or phrase of interest. 

Even given that, there were still seventeen sidenotes in the three chapters I reviewed. 

As seen in Chart 1 below, almost half of the information in these sidebars had a 

mathematical purpose, evenly split between situating the concept, explaining the 

background and why it was important historically, and using history to help the student 

construct their own understanding of the concept. 
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Chart 1: Types of Historical Notation 

Those that situated the concept in history did not go into detail about the process of the 

mathematical discovery or the reason behind its origin; they instead just imparted a 

sentence or two that contained an original use, or a reason that the concept came into 

being. These stories would not be enough to allow the student to trace the concept from 

origin to today, but could spark an interest that would lead an interested student to do 

so. As stated earlier, a third category was referential, where a sidebar would just give 

the name of a person or book related to a concept’s discovery. While, this did not give 

any information to a student to use in their mathematical studies, it could lead a student 

to outside research.  

I would argue that the authors included these small snippets of the historical context 

along with references less as a tool that students can use to learn the mathematics 

within this book and more as a way to broaden the culture of mathematics. While it 

does not fit the general idea of Situated Cognition, it does provide students with a sense 

of the life and times in which these discoveries were made. These snippets, those that 

do not have a constructivist bent, give students a taste of the history behind 

mathematics, the historical uses of mathematics (even if the students cannot currently 

comprehend those uses), and the scope of humanity involved in mathematics. Even the 

reference category helped expand that scope, as students can see the different eras, 

languages, and people involved in the creation of these concepts.  

The remainder of the concepts, those that help students construct the mathematics for 

themselves, and those that work to humanize mathematics, all belie the same 

mathematical purpose: giving students permission to try mathematics.  

The humanizing aspect allows students to see that mathematics is not handed down 

from on-high, fully and perfectly formed. It is created by humans, often by many 

humans working together, and failing consistently, until they get it right. These 

humans have multifaceted lives, and they are representative of all of humanity; so any 

student should be able to see themselves in a mathematician and therefore as a person 

capable of doing mathematics. This humanizing aspect then gives the student 

permission to try mathematics while the constructivist scenarios and activities give 
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them tools that not only build on their own past learning but also use their past learning 

to explain how a concept even came to be. Referring back to Figure 1, in that sidebar 

students learn of a mathematician who had a full, if tragic, life, and made a discovery 

that is explained in a way students can tie to their own past learning; then that 

discovery was furthered by others. Just in that sidebar, they can see the humanity of 

mathematics and that they also can participate in that human endeavour. 

Overall, the authors seem to have chosen the information to include in the sidebars 

mostly for the above purposes. They wanted to invite students to do mathematics, give 

students tools to create their own meaning in these new concepts, broaden the subject 

of mathematics to be a part of the historical culture, and to give students key 

information so they can continue their own inquiry if they choose.  
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EMBODIED CURIOSITY IN THE MATHEMATICS CLASSROOM 

USING TOUCH-SCREEN TECHNOLOGY 

Sheree Rodney  

Simon Fraser University 

 

In this paper, I use data collected through video recordings from K-2 children aged 

between five and eight years old to discuss how touch-screen technology TouchCounts 

and its unique capabilities provide an outlet for students’ bodily movement. In doing 

so, I draw on a self-generated theoretical construct called Embodied Curiosity (EC), 

which has its roots in embodied cognition, to show that human bodies are essential 

components of shaping the mind and that students experience mathematical 

understandings through their bodies. I argue that human curious behaviour translates 

into bodily movements due to human and non-human agency, which leads to 

possibilities of constructing mathematical meanings. 

INTRODUCTION 

There has been growing concern about what is involved in the “doing” of mathematics. 

Equally as important, is the way in which students construct mathematical meanings 

using digital technology tools as mediators. Many scientists as early as the 1950s 

(Harlow, Harlow, & Meyer, 1950; Berlyne, 1960; Festinger, 1957; Harmon-Jones & 

Mills, 1999) suggested that many learning theories led us to search for different ways 

to answer questions and develop deeper understandings about how knowledge is 

sought and retained. It is my belief that curiosity (a desire for knowledge) may provide 

answers to questions about how children learn and develop mathematical meaning. 

Furthermore, technology has made the question of mathematics learning more 

different. Noss and Hoyles (1996) for instance, suggested that the computer can be 

used as a form of “webbing” comparable to the role of the World Wide Web, 

portraying mathematics learning as a process of networking and implying that children 

construct mathematical meaning when they draw on supportive knowledge. In this 

sense, Noss and Hoyles’ interest does not lie in the computer itself, but rather “on what 

the computer makes possible for mathematical meaning-making” (p. 5). It is through 

these understandings that this paper evolved about the relevance of curiosity to 

mathematics education and more specifically on the role touch-screen technologies 

play in stimulating curiosity to influence how students develop mathematical 

meanings. 

Curiosity 

Curiosity is immeasurable, intangible, and elusive to define. However, authors such as 

Baxter and Switzky (2008) specified curiosity as a desire to know or a state of 
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inquisitiveness, while Loewenstein (1994) positioned curiosity as a term evolving 

from the disciplines of psychology and philosophy and contended that “curiosity has 

been consistently recognized as a critical motive that influences human behaviour” (p. 

75). As a result, curiosity emerged with a common understanding as being evoked in 

three distinct ways: by biological factors, from a desire to fill an information gap, and 

by an imbalance between something and an individual’s view of the world. 

Furthermore, Rowson et al. (2012), proposed a fourth type of curiosity which they 

called “tactile curiosity”. They established tactile curiosity in a view that human 

cognition is inherently embodied and that things are not only understood in sensory 

terms, but also in terms of how they can perform. Consequently, they believed that our 

perceptual worlds are not only embraced by objects that we inherently absorb, but of 

the possibilities which lead us to think and act in certain ways. This implies that 

embodiment is linked to curiosity, within which my interest lies. 

THEORETICAL FRAMEWORK 

Embodied Curiosity (EC), which guides this study, is self-generated. It is in keeping 

with the mind grounded in the details of sensorimotor embodiment. Drawing on Lakoff 

and Núñez’s (2000) and Lakoff and Johnson’s (1980) versions of embodied cognition 

(with conceptual knowledge assuming the relation to which human bodies operate in 

the environment) and Gol Tabaghi and Sinclair’s (2013) understanding that learning 

takes place when speech, body movement, gestures, and materials work together in a 

harmonious relation, I juxtaposed Pickering’s (1995) account of human and material 

agency. He suggested that there is a line drawn between actions of scientists (humans) 

and the actions of nature, which credits agency both to people and to things.  

As a result, agency has to do with the influence of one thing onto another. Furthermore, 

Pickering proposed that in people’s desire to understand, they are led to do certain 

things, thus encountering resistance from various sources, including material objects 

(such as an iPad). Resistance usually hinders the smooth running of a process. In order 

for humans to accomplish a task, they must first make accommodations to overcome or 

circumvent such resistance. From a posthumanist point of view, human agency is not 

given precedence over any other form of agency (in this case material agency) and 

therefore curiosity arises from a human-material interaction. I see EC as the 

harmonious relationship bounded together by agency, among human curiosity, 

materials, and body movements. EC emphasizes curiosity emerging from the ways in 

which learners and technology tools interact with each other and how mathematical 

meanings are developed from body movement.  

The term—embodied curiosity— is not novel, in fact, it was used by Fridman (2013) 

who, at the time, was seeking a place to store things discovered by her own curiosity. 

For Fridman, embodied curiosity meant changing ideas into action by infusing 

curiosity into her own life and acting on curiosity as often as possible.  To the best of 

my knowledge, Fridman did not explore this concept any further and the term was left 

untheorized. My use of the term does not suggest a continuation of Fridman’s work, 
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nor imply that my development of the theory is grounded in her work. Instead, I 

acknowledge the term “embodied curiosity” is not new. 

Description of TouchCounts 

TouchCounts (Sinclair & Jackiw, 2011) is a multimodal touch-screen application for 

the iPad that provides young children with means for creating and representing 

numerosity. Within this application are two micro-worlds called the enumerating 

world (for counting) and the operating world (for adding and subtracting). In the 

former world, learners use their fingers to tap the iPad screen, which produce 

numbered yellow discs (called herds), along with aural number names. When learners 

are working in the enumerating world (with gravity on) a horizontal line called the 

shelf appears on screen and the discs disappear when tapping is done below the shelf. 

Conversely, tapping above the shelf produces discs which are visible on the horizontal 

line (Figure 1a). In the latter world, tapping creates large circles (called herds) 

representing the cardinality of the set produced by the fingers (Figure 1b). However, 

the emphasis of this paper is on the operating world since the task and episodes 

involved students’ experience with adding numbers.  

  

Figure 1: (a) tapping in the enumerating world (gravity on), (b) tapping in the operating 

world 

METHODS 

Data for this research responds to the extent to which embodied curiosity fosters the 

construction of mathematical meaning, and came from eight months of observing and 

video-recording interactions between children of ages ranging from five to eight. The 

participants were taken from an after-school day-care in Burnaby for K-2, where they 

engaged in a series of tasks while waiting on their parents for pick up. I worked 

alongside two other researchers (Nathalie and Sean) for approximately one hour each 

week (30 minutes per group) with children in groups of two to four. Students were 

randomly selected either from a list presented by one of the day-care educators or when 

they walked into the research site volunteering themselves to “play”. The interaction in 

this study was taken from a session with one group of girls comprising students whom 

I named Chelly, Nadison, and Oliah. The focus of analysis was on how touch-screen 

technology may or may not influence children’s embodied curiosity. The 

video-recording was then transcribed in different rounds focusing on various features 



MEDS-C 2018                                                                                                                 Rodney 

84 

of the episode. Firstly, I recorded the voices from humans and then “voice” from the 

material which is an affordance of the touch-screen application. My next phase was to 

pay attention to children’s body movement and align them with human curious 

behaviour and the mediative role of the digital tool. 

Data Analysis and Results 

To give an interpretation for the synergy among material, human curious behaviour, 

and body movement, I used an episode taken from a video-recording involving one 

researcher (Sean) and a group of girls who were working on the task of “making 

thirteen”. This episode was selected primarily because of the potential it possesses in 

demonstrating the way EC is operationalized. That is, embodied curiosity occurs when 

children transform their wonderings while using technology into body movements and 

their body movements into possibilities of developing mathematical meanings. I first 

observed how children’s interaction with the technology tool and the mediative role of 

the technology stimulated their curiosity. Subsequently, I analysed the relationship 

between the ways they demonstrated curiosity (through body movements) and how 

mathematical meanings were developed as a consequence of their curiosity. 

Episode One: Make Thirteen 

Sean pushed the iPad to the girls individually from Chelly-Oliah-Nadison with the 

same five herds (2, 2, 7, 6, 1) and asked that they each make thirteen. Chelly and Oliah 

both attempted the task and were unsuccessful, pinching (7, 2, 2, 1) and (7, 2, 1, 2) 

respectively. The children gazed at the iPad screen (Figure 2a) as Oliah contemplated 

how she would perform the task of making thirteen; but this was not sufficient to 

determine whether or not the children were curious or what they were curious about. 

