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8:40 – 8:55 Welcome and Coffee 
EDB 7600 EDB 7610 

9:00 – 9:35 

Chanakya Wijeratne 
Paradoxes of Infinity – The Case of 

Ken 

Oi-Lam Ng 
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Thinking? 
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Darien Allan 

Gaming: Explaining Student 
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George Ekol 
Examining Constructs Of Statistical 
Variability With A Semiotic Lens 

11:00 – 12:00 Plenary Speaker: Lulu Healy 
12:00 – 12:15 Plenary Q & A 
12:15 – 1:15 Lunch: In Situ 

1:15 – 1:50 

Natasa Sirotic 
Secondary Mathematics Teachers 
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Equations  

Sean Chorney 
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Arda Cimen 
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Basic Concepts Of Elementary 
Number Theory 

Minnie Liu 
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Problem Simulated In Virtual 
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Harpreet Kaur 
Effect Of Dynamic Geometry On 
Children’s Performance In Angle 

Comparison Tasks 

3:05 – 3:20 Break 

3:20 – 3:55 
Veda Roodal Persad 

Mathematics As Desire: The Life Of 
André Weil 

Mina Sedaghat Jou 
Numbers On Fingers 

3:55 – 4:30 
Lyla Alsalim 

Perspectives On The Saudi General 
Aptitude Test 

Kevin Wells 
Teacher Judgements In The 

Classroom: What Is It We Attend To? 
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PLENARY SESSION 

 
Mathematical Cognition and embodied experience: Learning from students with 

disabilities 
Lulu Healy 

This contribution explores the role of the body’s senses in the constitution of mathematical 
practice. It examines the mathematics activities of learners with disabilities, with the idea 
being that by identifying the differences and similarities in the practices of those whose 
knowledge of the world is mediated through different sensory channels, we might not only 
become better able to respond to their particular needs, but also build more robust 
understandings of the relationships between experience and cognition more generally. To 
focus on connections between perceptual activities, material and semiotic resources and 
mathematical meanings, the discussion concentrates on the mathematical practices of 
learners who see with their hands or who speak with their hands. This discussion centres 
around two examples from our research with blind learners and deaf learners and, in 
particular, analyses the multiple roles played by their hands in mathematical activities. 
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ABSTRACTS 
 

Gaming: Explaining student behaviour? 
Darien Allan 

The goal of this review is to explore the varying usage of the idea of gaming as student 
behaviour. This paper briefly describes the concept of game theory, and investigates the 
appearance of ‘gaming’ in educational and popular literature. Rather than the formal 
definition in game theory, a more holistic, general use of the term ‘gaming’ is proposed 
in order to describe and explain student behaviour. 

 
Perspectives on the Saudi General Aptitude Test 

Lyla Alsalim 
The General Aptitude Test (GAT) is a standardized test designed to be used as 
an admissions tool by colleges and universities in Saudi Arabia. Since its establishment, 
the debate about the GAT has been growing. Different viewpoints and perspectives on the 
issue have resulted in conflicting opinions, some supporting the test and believing in its 
value and others opposing it. The purpose of this paper is to explore the perspectives of 
different stakeholders about issues related to the GAT in order to highlight any disparities 
and similarities in perceptions and how these differences and/or similarities affect the way 
in which the GAT is being applied. The paper highlights the key themes gathered from 
interviews. 
 

Use Of Phenomenology Theory Perspective In The Analysis Of Professional  
Development Sessions: Teachers Engagement And Use Of Resources. 

Melania Alvarez (No presentation) 
This research paper considers how Phenomenology Theory can be used to explain the 
factors that affect teachers’ engagement throughout a professional development 
experience and what are the factors that are more likely to contribute to sustained 
engagement in acquiring new knowledge and pedagogical skills. 

 
Intra-Action of Agents in a Geometric Activity 

Sean Chorney 
In an attempt to understand the intra-actions and, consequent, co-constitution of student, 
mathematics, and digital tool, this research report adopts a post humanist stance 
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decentring the gaze of observation from the student to the integration of each component 
listed above.  Using the construct of agency as a method of understanding this relation 
between parts, this paper addresses the intra-acting agencies of an exploratory activity of 
grade 9 students engaging in geometrical activities both digitally and using paper and 
pencil. 
 

Qualitative Learner Profiling: Using Basic Concepts of Elementary Number 
Theory 

Arda Cimen 
The objective of this study is to look in depth into personal factors affecting metacognitive 
monitoring and control in self-regulated study and restudy of basic concepts of elementary 
number theory. By incorporating a wide spectrum of observational methods such as 
behavioural and physiological, and self-reporting techniques and demographics of the 
participants, I aim gaining deeper insights into personal factors implicated in learners 
studying a mathematical text. My ultimate objective is to provide “learner profiles” with 
the help of these qualitative tools that can be used to better inform assessment and tailor 
instructional design in mathematics education. 
 

Examining Constructs of Statistical Variability with a Semiotic Lens. 
George Ekol 

This paper aims at shedding light on how students represent notions of statistical 
variability in a dynamic computer-based learning environment. Taking a Vygotskian 
perspective, I explored students’ understanding of variability as expressed through spoken 
word, gestures, drawings and inscriptions. Participants interacted with dynamic 
mathematics sketches that I designed in order to make more explicit the notion of 
variability and analyzed their emerging understandings. Based on the analysis of the 
changes in their multimodal communication, I argue that the use of dynamic mathematics 
environments can help promote a more physical and temporal understanding of statistical 
variability. 
 
Interplay Between Concept Image & Concept Definition: Definition Of Continuity 

Gaya Jayakody 
This study looks at the interplay between the concept image and concept definition when 
students are given a task that requires direct application of the definition of continuity of 
a function at a point. Data was collected from 37 first year university students. It was 
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found that different students apply the definition to different levels, which varied from 
formal deductions (based on the application of the definition) to intuitive responses (based 
on rather loose and incomplete notions in their concept image). 

 
What Are We Sure About? What Do They Tell About Our Probabilistic Thinking? 

Simin Jolfaee 
In this study the prospective teachers’ understanding of 100% probabilities is studied 
through their examples of such events. Watson and Mason’s Learner Generated Examples 
(LGE) theory is employed to justify the type of data used in this study and to emphasize 
the importance of examples in learning about different levels of the learners’ probabilistic 
thinking. 

 
Effect of Dynamic Geometry on Children’s Performance in Angle Comparison 

Tasks 
Harpreet Kaur 

This paper examines the effect of the use of dynamic geometry environments on children’s 
thinking about angle. Using a driving angle model in Sketchpad, kindergarten children 
were able to develop an understanding of angle as “turn,” that is, of angle as describing 
an amount of turn. After the classroom lessons with dynamic sketches, students were 
interviewed on various angle comparison tasks. It emerged out that gestures and motion 
played an important role in their developing conceptions of angles as well as in their 
decision making on angle comparison tasks. 

 
Model-Eliciting Activities and Numeracy Tasks: A Comparison 

Minnie Liu 
Literature has shown that models and model-eliciting activities are important aspects in 
the learning of mathematics and a powerful tool in promoting students’ higher order 
thinking.  On the other hand, numeracy and numeracy tasks are vaguely defined and are 
not fully recognized as useful tools to promote students’ higher order thinking.  In this 
paper, I examine the similarities and differences between model-eliciting activities and 
numeracy tasks, and examine the possibility to integrate numeracy tasks into the 
curriculum. 
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Gestures and Temporality: Children’s Use of Gestures On Spatial Transformation 
Tasks 

Oi-Lam Ng 
This paper discusses findings from a task-based interview with 5 elementary school 
children working on a spatial transformation task. The paper focuses on children’s gestural 
and verbal communication when engaging in the task.  Findings suggest that children use 
gestures as multi-modal resources to communicate temporal relationships about spatial 
transformations. Although research has shed light on the use of gestures to represent 
functions deictically, iconically and metaphorically, this work has not addressed aspects 
of temporality and the dynamic nature of gestures. This paper raises questions for further 
research in the area of gestures and communication to address the temporal aspects of 
mathematics. 

 
Mathematics as Desire: The Life of André Weil 

Veda Roodal Persad 
When mathematicians write about their involvement with mathematics, what lies beneath? 
What do such accounts tell us about the nature of the discipline and the attendant demands, 
costs, and rewards? Working from the autobiography of the French mathematician, André 
Weil (1906-1998), and using the Lacanian notion of desire, I examine the forces that shape 
and influence engagement with mathematics. I contend that, at an elemental level of 
human development, these forces turn on the notion of subjectivity and the forms of 
desire.  

 
Numbers on Fingers 

Mina Sedaghat Jou 
This paper describes TouchCount application (designed for iPad) and its two Counting 
and Adding world. We also explore how a five-year child (Kindergarten) builds meaning 
through communicative-touch based activity involving talk, gesture and body 
engagement. The main goal of this paper is to show the impact of touch-based interactions 
on the development of children’s perception and motor aspects of ordinality and 
cardinality of numbers. In this case study, we found a strong value of mathematics 
embodiment in emergent expertise in producing and transforming numbers, which can be 
supported with the Perceptuomotor integration approach. 
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Bringing ‘Reality’ into Calculus Classrooms: Mathematizing a Problem Simulated 
in a Virtual Environment 

Olga V. Shipulina 
The study explores how students, who had completed the AP calculus course, 
mathematized the optimal navigation real-life problem simulated in the Virtual 
Environment (VE). The particular research interest was to investigate the factors 
determining the ways of students’ horizontal and vertical mathematizing, including the 
role of their empirical activity in VE and the role of intuition. It was found that empirical 
knowledge prevails over intuitions and that horizontal mathematizing is fully grounded 
on empirical activity. 

 
Secondary Mathematics Teachers Tinkering about how to Teach Radical 

Equations  
Natasa Sirotic 

This report presents findings from a collaborative teaching experience on the topic of 
solving radical equations in a Grade 11 mathematics classroom. An in-service 
professional development process was employed in a K-12 suburban school over an 
extended period of time in which teachers created, implemented, and reflected upon their 
mathematics lessons in the traditions of “community of inquiry” and “lesson study”. 
Teachers’ discourse during the phases of planning for instruction and reflecting upon the 
teaching experience were analysed with respect to what teachers notice about students’ 
mathematical thinking. Through the process, the teachers became attuned to critically 
examine their practice and how it affected what students are doing, thinking, and 
understanding.  
 

Teacher Judgements in The Classroom: What is it We Attend To? 
Kevin Wells 

When meeting a group of students for the first time teachers can often make judgements, 
wittingly or not, about the students’ ability. In this paper I will examine some possible 
clues teachers attend to which may be enabling them to make this judgement. In this 
instance I am considering the feedback a teacher receives from observing a group of 
students problem solving. I show that certain features of the dialogue, along with the body 
language of the students, can offer clues as to the level of understanding the students have 
regarding the material. Using tools of Conversation Analysis and an analysis of gesture, I 
show that certain features are recognizable amongst students that are successful in their 
problem solving, and suggest that the experienced teacher may develop a subconscious 
recognition of such traits. 
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Paradoxes of Infinity – The Case of Ken 
Chanakya  Wijeratne 

Previous studies have shown that the normative solutions of the Ping-Pong Ball 
Conundrum and the Ping-Pong Ball Variation are difficult to understand even for learners 
with advanced mathematical background such as doctoral students in mathematics.  This 
study examines whether this difficulty is due to the way they are set in everyday life 
experiences. Some variations of the Ping-Pong Ball Conundrum and the Ping-Pong Ball 
Variation and their abstract versions set in the set theoretic language without any reference 
to everyday life experiences were given to a doctoral student in mathematics. Data 
collected suggest that the abstract versions can help learners see beyond the metaphorical 
language of the paradoxes. The main contribution of this study is to reveal the possible 
negative effect of the metaphorical language of the paradoxes of infinity on the 
understanding of the learner. 
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GAMING: EXPLAINING STUDENT BEHAVIOUR? 
Darien Allan 

Simon Fraser University 
 
Studenting is defined as what students do while in a learning situation. A subset of 
studenting behaviours, that I call gaming behaviours, subverts the intentions of the 
teacher. This paper introduces the notion of gaming as a subset of studenting, describes 
the behaviours categorized as gaming, and argues for the further study of these actions 
together with an investigation of the student goals that coincide with gaming behaviour. 
Keywords: Studenting, gaming, goals, behaviour 
INTRODUCTION 
Anyone who has been a student knows that students often display behaviours that are not 
conducive to learning, and sometimes detrimental to learning. Some of these actions are 
intentional and conscious, while others arise from a non-conscious level. The classroom 
is rife with examples of non-learning types of behaviours. During group work, some 
students may sit back and wait for others to do the majority of the work. In a lesson, often 
students sit back and wait for the ‘keeners’ to answer the teacher’s questions, or wait for 
the teacher to answer them. Students figure out how to get around policies and rules 
regarding homework, attendance, and tests, to name just a few, in order to minimize their 
efforts and either maximize achievement (reward) or minimize censure or discipline. 
Students learn very quickly how to ‘get away’ with doing less work and how the teacher’s 
rules can be manipulated. 
The following transcript is taken from an informal discussion with a group of senior high 
school mathematics students. They were asked discuss their behaviours regarding school 
and dealing with teachers. 

N:  You learn how to read the teacher, which is really bad because you learn 
like their weaknesses.  Teachers do that to us too. 

A:  With some teachers there’s no way out of it, so you prioritize that class, 
study for that first, and then, the teachers who are a little more lenient 
then you can probably take those ones off, if everything’s coming 
together on one day, study for the one who’s not going to let you off. 

M:  Also, what I’ve seen or heard of is to turn on the emotions; crying, or you 
come to the teacher really angry. 

S:  Or for teachers that aren’t very emotional you can just be really technical 
about it I guess – like I had this, this, and this, and I really tried hard. 
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M:  Sometimes, like genuine disappointment… 
S:  Genuine emotion, but we show it differently to different teachers. 
N:  You exaggerate. 

School is very much a terrain that students navigate. For most students, some of the time, 
learning is accomplished as they traverse the school landscape. However, a significant 
part of students’ lives is spent occupied with activities that don’t result in learning. These 
activities, a subset of the corpus of behaviours that comprise studenting, are the focus of 
this paper and will be discussed in more detail below. 
STUDENTING 
The term studenting was first used by Gary Fenstermacher (1986). He describes this 
concept as a parallel to that of teaching.  

Without students, we would not have the concept of teacher; without teachers, we 
would not have the concept of student. Here is a balanced ontologically dependent pair, 
coherently parallel to looking and finding, racing and winning…there is much more to 
studenting than learning how to learn. In the school setting, studenting includes getting 
along with one’s teachers, coping with one’s peers, dealing with one’s parents about 
begin a student, and handling the non-academic aspects of school life. (p. 39) 

Fenstermacher essentially describes studenting as what students do to help themselves 
learn. He explains that these student activities include recitation, practice, seeking help, 
reviewing, checking, locating sources and accessing material, among others but his 
definition goes beyond the activities and tasks that the student performs in order to learn. 
In 1994 he expanded this definition to include behaviours that students exhibit in learning 
situations that do not help them learn.  

The student becomes proficient in doing the kinds of things that students do, such as 
‘psyching out’ teachers, figuring out how to get certain grades, ‘beating the system’, 
dealing with boredom so that it is not obvious to teachers, negotiating the best deals on 
reading and writing assignments, threading the right line between curricular and extra-
curricular activities, and determining what is likely to be on the test and what is not. 
(p.1) 

There is a noticeable shift from the primary goal of student learning to the non-academic 
aspects of studenting. In this later definition much of the work of studenting consists of 
‘beating the system’. These non-academic features, as well as the academic aspects of 
student behaviour can be found in several contemporary theories. 
The notion of studenting has strong links to the didactic contract, classroom norms, 
behavioural economics, and game theory, all of which have been used to explain student 
behaviours in the classroom. Brousseau (1997) explains student behaviour in relation to 
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an implicit didactic contract, negotiated between teacher and student, but confined to 
behaviours relating to the student’s learning of mathematics and neglects those behaviours 
not related to learning. The concepts of classroom norms and sociomathematical norms 
(Cobb, Wood, & Yackel, 1991; Yackel & Cobb, 1996) were introduced as constructs for 
understanding the socially constructed aspects of student behaviour within the classroom. 
These focus on collective behaviour (rather than individual) and mathematical aspects 
relating to classroom discourse. Concepts in behavioural economics such as minimisation 
of effort or economy of action, bounded rationality (Simon, 1955), hyperbolic discounting 
and present bias, loss aversion, risk aversion, and context and persistent error can be 
applied to explain what may seem to be irrational student behaviours. Research related to 
game theory involves the role of performance goals when students ‘game the system’ 
(Baker, Roll, Corbett, & Koedinger, 2005), the behaviours and related consequences when 
students engage in ‘playing the game’ or ‘playing the system’ (Dryden, 1995), and 
students’ behaviour in response to inventive grading systems (Newfields, 2007). 
Although none of the above research uses the term studenting, it does appear infrequently 
in the literature, though the research tends to be limited to only some aspects of studenting, 
and then only within particular situations. For example, the term appears in the 
dissertations of two doctoral students, Wendy Aaron and Simona Goldin, at the University 
of Michigan. Goldin (2011) explores the work of students from a historical and 
sociological perspective but limits her study to the teachers’ perspectives of studenting, 
with respect to the nature of student work, the politics of studenting, and what the student 
brings to the work. Aaron looks the rationality of student behaviour in her investigation 
of the work of studenting in high school geometry instruction (2010). She looks at this 
from the perspective of the student, but only in the context of geometry instruction, and 
only those behaviours relating to the work students do in instruction and the tacit 
knowledge they bring to it. This neglects the aspects that Fenstermacher discusses in 1994; 
namely the work that students do to ‘beat the system’. 
For the purposes of this article, I take a broad view of the notion of studenting. Drawing 
from Fenstermacher as well as Fried and Sizer I put forth a definition of studenting as: the 
work that students do in the context of learning, the non-academic aspects of student 
activities such as getting along with peers and teachers, as well as the behaviours that 
students exhibit as they attempt to negotiate the system, including those related to 
subverting the system, whether consciously or nonconsciously. I propose to look at the 
broader interpretation of studenting from the perspective of the student, and rather than 
exploring this in the context of particular situation or topic I look more holistically at the 
gamut of student behaviour within the mathematics classroom. 
It is exactly these aspects of studenting that I am interested in. More specifically, I am 
interested in the studenting behaviours that are not in alignment with the teacher's goals 
and expected actions, yet are missed by the teacher during the activities of teaching. I refer 
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to this class of studenting behaviours as gaming behaviour, as in the students are gaming 
the system.   
GAMING – A SUBSET OF STUDENTING BEHAVIOURS 
Several works based on research within schools and classrooms discuss the nature of the 
student role, primarily focussing on the non-academic aspect that I refer to as gaming. 
Robert Fried critiques the state of schooling and the development of student practices 
(2005). Throughout their early school experiences, Fried claims that students learn to 
disassociate, to tune out, to disengage from the arena of learning. He describes how, in 
early elementary school, students lose enthusiasm and motivation for learning and instead 
focus on pleasing the teacher and being obedient. Unfortunately these aspects tend to 
undermine and shift the focus away from the goal of learning, resulting in students having 
little motivation to understand concepts beyond performing well on assessments and 
achieving other goals. Other largely undesirable behaviours that develop as a consequence 
of schooling include: conformity, obedience, cheating, copying homework, teacher 
shopping, skipping tests and faking illness in order to write the test at a later date, etc. 
Theodore Sizer echoes and extends Fried’s conclusions as he describes the deplorable 
state of affairs in schooling (1984). The researchers lament the “…weakness of incentives 
for serious learning that the culture as a whole lends – the signals that hard work and high 
standards are expected of everyone. Kids need strong incentives to engage at school...” 
(p. x). Sizer focuses on what he calls the ‘triangle’ of students, teachers, and subject. His 
use of the triangle highlights the unique effect each aspect has on the learning process. 
Each child will engage in studenting differently depending on the teacher and the subject 
area. For example, the same student will engage in different studenting activities in 
mathematics than in philosophy, even if the teacher is the same. 
Tim Newfields claims, “From a game theory perspective, school classes can be seen as 
interactional matrices in which teachers and students try to adopt optimal behaviours in 
order to minimize losses and maximize returns” (2007, p.33). Further, “most classrooms 
should be regarded as Bayesian game systems (Nurmi, 2005) in which information about 
the interactants involved is incomplete and outcomes are uncertain” (p. 35). This results 
in “a tendency to conform to acceptable performance levels, conserve energy 
expenditures, and avoid risk” (p.35) rather than put the maximum effort into learning.  
Gaming in the Literature – Applications in Analysing Student Behaviour 
Historically, the application of game theory to mathematics (and school in general) has 
been limited to mathematical games and mathematical modelling. This reflects a more 
formal approach to gaming. More recent research investigates the links between game 
theory and student actions. The notion of ‘gaming the system’ has been used in the context 
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of off-task behaviour, performance goals, grading, and group work, among others (Baker 
et al., 2004; Baker et al., 2005; Newfields, 2007).   
Off-task behaviour can be detrimental to learning. Baker et al. (2004) assert that of all off-
task behaviours they identified through studying student interactions with an intelligent 
tutoring system, ‘gaming the system’ is the one most strongly associated with reduced 
learning. ‘Gaming’ included such activities as quickly and repeatedly asking the tutor for 
help until the student is given the correct answer, and inputting answers quickly and 
systematically until the correct answer is identified. Results showed that low pre-test 
scores were positively correlated a high incidence of gaming. In addition to this, the 
authors hypothesize that students engaged in selective gaming on questions where they 
have the most difficulty, and thus “exactly where it would most hurt their learning” (p. 
388). They conclude that they don’t know why students game the system, but their 
evidence shows lack of interest in the material is not a good explanation. 
Gaming does not have to have negative consequences for learning. Baker (2007) gives an 
example of gaming behaviour intended to increase efficiency and decrease effort, but does 
not inhibit learning. If a student engages in gaming in order to skip “time-consuming but 
easy steps, in order to focus more time on more challenging material” (p. 1064) that is a 
positive instance of gaming. The results of the study also indicate that engaging in 
negative gaming is correlated with disliking mathematics, and not being educationally 
self-driven. 
For a particular student, the presence or absence of gaming behaviour depends on that 
student’s motives, or goals. Therefore to explore these behaviours in more depth it is 
necessary to discuss student goals. 
GOALS 
Research has taken different approaches to the study of goals. Some theories focus on 
students’ goal orientations, which are generally accepted to be either mastery or 
performance (Dweck, 2000; Lemos, 1999), although it is also common to categorize 
performance goals as either performance-approach or performance-avoidance (Cury, 
Elliot, Da Fonseca, & Moller, 2006; Pantziara & Philippou, 2009). Hannula developed a 
framework for motivation as a structure of needs and goals that identifies three categories 
of socio-emotional orientations: learning or task orientation, performance or socially 
dependent orientation, and ego-defensive orientation (2004). Hannula’s orientations can 
be seen as analogous to the mastery, performance-approach, and performance-avoidance 
categories respectively. A mastery goal indicates the student has an intrinsic need to 
understand and “know” the material.  A student with a performance-approach goal is more 
concerned with the extrinsic factors involved such as getting a good grade or pleasing the 
teacher or parents, whereas a performance-avoidance goal arises from a desire to avoid 
looking bad and to avoid negative consequences.  
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Goals are influenced by a student’s needs, beliefs, and emotions. While goals are directed 
towards specific objects a need is more global.  A student’s different needs will also serve 
to determine different goals.  Following this, beliefs about self-efficacy will also have an 
effect. For example, a student’s beliefs about intelligence (fixed or malleable) will play a 
determining role in whether that student has a mastery or performance goal orientation. 
Lastly, an individual’s emotions will influence goal choice (Hannula, 2002, p.3). 
These are broad (global) categorizations; there are also specific (local) goals within 
contexts. Context is used in the global sense and includes the subject area, teacher, 
classroom environment, and social elements, among others. Goals also vary depending on 
the particular situation, which is a more specific and immediate factor than context. A 
student may have a mastery goal in the context of mathematics class, but in a specific 
situation, such as an unanticipated quiz or homework check, the student may exhibit 
performance-approach or performance-avoidance goal by memorizing a procedure or 
copying from the back of the book.  
Goals have a significant contribution to make in the further exploration and explanation 
of student gaming behaviour. I believe that links between gaming behaviours and 
particular goal orientations will surface upon further study and analysis of these 
behaviours and that in the future these results could be used to help teachers and students 
achieve intended results. 
CONCLUSION 
To teachers and parents, student behaviour often appears irrational. From the perspective 
of the student, however, there is a certain rationality to their actions that I am trying to 
understand using theories from behavioural economics and game theory.  
Based on the evidence in the literature, personal experience, and the experiences of 
colleagues, it appears that a significant subset of the activities of studenting seems to 
involve attempts to game the system at some level. The prevalence of these behaviours, 
and the possibilities for influencing student behaviour warrants the further investigation 
of studenting as gaming. 
A future study involves developing a taxonomy of student behaviours that fit the 
description of gaming. My goal is to take the threads I’ve pulled from contracts, norms, 
conventional and behavioural economics together with game theory and weave them into 
a coherent theory to explain the subset of student behaviour I call gaming. 
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PERSPECTIVES ON THE SAUDI GENERAL APTITUDE TEST 
Lyla Alsalim 

Simon Fraser University 
 

The General Aptitude Test (GAT) is a standardized test designed to be used as 
an admissions tool by colleges and universities in Saudi Arabia. Since its establishment, 
the debate about the GAT has been growing. Different viewpoints and perspectives on the 
issue have resulted in conflicting opinions, some supporting the test and believing in its 
value and others opposing it. The purpose of this paper is to explore the perspectives of 
different stakeholders about issues related to the GAT in order to highlight any disparities 
and similarities in perceptions and how these differences and/or similarities affect the 
way in which the GAT is being applied. The paper highlights the key themes gathered 
from interviews. 
 