The episode below occurred during Nadison’s turn and the analysis provided a clearer 

description of the ways in which the children were curious. I used transcript 

conventions of curly brackets to represent the iPad’s action or voice and squared 

brackets to show body movements. The < and > signs were used to depict my 

understanding of students’ feeling within the moment. 

1  S: I want you to make thirteen  

2 O:  Oh yeah! it’s gonna be the same thing [Beating fist on the table. In a 
rhythmic fashion while she utters “the same thing”] 

3 C:  Who cares! <with disappointment at her attempt>  

4 O: She might get thirteen [Nadison using her index finger and thumb 
simultaneously to pinch together the disc, 7 and 6] (iPad says thirteen) 

5   N: Oh! I did only two! I didn’t even expect that! that was so-oo weird [Nadison 
opens her hand wide and gasp in disbelief] 
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Figure 2: (a) children backed away, (b) leaning forward, (c) Nadison shows surprise 

Initially, the children demonstrated curious behaviour in the way they clustered 

together over the iPad while Nadison performed the task, pinching the herds (7, 6) 

together. They were fixated on the screen with a deep gaze, to see which herds she 

would choose to produce 13 (Figure 2b). I see this as the interplay between human and 

material agency as described by Pickering, where the affordances (including the visible 

herd, the aural number names which mapped to the visual representations of numbers, 

and the touch-screen interface) acted upon and influenced the children with a desire to 

see and hear what resulted. This is a sign of curiosity which may lead to further 

exploration of different ways in which the herds could be pinched together to achieve 

thirteen. This signifies the possibility that numbers can be composed and decomposed 

in different ways.   

During the interplay between children and material, the material was granted a central 

role in the process, giving importance to what the iPad could do, as seen in turn 4 with 

the utterance “she might get thirteen”, as if thirteen were a ‘thing’ to be handed out by 

the iPad. Likewise, Nadison was surprised that thirteen appeared on the screen after 

using only two herds (7 and 6) as oppose to four, which was previously used by the 

other girls. This was evident in the way she opens her hands wide (Figure 2c) and in her 

utterances “I did only two” and “I didn’t even expect that!” at turn 5. In addition, the 

“weirdness” she spoke about also at turn 5 reveals that she might have been unaware 

that two numbers could be added to yield thirteen, or at least those two; 7 and 6.  

  

Figure 3: (a) Oliah’s decision, (b) Nadison’s decision 

It is also important to note that, in Figures 3a and 3b, eye-hand coordination played an 

important role in the decision related to which herds were used to make thirteen. 

Therefore, embodied curiosity occurs when children’s eye-hand coordination, the 

visual and aural capabilities of the iPad, along with the children curious behaviour (as 
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displayed by their fixation on the touch-screen interface and how they leaned forward 

spontaneously when a task is being performed) coordinate. This occurred in a 

synchronizing way which suggested that the children came to an understanding that 

numbers can be composed and decomposed, as well as the children have attached the 

meaning of addition to the pinching motion of their fingers. Hence, 7 and 6 makes 13.  

  

Figure 4: (a) Children reluctant, (b) Chelly revisits the iPad 

  

(c) Chelly’s fingers with meaning, (d) Adding with fingers and arrows 

Shortly after, the children were asked to add together 7 and 5, this time, using paper 

and pencils. They drew the circular herds depicting 7 and 5 on the paper as they 

appeared on the iPad screen. That is, with small circles inside, representing the 

cardinality of the numbers. Chelly was reluctant to begin at first (Figure 4a), but later 

decided to revisit the iPad to concretize her understanding of “putting together” 

(Figure 4b). She experienced EC when her fingers directly moved from the iPad screen 

in Figure 4c with a new meaning of “putting together” these two numbers on the paper. 

In this sense, Chelly’s fingers became the objects of addition, which she believed was 

transferable from the iPad to the paper. This implies that the interplay between the tool 

(iPad) and the children’s fingers generated a possible understanding of finger-pinching 

as addition. This was further reiterated in their drawings on paper (Figure 4d) when 

Chelly also drew two fingers and used an arrow to show how they were added together. 

DISCUSSION 

The mathematical ideas which emerged from the data was significant in providing an 

explanation of how the relationship between the mediative role of the touch-screen 

technology and children’s curious behaviour through their body movements 

influenced the generation of mathematical knowledge. For instance, in episode one, the 



MEDS-C 2018                                                                                                                 Rodney 

87 

desire to know which numbers will make thirteen was displayed in the way both 

human and non-human agencies interacted with each other. The visual display of 

numbered discs on the screen evoked students’ interest (Figures 2c & 3a) and curiosity 

which further led them to lean their bodies closer to the device in anticipation of which 

numbered discs could be used to make thirteen.  Furthermore, this coordinated 

relationship between technology tool, curiosity, and children’s body movement led to 

an understanding that thirteen could be made in different ways and a knowledge that 

7+6=13 was one possibility. In addition, the movement of the hands in a widened 

position followed by a gasping sound indicated that this curiosity has been satisfied 

with the potential of new “wonderings” emerging. Moreover, the emergence of the 

mathematical idea of the closure property in arithmetic, where two numbers of the 

same set (whole numbers) when added produced a member of the identical set was 

evident particularly when the task was transferred from touch-screen device to paper 

and pen. Though the children may not have articulated this, the idea of pinching the 

numbers together with two fingers generated a new way of looking at numbers.  

CONCLUSION 

The analysis provides supporting evidence that touch-screen technologies such as 

TouchCounts stimulate curiosity and offer an opportunity for young children to 

perform actions. The data also revealed that TouchCounts and its unique aural and 

visual features stimulated a strong desire for knowledge, whether it is by exploratory 

means or by attending to a specific piece of knowledge. Children’s body movements 

such as leaning forward and backwards, movement of the hands, eye movements are 

all responsible for the way in which children construct mathematical meanings. 

TouchCounts provided visual, tactile, and aural cues which foster the stimulation of 

curiosity.  

Using EC: the coordination of human curiosity, materials, and body movement as an 

analytical tool helped me to understand that the interplay between children and 

technology tools within the mathematics classroom plays an important role in 

stimulating children’s inquisitiveness which leads to continuous exploration and 

development of mathematical meanings. In addition, this study also accentuates the 

significance of considering touch-screen technology as essential tools for stimulating 

human curiosity, and helps me to understand that mathematics teaching and learning 

should not be concerned solely with the nature of mathematics but also the nature of 

human beings.  
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INSIDE TEACHER TENSIONS: EXAMINING THEIR 

CONNECTION TO EMOTIONS, MOTIVES, AND GOALS 

Annette Rouleau 

Simon Fraser University 

 

This paper examines tensions faced by mathematics teachers and their effect on 

teachers’ actions using constructs from activity theory. Findings suggest that 

emotionally laden tensions can reveal motives, and impact teachers’ goals by altering, 

prioritizing, or strengthening them. Therefore, in the relationship between emotions, 

motives and goals, tensions can be understood as drivers of teachers’ actions.  

INTRODUCTION 

Reflective conversations with mathematics teachers invariably contain what I have 

come to call ‘I…, buts’: 

I want to implement problem solving in my classroom, but I don’t know how.  

I know collaboration is a good thing, but some of my students work better alone. 

For those working in professional development, these conflicts are familiar refrains. 

Some teachers want to make changes, but do not know how. Others are trying to make 

changes but are encountering challenges. Conflicts such as these are endemic to 

teaching and are commonly referred to as tensions (e.g., Berry, 2007; Carr, 1998; 

Jaworski, 1999; Mason, 1988). Studies in mathematics education have produced lists 

of tensions that impact mathematics teaching (e.g., Liljedahl, Andrà, Di Martino, & 

Rouleau, 2015; Mason, 1988; Page & Clark, 2010); however, there has been less focus 

on their mechanisms of action. Liljedahl et al. (2015) argue that “better understanding 

of these tensions would allow us, as mathematics education researchers, to better 

understand the intentions and actions of mathematics teachers — and to better respond 

to their needs in the crafting and delivery of professional development opportunities” 

(p. 200). My aim with this study is to further develop that “better understanding” of 

tensions. I move beyond the identification of tensions to examine more closely how it 

is tensions act, and how they are acted upon, by using constructs based in activity 

theory. 

THEORETICAL UNDERPINNING 

One of the findings from Liljedahl et al. (2015) was that tensions are tied to teachers’ 

needs. For this reason, I turn to Leont’ev (2009) to understand the complex relationship 

between tensions and needs. Consider again, for example, the opening refrain: 

I want to implement problem solving in my classroom, but I don’t know how. 
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We see that underlying the tension (I don’t know how) that causes the teacher to 

actively seek professional development is an unfulfilled goal (implementing problem 

solving) that is impeding an unspoken need (e.g., being seen as a good teacher or 

improving student learning). This is the essence of Leont’ev’s (1974) notion of 

activity: “Behind the object, there always stands a need or a desire, to which [the 

activity] always answers” (p. 22). He adds that a motive is an object that meets a 

certain need, and that generally, motives go unperceived by the subject:  

The paradox lies in that motives are revealed to consciousness only objectively by means 

of analysis of activity and its dynamics. Subjectively, they appear only in their oblique 

expression, in the form of experiencing wishes, desires, or striving toward a goal. 

(Leont’ev, 2009, p. 171) 

Goals, however, are conscious; we are typically aware of what it is we are striving to 

achieve and can pinpoint our aims. If visualizing activity as a hierarchy, we would see 

unconscious motives/needs driving the activity, with the activity being directed at the 

conscious goals and their related actions (see Figure 1). For Leont’ev activities are 

composed of actions, which are, in turn, composed of operations. These three levels 

correspond, respectively, to the motive, goals, and conditions. As indicated by the 

bi-directional arrows, all levels can move both up and down (e.g., goals can become 

motives, actions can become operations). 

 

 

 

Figure 1. The activity hierarchy of Leont’ev (2009) 

To understand the dynamic nature of the components within the activity hierarchy, 

Leont’ev (1974) described a situation in which the activity is learning to drive a car 

with a manual transmission. When first learning, shifting gears is a conscious action 

with the goal of smooth coordination of the clutch and gear-stick. Later, the action of 

shifting gears becomes operational as the learner no longer has to think “How do I 

move my hand or foot?”; these are now unconscious operations determined by the 

conditions (e.g., the speed of the car or the position of the gear-stick). Eventually, 

driving the car is no longer an activity in itself, it becomes an action in another activity 

such as getting to work (for which the unconscious need for status may be one possible 

motive). 

For the purposes of this study, only the top two levels of Leont’ev’s activity hierarchy 

will be considered, where activity can be seen as comprising actions related to 

associated goals. Engeström (2009) argues that tensions are essential for understanding 

the motivation behind particular goals and actions. For example, a subject can have 

conflicting needs, or there can be a conflict between a need to be satisfied and the 

actions that are allowed to be done in order to satisfy it. In both cases, the subject feels 
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a tension that can drive the subject to action. Tensions, thus, belong to the subject’s 

consciousness, while motives and needs can be subconscious — even if they cause the 

tension. 

This impacts analysis as Kaptelinin and Nardi (2006) point out the difficulty in 

establishing motives or needs in human activity: “The link between what an individual 

is doing and what she is trying to attain through what she is doing is often difficult to 

establish” (p. 58). Noting that, for Leont’ev, emotions were signals of the actualization 

of a motive or need, Engeström (2009), suggests that “to gain access to motives, one 

must proceed along a “round-about way,” by tracing emotionally marked experiences. 