INTRODUCTION 
Saudi Arabia has been experiencing an increased demand for higher education in recent 
years. In 2011, the number of Saudi high school graduates exceeded 340 000, and it is 
expected to continue to increase for several more years (NCAHE, 2012). More high school 
students than ever before have the desire to continue their education by attending four-
year colleges and universities.  The increased number of high school students who 
are pursuing higher education makes it more competitive to get into top universities and 
graduate schools. For decades Saudi schools focused only on a student’s overall high 
school average as the criterion for admission to post secondary education institutions. For 
most Saudi universities and colleges, especially the elite ones, a high school percentage 
was not enough for making admission decisions. Therefore, most Saudi universities 
established their own admission test to be used to evaluate applicants along with the high 
school percentage. This movement had an impact on the application process, which 
became complicated for those applicants who applied to more than one university and for 
those who did not live close to the university to which they applied.  
As a result of the debate over the validity and reliability of high school percentage for 
university admission, the Ministry of Education in Saudi Arabia felt the need to offer fair, 
valid instruments that accurately predict the level of students’ performance in post 
secondary institutions. Therefore, the National Center for Assessment in Higher 
Education (NCAHE) was established in 2001, a movement in educational reform in Saudi 
Arabia. Its mission is to “assure fairness and equal opportunity in higher education and 
contribute in the efficiency of higher education institutes based on solid scientific grounds” 
(NCAHE, 2012).  It administers and develops different standardized tests, including the 
GAT.  The General Aptitude Test (GAT) was first administered by NCAHE in 2004.  
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According to the NCAHE, the GAT is required for admission to all institutions of higher 
learning in Saudi Arabia.  
Standardized testing has been used to evaluate the accumulated knowledge of an applicant 
pool since early times. The earliest evidence of standardized testing comes from Imperial 
China. The system of civil service examinations is considered one of the most noteworthy 
contributions from Chinese history to the world.  The history of Chinese civil service 
examinations is attached to the history of civil service itself. Imperial dynasty leaders 
recognized the fundamental usefulness of these exams and relied on them to ensure 
required services were being offered by qualified individuals to the large population in 
China. The civil service examination system originated during the Han dynasty (206 B.C. 
– 221 A.D.).  The idea of examination came from the notion that government officials 
should be extremely educated in order to maintain a stable government. This idea was 
heavily influenced by Confucian ideals, which focused on the principle that moral 
guidance, courtesy, and filial piety could maintain a thriving government and social 
system (Menzel, 1963). The original purpose for the Chinese civil service examinations 
was to guarantee appointees to civil service positions were not selected based on inherited 
privilege, but on an individual's own abilities, talent, and education (Menzel, 1963; 
Miyazaki, 1976). 
Deciding who the most qualified person is for a particular job can be a complicated task 
and may require applicants to take tests which measure their skills and knowledge in a 
particular area. Colleges and universities face the same perplexing task when accepting 
new students. The ancient Chinese notion of choosing the most qualified people based 
on the result of examinations has found its way into many education systems around 
the world. In the United States, the SAT is the most commonly taken test by high school 
students as a reliable, effective measure of their readiness for post secondary education. 
According to the College Board, the SAT measures student ability in critical reading, 
mathematics reasoning and writing skills developed in and out of school.  It also tests their 
ability to apply that knowledge to participate positively in higher education institutions 
(2011b). The SAT has been a valuable tool for students and admission officers in the 
competitive admission process for almost a century, helping students prove they possess 
the skills required for college and university life. In 2011, approximately 1.65 million 
students participated in taking SAT (College Board, 2011a).  
FRAMEWORK 
According to the descriptions of the GAT and the SAT in terms of their purpose, it is 
notable that these two tests share the same purpose. Also, the early versions of the SAT 
are similar in terms of its content and sections to the GAT. These similarities allow me to 
draw on the history, development and critiques of the SAT in my research and analysis of 
the GAT. 
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The story of the conception of the SAT goes back to 1923 when Carl Brigham became the 
chairman of the College Board organization.  He was interested in adopting a standardized 
test, which was used at that time for the selection of the United States military members 
for use in college admission. In 1926, the SAT was born under its original name the 
Scholastic Aptitude Test. In 1933, when James Bryant Conant became the president of 
Harvard University, he introduced a new scholarship program to attract academically 
gifted students. Conant knew that Brigham had already designed a test to evaluate the 
academic potential of high school students. Conant was convinced that the SAT was a 
reliable intelligence test, which could predict academic success; as such, the test was 
administered to students who wished to be awarded scholarships to Harvard. The fact that 
these students were succeeding encouraged Conant in 1938 to influence the presidents of 
the other Ivy League schools to adopt the SAT and the scholarship program. A few years 
later, the SAT was no longer administered exclusively for the function of selecting 
scholarship students, but several colleges depended on the test results to assess students 
for admission into their schools (Lemann, 2004). 
The SAT examination has never been static. The test has evolved to meet the educational 
standards of the best colleges and universities and to reflect the subject matter highlighted 
in the mainstream of American high schools (Epstein, 2009). Lots of the changes made 
are the result of ensuring the test is better able to measure the abilities of the participants, 
especially taking into account the changing goals of education in the United States. A 
number of the changes make certain the test is as comprehensible and effective as possible, 
whereas other changes ensure that students coming from certain backgrounds do not 
experience an unfair disadvantage (Stringer, 2008).  
Changes to the SAT come in response to criticism that the test has received. One of the 
common criticisms of the SAT is that it is not truly reliable in predicting students’ 
academic performance (Geiser, 2009; Stringer, 2008; Atkinson & Geiser, 2009). Stringer 
(2008) notes that the test is failing to measure students’ actual knowledge, which 
influences the ability of the test to predict future success in college. One of the main 
reasons behind not considering the test as a valid predictor of college success is that the 
test does not take into account some other elements that impact students’ achievement in 
higher education such as motivation and study skills. Geiser (2009) explains that the test 
does not measure factors such as personal discipline and perseverance, which are 
considered “key to achieving and maintaining a strong academic record over the four years 
of high school” (p. 21). 
Another main critique of the SAT is that students differ in their mental abilities, which are 
often associated with their background.  Some educators, Lemann, Atkinson, and Gilroy 
to name a few, argue that the way the SAT is designed and presented provides some 
students more of an advantage over the content of the test than others. It confines 
education equity and hinders access to higher education for otherwise qualified students 
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(Gilroy, 2007). “The perception of the SAT, as a test of basic intellectual ability, had a 
perverse effect on many students from low-performing schools, tending to diminish 
academic aspiration and self-esteem” (Atkinson & Geiser, 2009, p. 667).  
The SAT has also been criticized for being vulnerable to the impact of elements related 
to students’ socioeconomic status, such as schooling excellence and SAT coaching 
(Atkinson, 2001; Atkinson, 2004). While some researchers, such as Powers and Rock 
(1999), argue that coaching has minimal effects on SAT performance and 
it only marginally improves test scores, others indicate that SAT tests can be highly 
coachable (FairTest, 2007). The level of effectiveness of coaching programs on SAT 
performance does not prevent some educators from arguing that SAT coaching is not 
reasonably available for all test takers which provides an unfair advantage to some test 
takers over others (Epstein, 2009; Stringer, 2008).  Higher-income test takers who can 
afford to spend $800 or more on test preparation classes are more advantaged compared 
to low-income test takers students (FairTest, 2007).  
The SAT is also accused of being culturally and ethnically biased since white students 
tend to score higher than minority students as a group (FairTest, 2007; Geiser, 2009; 
Atkinson & Geiser, 2009). “African American, Latino, new Asian immigrant and many 
other minority test takers score significantly lower than white students” (FairTest, 2007, 
p. 4). According to a study done at the University of California, “the SAT had a more 
adverse impact on poor and minority applicants than traditional measures of academic 
achievement [such as high-school GPAs]” (Geiser, 2009, p. 19). Therefore, strict 
utilization of the SAT for college admissions has a great effect on reducing the number of 
minority students in higher education, especially those who have a good potential to 
succeed academically since they apply with strong academic records but comparatively 
low SAT scores (FairTest, 2007; Geiser, 2009).  
The General Aptitude Test (GAT) 
The General Aptitude Test (GAT) is an aptitude test used to assess the level of general 
ability in verbal and quantitative areas mastered over time. It is designed to specifically 
measure general comprehension, as well as analytic and quantitative abilities in language 
and mathematics. NCAHE claims that the GAT is not a subject oriented test; it is not 
developed based on specific standards related to particular subject materials (NCAHE, 
2012). According to the NCAHE, the GAT is not an achievement test; “GAT is based on 
skills related to logical thinking, analysis and relationship. These skills have been acquired 
by test-takers throughout their education and through exposure to different experiences in 
life” (NCAHE, 2011, p. 3). 
The GAT measures students’ abilities in “reading comprehension, logical relations, 
problem-solving behaviour, inferential abilities, inductional abilities” (NCAHE, 2011, p. 
2).  The test consists of 120 multiple-choice questions. It has two main components, the 
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verbal which is presented in 68 questions and the quantitative which has 52 questions. The 
verbal section contains questions in three areas: sentence completion, analogy, and 
reading comprehension. The questions in the quantitative section consist of 40% 
arithmetic, 23 % algebra, 24 % geometry, and 13% interpretation of graphs and tables 
(NCAHE, 2012).  
METHODOLOGY  
Eight semi-structured interviews were conducted with eight different stakeholders. 
Stakeholders were selected based on their involvement, experience, and knowledge of the 
GAT. The interviews took place with a recent high school graduate, a high school 
mathematics teacher, a parent of recent high school graduate, a teacher who is working in 
a GAT coaching institute, a faculty member in a higher education institution, a university 
registrar employee, a person who works at the Ministry of Education, and a lay member 
of the public. The aim of the interviews was to obtain points of view, reflections and 
observations about different issues related to the GAT.  The semi-structured interviews 
began with an interview guide of a list of previously prepared questions to help provide 
the needed focus. The interview guide opened with questions geared at getting a general 
sense about the participants’ background as it related to the GAT. Interviews lasted 
between 40 and 60 minutes. 
 
Interviews were audio recorded and transcribed. A qualitative analysis approach was 
undertaken using content analysis as the favored method. Content analysis was useful for 
grouping the transcribed text into meaningful key themes. The main key themes gathered 
from the interviews are the purpose of the GAT, the quality or adequacy of the GAT, the 
fairness of the GAT, mathematics and the GAT, preparation for the GAT, GAT as a 
predictor of academic success, and the future of the test. However, for the purpose of 
brevity, this paper will only present three themes: the purpose of the GAT, the quality, or 
adequacy, of the GAT, and mathematics and the GAT.  
 
DISCUSSION 
The purpose of the GAT:  
The analysis revealed that participants have different views of the issues related to the 
purpose of the GAT. The member who works for the Ministry of Education is strongly 
influenced in his opinion by his association with the National Center for Assessment in 
Higher Education (NCAHE), believing that the tests provides fairness and equal 
opportunity in higher education.  He added, "I think that most Saudi educators agree that 
student's high school percentage is not enough for making admission decisions." The 
university registrar also explained that post secondary institutions cannot be certain that 
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high school grades accurately represent the abilities of their applicants and entering first-
year students. "It is hard to make admissions decisions with a satisfactory level of 
confidence based on high school GPA alone." She believes that the GAT provides some 
valuable information about applicants.   
 
The lay member of the public and the associate professor agreed partly with this view. 
They both indicated that although students’ high school grades can generally predict how 
a student will do in college, there is a place for standardized tests. However, the lay 
member of the public indicated the she is not sure if this test can actually reveal enough 
information about students’ ability to succeed in university. The associate professor raised 
the issue of grade inflation. She stated, "Grade inflation is a real problem.  Standardized 
tests can minimize its negative effects."  The high school mathematics teacher admitted 
that student evaluations, especially in senior high school, are often deceptive. "Teachers 
are put under too much pressure to help students achieve good results which increases 
the probability of grade inflation."  
 
The teacher who works in GAT preparation programs indicated that students generally 
don’t believe in the purpose of the test. They mostly believe that the test is imposed on 
them. This belief is clear when considering the high school student’s opinion. "I think the 
GAT was established so the government could find a reason not to offer everyone the 
opportunity to continue their education; so it would be the student’s fault, not the 
government, if the student could not find a place in a public university." The student also 
added that introducing the test is a kind of confession from the government that the 12 
years students spend in school is not enough to prepare them for university life, which 
indicates the deficiency and failure of the education system in Saudi schools. The mother 
of the student also attacked the Ministry of Education for introducing the test. She claimed 
that this test puts students and their families under more pressure during this critical time 
in students’ lives. She added, "I can’t understand the purpose of introducing this test.” 
The quality, or adequacy, of the GAT: 
The Ministry of Education member firmly indicated that the GAT is carefully designed to 
measure basic concepts and skills that student should have in order to succeed in 
university. He explained that most of the language questions are to test comprehension. 
For example, students read a small paragraph then answer questions related to that 
paragraph. These skills reveal if a student will be able to understand and process the 
material that s/he will encounter in university courses. The quantitative questions also test 
some basic and fundamental mathematics skills, such as basic algebra and geometry 
concepts. "The test only measures the basic skills.   A student who has not mastered these 
basic skills, I am afraid, will not be able to succeed in the first year." 
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The associated professor noted that the test filters out students who will not be able to 
perform successfully in college. "The test is strictly and tightly timed. It is necessary that 
students encounter this type of test before they encounter university tests.” She believes 
that students usually suffer in the first year of university because they cannot perform 
quickly during tests, and this test provides students an opportunity to learn about their test 
taking abilities. The high school mathematics teacher also commented on the issue related 
to test timing. In her view, most of the mathematics questions provided in the test are not 
difficult but they are not straightforward. She noted, "Usually, students are not used to 
dealing with these type of questions, and giving them only 45 seconds to answer a every 
question is not adequate.” 
 
Although the university registrar indicated that the GAT can provide some information 
about applicants, she believes that the system used in the past, where every department 
designed their own admission test, was more adequate than the GAT. "Every department 
would design a test to measure the skills that students really need to be accepted to that 
department. I don’t think it is adequate to have all students who are interested in applying 
to different schools take the same test.” The teacher who works in GAT preparation 
programs is also not convinced about the test’s adequacy.    She explained that the GAT, 
more than anything else, shows how well a student can take a standardized test. She added 
that it is very hard to finish every section. The test was designed in a way to provide a nice 
range of scores for college comparison.  "I think the test does not measure student's raw 
math or verbal ability; the students know that if they can’t perform quickly, they will 
screw up.” 
 
The mother of the student considers test taking as a skill in its own right which can 
be acquired with time and practice. She could not see the GAT, in any aspect, as an 
indicator of the likelihood of success in college. "It's an instrument for 'inattentive' 
admissions administrators to defend their choices.” The lay member of the public also 
believes that the test is great at predicting the students’ ability to take standardized tests. 
"I think it is a very faulty test if we expect it to expose a good deal about students’ content 
skills, personal discipline, and perseverance. These are also accomplished and maintained 
through an excellent academic record.” 
 
The high school student also questioned the type of skills the test measures. He believes 
that the skills the GAT tests are not necessarily the skills needed to succeed in college.   
"When we ask ourselves about the skills students need to have before they start college, 
we find that GAT or any other standardized test, does not measure most of them.” He also 
indicated that the GAT puts students in a pressurized environment, and students who can 
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handle the pressure in testing situations will do extremely well. In his opinion, some 
brilliant students get a very average score just because they cannot handle the pressure of 
the idea that this test, where in less than three hours, their future is determined. 
Mathematics and the GAT: 
Questions about mathematics as a subject and its relation to the GAT were not asked to 
all participants, but only to those who are in a position which enables them to reflect on 
this issue. Those include the mathematics high school teacher, the teacher who works in 
the GAT preparation programs, the associate professor, and the high school student. The 
negative attitude that is usually associated with mathematics appeared when the high 
school student described his experience with the test. "I find the mathematics section in 
the test much more difficult because it consists of numerical calculations that involve 
memorization of rules and application of formulas. If I forget the formulas, there is nothing 
I can do to deal with the question.  And even if you can get the correct formula, if there is 
a small arithmetic mistake you get the question wrong." He also explained that to prevent 
the use of calculators in the test puts students under more pressure. He indicated that 
students need to have some knowledge of some mathematics calculation tricks for 
faster mathematics calculation, knowledge which mathematics school teachers don’t 
provide for their students. According to him, the experience of taking the GAT makes 
students realize their actual level in mathematics.  Some students usually get high grades 
in mathematics in school but do poorly in the quantitative questions on the GAT. He 
believes that mathematics teachers in general are not exempt from blame for not preparing 
students with strong mathematics skills.   
 
The associate professor also commented on the poor teaching practices used by most 
mathematics teachers in schools and its negative effect on students’ mathematics skills.  
In her opinion, the difficulty students face when dealing with the quantitative questions in 
the GAT is an indicator of a serious problem in mathematics teaching and learning in 
schools. The quality of mathematics teaching and learning in schools is not good enough 
to provide students with proper mathematics understanding. "Mathematics is seen as a 
collection of rules and procedures. Most mathematics concepts are taught without 
meaning." She hopes that this test encourages the establishment of a new movement 
toward more effective mathematics teaching and learning.  
 
There is another essential issue raised by the teacher who works in the GAT preparation 
programs.   She explained that a considerable number of students are terrified or anxious 
about taking the test and student anxiety appears more when students are working on 
quantitative questions than when working on the verbal or language questions. She 
attributed this anxiety to the negative experiences students' encounter with mathematics 
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in schools. She also noted that students usually have poor mathematics knowledge and 
weak arithmetic skills compared to their verbal or language skills, which seem to be much 
stronger. She believes that students’ anxiety and bad skills in mathematics affect students’ 
ability to do the quantitative section effectively in the GAT test.  
 
The high school mathematics teacher admitted that mathematics teachers in high school 
do not make enough of an effort to support their students going through this tough 
experience. She explained that some mathematics teachers in high school believe that they 
are not required to provide any kind of support to their students related to taking the GAT 
since this support requires working extra time and it is not indicated in the curriculum. 
According to her, on the GAT, students never encounter questions with really advanced 
geometry; the mathematics questions are about basic mathematics concepts which 
students are supposed to be familiar with.   "I believe that mathematics teachers in every 
level should always go back to the basics. Things like fractions, decimals, ratios, and areas 
of basic figures. Students always need to be reminded of this basic mathematics 
knowledge." 
CONCLUSION  
The diversity of participants’ position and level of involvement with the test enriched this 
research by providing different points of view, reflections and observations about some 
basic issues related to the GAT. Overall, participants welcomed the questions and a high 
level of engagement in the interviews was noticeable. The high school student and the 
mother of the high school student had generally negative views about almost all aspects 
about the GAT as discussed in this paper. This negativity about the GAT may come from 
the high pressure they both felt during their experience engaging with the test. On the 
other hand, the ministry member had a generally positive view about the test. His view 
may come from his position as a ministry member, which encourages him to side with the 
test, defending it most of the time.  
 
Also, one of the surprising findings is that all the participants agree that in the Saudi 
education system depending on student’s overall high school average is not enough 
criterion for admission to post secondary education institutions. Most participants believe 
that some of the common practices of high school teachers, such as providing students 
with summaries or notes before tests and giving tests that are more about memorization 
than understanding, result in student grade inflation, meaning an increase in students’ 
grades with no accompanying enhancement in their academic achievement. As a response 
to this perceived problem, some participants suggested that instead of introducing new 
tests to evaluate high schools graduates, a serious reform to school education should be 
done in order to produce more prepared students for post secondary education. 
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This research tells us a lot not just about the test itself, but about the whole education 
system in Saudi Arabia. Students take the test with the assumption that they have already 
acquired the basic knowledge requirements in school subjects to prepare them to take such 
tests. Unfortunately, this is not the case; the poor performance of school results in 
producing students who are not intellectually and psychologically prepared to take such 
test. In actuality, we have to focus on improving the education system and the teaching 
performance then improved testing would come next. 
 
It has been nearly a decade since the GAT was established; however, there are not enough 
published studies about it. Perspectives of different stakeholders about issues related to 
the GAT were explored in this paper. It is expected that the test will continue to be a 
controversial topic among people who are interested in educational issues in Saudi 
Arabia. There is a pressing need for more extensive research in all aspects related to the 
GAT discussed in this paper. The test clearly has a great impact on the life of high school 
students. This research is a first step in understanding the impact of this test on high 
school students, especially as it relates to their mathematics learning experience.  
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This research paper considers how Phenomenology Theory can be used to explain the 
factors that affect teachers’ engagement throughout a professional development 
experience and what are the factors that are more likely to contribute to sustained 
engagement in acquiring new knowledge and pedagogical skills. 
INTRODUCTION 
The purpose of this article is to describe a model that can help us explain the factors that 
affect teachers’ engagement throughout a professional development experience, and what 
are the factors that are more likely to contribute to sustained engagement in acquiring new 
knowledge and pedagogical skills which will contribute to teachers’ effective re-sourcing 
of pedagogical materials.  
As the professional developer working with groups of teachers, I systematically reflected 
on the live experience of professional development sessions: teachers’ behavior, level of 
activity, interaction with resources, and so on. The goal was to find ways to promote in 
teachers what Rogers (1986) has labeled  ‘emancipatory learning’, to help them find 
productive learning frameworks where they reflect, ask questions and try to figure out on 
their own how to make sense of the problem at hand. I looked for ways to analyze the 
challenges faced in each session with a particular group of teachers, in order to develop 
this kind of learning in them while at the same time supporting the kind of engagement 
that would be pedagogically productive.  
I analyzed what occurred at particular professional development sessions: who was 
engaged and how? And who was not and why? How teachers’ knowledge, belief and 
values were exposed by behaviours, and how this helped or deterred the purpose of the 
each session. What are also the challenges from the professional developer perspective: 
barriers, self-doubt, etc.? 
FRAMEWORK 
Phenomenology uncovers the meaning of a phenomenon by revealing the many layers 
that socially and culturally influence a person’s experiences in their lifeworld; where 
lifeworld is defined by Van Manen (1997) as “the world of immediate experience”, the 
world as “already there” (p.182).  As such phenomenology studies events as they arise in 
our lifeworld and how we interpret and interact with those events according to our own 
individuality; for this reason phenomenology must first “describe what is given to us in 
immediate experience without being obstructed by pre-conceptions and theoretical 
notions" (Van Manen 1997:184).  While doing phenomenological research and analysis 
one must get “rich descriptions of phenomena and their settings” (Kensit 2000:104) in 
order to get closer to true essence of the phenomenon. As the professional developer, I 
would describe how teachers engage with, understand and use the curriculum that is being 
implemented; being able to engage the teachers is the initial key point of any professional 
development session. 
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Sierpinska (1994) pointed out that to be able to describe an act of understanding, the 
person who describes it must pay attention to three features of the act: what is being 
understood, the context in which the act occurs, and the mental processes galvanized in 
the act of understanding.  
In order to analyze this process I developed a modified version of Remillard’s (2012) 
model to analyze the various ways a professional developer tries to position teachers in 
an experience that engages them. She developed a model to analyze various ways 
curriculum developers use to make their manuals and textbooks materials attractive to 
teachers.  In my case, I realized early on that the use of the manuals and the textbook was 
not enough to engage all the teachers in the use of the curriculum to be implemented, so I 
tried to find other ways. 
Remillard’s model is inspired by Ellsworth’s book Teaching Position based on analysis 
of film studies where assumptions about the audience background influences the structure 
of the film’s narrative in order to maximize their interaction or attention to the film; we 
find that the main goal is to position the audience in a way where interaction is possible 
and furthermore this is something that the audience wants to do on their own volition.  
This model consists of four main parts: Mode of address, Forms of address, Modes of 
engagement, Forms of engagement. 
Modes of address are ways of positioning an audience that are needed to initiate an 
interaction.  To position the teacher in a place where she can enter in a relationship with 
the resources the professional developer would like her to work with, and not only that, to 
do it in a way so that the teacher wants to be in that position. However, as Remillard points 
out, this positioning is “problematic in its shaping of the relationship around power and 
authority in the interaction… modes of address do not merely speak to an intended 
audience, but actually seek to assert control over that audience or to enlist a particular kind 
of participation” (Remillard 2012, p107).   A main point in Remillard’s framework is that 
“teachers are positioned by and through their encounters with curriculum materials as 
particular kinds of users of them” (Remillard 2012, p106).  Researchers like Lloyd (1999), 
Adler (2000), Remillard (2005), and Guedet & Trouche (2009), have studied how 
curriculum resources are used by teachers and they concur that their implementation is 
not a straightforward process, but depends very much on the interaction of the teacher 
with the resource. These forms are what teachers interact with as they engage in 
professional development activities.  Remillard calls them forms of address, and according 
to her there are four main characteristics to consider as we analyze them or describe them 
(Remillard 2012, p110): 
Structure:  here we look at the content, the organization and the activities included in the 
resources.  
Look: mainly refers to the physical appearance of the resource.  

30 Proceedings, MEDSC 2012  
 



Voice: how the designers of the resource communicate with their users about their 
intentions in the use of the materials.   
Medium: how the resource is delivered: print, video, website, artifacts, etc.  
Genre:  Remillard usually uses this term to refer to textbook use, using Otte’s (1986) idea 
“that texts have both objectively given structures (what can be seen) and subjective 
schemes (ways of being understood or expectations upheld about them).” (Remillard 
2012, p113). Teachers’ expectations about specific texts or curricula influence the way 
they approach them.  In this research, genre will not only refer to text but to ideas or 
concepts (fractions, decimals, multiplication, etc.) to be discussed during the professional 
development sessions and the expectations regarding those particular genres, which will 
influence the way teachers will engage particular Forms of Address:  “Genre precisely 
presupposes much of what can be expected in the kind of communication in question” 
(Ongstad 2006, p. 262).  
According to Remillard  “Forms of address are powerful mediators of teachers’ 
engagement with a particular curriculum resource”, and she bases her analysis on 
Vygotsky (1978, p.40) theoretical ideas founded on  a model of artifact-mediated and 
object-oriented action. Remillard points out that as such we can see curriculum resources 
as artifacts to carry out a “goal-directed activity” and therefore forms of address matter.  
Form of address can strengthen or weaken modes of address and the way teachers will 
interact or engage with particular resources, what Remillard calls modes of engagement, 
how teachers inject meaning to these forms.  
Remillard only analyzes engagement through text forms; I expanded this model to include 
other forms like the use of videos and workshop activities.  I use Peter Liljedahl’s (2012) 
taxonomy based on teachers’ wants which affect teachers’ modes of engagement and can 
provide a way to analyze teachers’ behavior during the professional development sessions.  
Resistance: there are teachers who do not what to participate in professional development 
sessions, their contributions are minimal if any, and in some cases they are defensive or 
challenging. This is not necessarily a permanent condition, there are ways the professional 
developer can change resistance.  
Do Not Disturb: Here teachers want to improve their practice by learning some new things 
or teaching strategies, and adding some additional activities to their repertoire; but they 
do not want to change their practice much.   
Willing to Reorganize: Here teachers are willing to look at new curricula and resources 
and to reorganize their teaching around these new resources but the changes are more 
“clerical” in nature, not deep pedagogical change.  
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Willing to Rethink: teachers are open to “a complete rethinking of significant portions of 
a teaching practice” (Liljedahl 2012 p6). Teachers are open to changes in pedagogical 
styles and to be critical of their own practice.  
Out With the Old: These teachers have a sense that what they have being doing is not 
working. They are looking for new pedagogical ways of approaching learning and they 
are more than happy to work with completely new materials and ideas.  
Inquiry: Here teachers are more interested in learning and questioning new ideas about 
teaching, to have a better understanding and knowledge about a variety of teaching 
practices and their possibilities.  
Forms of engagement: just as modes of address are connected to particular forms or 
resources (forms of address), modes of engagement also connect to forms of engagement, 
which reflect on how teachers act/react and their ‘take-up’ of the process. I will state that 
forms of engagement are the ways the teachers re-source the resource. Here I use Adler’s 
“conceptualization of ‘resource’ as both a noun and a verb; as a verb “re-source” will 
connote to source again or differently, and “source” will denote origin (p 6 from text). By 
looking it this way a resource can be an artifact but in addition we are also able to look at 
how teachers select, interact and work  with resources by adapting them, revising them 
and re-organizing them; how “design and enacting are intertwined.” (Adler, 2012) 
This model is a circular model, the professional developer plans and uses particular modes 
and forms of address during the professional development session and sees what modes 
and forms of engagement result from her plans. The next session will be planned 
depending on the engagement and forms produced in the previous session.  
METHODOLOGY 
Participants and setting 
 A new school-wide math program was being implemented at a school in the Lower 
Mainland in British Columbia, Canada. Thirty of its teachers teaching grades K to 6 
participated in the research. The teachers were divided in seven groups corresponding to 
the grade they were teaching. Each professional development session tended to a 
particular grade. There was never a session where two or more grades worked together, 
except for the introductory session where the professional developer gave an introductory 
overview of the program and all the teachers at the school attended this session.   
Process 
Each group of teachers met with me between 10 and 15 hours distributed between 3 to 7 
sessions.  
My main concerns were:  
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1. - To be able to address the needs and concerns of the teachers in order to engage them 
in a pursuit to further develop their practice, and math content  knowledge. 
2. - Opportunities for teachers to take risks in sharing their beliefs among their peers.    
3. - Being able to have sufficient time for the teachers to learn and maintain their learning.  
Throughout the professional development sessions I supported the teachers with readings, 
activities, resources and explanations of particular math concepts and ideas that came up 
during the session.  I planned each session according to implementation expectations and 
what occurred on previous sessions. 
Data and Analytical Tools 
Data regarding the actions of teachers in a professional development setting was gathered 
in order to find if they were engaged in the discussion and how.  This was done by 
recording most of the professional development sessions and  by notes made by the 
researcher during and after each session. After every session I made a few notes reflecting 
on the effectiveness of the session, which concerns were addressed and the level of 
engagement. Most observations of teachers’ behavior were made during the professional 
development sessions; however I had the opportunity to visit classrooms to observe the 
teaching practice of a few of the teachers.  
For the data analysis I used the following protocol, which is a simplified version of 
Hycner’s (1999) explicitation process used by Groenewald (2004) together with some 
steps delineated by Van Manen’s (1997) methodical structure for hermeneutic 
(interpretative) phenomenological inquiry: 
1. - Investigating experience as we live it rather than as we conceptualize it; 
2. - Phenomenological reduction: reflecting on the essential themes, which characterize 
the phenomenon;  
3 - Delineating units of meaning by extracting those narratives, which throw light on the 
researched phenomenon (Creswell 1998; Hycner 1999). 
2. - Clustering of units of meaning to form themes: units of significance are created by 
grouping units of meaning together. (Creswell, 1998; Moustakas, 1994; Sadala & Adorno, 
2001) 
PRELIMINARY RESULTS 
The first session was very telling, and it is useful in showing how this model can be used 
to analyze engagement and learning.  
This was the plan for the first session: teachers were first asked how they would teach a 
particular mathematical concept; after the ensuing discussion teachers were exposed to 
the books and workbooks of the program without the benefit of the manual.  Teachers 
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were to compare between their initial take on the concept and how the materials in the 
program dealt with it.  Afterwards the manual was introduced with the goal of furthering 
discussions regarding the teaching of the concept, teachers were asked to read a particular 
session of the manual referring to the discussed concept. Teachers were asked about what 
additional ideas were included in the manual, and how useful it was to better teach the 
ideas students found in the book and workbooks. For some groups the same procedure 
was done for several sessions, and for others the process changed according to what I as 
the professional developer thought would be a better way to elicit engagement on the part 
of the teachers.  
As you can see most of the modes of engagement were active in that I actively sought 
teachers’ input in working with the materials, however not all the teachers were actively 
participating as I expected.  As teachers were asked to look at the manuals and to discuss 
the mathematical and pedagogical content I found the following.  
Those teachers who had been using the program for several years and who didn’t use the 
manual had a very hard time incorporating this new resource into their practice. They 
believed that because they had been using the materials for a while, in some cases years, 
they knew how to use those materials. They resisted a thorough reading of the manual 
even when some important ideas were missing which were important for the flow of the 
program.  
Even for some teachers who had never used the program, if the mathematical content 
looked ‘too familiar’ they did not take more than a few seconds looking at the manuals.  
However if the ideas were new to them or if I pointed out some interesting ideas or key 
points that were new to them, they were more willing to take a second look at the materials 
than the group discussed above.  
As a result of what happened in these initial session, as I planned some future sessions I 
tried to engage teachers by making them aware of new ideas within the mathematics that 
they thought they knew, teachers became engaged in deeper mathematical discussions and 
were more enthusiastic about conveying these new ideas to their students and giving the 
manuals a second look. 
Here is an example: the researcher used some interesting insights from Ron Aharoni’s 
book Arithmetic for Parents and she gave the teachers some excerpts from his book to 
read.  Here is Aharoni’s (2007:69) discussion on the meaning of addition:  
 “The expression 3+2 applies to the joining of two groups … Joseph has 3 flowers, Reena 
has 2 flowers. How many flowers they have altogether? … However, before we go any 
further, we must discern a subtlety of meaning. There are actually two different forms of 
addition: dynamic and static. In dynamic addition, to join means to change the situation: 
3 birds were sitting on a tree, 2 joined them. How many birds are there now? In static, 
joining signifies grouping of types: A vase contains 3 red flowers and 2 yellow flowers. 
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How many flowers are there altogether? ... I do emphasize difference, especially because 
of the link to subtraction…children find static subtraction difficult”.  
This passage created quite a discussion among teachers in grades K to 2. Many of them 
could give examples of students who could add and subtract but had difficulty with 
problem solving and discussed the possibility of what would change in their students’ 
understanding and problem solving abilities if they emphasized the difference. They 
wondered how they never thought about this difference in meaning before: teachers were 
engaged and learning. 
There are many other examples like this in the data, with concepts that teachers thought 
they knew well, where subtleties like the one above make the concept “new” in a way, 
and more engaging.    
CONCLUSION 
The process of phenomenological inquiry provides a way to analytically reflect on the 
process that will help professional developers to support teacher learning.  
As an example, it is interesting to point out that in this study I was able to show that even 
with support, teachers will not necessarily read the manuals that will support the 
implementation of a new curriculum/math program. This is an interesting finding given 
that manuals are supposed to be the main if not the only resource used by developers and 
schools to implement new programs.  
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WHAT ARE WE SURE ABOUT? WHAT DO THEY TELL ABOUT OUR 

PROBABILISTIC THINKING? 