In other words, the study of action-level emotional experiences is an avenue to an 

understanding of activity-level motives” (p. 7). 

Emotions, then, play an important role in activity theory where they reflect relations 

between motives (needs) and the real or potential success of an activity. Referring to 

emotions as “internal signals”, in that they arrive from lived experiences rather than 

intellectual reflection, Leont’ev (2009) states, “they appear as a result of actualization 

of a motive (need), and before a rational evaluation by the subject of his activity” 

(p.166). Leont’ev places emotion at the level of activity rather than at the level of 

actions or operations but suggests that both can be affected by the emotions 

experienced by the subject. 

This suggests a potential connection between tensions, emotions, and motives, 

discernible at the action-goal level, and leads to my research question: How do 

emotionally laden tensions affect goals and motives? 

METHOD 

In this study, I adopt an exploratory and qualitative approach that focuses on 

documenting the presence of a phenomenon rather than quantifying its prevalence. 

Data for analysis was taken from a larger study involving six teachers whose teaching 

experience ranged from 5 to 16 years. The data used was obtained during 

semi-structured interviews that ranged from 40 to 60 minutes. The interviews were 

audio-recorded and then fully transcribed. The structure of the interview aimed at 

letting tensions and emotions emerge through a narrative rather than by direct 

questioning. For example, the teachers were asked to describe their school, their 

relationship with their colleagues, and with parents, without explicitly asking them to 

describe the tensions they lived. This allows for richer descriptive data of personal 

experiences that leading questions may inhibit. The transcripts were then scrutinized 

for utterances with emotional components such as “I wasn’t happy…” and for 

utterances that conveyed doubt or uncertainty such as “I wasn’t sure, but…”. The 

identified emotions and tensions were then re-examined for their potential connections 

to goals and motives. 
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FINDINGS 

In the following, I highlight three ways in which tensions impact goals. I characterize 

the instances with excerpts from the interviews and explicate their interconnections 

with emotions and motives. 

Changing goals 

Excerpts in which the mathematics teachers expressed tensions frequently began with 

some variation of “this never used to bother me, but…”. This piqued my interest and 

these instances were explored to examine what had changed. For instance, Eric 

mentioned that he used to assign, collect, and mark homework. He would give zeros 

for unfinished work and felt it was a good use of both his own, and students’, time. His 

implicit goals were gathering evidence of learning and work habits. As his actions 

worked cohesively towards achieving his goals, there was no apparent tension. This 

changed when he encountered a student who took no notes, handed in no homework, 

sat at the back of the class and yet engaged fully in the lesson: 

He’d sit at the back and say “No, you’re wrong” or “I disagree” or “What about this?”. And 

I loved it because there was this back and forth, and like this is good! So, I think zeros, 

forget that! And man did he bring something to the [class]. I loved it. So that really 

changed my philosophy on taking in homework. Because he just sat there, but he was into 

it. I thought this was great! A lot of the students, all they do is just hand me homework, I 

like this better. 

I argue that the emotion Eric experienced indicates a perception of motive. He 

recognized that, beyond his goal of collecting data for assessment, was the deeper 

desire to engage his students. This became apparent when he further explained: 

I used to collect the homework and mark it and there was no engagement with the students. 

In recognizing his motive, he marked it as his new goal — to engage with his students. 

This shift in goals is accompanied by a tension, as he is not yet certain how to proceed.  

I do know one thing — after 10 years of collecting homework and marking, I don't want to 

do that anymore. And so I'm trying to… I want to change. I'm trying to fix that, but I'm still 

struggling with that. So I'm going to make that my focus for the next year. 

This is an ongoing tension for Eric, coloured by uncertainty, as he searches for actions 

that will help him achieve his new goal. 

Prioritizing goals  

There were several instances where tensions experienced by teachers caused them to 

rearrange the priority of their goals. Although the teachers valued both goals, the 

tensions they experienced made them realize that they had been favouring one goal at 

the expense of the other. We see this in Lacey who explained that, when she began 

teaching, she was fine with having her students learn mathematics by completing 

worksheets. She was teaching a combined class of grade one and two students and felt 

that assigning individual worksheets helped with her dual goals of managing the 

behavioural issues in her classroom and fostering student learning.  
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I would give them worksheets and then get them to sit at the tables and work on it 

independently. And then I would teach the grade ones, like whole group.  

These actions worked well for her until her participation in professional development 

brought her to the realization that her students were developing very little 

mathematical understanding. Behavioural issues were under control, but at the expense 

of student learning. This resulted in a tension for Lacey, as she explained: 

I knew now that it wasn’t working. I wasn’t happy with my math program, but I didn’t 

know how to change it either.  

In Lacey’s later description of the recognition as a “horrible feeling”, we see a strong 

emotional response as she comes to an unwelcome realization: her need for classroom 

management superseded student learning. It also suggests that her unconscious motive 

may have been to be a good teacher. Unlike Eric, the tension did not cause Lacey to 

shift from one goal to a new goal. She continued to value her goal of classroom 

management but had given higher priority to finding complementary actions to aid her 

goal of developing her students’ mathematical understanding.  

Strengthening goals  

I found instances where the ongoing tensions experienced by a teacher served to 

strengthen their resolve to achieve a goal. This was exemplified in an excerpt from Mia 

who views herself as a progressive teacher who wants students to problem solve and 

think mathematically. She further explained that she wants to teach in a way that makes 

learning mathematics “an enjoyable experience for students and meaningful for 

kids”—her professed goal. To assess their learning, she relies heavily on formative 

assessments that lead to mastery. She experienced tension when she was forced to 

measure her students’ learning in standardized assessments: 

It was really frustrating in that I had this idea of how I wanted to teach and how I thought 

students should learn. And especially after what I would consider a successful unit or a 

successful lesson and then I would give them this formalized test that was the same as all 

these other classes and then it actually meant little, because if the average mark of the class 

wasn't 75%, then there was something wrong with my teaching or my marking. So, if my 

average was 78%, that probably meant that I was marking too easy and if my average was 

too low, I wasn't teaching them good enough. I found it really difficult, because I had this 

idea that if I taught my students well, then they would succeed at what they were learning 

and if they were above average that maybe meant that I had done something right, that I 

had taught them well. So that was just stifling.  

Mia’s strong emotions evidence the tension she experienced when her teaching style 

was threatened by the imposed assessment. Not wanting to lose sight of her goal, Mia’s 

response was to push back: 

I did [pushback], and that kind of eventually settled and you find enough working terms, 

but it was an issue. 
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She went on to explain that she continued experimenting to find teaching methods that 

suited her students and did not let the threat of standardized testing interfere with her 

goal.  

We see this same tension regarding her teaching style appear again for Mia when she 

recounts colleagues questioning her practice:  

So, they're like, this isn't right, they [students] need to know these steps. And I'd be like, 

why? They understand what they're doing and they're getting the right answer… like get 

over it.  

Mia likened this to “harassment”, an emotional response that reflects the ongoing 

tension surrounding her pedagogical choices. However, her final comeback, “like get 

over it” indicates Mia’s determination to continue with her actions of working towards 

her goal. Rather than weakening her goal, both instances of tension appear to solidify 

it. Leont’ev (2009) suggests that the emotion that accompanies goals is short-lived and 

does not bring awareness of underlying motive. 

Therefore, I find a third instance referencing this tension enlightening. In this instance, 

Mia had begun preparing her students for their year-end standardized exams. However, 

this time Mia experienced tension when she found she had to defend her teaching style 

to her students: 

They were starting to stress out, “We have never seen this, what are you talking about? 

How are we supposed to do this? You never taught us anything”. They started to get 

angrier and angrier as the exam got closer. And I don't know, like that really bothered 

me—in that okay, for my students, like for their sakes, they do have an exam at the end and 

I wanted them to be prepared for it. And even though I could see that they had done some 

amazing math, they never were aware of what they had done. 

Here we see again Mia’s emotional response. She explicitly mentioned feeling 

bothered, but implicitly there is also a sense of uncertainty and disappointment. As 

with the other instances, her teaching style played a role in her tension, but this time the 

results are different. Rather than solidifying her goal, this time the tension caused Mia 

to alter her goal and thus her actions: 

And then what happened the following year when I had them [same students] again, they 

started the year with some of that tension that was still there, even though it sort of had 

settled over summer. It was new curriculum, a new year. But now they were like, “Well, 

what's this going to be about?” And then I ended up teaching them very traditional. And, 

like on my scale of traditional too. So like, I taught them very traditional this year in 

comparison to last year. But as I said earlier, my traditional is still not a typical traditional.  

The emotion and accompanying tension Mia experienced with her students caused her 

to reorient her goals. Mia may have expressed her need to teach in ways that make 

mathematics meaningful for her students, but I argue that in backing down, Mia 

revealed her true motive — building relationships with her students. And like Eric, 

recognition of her motive marks it as her new goal. Tensions with assessment and 
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colleagues did not cause her to change her goal or actions, but tensions with her 

students did.  

DISCUSSION AND CONCLUSION 

For the teachers in this study, tensions arose that, I argue, made self-evident their 

motives, and subsequently required them to adjust their goals. According to Leont’ev 

(2009), the level of actions and goals is most readily understood, while the level of 

activity and its motive is less accessible to individuals. It is through the emotional 

colouring of their actions that an individual’s motive for the activity is revealed. 

However, it is important to note that emotions are not a reason to act, they are a result 

of activity (Leont’ev, 2009). Therefore, I suggest that while emotions are effective in 

revealing tensions, it is the tensions themselves that are vital to the subsequent changes 

in goals and actions. It was only through experiencing tension that the teachers were 

motivated to change their actions. This resulted in the participants changing, 

reordering, or strengthening their goals. This leads to two interesting conjectures. 

First, context creates tension. The participants in this study were content in pursing 

their goals until confronted with a new context. We see this in Eric who happily 

collected homework until he met with a student for whom homework had no purpose. 

Likewise, Mia held strong to her goal of student engagement despite pushback from 

colleagues, but this changed when she met resistance from her students. This suggests 

the tensions teachers feel subjectively are there for a reason; they are the objective 

result of goals clashing with a (new) context. The resulting emotionally laden tension 

makes apparent the teachers’ motive, which, in Eric’s case, becomes a new goal (see 

Figure 2a). In Mia’s case, the goal was strengthened until it met yet another context 

(see Figure 2b). 

 

 

 

 

 

Figure 2. (a) Eric’s Goal Transformation (b) Mia’s Goal Transformation 

Related to this is that tensions are also useful in delineating primary and secondary 

goals. This is evident in Lacey, who, through participation in professional development 

(new context), comes to the realization that she values student learning even more than 

classroom management. This suggests an image of tandem goals functioning in 

parallel until they hit a context that creates tension (see Figure 3). What emerges is a 

prioritization of goals where both are in play, but one is given higher priority. 
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Figure 3. Lacey’s Goal Transformation                   

In this dynamical framing of the relationship between emotions, motives, and goals, 

tensions can be understood as drivers of teachers’ actions. I see tensions as complex 

collections of opposing forces between possible actions and contrasting motives. 