 Simin Chavoshi Jolfaee 
Simon Fraser University 

In this study the prospective teachers’ understanding of extreme probabilities is studied 
via their examples. Watson and Mason’s Learner Generated Examples (LGE) theory is 
employed to justify the type of data used in this study and to emphasize the importance of 
examples in learning about different levels of the learners’ probabilistic thinking. 
 
Keywords: Probability, Learner Generated Examples, Teacher Knowledge  
ABOUT THE LGE FRAMEWORK 
Watson & Mason (2005) considered Learner generated Examples (LGEs) -an approach in 
which learners are asked to provide examples of mathematical objects under given 
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constrains – as a powerful pedagogical tool, through which learners enhance their 
understanding of the concepts involved. Watson and Mason also introduced the construct 
of example space as collections of examples that fulfill a specific function, and 
distinguished among several kinds of example spaces. When invited to construct their own 
examples, learners both extend and enrich their personal example spaces, but also reveal 
something of the sophistication of their awareness of the concept or technique (Bills, 
Dreyfus, Mason, Tsamir, Watson, & Zaslavsky, 2006). In accord with this observation, 
Zazkis and Leikin (2008) suggested that LGEs provide a valuable research tool as they 
expose learner’s ideas related to the objects under construction and examples generated 
by students mirror their understanding of particular mathematical concepts. Of my interest 
in this study are personal example spaces, triggered by a task as well as by recent or past 
experience, and collective example spaces, local to a classroom or other group at a 
particular time. 
Mason in an analysis of the phenomenology of example construction (Mason, 2011) 
describes what takes place through the process of mathematical example construction as: 
A strong tendency to combine the simplest possible with maximum generality, 
constructing lots of examples and tinkering with examples to modify them so that they 
meet some particular constraint, experiencing dimension of possible variation and range 
of permissible change associated with the examples constructed and explore deeper 
aspects of the notion, and drawing attention to the playful aspects of example construction 
and the ways of tinkering with a basic construction that might be of benefit the future use. 
Vinner (2011) finds the role of examples in everyday and mathematical thinking to be 
very crucial. Unlike in mathematics in which the concept formation is aided by definitions, 
examples and proofs, in everyday thinking, examples are the only tool by which we can 
form and verify concepts and conjectures. Even in mathematics there are important 
notions such as “proof” that have no (undergraduate level) definitions and the students are 
supposed to acquire the concept of proof by the many examples they are exposed to. 
Zazkis & Leikin (2008) suggest that The task of constructing examples of mathematical 
concepts can be quite a complex task for students and teachers, but several researchers 
find it a well worth effort since the example generating task provides rich educational 
potentialities: providing a window into learner’s mind through which significant aspects 
of conceptualization could be observed, raising the students’ awareness of features of 
examples that can change and of the range where they can vary (Mason, 2011), and the 
richness and complexity of processes involved in constructing examples (Antonini, 2011). 
Examples also may be used to identify, mirror, and confront learners’ incorrect 
mathematical inferences. Building on ideas of cognitive conflict and conceptual change, 
Zazkis and Chernoff (2008) extend the considerations of dimension of possible variation 
and range of permissible change to counterexamples and discuss the role of 
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counterexamples with respect to those theoretical constructs while helping students face 
their misconceptions. 
Many different ways to look at the examples are introduced into the research. From the 
generating point of view, there are two types of examples: those generated by learners 
upon invitation (learner generated examples) and the examples used by teachers in a 
classroom setting (instructional examples). With regard to the availability of examples to 
the generator one can distinguish between situated, personal, personal potential, 
accessible, and conventional example spaces; discussed in Watson and Mason 2005. With 
regard to the specific functioning of examples one can put them into examples-of, 
examples-for (Michener, cited in Watson 2011), pivotal examples, bridging examples 
(Zazkis & Chernoff 2008), non-examples, counterexamples, ... 
THIS STUDY 
In this study I consider student generated examples of an event with 100% probability and 
address the following question: 
To what extent do examples generated by participants reveal their understanding of the 
mathematical concept of probability and more specifically of the certain events? 
About 100% probable events: 
Extreme probabilities have mathematical significance. Also known as tail probabilities, 
the extreme probabilities create additional complexity to the probability estimation 
methods and techniques. Every computer simulation method has limitations and problems 
when the probability sought after is around the extremes. For example the central limit 
theorem allows for a binomial distribution to enjoy the normal approximation when np 
and n(1-p) are both greater than 5, even if the sample size is small. For very extreme 
probabilities, though, a sample size of 30 or more may still be inadequate and the 
approximation works at its worst when the sample proportion is exactly zero or exactly 
one.   
From an educational perspective distinguishing between the binary opposites of certain-
uncertain and possible-impossible is often located at the very introductory phases of a 
typical probability education. For example Van de Walle (2011), suggests that young 
children come to class with all sorts of bewildering ideas of probability, “to change these 
early misconceptions, a good place to begin is with a focus on possible and not possible 
and later impossible, possible, certain” (p. 474). Thus extreme probabilities are the type 
of events that the learners are familiar with since the very early grades.  
Participants of the study 
The participants of the study are 29 undergraduate students taking a mathematics 
education course in Simon Fraser University, Vancouver, with a diverse mathematical 
background including arts, social studies, biology, and computer science. However, all of 
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them have taken an equivalent of an introductory probability and statistics course at some 
point before. They are asked to give examples (in writing) of events with 100% probability 
of happening. They produce 45 examples in total. The task is presented to them in written 
form and the time for answering has been unlimited.  
Method of data analysis:  
The Framework used to analyze the data is a tool for analyzing personal or collective 
example spaces based on (a) correctness, (b) richness, and (c) objective-subjective duality.  
The first two elements of this framework are adopted form Zazkis & Leikin (2008) the 
last part is borrowed form Gillies (2000) and Chernoff (2008). 
Correctness: In the correctness category I consider whether the examples satisfy the 
condition of the task, which is fulfilling a 100% probability of happening from a 
reasonably acceptable mathematical point of view. There is an important decision to be 
made before we go through a discussion of correctness of data. If a student expresses a 
belief that there is a 100% chance that the next roll of a die will be six and to prove himself 
correct he rolls a die and a “six” shows up, is his assessment of the probability correct or 
not? It is while we do not have any knowledge of the die, it could be a fair die or it could 
be loaded to show six all the time. The same issue comes up in several examples from the 
participants: “there is a 100% chance that I will take the bus back home today” is this a 
correct example of a certain event or not? The student that has presented this example 
possesses certain knowledge of her transportation options and habits and perhaps she sees 
this as the only event in the sample space and perhaps she is right to assign a 100% 
probability to it. 
 
The criteria for assessing the validity of the probabilities assigned to events is whether 
common sense (to be more specific: accounting for all of the possible scenarios/outcomes) 
and knowledge that is reasonably accessible to everyone is used and wherever applicable 
the background information necessary to make the judgment appeal to other people is 
presented or not. For instance in the bus example it is reasonable to take into account that 
a bus is a vehicle prone to accidents or general failure and it simply might break, so there 
is a chance however small that she might have to call a friend to give her a ride back home 
today. That marks this particular example incorrect and I have coded them as lacking key 
information or common sense (Lack). 
Another group of examples that have been identified as incorrect are what I call examples 
of “non-random events”. In this group of examples the participant holds a vision of 100% 
probability as a fact that no one can challenge or refute, and finds such facts from 
situations which are not subject to randomness at all simply because they either refer to 
events in the past or they deal with definitions. Among such examples are: “There is a 
100% probability of me having the same color eyes as someone in this class because I see 
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some people with the same eye color”, “There is a 100% chance that tomorrow is Tuesday 
given that today is Monday”, and “There is a 100% chance that I went to bed before 10 
last night, because I did so”. This group of examples is coded as “Non-random situations” 
(NR) 

Table 1: correctness of the participants’ examples (n=45) for events with 100% 
probability 

Example of a certain event Condition 

Correct (n=21) N/A 

Incorrect (n=24) Lack of key information or common sense 
(n=19) 

Non-random situation (n=5) 

 
 

Richness: In richness category I consider the context from which the example is 
generated. Everyday experience and mathematical experience are the two main contexts 
that have been looked for. However it is not an exhaustive partitioning of the possible 
contexts for the examples and also the two are not mutually exclusive since mathematics 
both comes from (not all of it though) and is applied to the real life. In order to decide on 
whether the context of an example is mathematical or not, I have looked for evidence of 
combinatorial reasoning, meaningful use of numbers or standard randomizers such as 
coin, dice, spinners, urn of balls, etc. 16 examples are marked as including mathematical 
context and the other 29 examples are describing less mathematical, and more real life 
situations.  

 Table 2: richness and objective-subjective duality analysis of the examples (n=45) 
Mathematical 

(n=16) 

12 correct 

4 incorrect 

14 Artefactual Objective  

2 Formal Objective 

0 Inter-Subjective 

0 Intra-subjective 

Everyday life 

(n=29) 

10 correct 

19 incorrect 

3 Artefactual Objective 

0 Formal Objective 
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16 Inter-Subjective 

10 Intra-subjective 

 
Subjective-Objective: In the next step, the examples are put into two main categories of 
objective and subjective inside which four refined categories of “formal objective”, 
“artefactual”, “inter-subjective”, and “intra-subjective” are recognized. 

 
These expressions are adopted from Gillies (2000) and used as informative and distinctive 
probability terminologies by Chernoff (2008); here is a very brief description of each: 
Artefactuale: “probabilities can be considered as existing in the material world and so as 
being objective, but they are the result of interaction between humans and nature. 
Probabilities in coin tossing and other games of chance, as well as the probabilities 
associated with repeatable experiments in science, are artefactual”, Gillies (p.171). 
From the 45 examples provided by the participants, 17 examples were identified as 
referring to artefactual type of probability. Evidence of combinatorial reasoning (e.g. “10 
red apples and 1 green apple in a basket, you are guaranteed with picking 1 red apples 
with 2 chances without replacement”), references to the games of chance (e.g. “Probability 
of getting heads or tails when tossing a coin is 100%”), and addressing statistical or 
scientific findings (e.g. “An earthquake here in BC in the next hundred years occurs with 
100% chance. The experts have been predicting it for decades but no one knows when it 
will happen”) are used as the main criteria for this group of examples. 
Formal objective: Those events that are independent of humans—to the greatest extent 
that they can be, for example events related to the hypothetical problem of dropping a 
needle on number line and finding the probability of certain set of numbers being hit 
(rational numbers for instance) is divorced enough from the human context to be 
categorized with “formal objective”. 
Within the collected data there were only two incidents of formal objective type of 
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probability: 
1) “There is a 100% chance that in flip of a coin it is 50% probability that it flip heads”. 
2) “The probability of rolling a 1 on a 6-sided die being 1/6”. 
It could be argued that these examples are more of an artefactual type since they refer to 
the well-known facts. It is apt to distinguish between the mathematical facts and statistical 
facts and the mode of inquiry of those. I contend that if the participants consider 
“Probability of heads or tails are each 50%” as a result of experiment or as what statistics 
suggests, then these examples are merely artifacts and hence pertain to artefactual 
probability. But if we look at these facts as results of mathematical theorems (e.g. (