Tensions give rise to emotional responses that, in turn, make teachers conscious of 

their motives. Tensions have an emotional nature and, consequently, they act as 

signals; the teacher feels, through tensions, that the motives of her actions are 

contradictory. As such, tensions drive the teacher to action. 
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ARE THEY GETTING ANY BETTER AT MATH? 

Robert Sidley 

Simon Fraser University 

 

While the goal of improving how students do mathematics is fundamental to the 

endeavour of mathematics educators, how and in what ways students improve over 

time is unclear. This study examines a Calculus 12 lesson on differentiation strategies 

to identify how students mathed and, through Variation Theory, contrasts the 

likelihood of improvement given the opportunities afforded students who worked alone 

compared to those who collaborated on white boards to work through practice 

questions.  

INTRODUCTION 

Student improvement is certainly one of the most important goals of mathematics 

education. As important a goal as that is, however, what improvement means is not 

universally understood or agreed upon. Does improvement mean knowing more math, 

being able to solve novel problems, students explaining their thinking, representing 

their knowledge in multiple ways, collaborating with others, or doing better on tests? 

Furthermore, what do teachers do in the classroom to support or facilitate 

improvements in students’ ability to do math? Teachers certainly focus on the 

acquisition of content. But does the acquisition of content knowledge in itself 

constitute improvement? What mathematical thinking, acts, or actions students get 

better at while they engage in learning mathematics is the broad question that guides 

the inquiry in this paper. What are students doing when engaged in the learning of 

mathematics? How do they math and how do the learning activities and classroom 

structures contribute to this improvement?  

MATHEMATICAL THINKING AND DOING 

While it is beyond the scope of this paper to unpack all the different ways of describing 

mathematical thinking and doing, in order to describe student mathing, some frame of 

reference is necessary. Learning to think mathematically involves, among other things,  

learning to value the processes of mathematization and abstraction, as well as knowing 

when to use them (Davis & Hersh, 1998; Mason, Burton, & Stacey, 2010; Schoenfeld, 

2016). Schoenfeld (2016) also points out the importance of being able to mobilize 

mathematical content knowledge in the service of problem solving as being key to 

mathematical cognition.  In Mathematical Thinking, Mason et al. (2010) describes 

three factors that influence how effective one’s mathematical thinking is: 

1. One’s competence in the use of the processes of mathematical enquiry 
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2. One’s confidence in handling emotional and psychological states and turning 

them to one’s advantage 

3. One’s understanding of the content of mathematics and, if necessary, the area to 

which it is being applied. 

Mathematical thinking, he argues, involves using natural processes in mathematical 

ways. Mason identifies several mathematical themes also: Doing and undoing involves 

performing a mathematical action or resolving a question, then reversing the action or 

resolution for further exploration; invariance allows for attending to what is changing 

and remaining the same in a mathematical situation; freedom and constraint is helpful 

when considering solutions, as Polya (2014) describes, “to find”, or when constructing 

tasks. By adding or removing constraints, solutions become more or less specific and 

can layer towards general solutions.  

While mathematical thinking cannot be observed directly, the activities students 

engage with serve to actualize their mathematical thinking into some sort of doing. 

How students should engage with activities, both to acquire and use their mathematical 

content knowledge, has been prescribed by the National Council of Teachers of 

Mathematics (NCTM) in their Process Standards document (National Council of 

Teachers of Mathematics, 2000). Problem Solving, Reasoning and Proof, 

Representations, Connections, and Communication, all serve to highlight the processes 

students should use to learn and use their mathematical content knowledge. These 

processes, in various versions, inform numerous mathematics curricula throughout 

North America. And while the NCTM Process Standards provide teachers with 

references and goals for student engagement, they do not describe what students are 

actually doing in response to mathematical activities.  

According to Bauersfeld (1993), mathematical activity depends on social and cultural 

processes.  The classroom itself is a dynamic system, in which social and cultural 

norms are introduced and reinforced by the teacher.  

[T]he understanding of learning and teaching mathematics ... support[s] a model of 

participating in a culture rather than a model of transmitting knowledge. Participating in 

the processes of a mathematics classroom is participating in a culture of using math or 

better: a culture of mathematizing. 

(Bauersfeld, 1993, p. 4)  

Mathematizing, in this sense, defines, for each classroom, what it means to know and 

do mathematics. In their work on sociomathematical norms, Yackel and Cobb (1996) 

identify intrinsic aspects of a classroom’s microculture, defined by teachers’ and 

students’ activity. They argue that these classroom normative understandings are 

modified by the ongoing interactions of students and teachers, and are unique to 

specific classrooms.  

While Yackel and Cobb (1996) look specifically at those interactions that sustain a 

culture of inquiry and problem solving, I contend that sociomathematical norms are 
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present in classrooms with a focus on content acquisition also. Further, it is the 

activities of students and teachers that define both what doing math is for a particular 

classroom, and what mathematics is for students in that classroom culture. While 

micro cultures and sociomathematical norms offer an explanation of how the 

mathematical activity for a particular classroom culture comes to be, they do not 

necessarily describe the actions of students in response to classroom activities. 

What is needed is a way of describing the mathematical acts or actions of students as 

they engage in the mathematical activities of a particular classroom culture and 

determine if their way of engaging, their mathing, improves over time. To this end, the 

purpose of this paper is to answer the following questions:  

1. In what observable ways do students engage in the mathematical activities in a 

mathematics lesson? In other words, how do they math? 

2. Given the structure of the lesson and the ways students engage, what can be said 

about the likelihood of improvements in the ways students math?  

The theoretical analysis for this study will be viewed through the lens of Vygotsky’s 

sociocultural theory (Vygotsky, Hanfmann, Vakar, & Kozulin, 2012; Vygotsky & 

Cole, 1981). Unlike the incremental acquisition of content, improvements in student 

mathing will be viewed as developmental, involving a unity of psychological 

functions, and mediated by the activities of the classroom. In Vygotsky’s view, 

learning is culturally situated and leads psychological development. To address the 

potential for improvement, I will use Variation Theory (Lam, 2013; Marton, 2006, 

2015; Marton & Tsui, 2004) to describe the learning activities and the potential for 

students to discern the critical aspects of how they math.  

METHOD, DATA, AND ANALYSIS 

The data for this investigation was collected during a single class of Calculus 12 in a 

secondary school located in Southwest British Columbia. The class was videotaped, 

and the relevant episodes were identified and transcribed. The class itself was taught 

by the school’s Mathematics Department Head, a fifth-year teacher with a Master’s 

degree in Mathematics. The students, most of whom were taking Pre-Calculus 12 

concurrently with Calculus 12, were in their third unit of study. Previous to this lesson, 

they studied Functions, Limits, and Derivatives. This lesson was the second in a unit on 

Differentiation Rules. Several days after videotaping the lesson, I informally discussed 

the lesson with the classroom teacher. During that conversation, she discussed her 

thoughts on teaching strategies and student activity. Some of what she shared in that 

conversation is included in my analysis.  

Lesson Structure and Mathematical Activity 

The mathematical content of this lesson on Differentiation Rules included the Constant 

Multiple Rule and the Power Rule for Differentiation. Forty-five minutes of the 

70-minute class were devoted to the teacher showing her students how to implement 

both rules. From her position at the front of the class, pointing to a screen displaying 
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her prepared notes for each of the differentiation rules she introduced, she began by 

showing the students two examples of how to use the rules. This was followed by an 

invitation to students to try a couple of prepared examples on their own. 

This lesson can be described as having two main segments; the content acquisition 

segment of this class (the first 45 minutes), and the practice segment (the remaining 25 

minutes). The content acquisition segment can be further divided into three sections; 
teacher demonstration, “now you try” or emulation, and teacher consolidation.  

During the content acquisition segment and the teacher demonstration segment of the 

lesson, and for student who chose to do individual or group practice at desks, the 

register of actions associated with this mathematical activity was predictably narrow. 

The actions of students, in other words, the way they mathed, were in line with teacher 

expectations and align with what one would expect to see in a content driven, teacher 

centered lesson. Students watched and listened as the teacher explained how to apply 

each differentiation strategy to various examples, responded to the teacher’s prompts 

during the demonstration segment, and clarified a procedural move the teacher made 

that was not clear. During the “now you try” segment, students attempted to imitate 

the teacher’s strategy, asked questions about the correctness of their steps, clarified in 

what algebraic form the answer should be represented, and adjusted their work 

according to teacher feedback or correction. The students who worked individually 

using paper and pencil on the practice set of exercises, did so silently. 

By contrast, the students who chose to work in groups of two, three, or four on the 

classroom’s white boards had a broader register of activity. While still trying to 

imitate the teacher’s demonstrated strategies, responding to teacher questioning and 

prompts, and clarifying with each other, they engaged in the problem set by using four 

additional observable actions, directing, vicariously solving, negotiating, and 

looking at other groups’ work. 

Directing 

This describes the action of one student telling another student what to write. This 

occurred when the student with the pen had stalled in solving the problem. The director 

bridged the gap in procedure by telling the student with the pen what to write, and then 

stopped directing when the student with the pen was able to carry on independently. 

The director appeared to be vicariously solving during this action. In other words, the 

directing was immediate and not as a result of the student with the pen asking for help. 

Vicariously Solving 

This describes members of the group actively watching the student with the pen solve a 

problem, as if they themselves were solving the problem. It was exemplified by one or 

more group members directing when the student with the pen stalled, or by group 

members immediately pointing out an error.  
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Negotiating 

When students disagreed about the next step in the procedure, they negotiated a 

resolution. Sometimes the issue was resolved internally; however, occasionally the 

issue was resolved by asking for help from another group nearby or by looking at 

other groups’ work. 

Looking at Other Groups’ Work 

When a group became stuck and no member of the group could direct, students often 

would look around the classroom at other students’ white board work to see if they 

could resolve their impasse. While the entire solution to the problem they were 

currently having difficulty with may have been visible on another white board, 

students seemed to only be interested in attending to the specific part of the work they 

were stuck on. 

The contrast between how students mathed during the practice segment of this lesson 

was dramatic. How the students grouped individually, together at tables, or in groups at 

white boards qualitatively changed the way they did mathematics. The nature of the 

white board activity facilitated a collaboration that was not evident when students 

worked side by side in groups at tables. While vertical non-permanent surfaces like 

white boards may help students engage in tasks by removing the anonymity of desk 

work (Liljedahl, 2016), they also appeared, in this study, to support collaboration, 

communication, and a sense of group community. As mathematics is seen as being 

more of a collaborative and social endeavor (Albers & Alexanderson, 2008; National 

Council of Teachers of Mathematics, 2000; Steen, 1988), there is a changing view of 

the role collaboration has on how students know and learn:  

...for those engaged in the kinds of collaborative efforts discussed by Steen, membership in 

the mathematical community is without question an important part of their mathematical 

lives. However, there is an emerging epistemological argument suggesting that 

mathematical collaboration and communication have a much more important role than 

indicated by the quotes above. According to that argument, membership in a community of 

mathematical practice is part of what constitutes mathematical thinking and knowing. 

(Schoenfeld, 2016, p. 12) 

Improvement 

While a single lesson is too narrow a focus to determine if students improved the way 

they math, it does provide a context for examining the potential for improvement. 

Given the structure and interactions of this lesson and the many similar to it that 

students experience throughout their school mathematics experience, what is the 

likelihood that students will improve in the ways they do math?  One way to examine 

this question is through Variation Theory (Marton, 2006, 2015; Marton & Tsui, 2004). 

For those who put forward Variation Theory, there are some conditions which are 

necessary for learning. If these conditions are not met, learning will not occur. Marton 

(2015) suggests that the difference between people who handle situations in more or 

less powerful ways is in how they “see” the situation. Being able to discern the critical 
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aspects of a situation allows someone to respond more powerfully than someone who 

does not. In order to learn to discern the critical aspects, he argues, the learner must be 

exposed to contrast, or variation, in those critical aspects. To what extent are the 

students in this class exposed to contrast and variation in the critical aspects of the way 

they math? For the purposes of this analysis, I will focus on comparing students who 

worked individually on the practice set with students who worked collaboratively at 

the white boards; however, much of the discussion can be extended to all the students 

working individually during the content acquisition segment of the lesson.  

In order for a student to improve at any of the actions they were engaged in during the 

lesson, they would need to be exposed first to contrast in that activity so they could 

discern a critical aspect. This opens up simultaneously a dimension of variation, and 

qualities of the aspect being discerned. For example, a student who is working 

individually is exposed to the difference between how she solves the problem and how 

her teacher solved the problem. Her goal is to emulate the teacher’s strategy and 

successfully match her answer with the answer provided in the textbook. The potential 

for improvement is provided in this case by the contrast between her work and the 

target work of the teacher and textbook. By contrast, the students working on white 

boards are exposed to more opportunity to see differences in the way other students 

think about solving the problem, how others write their solutions, and how their 

thinking is the same or different from others. These added dimensions of variation 

provide greater opportunities to discern the critical aspects of the situation and learn to 

handle the situation in more powerful ways. For the student working alone, she cannot 

contrast her way of doing math with those of her peers. She has improved when her 

solutions more consistently match the textbook and more closely resemble her 

teacher’s way of solving the problem. Working in isolation limits her ability to 

experience the variation in those critical aspects of doing mathematics that account for 

handling new situations in more powerful ways. It is possible, of course, for the student 

working individually to notice and discern the critical aspects necessary for powerful 

responses to mathematical situations; the purpose of this analysis is to describe the 

ways in which the learning environment provides the contrast and variation necessary 

for learning. It is also possible that the students working on white boards will not 

experience the variation they are exposed to. The point is that the necessary conditions 

for learning are present in that situation. While both the students working individually 

and the students working collaboratively may improve in how they math, because the 

students working collaboratively at white boards are exposed to significantly more 

contrast and variation in the critical aspects of working on the solution, the potential for 

improvement in the ways of doing mathematics that align with how mathematics 

thinking and doing have been described (Mason et al., 2010; Schoenfeld, 2016) is far 

greater. 

CONCLUSION 

I set out in this paper to identify the ways that students engage in the mathematical 

activities of the classroom, and to comment on the likelihood of students improving in 
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the ways they math, given the structure of the lesson. When students were working 

individually, either while acquiring procedural content knowledge from the teacher or 

during the time allotted for practicing those procedures, the register of mathematical 

actions was narrow. Students watched, responded to teacher prompts, and 

occasionally sought clarification from the teacher about the procedure being 

demonstrated. When students collaborated in small groups at white boards to practice 

the procedure, however, the activity of students broadened to include several 

additional actions which qualitatively changed the way those students engaged in the 

activity. These changes in the way students mathed encourage argumentation, 

generalization, the mobilization of mathematical content knowledge, the development 

of a mathematical point-of-view through a community of learners, as well as 

supporting the construction of mathematical knowledge. This is not to say that the 

students working alone do not develop these same skills and attributes; however, the 

mathing which occurred at the white boards facilitated it.  

Much of the same can be said of the likelihood of improvements in the way students 

did math. While students working alone may become aware of the dimensions of 

variation required to see their task in a way so that it creates the conditions necessary 

for learning, these conditions were not afforded them as part of the classroom 

experience. Students working at white boards were provided with the opportunity to 

see multiple dimensions of variation, including ways of thinking about and through the 

problem, ways of representing the solution, ways of negotiating meaning, and ways of 

becoming unstuck. Having these dimensions of variation opened up simultaneously, as 

a function of the way they were engaging in the mathematical activity, occasioned 

them the opportunity to improve. 
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EXPERIENCING LEARNING MATHEMATICS AND 

REFLECTION: CALCULUS 12 PARTICIPANTS’ STUDY 

Max Sterelyukhin 

Simon Fraser University 

 

This study focuses on the assessment strategy that was designed in the 2017-2018 

academic year in two Calculus 12 classes. Students’ affect was at the centre of the 

research questions thus clinical interviews were used to create data on the relationship 

with mathematics as well as personal reflections on the learning of mathematics in the 

given year and overall in students' experience in school. Grounded Theory guided the 

research approach as themes began to emerge following with the analysis and 

conclusion of usefulness of these types of questions for students to reflect upon as the 

results were surprising and pleasing from the mathematics educator point of view. 

INTRODUCTION 

Assessment in mathematics classrooms has been a very hot topic in the field lately, as 

it appears to be full of tension. There are powerful voices trying to influence the 

practice of teaching in classrooms and beyond, as there are decades-old discussions 

with unresolved problems in defining terms and explaining phenomena (Frey & 

Schmitt, 2007). There is a strong traditional pull of a system of tests and quizzes as 

historically practitioners have been exposed and graduated from such a system 

(Buhagiar, 2007; Romagnano, 2001). Furthermore, because of the strong traditional 

influence, there are instances of masking the old traditions in the innovative kind 

(Shepard, 2005). This is driven by the fact that assessment has been taken place 

primarily for the purpose of evaluation (McTighe & O'Connor, 2005). The other side 

of the argument is calling for stepping away from the evaluative nature and aligning a 

new purpose of assessment: “Classroom assessment and grading practices have the 

potential not only to measure and report learning, but also to promote it” (McTighe & 

O'Connor, 2005, p. 10). One part of the argument to change assessment has been 

feedback, as it is claimed to be most effective function for improving student learning 

(Guskey & Bailey, 2001; Wiggins, 1998). The above literature influenced an attempt 

to change assessment in 2017-2018 Calculus 12 class taught at an independent school 

in Lower Mainland of British Columbia, Canada. 

THE STUDY 

The main concern coming into the position of change was noticing of students’ 

experiences in a math class. The following graphical representation was produced to 

illustrate these experiences:  
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Figure 1: Noticing Illustration 

In Figure 1 the horizontal axis is time and vertical axis is confidence, enjoyment, or 

positive feeling. The dips correspond to an assessment, usually a test given to students. 

This pattern, once thought about for a while, makes a scary contemplation with a 

simple calculation: 5 years of high school times an average of 8 tests per course = 40 

such dips! If that pattern does teach learners something, it is definitely not a positive 

correlation with mathematics and their experience with it. With this in mind, the 

following assessment method was devised for the 2017-2018 year calling it the 

Check-Point System. The outline of the course was broken down into major topics and 

subtopics. Each subtopic became a trackable element for each student, which they 

could view at any point in time as a shared Google sheet. So, instead of a regular marks 

book, now every student had the profile with their continuous progress, as each of the 

subtopics was repeatedly assessed. Another option given to students was an interview 

at the end of each term. In this interview students could showcase that they know a 

certain subtopic better than their overall mark for it. Below is the screenshot of one 

such spreadsheet: 

Figure 2: Sample Tracking Sheet 
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By the second half of the year it was curious to see what the students thought about this 

approach and their relationship with mathematics. Situated in the Grounded Theory, 

the data was given a chance to develop into self-emerging themes prompted by the 

questions outlined below via semi-formal interviews. In what follows, I outline the 

environment and participants, method and data, and discuss emerging themes. 

ENVIRONMENT 

Two Calculus 12 classes had the implementation of the Check-Point assessment 

practice. These classes totalled 28 students in Grades 11 and 12. The school in question 

offers three levels of calculus: Calculus BC, Calculus AP, and Calculus 12. Typically, 

the latter is chosen by students who want early exposure to calculus and are planning to 

take it in their university years. Flipped classroom approach together with the 

discussion-based learning were the primary vehicles of instruction and day-to-day 

structure of these classes. Students were expected to come to class prepared to have 

watched the videos and attempted a series of questions (Sterelyukhin, 2016). 

PARTICIPANTS 

Four students were selected from the cohort of the two classes to be interviewed.  

(1) Ethan is a student who works hard in class. He was put into an accelerated program 

in Grade 8. In this program students complete Grade 8-10 mathematics curriculum in 

two years. The selection process for this includes the marks for the first three units of 

Grade 8 and teacher recommendation. The advantage of being in this cohort is staying 

one year ahead of their peers in a regular stream. This put Ethan in the position of 

already completing Pre-Calculus 12 last year. Ethan was selected because he was 

showing excellent results and participation in class. 

(2) Nancy always found mathematics challenging and had many issues with the subject 

throughout her career at the school. One way to help herself that she developed over 

the years is to pay a very close attention to examples and then mimic her work based on 

those. Nancy was taking Pre-Calculus 12 concurrently with Calculus 12. Nancy was 

chosen because she was showing excellent results, and it was particularly interesting to 

enquire about such a turnaround in her success in a mathematics class. 

(3) John has always shown great success in his mathematics classes throughout high 

school. He exhibited a natural aptitude and interest in mathematics. It looked like math 

came easy to him and he was able to construct meaning for himself to the level that 

allowed him to be very successful in every math course he took thus far. John has also 

come from the accelerated stream. John was selected because of his excellent results 

on the Check-Points and insights he was offering during class discussions. 

(4) Sam came to the school in Grade 11. She was not exposed to flipped classroom and 

discussion-based learning before. She was in the accelerated program at a different 

school with the same outcome of finishing Grade 10 math in her Grade 9 year. Sam 

was chosen because of her good results, participation and in-depth conversations about 
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learning over the course of the year. In addition, prior to the interview, Sam had written 

a summary of her 13 years of learning math. 

METHOD AND DATA 

As outlined above, these four students were chosen to conduct a semi-formal interview 

about their learning experience with mathematics as a whole and particularly this year. 

As the interest was situated in student experiences with the new implementation of the 

course, a similar study by McGregor (2018) dealt with anxiety in middle-school 

mathematics classroom and a new approach to reduce it. The questions prepared ahead 

of time were as follows, adapted from McGregor: 

(1) What does mathematics mean to you?  

(2) What does learning of mathematics mean to you?  

(3) What has changed for you this year in math? How do you feel you are different in 

and with math this year?  

(4) How are you feeling about learning math this year?  

(5) Describe feelings, emotions, associations that come to mind when you are in a math 

class. Try to reflect on the whole experience.  

Interviews took part during the school day when students either had a spare block or 

lunch period. A quiet place was found without anybody listening in or distracting. All 

the interviews were recorded, totalling in over one hour of recording time. After the 

attempt to transcribe the entire collection of recordings and running into timing 

constraints, it was decided to listen to the interviews first to see if there were any 

emerging themes from what was heard. After listening to all the recordings, five 

themes were identified that emerged from careful listening and reflecting. Then, only 

the excerpts that corresponded to these themes were transcribed. The focus was in what 

the students were saying and not the aesthetics of speech, pauses, etc. Therefore, other 

aspects of the recordings were not coded. The following five themes emerged: Math 

vs. English, Coming Back to Topics (Using Check-Points), Social Aspect (Not 

getting it but the rest did), Negative Experiences From the Past, and Enjoying 

Calculus This Year. 