for the coin tossing experiment), then the two examples above are 

assigning an objective probability to an event which is far away enough from the human 
context to sit with Formal objective probability. This itself is a fascinating example of 
how the perspective of the person who is examining these examples (that would be me in 
this case) can affect on the probability stance of a single probability assessment. 
Inter-subjective: probabilities that represent the degree of belief of a social group that has 
reached a consensus. In other words it includes probabilities that are assigned on a 
subjective basis but in the light of some evidence that are clear to a group of people. For 
example the probability of Sara taking an umbrella on a cloudy November day of 
Vancouver could very well be assigned on an inter-subjective way. The followings are 
two examples from the 16 examples identified as bearing indications of Inter-subjective 
probability. In these examples the probability proposed is perceived (by me) as containing 
no formal calculation, but close to what might be akin to the belief and knowledge of a 
group of people. 
“There is a 100% chance of having three girls in a lecture room that contains 100 
students”. This example is marked as incorrect because of the lack of accounting for a 
possible scenario, which is “an all boy class”, but nevertheless it tacitly referrers to the 
experience of students from their large classes in a typical university/college. 
“I am 100% sure that most of the class is right-handed.” Once again this example is not 
referring to any statistical finding or a ratio of right-handed to the total, but reasonably it 
is believed that most of people are right handed and a class is an appropriate representative 
of the whole population with regard to this feature. 
Intra-subjective: it is more of a personal belief-type of probability. The probability that 
I’ll take the bus tomorrow (and no further evidences or information provided) is put into 
this category. Examples include: “There is a 100% probability that I will take the bus 
home”, “Going to bed tonight”, and “It is 100% probable that at least 2 people in this class 
will be born in the same birth month”. 
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It is necessary to note that the four above-mentioned types of probabilities (formal 
objective, artefactual, inter-subjective, and intra-subjective) mostly describe the extremes 
and indicate the upper and lower bounds of the probability continuum. In total, 10 
examples fit this category all of which are marked as “incorrect” in the first run of 
examining the examples. This brings us back to the issue of introducing subjective 
probabilities into the k-12 mathematics curriculum. When it comes to marking tests or 
using other forms of evaluation, we need to decide whether it is possible to develop a 
consistent criteria to mark the students’ intra-subjective arguments or not.  Or it could be 
the case that any intra-subjective probability assignment by definition carries a 
connotation of “wrong or insufficient explanation.  
CONCLUDING REMARKS 
The absence of ‘expert’ example space (as described in Zazkis & Leikin, 2008) that 
displays rich variety of expert knowledge is apparent. All of the mathematical examples 
obtained from the participants are textbook examples of sure events typically used by the 
teachers at the very first phases of the introduction of the notion. Examples related to basic 
coin tossing or die rolling events as well as statements such as “the sun will rise tomorrow” 
(which is yet another textbook example of certain events, p.474 Van de Walle). The later 
performance of the participants of this study on the probability test (not reflected in this 
paper) shows that they have a reasonably good grasp of laws of probability and that they 
have an above average performance with the probability related tasks and problems. Yet 
their examples of certain events don’t reflect the same level of development and expertise. 
An overwhelming 26 out of 45 example referred to in this study proved to be subjective 
probability statements, pointing out the fact that the frequency and classical (objective) 
approaches to probability are less widely applicable than the belief interpretation.  A 
person can hold beliefs about any event, but the frequency interpretation applies only 
when a well-defined experiment can be repeated and the ratio always converges to the 
same number. Many events for which we would like to have probabilities clearly do not 
have probabilities in the frequency and classic sense. For example consider the most 
frequently mentioned sure event: several participants presented the “I will die” example 
as an event with 100% probability of happening. Let’s try to assign a classical probability 
to this event: we first need to define a sample space consisting of equiprobable events, 
count the number of events in which “I will die” and divide it by the total number of the 
events in the sample space. The inherent difficulty in doing so may lie in the idea that the 
sample space is either S={I will die, I will not die} or S={I will die}. The former is 
suffering from the absence of equiprobability and the latter is acceptable only if we have 
made up our mind (in an a-priori fashion) that nothing else is possible and thus the “I will 
die” event is the 100% sure event. This conceptual difficulty is not specific to the extreme 
probabilities, subjective aspects of making decisions about assigning or calculating 

43 Proceedings, MEDSC 2012  
 



mathematical probability remains the same all over the probability continuum, but they 
are more noticeable in the case of impossible and certain events. 
I propose that students of probability at all levels need to experiment with probability tasks 
in which they are not only asked to calculate/assign the probability of an event but also 
they are encouraged to uncover and discuss the underlying assumptions that are made 
about the event in question and the knowledge of different individuals about the event. 
The dynamic process of taking in new information and adjusting the previously formed 
beliefs and judgments creates not only a bridge between frequency based and subjective 
probability measurements but also creates valuable opportunity for students to develop a 
new perspective on uncertainty. 
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A POST-HUMANIST PERSPECTIVE ON A GEOMETRIC LEARNING 
SITUATION 
Sean Chorney 

Simon Fraser University 
This research report presents a post-humanist approach to analysing a geometrical 
activity involving grade 9 students. In looking at students’ practices in using mathematical 
tools in different contexts, this study considers the range of components involved in a 
learning situation, rather than focusing only on the learner, taking into consideration the 
student, the tool (the Geometer’s Sketchpad) and mathematics, all of which can be 
considered to have influence or agency in such a learning environment. I use the construct 
of intra-acting agency to examine the relation between the components of the situation. 
INTRODUCTION 
Traditional perspectives on human practice are being challenged by researchers within a 
post-humanist paradigm (Barad, 2007; Sorensen, 2009; Malafouris, 2008). Post-
humanists view the individual as important but not as the only “participant” or “agent.” 
In contrast, many learning theories, like constructivism, focus on the individual as the 
main source of action and agency. Socio-cultural theories acknowledge the role of others 
in shaping an individual’s actions, but are still principally about the human. Technology-
based theories like instrumental genesis aim to understand the way in which tools affect 
human action, but still subordinate the tool to the epistemic subject. These anthropocentric 
perspectives position the subject as an external author; a post-humanist perspective adopts 
the idea that non-human elements can “participate” in various forms of practice.  
In this study, the mathematical practice of a classroom of students will be considered. The 
focus will not be solely on the students, but on the intra-actions between subject, their 
tools and the mathematics. Agency will be granted to the non-human elements of this 
environment to help identify forms of activity. This is not a study of individual parts 
collected together but one of a mutual co-constitution of emerging agencies. The ultimate 
goal of this study is to show how this intra-action might look in a mathematics setting. 
THEORETICAL FOUNDATION AND FRAMEWORK 
A post-humanist perspective does not view learning as an individual achievement 
(Sorensen, p. 5). This challenges an anthropocentric perspective, which can be limiting in 
that it dismisses the physical world around us and how it shapes us.  In her studies on 
quantum physics, philosopher and physicist, Karen Barad (2007), describes her 
observations of Bohr’s work on particle physics indicating that actants become defined in 
the emergence of activity: “Objects are not already there; they emerge through specific 
practices” (p. 157). She uses the term intra-action, as opposed to interaction, so that the 
focus is on things emerging and not on capacities or attributes of things before they come 
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together.  I contend that there is a tendency to think that individuals are fully formed and 
stable but this perspective can lead to a focus on individual capabilities. But instead of 
focusing on what an individual is bringing to an interaction, I suggest that the question 
should be what kind of distributed activity occurs across the human and the non-human 
actants. The focus is not on pre-action nor on post-action, but on action itself. 
In addition, Barad (2007) challenges the idea of analysing individuals or things outside of 
context. The very notion of identifying individuals or things distinctly involves creating 
divisions or boundaries. According to Barad, these cuts are arbitrary, subjective and 
continually shifting. For example, traditionally, to speak of an individual would typically 
include a person bounded by their skin.  But if a blind person is using a walking cane to 
help navigate an environment, their “self” is clearly extended. The tip of the cane might 
be considered the extent of their “touch”.   
In her analysis of Bohr, she describes how concepts are dependent upon apparatus, or 
modes of observation: “Concepts, in Bohr’s account, are not mere ideations but specific 
physical arrangements” (p. 54). Although Barad is using Bohr’s model of observation in 
a context of quantum mechanics, I contend that the context is analogous to a learning 
environment for a mathematics student. In any educational context there are different 
arrangements of mathematical tools. I propose each has its own emerging outcomes and 
corresponding concepts, such that where an apparatus begins or ends is a matter of 
subjectivity. Certain arrangements bring forth different features, ways of looking at, or 
constraints of observation or action. The thinker or rational being needs to be redefined, 
not as an individual but as a subject immersed in activity intra-acting with other things: 
“Knowing is a matter of intra acting” (Barad, p. 149). Therefore, mathematical activity is 
considered to be an assemblage of human and non-human agencies.   
Using Barad, agency is operationalized as a construct to identify methodologically what 
emerges from the intra-action of a student with a mathematical tool or concept. Agency 
has traditionally been conceptualized as a human capacity but many researchers now see 
it as emerging from intra-action, thereby granting non-humans the ability to act 
(Malafouris, 2008). Barad states that agency is not an attribute but the ongoing 
reconfigurings of the world  (p. 141).  Agency can be thought of as an action or a doing. 
Intention is not synonymous with agency, for otherwise it becomes a human-centered 
construct.  
Although Pickering’s model is based within a humanist paradigm, his perfomative idiom 
is helpful in identifying assemblages of agency. In his study of practitioners in science 
studies, Pickering highlights the cycle of resistance and accommodation, which occurs in 
scientific work with machines. Within an education setting, this model may be analogous 
to a student using, say, a dynamic geometry software (DGS). In any task, the DGS may 
provide a resistance or a challenge, and the student will then need to accommodate their 
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action to overcome this challenge. Although Pickering focuses on the individual, we can 
name the resistance as a material agency.  The material, non-human element imposes a 
restriction upon the user. Further, a DGS may extend possibilities or distribute activity of 
the person, as the walking stick had done for the blind individual.  
As Sorenson posits, “…to decenter we can still emphasize the individual” (Sorensen, p. 
57). Given the setting of this study, I have chosen to emphasise the individual by 
introducing the notion of self-agency. The human is an exceptional figure and how she 
acts can be acknowledged so as to keep analysis clear. Self-agency is the degree of agency 
a person has, when using an “I” voice such as “I am driving this car” they are enacting a 
self-agency. According to Knox (2011), a developmental psychologist, self-agency is 
necessary to development; I contend this development of self-agency parallels Barad’s 
idea of becoming.  
Providing students opportunities to act, they come to see themselves as participants, which 
may lead them to experience self-agency. Opportunities for self-agency do not necessarily 
evoke self-agency, nor is self-agency guaranteed or even linear. What is important here is 
that what results from exercising self-agency is a “sense” of agency. An individual may 
or may not have a sense of agency in a particular context. This is an important feature of 
this study because one must have a sense of agency in order to participate in a performative 
idiom (Pickering, 1995).  
The question of this study is based on a change of physical arrangement. A geometry 
activity is observed in two different contexts. The first involves a traditional classroom; 
the second includes a newly introduced digital tool. In observing the two contexts, I 
identify significant changes in the students (their self- and sense of agency), their practices 
(actions) and the resulting mathematics. These actants are in the process of becoming. The 
mathematics adopted in this study is a discipline of negotiation, conjectures and 
exploration, not one of infallibility. In this study, I have chosen to focus more on the co-
constitution of student and the tool, leaving their co-constitution with mathematics for 
another study. 
METHODOLOGY 
The theoretical framing of this study demands close attention to the back and forth and 
integrated intra-action of the student using tools in a mathematical activity.  Attention to 
discourse, written or verbal, provides the means by which I identify activity. I use James’ 
(1983) distinction of the  “I” voice as expressions of self-agency and his distinction of the 
“me” voice as the objective self, as that which is being acted upon. I will use these 
distinctions of voice to identify resistance and extensions. These will be examples of 
material agency. Student discourse will be a major source of identifying intra-action 
between themselves and the software.  
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RESEARCH ACTIVITY AND PARTICIPANTS 
The data for this study was collected in a Vancouver high school in a grade 9 (14 years 
old) classroom during a geometry unit. Mathematics 9 in British Columbia has an 
extensive geometry component that involves rotations, symmetries, circle properties as 
well as coordinate geometry. Students had last worked explicitly with triangles and 
squares in grade 6.  
The teacher introduced a two-phase activity based on what he had done in previous years. 
I requested a third phase.  The teacher’s two phases of instruction corresponded to my 
interest in looking at different practices and using different tools in different 
environments. In phase one, the teacher drew (freehand) what looked like a triangle and a 
square on the whiteboard for all of the class to see. He requested that students try to 
identify how they might determine whether these geometrical figures were, in fact, as 
claimed, a triangle and a square. Students worked in pairs to encourage discussion and 
wrote their responses. For phase two, the teacher took all the students to a computer lab, 
sat them in pairs and requested the students use The Geometer’s Sketchpad (GSP) (Jackiw, 
1988) to construct both a triangle and a square. During phase two, the teacher allowed 
students to explore the software’s environment, as this was the first time the students had 
used the program.  He also went around and gave guidance and support by approaching 
pairs of students who seemed to be having difficulty or who were asking questions. In 
addition, he challenged student “constructions” to see if dragging would break them. 
Although the triangle was constructed by almost all students, the square provided more of 
a challenge. Students most commonly “fit” four segments together, but when the teacher 
dragged one of the vertices of the “almost-square” (Figure 1), the “square” would morph 
into another shape.  Students were given more time to try to construct the square over the 
course of the 80-minute class in the computer lab. For phase three, the teacher brought all 
the students back to the classroom and requested that they again write, in pairs, how they 
would determine whether a given figure is a square. The researcher was present during all 
three phases; he also interacted with students, lent support and “challenged” their 
constructions.   
All written work for phases one and three were collected and analyzed. Data from the 
computer lab was collected by using SMRecorder, which records all the digital activity 
on the screen as well as verbal utterances of students.  
ANALYSIS 
The analysis of the data is based on identifying examples of changes in students’ 
conception of themselves or of the mathematics. The majority of data in this study is based 
on data from the computer lab because this is where the agency emerged and made itself 
known.  I identify examples of both self-agency and material agency in working with 
GSP.  I also contrast the transition from phase one to phase three identifying significant 
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changes in students’ conceptions of geometrical shapes.  I then present four examples rich 
in intra-action and agency. 
In phase one, students written work in the classroom, almost exclusively, listed properties 
of the geometrical shapes. Their conception of these geometrical shapes was based on 
properties. Although the figures drawn at the front of the room did not have these 
properties (they were drawn freehand), the students discussed, recalled, using the 
diagrams to guide their memories of grade 6 geometry. In all of the written work there 
was no reference to the “I” voice, nor were there references to the shapes as imposing 
themselves in any way. It is relatively clear, in this activity, where the boundaries were 
drawn. The mathematics was represented on the whiteboard, and the students were the 
subjects expected to absorb or recall the knowledge.   
In the computer lab, the proposed activity supported a process of exploration which in 
turn actualized enactments of agency. For example, in constructing an “almost-square” 
(Figure 1), multiple pairs of student could not get the lengths of the sides to equal. One 
way to deal with this was to draw one segment and copy and paste three more. This was 
a good idea (although this still did not “construct” a square), for the segments were all the 
same length, but the lengths did not remain constant under dragging, as Laura found out. 

Laura:  ohhhhh, how come it changes length? 
This back and forth attempt to make the square is an example of Pickering’s model of 
resistance and accommodation.   

 
Figure 1: An “almost-square” 

There were multiple examples of self agency in the computer lab that were evident as the 
students worked on the task:  

 Ricardo:  I want to see what moving this will do.  
 Alice:   I want to know what happens when I try this… 

There were also examples of resistance, where the software did not do what the student 
expected: 

 Mitchel:  It won’t let me drag the point. 
 Heather:  How come this part is not moving? 
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The transition between phase one and three is significant.  Data from the classroom after 
the intra-action with GSP, in contrast with the phase one activity, was distinct in that the 
conceptions of squares and triangles were different.  In general, their descriptions of the 
square from phase three included new vocabulary, new metaphors and new forms of 
engagement. In their written activity new words were used such as: pull, put all, flip, 
adjusted, drag, copy and paste, angle and locked. 
The following four examples were chosen because they were rich in intra-action and 
agency. The first three are occurrences from the computer lab. The fourth example was 
an occurrence in the classroom during phase three.  
Justin and David constructed a triangle and then translated it partly off the screen and the 
question “Is this a triangle?” was posed.   

 Justin:  Is this a triangle?  

 
Figure 2: Justin’s triangle 

In this particular activity we see an example of students generating new questions; there 
were new opportunities for negotiation. Unlike a drawing of a triangle on a whiteboard or 
a sheet of paper, this triangle was initially fully visible and then translated off the screen. 
The limitation of the screen became negotiable due to the intra-action of the student and 
screen agencies. The agency of the screen limits visibility but also the tools allows for 
easy access to translate the triangle back. The boundaries of the triangle are challenged. 
The students seem to be the ones asking the question, but the screen and the triangle 
occasion this situation. Justin’s half triangle is an example of the relationship between 
humans and negotiation, a challenge not available without the tool. Justin challenges the 
perspective of the student and introduces the question of where the mathematics lives. 
Does it exist off the screen?  
Also in the computer lab, another pair of students, Luna and Michel, described to the 
teacher how they constructed the square using the grid option in GSP. They thought they 
had constructed a perfectly good square (Figure 3). Most other students were getting their 
square pulled apart by the teacher, but Luna and Mishel were confident that their square 
would hold up since it lined up with the coordinate grid. The teacher, however, changed 
the scale on the grid and the square became a rectangle (Figure 4). They did not try to 
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figure out another way to construct the square; instead they based their construction on 
the limitation of not being able to change the scale.  

Luna:  This created a 1x1 square and no matter how you move the point, it stays 
a square – unless you change the grid. 

As long as someone did not change the scale, the square that they had made was a square. 
Luna and Michel’s definition of their virtual square illustrates an assemblage of human 
and non-human forms for they based their definition on a particular situation in GSP 
which included software, agency and mathematics. The definition held all components 
together.  

    
Figure 3: Luna’s square   Figure 4: Luna’s rectangle 

According to James the diagram in Figure 5 is not a triangle. James discussed, with the 
teacher, how GSP expected endpoints to be connected properly otherwise segments could 
be dragged away from each other and the shape did not retain invariant features. James 
challenged the idea of endpoints and intersections. A new way of categorizing 
intersections was introduced; intersections did not become “points” without self-agency 
and the tool. 

James:  The four sides must be touching but not intersecting. 

 
Figure 5: James’ non-triangle 

The last example draws from phase three. One male student said the following while 
explaining to the teacher what a square was. 

Leo:   It has four corners, 90 degree angle, four equal sides, has 360 degrees.  
You can move it around it is still 360 degrees. The four points are 
attaching perfectly so you can move it around. 

When the teacher asked him what it meant to move it, he moved his hands around in the 
air as if he was turning a steering wheel. The mathematics was changing because the object 
had changed definition – it had become accessible and he had developed a sense of agency 
with it in that he knew he could move a square and it would hold its invariance. With the 
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tool, the square became available for empirical challenge, thus radically affecting 
student’s acceptance to what a square was.   
DISCUSSION AND CONCLUSION 
In the computer lab, the students used Sketchpad to test whether a shape is a square. The 
shape became a figure to move around, push; an object with hinges. But a student needs 
a sense of agency to begin the enactment and a self-agency to endorse the square. Without 
the ability to flip, move, drag, the determination of whether the figure is a square is not 
possible. Only in the combination of invariance and movement could a square be 
actualized. The boundaries in such an intra-action are difficult to identify. In the 
classroom, boundaries were easy to identify but with Sketchpad, possibilities were 
enhanced, for the students were doing things with squares and triangles that they had not 
conceived.  Dragging the triangle off the screen, challenging its existence outside of 
perception was something not possible in the classroom.  Moving his hands in the air, 
Leo’s sense of agency is actively trying to access the square. The possibilities of 
engagement were extended for the square did not exist without intra-action. Otherwise 
there would be no way to determine the difference between an “almost-square” and a 
proper square. The square depends on the student to act and the student depends on the 
tool to act and the boundaries of agency continually shift. 
If we are to accept Bohr’s statement that concepts are physical arrangements we should 
consider that Sketchpad is such an arrangement. Thus, the concept of a triangle is different 
than its representation on the whiteboard.  The concept of a triangle is not based on 
properties of a transcendental platonic geometrical figure but an actualized digital form 
that necessitates student engagement.  In phase three when students were describing the 
triangle in terms of gestures, new words, and new metaphors, the tool did not just draw 
attention to different aspects of the triangle but reconceptualised the triangle.  As de 
Freitas and Sinclair (2012) write: “A concept of this kind, with logical and ontological 
functions … resists reification while carving out new mathematical entities and forming 
new material assemblages with learners” (p. 12). 
This study troubles existing, humanist assumptions about the role of tools. If the tool can 
alter the way we look at simple geometrical figures as well as the way we look at our own 
involvement in mathematical activities, both the way digital tools are designed as well as 
the way they are presented can have very important effects on our mathematical 
experiences.  
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QUALITATIVE LEARNER PROFILING  
USING BASIC CONCEPTS OF ELEMENTARY NUMBER THEORY 

O. Arda Cimen 
Simon Fraser University 

The objective of this study is to look in depth into personal factors affecting metacognitive 
monitoring and control in self-regulated study and restudy of basic concepts of elementary 
number theory. By incorporating a wide spectrum of observational methods such as 
behavioural and physiological, and self-reporting techniques and demographics of the 
participants, I aim gaining deeper insights into personal factors implicated in learners 
studying a mathematical text. My ultimate objective is to provide “learner profiles” with 
the help of these qualitative tools that can be used to better inform assessment and tailor 
instructional design in mathematics education. 
OBJECTIVES AND PROPOSES 
My focus here on study and restudy of basic concepts of elementary number theory that 
include the division theorem, divisibility, divisibility rules, factors, divisors, multiples, 
and prime decomposition (Campbell & Zazkis, 2002; Zazkis & Campbell, 2006; 
Campbell, Cimen, & Handscomb, 2009). My aim is to gain deeper insights into personal 
factors affecting study and restudy of this material, interjected with self-reports of 
judgments of learning (Nelson, Dunlosky, Graf, & Narens, 1994), and eventually to 
generate learner profiles. 
THEORETICAL FRAMEWORK 
Learner profiling is a method used by researchers especially in the field of education for 
grouping learners (who are the subjects of a study) based on their specific characteristics 
or behaviours, such as their cognitive thinking, motivation orientations, abilities, 
strategies, or levels of stress. Learner profiling in quantitative studies are done based on 
determining and extracting these types of components out of the data using statistical 
methods such as cluster analysis (Alexander & Murphy, 1999; Csizer & Dornyei, 2005). 
In qualitative studies, clustering learners are more depended on researchers’ observations 
with lenses of a framework, such as 2x2 achievement-goal theory (Elliot and McGregor, 
2001). In such studies, learner profiles are generally more detailed and personal, not only 
defined by a set of characteristics of the cluster they belong. This qualitative case study 
focuses on participants’ motivation orientations based on Elliot & McGregor’s (2001) 
framework with the help of eye-tracking methods to have insight on participants’ 
cognitive abilities (calculation, understanding and reasoning), in combination with their 
levels of stress based on heart rate and respiration data those are used in some 
contemporary educational research (Campbell, S. R. with the ENL Group, 2007). 
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It is important to state that this study neither intent to make general claims, such as 
describing all characteristics pertaining to a specific learner profile, nor tries to identify 
all possible profiles exist when a learner confronts with a math text. Rather this study aims 
providing a better insight into possible learner profiles and possible characteristics of such 
learners while studying and restudying math text, using a theoretical framework (2x2 
Achievement-Goal Framework) and methods such as eye-tracking, heart rate and 
respiration analysis. 
METHODOLOGY 
I have chosen to focus on some basic concepts of elementary number theory for a number 
of reasons. First, I hold the view that concepts of elementary number theory, especially 
with regard to division and divisibility, have a natural role to play in helping elementary 
and middle school students make the transition from arithmetic to algebra (Campbell, 
2001).  
The instrument for investigating metacognitive monitoring and control of study-restudy 
of basic concepts from elementary number theory, comprising six pages of subject matter 
content delivered using gStudy (Perry & Winne, 2006). This subject matter content for 
study-restudy was specifically designed to involve three levels of learning: the first 
involving computation (C), the second involving understanding (U), and the third 
involving reasoning (R). The participant was allowed to study this material at her leisure. 
The study material was then presented to my participant in a manner that highlighted 
different parts thereof (Figure 1), enabling her to provide a judgment regarding her 
learning (JOL), i.e., whether she understood that content very well, well, or not well. Once 
this was done, she was given an opportunity to restudy the material in preparation for a 
test. 
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Figure 1: Screen capture of Page 2 of study material with participant indicating JOL 

The model for interpreting the data on metacognitive monitoring and control is an 
adaptation of Elliot (1999) and Elliot and McGregor’s (2001) motivational distinctions 
between mastery-performance and approach-avoidance, fused with Nelson, et al’s (1994) 
notion of self-reported judgments of learning (JOLs) resulting from metacognitive 
monitoring (Figure 2).  

 Mastery / intrinsic 
motivation 

Performance / extrinsic 
motivation 

Approach / taking time JOL: not well 
understood 

JOL: very well 
understood 

Avoidance / not taking 
time 

JOL: very well 
understood 

JOL: not well understood 

Table 1: Metacognitive monitoring and control model for interpreting motivation in 

restudy 
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According to my model, I interpret mastery-approach represents taking time in restudy to 
learn something for its own sake judged to be not well understood, whereas mastery-
avoidance represents not taking time for restudy of content judged to be well understood. 
Performance-approach serves to better consolidate content judged as well understood, 
whereas performance-avoidance represents not taking additional time restudying content 
considered poorly understood. Accordingly, mastery and performance represent intrinsic 
and extrinsic motivation respectively, and approach and avoidance represent time 
allocated to study-restudy.  
DATA SOURCES AND EVIDENCE 
Behavioral data 
The participant was wired up to monitor fluctuations in heart and respiration rates. She 
was presented the gStudy stimulus using a Tobii 1750 eye-tracking monitor, which detects 
reflections of infrared light pulses on a participants’ retina to precisely trace what is being 
looked at from moment to moment. An ultra sensitive microphone allowed for highly 
sensitive recordings of think-aloud narratives. Infrared video cameras record important 
aspects of the participant behavior, such as facial expressions and body movements, from 
three vantage points. Several steps were taken to maximize the accuracy of eye tracking 
data of the study-restudy material such as increasing font size and spacing of the study 
material. Data streams were integrated; time synchronized and analyzed using Noldus’s 
Observer XT (Figure 3). The data was cross calibrated and synchronized with the help of 
audiovisual, eye-tracking to ensure that the behavioral data for analysis was coded at the 
appropriate times (Campbell & the ENL Group, 2007). 

 

Figure 5: The integrated and synchronized data set using Noldus’s Observer XT 
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Self-report data 
The participant was given informed consent. She filled out a demographic questionnaire. 
Pre- and post-questionnaires were used prior to and after engaging the participant in the 
study-restudy activity. Pre-questionnaires, I do not go into detail here, included the 
Motivated Strategies for Learning Questionnaire (MSLQ) (Duncan & McKeachie, 2005), 
the Epistemic Belief Inventory (EBI) (Schraw, Bendixen & Dunkle, 2002), the 
Metacognitive Awareness Inventory (MAI) (Schraw & Dennison, 1994), the Math 
Anxiety Rating Scales (MARS) (Hopko, 2003).  
A pre-questionnaire designed to gain insight into how comfortable the participant was 
with their abilities regarding calculation, reading, recall, comprehension, and reasoning. 
After completing the pre-questionnaires, the participant engaged upon the study 
component of the experiment, following completion of this initial study period, the 
participant labeled their judgments of learning (JOLs) pertaining to how well she learned 
computational, conceptual, and inferential aspects of the study material. After labeling the 
JOLs, the participant was given a 10-question true/false test on the study material and 
asked to rate her confidence in her answers on a scale of 0-10. Following a short rest, the 
participant engaged in restudy of the material, and then rewrote the same test. Finally, the 
participant filled out a metacognitive post-experiment questionnaire pertaining to her 
experiences in the experiment. 
Participant 
The participant was a 22 years old Female undergraduate student (in Molecular Biology) 
with Vietnamese background. Her overall health was self-reported as good (No anxiety 
disorders of symptoms, no physical problems). After the observation she reported being 
“a little worried that it was going to be hardcore math theory that was being tested on the 
exam part” before the observation (The study also involves data from other three 
participants which are currently being analyzed). 
RESULTS 
The participant’s average heart rate for the study period was ~75.1 beats per minute (bpm), 
reduced to ~69.0 bpm for the self-report period, and reduced further to ~67.0 bpm for the 
restudy period of the same subject content material. Her respiration rates were ~20.3, 
~18.0 and ~17.8 breaths per minute for the study, self-report and restudy periods, 
respectively, while her respective eye blink rate over those three time periods were 37.5, 
16.0, and 34.3 blinks per minute. These values are summarized in Table 1. 
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Time 
Spent 

(seconds) 

Heart Rate 
(beats per 
minute) 

Respiration rate 
(breaths per 

minute) 

Eye Blink Rate 
(blinks per 

minute) 
Study 608 75.1 20.3 37.5 
Self-

Report 278 69.0 18.0 16.0 

Restudy 98 67.0 17.8 34.3 
Table 2: Time and physiological data summary for study, self-report, and restudy 

periods 

Considering that heart rate is a strong indicator for the level of stress and anxiety (Kelly, 
1980; Dew, Galassi, & Galassi, 1984); the results clearly indicate that the participant was 
less anxious, i.e., more relaxed, for the restudy period, in comparison with the study 
period.  
During the self-report period, the participant was re-shown the six pages of study material 
with items highlighted and she was asked to report her judgment of learning (JOL) 
regarding them (35 in total). She was asked to choose among three options per case for 
her self-reporting: not well, well and very well (Figure 1). I substituted scores of -1 for 
not well, 0 for well, and +1 for very well. I then tallied this scoring to give us a total JOL 
confidence indicator of +11. 
All the JOLs labeled by the participant as “not well” learned involved calculations, and 
my data indicates she did not spend much time on these tasks. Hence, in accord with Table 
1, the participant can be classified as having a performance-avoidance orientation in this 
regard. The participant reported she learned most of the understanding tasks very well, 
while reporting most reasoning tasks she had learned well or very well.  