Due to the constraints in the length of this paper, we only present two out of the five 

themes here. Below is the data created with the themes heading each set of 

transcriptions: 

Theme 2: Coming Back to Topics (Using Check-Points) 

(2) Nancy: 

1 T:  Do you have explanations for why particularly this year, particularly this is, do you 
feel any different, do you, like, what's...? 

2 N: I think, well, for Calc I like how I can, you give us a second chance. A lot of the time 
in most of our courses I don't get a second chance, so I'm one of those 
people if I get something wrong, I want to prove myself I can get to do 
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better. I think it's just also the way how you teach now, how I like it. But I 
think if every other course was like that, it would really help me to improve, 
which is nice. 

(3) John: 

1 T: Anything else you want to mention that you have not from what we have been talking 
about? 

2 J: Just any final statement? 

3 T: Yeah. 

4 J: Ahm, I think the Check-Points have been a big thing for me this year because, like I 
said earlier, I get time to finish it, but I think it is also nice to go over a 
concept multiple times, especially for learning purposes, I think it's great, 
cause there is a lot of times where you spend a whole month working on 
something and then you write one test on it and then it's just, it's gone, the 
concept does not re-appear until the final exam and then you, crap the bed 
on it, cause you have not seen it in forever and it's, makes it quite difficult, 
that I think that sort of approach which I think is nice about the 
Check-Point, because you see it a couple of times at least before the end of 
the year, so I think it's quite effective for the learning purposes, and also the 
marks.   

(4) Sam: 

1 S: Oh, also, another thing that I feel like I appreciated this year was the whole 
"Check-Point" method because I know that last year we talked about 
aiming for mastery, how can you preach that thing, but not actually do it, 
because when we do old system, you are not aiming for mastery, taking the 
test, done, that's it, learning something new and that's it. And with the 
Check-Point system you are learning something seeing oh, lol, ok I got this 
part wrong, I can aim for a "4" next time you try it again and again, until 
you get a "4". I like that you let us show that we can understand it. 

Theme 5: Enjoying Calculus This Year 

(1) Ethan: 

1 T: Thinking about this year in particular, has anything change for you in terms of math 
this year, or has it been all kind of the same? 

2 E: I don't know if it is necessarily cause like the accelerated program, not being in it 
now basically, being with my own peers, it definitely makes more sense 
this year, I'm able to understand it this year, the thing also is that cause 
having you as my teacher made it much more enjoyable, Pre-Calc 12 was 
my least favorite year of math. I seem to understand this stuff, and you can 
sort of picture it a bit more, compared to past years. 

(2) Nancy:  

1 N: I would say this year it's kinda the only year that I've actually really enjoyed math. 
So, which is really interesting I don't know, I find it interesting, so I do take 
Calc I guess, and Pre-Calc 12. And I take Chemistry, English, and Physics, 
but out of the like 5 courses I take, I enjoy going to math the most. It is 
interesting, it all kinda turned. No, I'm just saying that not because you are 
asking me, but over this year I kinda liked it better. I don't really know 
exactly what it means to me though, but I did really enjoy it. 
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2 N: I think... over the years I just kind of kept pushing and kept wanting to do better and 
then I've noticed if I look at my grade 11 marks to my grade 12 marks, I see 
like a huge jump in progress and so I do go to tutoring, but I actually go to 
tutoring for Pre-Calculus and I don't go for Calculus, which is also kinda 
crazy cause I'm doing better in Calc then in Pre-Calc so I find it like always 
my tutoring actually helping me and so now, where I am at in when I'm in 
math today I feel more confident, like, I can go to the board and not be 
nervous I used to find it very neur-wracking or talking even sometimes I 
still do if I don't understand a concept, but now if I get it I don't feel as 
nervous to like express my ideas.  

(3) John: 

1 T: Describe the feeling, emotions and associations that come to mind when you are in a 
math class. Try to reflect on your whole experience, not just this year, but if 
you were to think about your experience of learning mathematics as a 
student from grade 1 to now when somebody says "this is math now", what 
do you feel about it? 

2 J: Ahm, I think... In the past I had  a little of an embarrassed attitude towards it because 
I had so much pressure on myself with math in particular, I've always, math 
has always been, supposed to be, my strongest class, so the pressure was to 
perform and show that I was not less capable than my peers so I wanted to 
make sure I always was on top of, putting a little pressure in the back of my 
head, maybe I did not always follow through studying that I should have to 
maintain what I wanted, but I've always held math in great priority, 
compared, especially my other subjects,  so I think I've always put a lot of 
pressure on myself in past years. And I think this year it's been easier 
knowing that I have a math course under my belt already, with an ok mark, 
that I can submit already to university, so that's good, but this year it has 
been a lot less intense feeling.   

THEMES AND ANALYSIS 

In this section we will elaborate on the observations from the data on two of the five 

themes. It was very pleasing that these five themes emerged so clearly from nearly all 

the students interviewed as the interviews were only about 15 minutes long on average. 

Furthermore, the themes did not directly follow from the questions that were asked.  

First, we turn our attention to the Check-Point method and the opinions about it. 

Clearly, for the three students who decided to talk about it, Check-Points made a 

difference. Nancy, John and Sam all comment on the positive aspects of coming back 

to topics, being given another chance, and maximising the learning. Interestingly, that 

even though their motivations are quite different (Nancy and John are much focused on 

the marks and measure of achievement through that, and Sam is centered around 

understanding), the idea of revisiting, solidifying, getting rid of the “once and only 

once” moments has given rise to positive experience in a math class when talking 

about assessment and evaluation. From this feedback we are confident that our idea to 

make the assessment process a positive experience has succeeded and clearly is 

making a difference in not only students’ perception of mathematics class, but also in 
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their learning and how they approach it. This echoes McTighe and O'Connor (2005), 

noted previously. 

For the last theme of enjoying the class this year one can easily identify the element of 

less stress and anxiety. Students are telling us that they are more confident in their math 

learning, feeling that they know it well. They have evidence for such conclusions and 

are able to track it at all times. Also, knowing that there will be other opportunities to 

demonstrate their learning along the way decreases the value and the “now and only 

now” feeling when major assessments are happening. Assessment should create data of 

what a learner knows up to the moment of time when the assessment is taking place 

and feedback from it should prompt a learner to analyse where improvements are 

needed and to go ahead and make an appropriate change. This enables more 

opportunity for positive experiences in a math class, and thus the want to keep going, 

coming back and persevering are more likely to happen, increasing mastery and 

personal satisfaction from the learning process.   

CONCLUSION 

From what we have seen in the data, the study of personal relationship with 

mathematics and learning of mathematics appears very interesting to students. They 

are more than willing to share their experiences with the subject and are very honest 

when talking about their feelings and emotions. It is pleasing to see the themes emerge 

from such a small set of interviews, clearly indicating that there are a number of items 

to be investigated further. One factor seems to be prevailing from all of this: students 

need to be asked about their learning of mathematics, what they like, what they do not 

like, where there are positive moments and where there are negative ones. From a 

small sample of four students from a pool of 28 between the two classes it is evident 

that their relationship with the learning of mathematics is much more than just marks 

and tests.  
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AN EXTENSION OF TOULMIN’S SCHEME TO DISCUSS THE 

WAY A MATHEMATICIAN DETERMINES A CONDITIONAL 

STATEMENT IN DIFFERENT CONTEXTS 

Arezou Valadkhani 

Simon Fraser University 

 

The aim of this paper is twofold. Firstly, to explore how a successful mathematician 

determines conditional statements in different situations, namely mathematics, logic, 

and everyday context. Secondly, to extend Toulmin’s argumentation model in order to 

prepare the created data to be analysed. 

INTRODUCTION 

Regarding the role of formal logic and the necessity of learning rules of inference in 

proving and reasoning in mathematics, there are different views among researchers and 

mathematics educators. Some mathematics educators, for example Hanna and de 

Villiers (2008), and Selden and Selden (2009), argue that introducing formal logic to 

students does not necessarily build up their ability in proof construction because of the 

distinction between “proving” and “reasoning logically” as different mental activities. 

However, many other researchers, such as Epp (2003) and Hoyles and Küchemann 

(2002), have stressed the role of logic in students’ understanding of mathematical 

proof, and stated that we need to have more focus on introducing logical relations, 

especially implications. The majority of research on cognitive paradigms supports that 

reasoning skills are highly dependent on context and it is not easy to apply a rule learnt 

on a topic in another topic. See, for instance, Lehman and Nisbett (1990), and Morris 

and Nisbett (1992). 

There are many conditional statements that are conditional by logic rules, but do not 

make sense in either the realm of mathematics or colloquial language. In fact, at first 

glance, it seems there has to be some relation between the meanings of premises and 

conclusions. Lewis (1917) stressed that to prove/justify something, there has to be 

some relevance of content or meaning. Along with the work of Lewis (1917), and 

having in mind Baldwin’s (2009) distinction between “semantics” and “situation” for 

the concept of variables in algebra, I attempt to consider similar triangles with 

corresponding vertices for logic, and distinguish two types of logical meaning: formal 

meaning of symbols in a logical context and interpretation of logical statements in 

content. Baldwin (2009) added a third component to “syntax” and “semantics” in the 

discourse of mathematics (specifically for algebra), namely “situation”. He makes a 

distinction between “semantics” and “situation”, and proposes that these are two sorts 

of mathematical meaning: meaning of symbols in a mathematical context and 

interpretation of mathematical statements in the physical world. He also considered 
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“syntax”, “semantics”, and “situation” as three needed components for learning 

variables in algebra, claiming that these are essential elements of learning algebra. 

RESEARCH QUESTION 

Even though there are studies focused on the way individuals evaluate conditional 

statements, there is currently no adequate understanding of the ways individuals 

determine implications. These two problems are essentially different, as many 

mathematicians can evaluate conditionals correctly, but cannot recognize implications 

either situated in other contexts or with false assumptions, whereas the formal concept 

definition of a conditional is well understood. 

The introductory part of the current work raises this problem that a symbolic 

expression in logic may be ambiguated by situating it in either mathematics or 

everyday language, and asks how people determine a conditional statement in different 

contexts. Specifically, as the final goal of this paper, the manner in which a successful 

mathematics student determines an implication will be investigated under the 

following questions: 

How does a mathematician react to a conditional statement in different situations, 

namely classical logic, mathematics, and colloquial language? Do individuals with a 

good background in either formal logic or mathematics apply rules of inference to 

make a conclusion in daily life reasoning? 

THEORETICAL FRAMEWORK 

There might be some theories of reasoning that can account for the empirical data 

created during this research; but, since the intent of this study is not to compare the 

performance of different frameworks for a certain event, I choose the one that seems 

most suited to the questions and the created data. To analyse data that is a collection of 

arguments for making decisions about a situation, among all potential models, Philip 

Johnson-Laird’s Mental Models theory of reasoning provides the best framework 

within which to analyse how the interviewee recognizes conditional statements. 

Mental Models Theory of Reasoning 

The Mental Models theory of reasoning proposed by Johnson-Laird (1983) is one of 

the famous theories of cognition and reasoning. This theory suspects that reasoning 

involves formal operations over logical forms, and that instead of following logical 

rules during reasoning, people reason over models in which such forms are true. Such 

models are constructed in individuals’ minds, which they modify and reason from; 

these models are concrete representations of situations, rather than abstract things 

assumed in mental logic. Johnson-Laird (ibid.) stated that, when a new situation is 

encountered, the reasoner goes through the following three stages:  

1) They look at the premises and create a mental model of the possible situation 

they find themselves in. 
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2) They form a non-trivial conclusion that is based upon the premises of their 

model. 

3) They look for counterexamples to their model and conclusion. If they cannot 

find any, then they accept the conclusion. 

Toulmin’s Model of Argumentation 

Toulmin’s model is a method of reasoning introduced by Stephen Toulmin (1958) in 

his work on logic and argument. According to this model, an argument consists of at 

least three essential parts called the core of the argument (data, conclusion, and 

warrant), along with three additional, optional parts (backing, modality/qualifier, and 

rebuttal). This method can be used as a tool for developing, analysing, and categorizing 

arguments. Based on this model, the arguer starts by putting forward the data (D) and 

showing, via the warrant (W), that the conclusion (C) follows. If the warrant is not 

immediately obvious, then some justification or backing (B) for it is required. The 

qualifier (Q) gives an indication of the level of certainty contained in the argument (of 

course, in mathematics, arguments are traditionally seen as aiming to establish the full 

certainty of claims rather than a level of probability in them). The final part, the 

rebuttal (R), occurs when the conviction in the argument is non-absolute.  

Applying Toulmin’s Argumentation Scheme  

Regarding Toulmin’s model, though it adequately describes argumentation in the 

context of mathematics, in this work I found it more useful as a tool/method to 

organize some critical parts of interviews by somehow visualizing the transcription 

that helps to find patterns. But we cannot simply use Toulmin’s model for 

disagreement arguments, or those with uncertainty and no conclusion, because an 

argument for something does not have the same structure as an argument against that 

thing. In a refutation scheme, there needs to be additional parts, because to refute 

something, there is always a reason or backing. So, we may need to consider a new box 

for the “source or rebuttals”. Also, Toulmin’s scheme can provide a method to separate 

and organize parts of arguments, but we are not limited to its original structure 

introduced in the previous part.  

For example, in this paper, I picked the most important parts of the argument, 

considering the research questions, and filled the boxes with exactly what the 

interviewee said, with no changes in applied words (See Figures 1, 2, and 3 later in the 

paper). I also decided to include long pauses (at least 1.50 seconds) to Toulmin’s 

model. My reason for such changes is that hesitation pauses anticipate sudden 

increases in information or uncertainty in the message being produced, and such 

pauses will tend to occur at points of highest uncertainty in spontaneously produced 

utterances (Osgood & Sebeok, 1954/1965). Also, research by Grosjean and 

Deschamps (1975) shows that the more complex the communicative task, the greater 

the number of pauses. Although I made a few changes in applying Toulmin’s scheme, 

we can still add some other factors to have a better view of the argument, such as using 

symbols to indicate intonation and falling/raising voice pitches, and so on.  
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TASK AND METHODOLOGY 

In the current study, to have a closer observation and more accurate response to the 

questions that this work is set out to answer, I conducted semi-structured clinical 

interviews (Cohen et al., 2000) as my method to create data. The interviews were 

structured in three phases. In the first phase, I examined the participant’s information 

about implications in both colloquial and mathematical contexts. In the second phase, I 

saw how they determined conditionals in different situations. And finally, in the third 

phase, which began after about 10 minutes break, I selected some of the interviewee’s 

responses to elucidate the underlying process, and asked them some general questions 

about the second task. 

Phase 1, Discovery 

This phase examined the interviewee’s knowledge about conditionals in the three 

different realms of classical logic, mathematics, and everyday language.  

Phase 2, Identification 

In this phase, the following questions were designed in the realms of mathematics and 

everyday language; for some of them, there are no rational relationships between 

premises and conclusions. The following table classifies the designed tasks and 

represents the applied pattern, ensuring that they are consistent with the research 

questions, and that all possibilities are considered in almost the same weight.  

 Colloquial Mathematics 

Related If you pay 10$, you will have my pen. 

 

If you will be late for meeting, then you will be fired. 

If a population consists of 40% 

men then 60% of the population 

must be women.  

If (x - 2) (x + 1) = 0, then x = 2 or x 

= -1.  

 

If ABC is a triangle, then A + B + C 

= 180o.  

Unrelated If elephants could fly then you win the lottery.  

 

If you buy a fresh fish tonight, then Bill Gates meets 

Aamir Khan. 

If x + 1 = 0, then z = 5. 

 

In triangle ABC we have A + B + C 

= 180o, then the area of a circle is 

pi times the radius squared (π r²).  

 

If 4X2 - 5X – 6 = 0, then sin θ = 

0.546.  
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Unknown If sun erupts from an active region called AR 2673, 

then there will be loops of plasma tens of times the 

size of the Earth. 

 

If A is a Banach algebra, then for 

every Banach A-bimodule X, H (A, 

X’) = 0.  

If cos θ = 0.81 , then θ = 2  ±   

False 

Table 1: Designed tasks for phase 2 of interview 

Phase 3 

In the final phase of the interview, the interviewee was asked to determine conditional 

statements in the context of math and colloquial language. However, nothing was 

presupposed and, based on their responses, I would decide about the next questions.  

In order to see how the interviewee’s knowledge assisted or misled him in doing such 

tasks, I picked participants from people with a good background in first order logic and 

solid knowledge in mathematical reasoning. Also, in order to find the pattern of the 

interviewee’s thinking model while performing the task, I applied Toulmin’s model as 

a tool to prepare data for analysis. So, it is essentially different from the applied method 

to create data, and not used as a framework; it only provides a mediation between 

transcription and data analysis. 

DATA ANALYSIS 

All thirteen statements in the second task are conditionals and the interviewee 

recognized them correctly, with the exception of five. After decoding the statements, it 

emerged that all five incorrect answers pertained to the second row of Table 1, where 

there are no rational relationships between premises and conclusions. The interviewee 

evaluated that three of these five statements, all of which are in the realm of 

mathematics, are not conditional. And for the two other statements in colloquial 

language (stated below), he preferred to not give any answer. It is also worth noticing 

that the whole interview for the second task lasted about 22 minutes, and that we spent 

approximately 7 minutes for the two following statements: 

• If you buy a fresh fish tonight, then Bill Gates meets Aamir Khan. 

• If elephants could fly then you win the lottery. 

Although these two assertions are clearly in colloquial language, the interviewee 

explicitly looked at them from two different views, mathematics and daily language. 

The following is an excerpt from the first item: 

Interviewee: If you buy a fresh fish tonight, then Bill Gates meets Aamir Khan [6 sec]. Yes. 
It doesn’t make sense but it is a conditional ↓. 

Interviewer: Can you say why? 

Interviewee: If-then. If you buy something, then [stressed], something happens, though 
they are not very related but, errr, it is a conditional, though meaningless.  

Interviewer: So, what is this?  
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Interviewee: Only an idiot would say that [laugh]. (6sec) In fact, mathematically, it’s not 
a conditional but in daily language we take it as a conditional. 

Interviewer: So, is it A conditional or not?? 

Interviewee: With regards to math or daily language? Actually in mathematics, it’s not a 
conditional but for daily language it is ↓.  

Interviewer: So? 

Interviewee: With regards to math it’s not, but as a sentence it is. Almost↓.  

The following is a part of our discussion on the first above statement that is coded 

using Toulmin’s model. The boxes through the main line stand for “conclusions”, 

above the main line represent “rebuttals”, and below the line indicate “warrants”. Also, 

each rebuttal  and warrant can be justified by a “backup”. The number of conclusions 

and pauses shows the interviewee’s uncertainty to decide about this statement. 

 

Figure 1 

Then I asked him to elucidate his response, and he argued as follows: 

Figure 2 

The following is an excerpt from the second selected statement coded by Toulmin’s 

model: 
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Figure 3 

The interviewee’s perception of a conditional may be shaped by his knowledge and 

pragmatics. They may add their information to the statement, then decide if it is a 

conditional or not. If there is a mental model for something, it may influence the way of 

arguing. Regarding this interviewee, to see each assertion is an implication, he has his 

own mental model. The mental model posed by the interviewee is indicated in the 

schemes coded using Toulmin’s model. He first was looking for an if-then pattern, and 

then relatedness put the end on his decision. He argued that those with unrelated parts 

are not conditional statements, even if they are in if-then form. Long pauses and the 

frequency of different conclusions on the main line of the scheme may represent that 

the interviewee could not decide about the answer. 

He also stressed that, in mathematics, the above statements are not conditional, but in 

colloquial language they might be. As it is clearly indicated in his model of 

argumentation, different situations of mathematics and colloquial language explicitly 

influence his decision. The interviewee gave more credit to situated meanings than 

semantics. In fact, he did not consider any of the assertions as statements in formal 

logic. And, in some cases, his mathematics view conflicts with daily language  
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TENSIONS BETWEEN THE VIEWS ON WRITTEN AND ORAL 

ASSESSMENTS IN MATHEMATICS, AND MATHEMATICS 

ASSESSMENT PRACTICE 

Milica Videnovic 

Simon Fraser University 

 

In this paper, seven mathematics professors share their views and experiences with 

teaching and studying mathematics in oral and non-oral assessment cultures. These 

participants come from Bosnia, Poland, Romania, Ukraine, Canada, the United 

States, and Germany. The results show that schooling and teaching experience as well 

as the lack of schooling and teaching experience with oral assessments in 

mathematics, institutionalized mathematics assessment norms, and socio-cultural 

assessment norms can influence views on oral assessment in mathematics. 

INTRODUCTION 

A large amount of research on teachers’ beliefs focuses on beliefs about mathematics, 

mathematics teaching, and mathematics learning (Beswick, 2007; Cross, 2009; Ernest, 

1989; Handal, 2003; Liljedahl, 2009; Maasz & Schlöglmann, 2009; Philipp, 2007; 

Raymond, 1997; Stipek, Givvin, Salmon, & MacGyvers, 2001; Thompson, 1992; 

Žalská, 2012). However, in the most recent review of assessment in mathematics 

education, there was almost no research on students’ and teachers’ beliefs about 

assessment in mathematics (Suurtamm et al., 2016). Although there were numerous 

papers written about the inconsistency between teachers' beliefs and teachers' practice, 

I found no research studies on teachers' beliefs and teachers' practice from an oral 

assessment perspective. Most of this research showed that there is a difference between 

teachers' espoused beliefs and their actual classroom practice (c.f. Vacc & Bright, 

1999; Wilson & Cooney, 2002). In addition, there was a large amount of research that 

indicated the disjunction between teachers' intentions of practice and their actual 

practice (Cooney, 1985; Karaağaç & Threlfall, 2004; Noyes, 2004; Skott, 2001). 

According to Skott (2015), beliefs are “results of substantial social experiences” (p. 

19). Richardson (1996) describes three categories of experience that can influence 

beliefs about teaching: personal experiences, experiences with schooling and 

instruction, and experiences with formal knowledge. Also, Raymond (1997) describes 

different factors which can influence the teachers’ beliefs about mathematics: the 

central reciprocal relationship between beliefs and practice, past school experiences, 

immediate classroom situations (students’ abilities, attitudes, and behavior; time 

constraints; the mathematics topic at hand), personality traits of the teacher, and 

teachers’ educational programs where they were trained. In this study, I looked at the 

relationship between mathematics professors’ views on oral and written mathematics 
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assessment and their mathematics assessment practice in oral and non-oral assessment 

cultures — where non-oral assessment culture is defined as a culture in which oral 

assessment in mathematics is not part of the system of education while an oral 

assessment culture is one where oral assessment is an important part of assessment 

practice in mathematics. 

Oral Examination in Mathematics 

In most of the cases, students would have to take a written exam first, and then after 

passing the written exam, they would go to the next stage, which would be taking an 

oral exam. During the oral exam, students would have access to a blackboard, paper, 

and pen. The exam would be conducted by the course instructor, and each oral exam 

session could last anywhere from 30 minutes to 1 hour. Occasionally during the oral 

exam, three or four students would be invited at the same time. The instructor would 

have prepared in advance a set of cards with questions of approximately equal 

difficulty, so a student would step in, randomly draw a card from the set of cards, and 

then, he/she would take scrap paper and go back to his/her desk and start working on 

the chosen question. After some time working on the question, each student, one by 

one, would go up to the board and present his/her answer to the instructor. In addition, 

the teaching assistant would be in the same room, monitoring students and taking the 

protocol. During the oral exams, usually students would be able to receive some help if 

needed and would receive a grade immediately following the exam. A typical card 

would have one theoretical question (for example, ‘prove the fundamental theorem of 

calculus’) and one exercise (for example, ‘calculate the integral’: ).  

Research Questions 

The main research question of this study is: “What factors influence mathematics 

professors’ views on oral assessment in mathematics?” More specifically, this primary 

question breaks into the set of following questions: 

a) What are mathematics professors’ views on written assessment in mathematics? 

b) What are mathematics professors’ views on oral assessment in mathematics? 

c) What are mathematics professors’ views on their mathematics assessment 

practice? 

METHODOLOGY 

The research design for this study is descriptive/qualitative. Seven participants were 

interviewed using open-ended questions to gather information about their personal 

experiences and perspectives on using written and oral assessments in mathematics 

classrooms. These participants were selected based on the following criteria: each 

participant had been exposed to oral assessment either as a student, teacher, and/or 

professor. In terms of recruitment, I used a methodology of snowballing, wherein I 

started with mathematicians whom I knew professionally, and then asked them to 

recommend others in the mathematics department or elsewhere, whom they suspected 
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may have a history of experiencing or using oral assessment. Seven mathematics 

professors were selected for interviews, and their pseudonyms are: Melissa, Elisabeth, 

Van, Nora, Dave, James, and Jane. Melissa, Elisabeth, Van, and Nora, who were born 

and educated in Poland, Romania, Bosnia, and Ukraine, respectively, are currently 

teaching at a Canadian university, while Dave, James, and Jane, who were born and 

educated in Canada, Germany, and the United States, respectively, are currently 

teaching at a university in Germany. With respect to familiarity with oral assessment, 

Van, Melissa, Nora, and Elisabeth had been previously exposed to oral examinations in 

mathematics prior to moving to Canada while Dave and Jane, who were educated in 

Canada and the United States, had never been exposed to oral examinations in 

mathematics prior to moving to Germany. James was born and educated in Germany, 

and thus, he has had a lot of exposure to oral assessment in mathematics. The audio 

recordings of interviews were transcribed, and transcriptions were used for data 

analysis. 

RESULTS 

The participants’ views on written and oral assessments in mathematics, and 

mathematics assessment practice in oral and non-oral assessment cultures are 

presented in Figure 1. 

 

Figure 1: Mathematics professors’ views on written and oral assessments in 

mathematics, and mathematics assessment practice in oral and non-oral assessment 

cultures 
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W = Views on written assessments in mathematics 

What are the mathematics professors’ views on written assessment in 

mathematics? 

When it comes to the participants’ views on written assessments in mathematics, they 

can be divided between positive and negative views. Based on the positive views, 

written assessments in mathematics: allow the relation only between the student and 

the subject of mathematics that is being assessed; provide a written record of student’s 

performance; allow the asking of deep-probing questions; provide an opportunity to 

answer questions in order of student’s preference. On the other hand, based on the 

negative views, written assessments in mathematics: do not prevent plagiarism; do not 

provide an opportunity to redeem; cause students to feel anxious when they are taking 

exams in large class sizes. 

O = Views on oral assessments in mathematics 

What are the mathematics professors’ views on oral assessment in mathematics? 

When it comes to the participants’ views on oral assessments in mathematics, they can 

also be divided between positive and negative views. Based on the positive views, oral 

assessments in mathematics: are reactive to students’ needs in terms of they provide an 

opportunity for discussion, follow up questions, and instant feedback; 

reaffirm/improve students’ grades; better assess students’ understanding and 

knowledge of the concept; prevent plagiarism; provide an opportunity for students to 

assess themselves by listening their classmates; can assess students’ thinking; provide 

an opportunity to redeem; allow differentiated assessment; provide an opportunity to 

adapt the level of questions to each student’s level of response. On the other hand, 

based on the negative views, oral assessments in mathematics: can make students feel 

intimidated or discriminated by the examiner; can make students feel anxious when 

they need to present the material; are less fair than written. 

P = Views on mathematics assessment practice 

What are the mathematics professors’ views on their mathematics assessment 

practice? 

The participants’ views on their mathematics assessment practice are mostly based on 

their prior schooling and teaching experience, school culture, and study program 

within the assessment culture. For participants who are teaching in non-oral 

assessment cultures, their current assessment practices in mathematics are not aligned 

with their personal views of mathematics assessment, due to constraints of the 

university context that exist within non-oral assessment cultures. On the other hand, 

for the participants who are teaching in oral assessment cultures, their current 

assessment practices in mathematics are aligned with their personal views of 

mathematics assessment, due to flexibilities of the university context that exist within 

oral assessment cultures. 
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W∩O = Tensions between views on written and oral assessments in mathematics 

Based on the participants’ responses, there are some tensions when it comes to views 

of the participants who were educated in oral assessment cultures versus the 

participants who were educated in non-oral assessment cultures. Therefore, five 

participants, who had been previously exposed to oral assessments in mathematics, 

agreed that written exams can mostly assess procedural knowledge and instrumental 

understanding while oral exams can better assess conceptual knowledge and relational 

understanding. The other two participants, who had never been previously exposed to 

oral assessments in mathematics through their prior schooling, agreed that written 

exams solely can assess both procedural knowledge and instrumental understanding, 

and conceptual knowledge and relational understanding. For these two participants, 

Jane and Dave, time is essential for choosing the most suitable mathematical questions 

for the exam. They both relate conceptual types of mathematical questions to the 

questions that would take more time to think about, and thus, they can be only 

answered through written exams. Accordingly, Jane and Dave consider procedural 

types of questions in mathematics to be questions that can be answered quickly, and 

thus, only these types of questions can be assessed orally. On the other hand, the other 

five participants think completely opposite to these two, so that conceptual 

mathematical questions can only be assessed through oral exams while procedural 

mathematical questions through written exams. 

In addition, there is also a tension in participants’ views when it comes to anxiety and 

fairness in oral and written assessments in mathematics. Based on their responses, it is 

still not quite clear which type of exam, oral or written, could cause more or less 

anxiety among students nor which of these two types of exams can be considered to be 

more or less fair in comparison to each other. 

W∩P = Tensions in views on mathematics assessment practice in written (non-oral) 

assessment cultures 

When it comes to tensions in the participants’ mathematics assessment practice in 

written (non-oral) assessment cultures, these participants face many constraints within 

their assessment practice and teaching of mathematics, such as: issue of time to 

administer oral exams; students’ expectations and behaviors; institutional and 

mathematics department beliefs; school cost; professors’ teaching evaluations; the 

adopted mathematics curriculum and mathematics textbooks. 

O∩P = Tensions in views on mathematics assessment practice in oral assessment 

cultures 

When it comes to participants’ mathematics assessment practice in oral assessment 

cultures, these participants are given the opportunity to teach and assess mathematics 

in correspondence with their own personal beliefs. On the other hand, the data shows 

that non-evidential beliefs (Green, 1971) can affect views on oral assessments in 

mathematics. Thus, based on the data, there are tensions pertaining to oral assessments 

in that there is no written record of students’ work to be shown during an oral 
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examination and a lack of time to administer oral exams. Five participants, who had 

been previously exposed to oral assessments in mathematics, agreed that there is a 

written record of students’ work during the oral exams as each student would have a 

scrap of paper with their written work on it, which would be collected by the examiner. 

On the other hand, the other two participants, who had never been exposed to oral 

assessments in mathematics, both agreed that there is no written record of students’ 

work during oral exams. 

In terms of lacking time to administer oral exams, the participants believe that because 

of large class sizes in their mathematics courses, they would not be able to find the time 

to administer oral exams. But there is no strong evidence that shows if the number of 

students could be a main factor for administrating oral exams in mathematics based on 

the comparison of the participants’ average mathematics class sizes that they are 

currently teaching and average mathematics class sizes during their undergraduate 

studies and prior teaching. These numbers are very similar. 

W∩O∩P = Tensions between views on written and oral assessments in mathematics, 

and mathematics assessment practice 

What factors influence mathematics professors’ views on oral assessment in 

mathematics? 

There are certain factors that influence the participants’ views on oral assessments in 

mathematics. The key reasons for the participants’ views of oral assessments in 

mathematics are based on their own prior schooling and teaching experience. 

Moreover, some participants face many constraints within their teaching institution 

and mathematics department, which affect their current mathematics assessment 

practice. Also, the participants’ assessment practice and their views are certainly 

influenced by the social context of their current assessment culture. Therefore, the 

following factors influence mathematics professors’ views on oral assessment in 

mathematics:  

• Their schooling and teaching experience with oral assessments in 

mathematics (evidential views). 

• Their lack of schooling and teaching experience with oral assessments in 

mathematics (non-evidential views). 

• The institutionalized mathematics assessment norms (the adopted 

mathematics assessment practice by the teaching institution and mathematics 

department). 

• The socio-cultural assessment norms (the adopted mathematics assessment 

practice in oral and non-oral assessment cultures). 

DISCUSSION AND CONCLUSION 

The participants’ views of the nature of mathematics assessment and their impact on 

mathematics assessment practice within oral and non-oral assessment cultures, 

introduces some aspects of oral assessment from the mathematics professor’s 
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perspective which can potentially enlighten readers’ views on written assessment 

limitations. This study has implications for at least five aspects of educational practice: 

the incorporation of oral assessment into mathematics curricula; the design of oral 

assessment items; the preparation of students and teachers for oral assessment in 

mathematics; the implementation of oral assessment in teacher mathematics education 

programs; and to serve as a guide to anyone who is about to experience the transition 

within their teaching of mathematics in moving from an oral assessment culture to a 

non-oral assessment culture and vice versa. 
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