Question Question 
Type 

Test 1 
Results 

Test 1 
Confidence 

Test 2 
Results 

Test 2 
Confidence NTPreQ 

1 Calculation Incorrect 7 Correct 8 3 
2 Calculation Correct 10 Correct 10 3 
3 Understanding Correct 10 Incorrect 10 4 
4 Understanding Correct 10 Correct 10 4 
5 Reasoning Incorrect 9 Correct 10 3 
6 Reasoning Incorrect 10 Incorrect 10 4 
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Table 3: Number theory test and NTPreQ results 
Table 2 summarizes the results from the test that was administered after the study period 
with the results from the same test, which was administered once again after the restudy 
period. These results align well with results of her self-assessment from the Number 
Theory pre-questionnaire. She reports her level of comfort on a scale of 1 (not comfortable 
at all) to 5 (completely comfortable), with calculation tasks as 3, while reporting her level 
of comfort with understanding involving recall and comprehension as 4, and with aspects 
of reasoning as 3.5. Test results substantiate these reports, reiterating she is less confident 
with her answers with calculation tasks compared to understanding and reasoning tasks. 
Although she reports a higher confidence for reasoning tasks, she is less successful on this 
type of task compared to understanding, which she self-reported prior to the study/restudy 
periods as being most comfortable with. Again, my JOL indicates she spent less time on 
the pages that involved calculation.  
Another interesting result was the answers provided for Number Theory Post-
Questionnaire, which was directed to her after restudying the material. She stated that 
learning the task was not interesting for her (ranked 0 out of 7) and it was not challenging 
for her (ranked 2 out of 7). She indicated that, she restudied the items she found most 
difficult to understand. These answers indicate in this regard that she is a mastery-oriented 
learner when it comes to subject content involving understanding and reasoning. 
DISCUSSION AND CONCLUSIONS 
Based on the comparison of heart rate for the self-report and restudy periods, the results 
of this specific study indicate that reporting JOLs, might help reduce the level of anxiety. 
The self-report data substantiates itself and the behavioral data substantiates itself. These 
preliminary results, which will be soon expanded to data from four participants, evidences 
how qualitative learner profiling using contemporary methods can help researchers in 
mathematics education to gain much better understanding of learners’ cognition and 
attitudes towards mathematics. Results from similar future studies can also help other 
players in education system, such as teachers and policy makers, in instruction, lesson 
planning, designing curriculum materials, and making policies in education system with 
deeper understanding of the learners themselves.  
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EXAMINING CONSTRUCTS OF STATISTICAL VARIABILITY THROUGH A 
SEMIOTIC MEDIATION LENS. 

George Ekol  
Simon Fraser University 
 

This paper reports on the way students work with notions of statistical variability in a 
dynamic computer-based learning environment. Taking a semiotic mediation perspective, 
I explored introductory statistics students’ understanding of variability as expressed 
through spoken word, gestures, and inscriptions. Participants interacted with dynamic 
graphs designed with the aim of making more explicit the notion of variability. Based on 
the analysis of the changes in their multimodal communication, I argue that the use of 
dynamic mathematics environments can help promote a more physical and temporal 
understanding of statistical variability. 

INTRODUCTION 
Statistical variability or variation is a key concept in introductory statistics and has 
attracted a lot of attention from statistics educators and mathematicians since the1990s. 
The concept of variability is considered as a foundation of statistical thinking (Wild & 
Pfannkuch, 1999; 2004). Variability is also emphasized in statistics curriculum documents 
(e.g. GAISE, 2005) as a key concept in developing students’ statistical reasoning, thinking 
and literacy (Cobb, 1992; Garfield &Ben-Zvi, 2008). Despite its importance, variability 
has attracted fewer research studies at the tertiary level than at the school level. 
Studies carried out at the undergraduate introductory statistics courses reveal that 
variability is not well understood by students (e.g. delMas & Liu, 2005; Reading & Reid, 
2005, 2006). Reading & Reid (2005) designed a sequence of teaching strategies with 
assessment activities (short quizzes, assignment, and test) that enabled them to develop a 
structure of students’ initial understanding of variation. They analysed students’ responses 
to the assessment activities and developed four hierarchies of consideration of variation 
that include no consideration, weak, developing, and strong consideration of variation 
(Reid & Reading, 2008). According to them, the four levels can be used to assess learning 
activities in the statistics curriculum. Although Reid et al.’s (2008) consideration of 
variation hierarchies were developed in a specific learning environment with a relatively 
small sample of students, they provide helpful ways of assessing consideration of 
variability in introductory statistics.  
 
In another study, delMas et al. (2005) investigated tertiary students’ ability to coordinate 
how the mean and standard deviation varied in different distributions represented by pairs 
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of histograms. They report that most students used a rule-based approach to compare 
variability across distributions instead of reasoning from a conceptual representation of 
the standard deviation. Moreover, students’ explanations during the testing phase were 
often focused on finding a single feature between distributions rather than recognizing 
how data were distributed around the mean. By rule-based approach, delMas et al. (2005) 
meant that students relied on some few patterns that they observed in the distributions and 
used them to generalize for other distributions which were different. The authors 
recommended changing the design of the learning tasks so that students can explore the 
relationships between the mean and standard deviation rather than focusing on single 
values of the mean. The current study builds on that work by re-designing the graphs and 
using them to report on the way tertiary students consider notions of variability in a 
dynamic computer-based learning environment. The study is different than delMas et al.’s 
(ibid) in that I design the tasks in a dynamic geometry environment (DGE). Secondly, I 
take semiotic mediation perspective to inform the study. 
 
THEORETICAL PERSPECTIVE   
Given that dynamic computer- based tools are used by students to explore notions of 
variability, I take a Vygotskian socio-cultural framework, which considers artefacts, 
(including modern computer technologies) as products of human activity that can play a 
role in cognitive development (Vygotsky, 1978). Vygotsky (ibid) assumes a relation 
between practical tools and symbolic tools as instruments of semiotic mediation: 

[…] the use of signs as means of solving a given psychological problem (to remember, 
compare something, report, choose, and so on) is analogous to the invention and use 
of tools in one psychological respect. The signs act as an instrument of psychological 
activity in a manner analogous to the role of a tool in labour (p.52). 

Human activity with an artefact produces different signs (e.g., speech, gestures, drawings, 
inscriptions) that for instance, the student can draw on to develop mathematical meanings 
(Bartolini Bussi & Mariotti, 2008; Falcade & Laborde, 2007; Healy and Sinclair, 2007). 
For example in a dynamic geometry environment, a student may use a dragging tool to 
move data points from position A to B. The movement produces a system of signs that 
he/she can use to develop meaning of variability. According to Falcade at al. (2007) a 
specific tool can be considered as an instrument of semiotic mediation (original emphasis) 
if the user gains an awareness and develops new understanding from the physical action 
on the tool. The new meanings can evolve for instance in a classroom discussion 
facilitated by the teacher (Bartolini Bussi & Mariotti, 2008) into stable mathematical 
meanings. These perspectives informed the design of the learning tasks that are 
summarized in the methodology. 
METHODOLOGY 
Design of graphs 
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With semiotic mediation framework in mind, I designed two dynamic sketches using 
The Geometer’s Sketchpad (Jackiw, 1989). I chose Geometer’s Sketchpad (GSP) 
software because of its flexibility and its Dragging tool that can support learning 
concepts through student participation. GSP’s graphic and arithmetic representations 
also support visualization of abstract concepts such as distribution, mean and standard 
deviation. 
 
The first sketch (below Figure 1a— which I call the dynamic mean and standard 
deviation —dyMS Sketch) illustrates the variability of the mean and standard deviation 
with the variability of a data set on the number line. Six draggable data points B, A, D, 
E, F, and C are shown on the horizontal line. As the points are dragged on the horizontal 
line, the squares vary in size, and the arithmetical values of the mean and standard 
deviation also change. The design of the dyMS Sketch uses statistical principle of data 
variation from the centre. Only six data points were used to simplify the tasks but the 
design allows for adding in more data points. Moreover, the focus of the design was on 
demonstrating how the mean and standard deviation dynamically vary with varying data 
distributions.  
 

 

 
 

Figure1a. dyMS Sketch                        b. gC Sketch 
 
The second sketch (Figure 1b that I called the Gaussian curve – gC Sketch) depicts the 
variability of the mean, standard deviation and the Gaussian curve1. As shown in Figure 
1b, the curve near the horizontal line is designed such that its peak rises or falls as the 
data points are dragged on the horizontal line closer to, or away from the mean line. 
Apart from introducing the Gaussian curve, all features of Figure 1a are available in 
Figure 1b, but hidden. The gC Sketch extends studies on variability of the mean and 
standard deviation in descriptive statistics into some elements of variability in inferential 
statistics. 
 
1. Gaussian distribution or Normal distribution is a continuous probability distribution 

with a density function (Gaussian function) given by: 
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The parameter μ is the mean (the peak of the Gaussian curve) and σ 2 is the variance (the 
square of the average distance from the mean). σ is the standard deviation (the average 
distance from the mean). The Gaussian distribution with μ = 0 and σ 2 = 1 is the standard 
normal distribution.  
The interview tasks 
I adapted Falcade & Laborde’s (2007) method of analysing variation tasks in a dynamic 
environment which enabled me to consider variability i) as relation between different 
signs (numerical signs, squares, curve etc.) all of them linked to the other in the dynamic 
environment; ii) I considered movement—the change in space according to change in 
time—to constitute the general notion of variability, and iii) The dynamic geometry 
environment (DGE) provided space and time within which participants could experience 
the notion of variability.  
Using Figure 1a, (with the arithmetical values of the mean and standard deviation first 
hidden), participants were asked to predict how the mean, standard deviation, and the 
squares would behave as they dragged the data points on the horizontal line away from 
or toward the mean line. After making their predictions, participants were asked to 
check using the Dragging tool. In the second task that was based on the gC sketch 
(Figure 1b), participants were asked to predict how the mean, standard deviation and the 
curve peak would change as data points moved on the horizontal line closer to the mean 
or away from the mean line. Then they were asked to use the dragging tool and check 
their predictions. All actions, speech and bodily movements by participants were 
videotaped and transcribed for analysis. 
Participants  
Eight undergraduate students (4 male and 4 female) who were enrolled in introductory 
statistics in a North-western Canadian University volunteered and were interviewed. I 
conducted one -on-one tasked based clinical interviews at the end of the semester when 
participants had covered all the topics in their statistics courses. Out of the eight, three 
participants whose data were considered too brief or unrelated to the topic of variability 
were not included in the analysis. Of the five participants (2 male, 3 female) that were 
included in the study report, two (1 male, 1 female) were in their second year of 
Actuarial science course and the other three were in their third year in the health 
sciences program. The two participants from Actuarial science had stronger background 
in statistics than others. In this paper, I present partial results for two participants: Anita 
from health sciences and Boris from Actuarial science (the names are not real ones).  
RESULTS  
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The tasks presented below relate to above Figure 1a. Anita and Boris were asked to predict 
and later check prediction how the mean, standard deviation and the squares would vary 
if the data points were dragged on the horizontal line. 

1  I: “… can you predict what the squares, the mean and standard deviation 
will be like as you move any of the data points along the horizontal axis?"  

2 Anita:  “… If I move it [point B] away from the centre … the line of the square 
will move this way toward this other line, so it would get a bit bigger…” 

When Anita said, “If I move [point B] away from the centre ...” she pointed to the left 
side of the mean line with her right index finger (Figure 2a) to indicate the direction of 
movement of the square and she predicted that the square “would get bigger.” 

3 Boris:  If you move [data points] away from the centre, the square is getting 
bigger and bigger because the square is the distance from the centre. 

   
Figure 2 a. Move this way b. Away from the centre c. The boxes are just scales 
Boris’ prediction was similar to Anita’s, except that he assigned the moving of the points 
to someone else by saying, “if you move away […] the square is getting bigger and bigger 
[…]” [line 3]. Boris also depicted the continuity of the square “getting bigger and bigger” 
as data points were moved away from the centre. He was more specific about the size of 
the squares “getting bigger and bigger” [line 3] than Anita who predicted that the square 
“would get a bit bigger” [line 2]. I conjectured Anita was less sure of her prediction than 
Boris although none of them mentioned changes in the mean and the standard deviation. 
I asked Anita to check her prediction using the dragging tool. 

4  Anita: “The mean gets smaller; standard deviation gets larger.” 
5  I: “… Move it again and see how the mean and standard deviation are 

changing.” 
6 Anita:  “Oh, so both of them got larger yeah ok, so I thought the mean would get 

smaller and the standard deviation would get larger but actually both of 
them are increasing” (Figure 2b). 

When Anita said, “The mean gets smaller, standard deviation gets larger” [4], she had 
used the dragging briefly and then stopped. I asked her to do it again (line 5), and when 
she dragged one data point farther to the right side (Figure. 2b) of the mean line, she said, 
“oh, so both of them got larger …” [line 6]. Anita’s surprise reaction “oh, so both of them 
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got large” suggests that she saw something different than she had predicted. Boris checked 
his prediction but his reaction was different than Anita’s: 

7  Boris: “Yeah, yeah, they are getting bigger, the boxes are just scales, and they 
are actually just scales to see how the relative differences are. That was 
interesting” (Figure 2c). 

Boris had predicted that the squares would get larger because “the square is the distance 
from the distance from the mean.” His response “yeah, yeah, they are getting bigger” 
after checking seemed to confirm his prediction. He called the squares the “boxes are 
just scales …to see how the relative differences are” [line 9]. What Boris probably 
meant was that the size of the squares indicated how far away the corresponding data 
points were from the mean. A smaller square showed that the data corresponding data 
point was nearer to the centre than a bigger square. 
DISCUSSION  
Anita’s statement [see line 6] “Oh, so both of them got larger … I thought the mean would 
get smaller, but actually both of them are increasing” suggests that she gained some new 
understanding of the variability of data after using the dragging tool to check her 
prediction. She said, “I thought the mean would get smaller, but actually both of them are 
increasing.” The dragging was in that sense was transformed into an instrument of 
semiotic mediation that brought about a new realization for Anita (Bartolini Bussi & 
Mariotti, 2008; Falcade & Laborde, 2007). Although a full understanding of the 
mathematical meanings involved in an activity takes time to develop (Bartolini Bussi & 
Mariotti, 2008), Anita’s realization of the variability of the mean in relation to the 
variability of standard deviation suggests some evidence of the internalization of the 
dragging tool (Vygotsky, 1978). 
Similarly Boris’ statement, “Yeah, yeah, they are getting bigger, the boxes are just scales, 
and they are actually just scales to see […] the relative differences …” [7] also provided 
evidence of the dragging tool being transformed into a psychological tool. Boris described 
the squares as “the boxes” that were “actually just scales to see […].the relative 
differences” [7]. By that he meant the size of the square represented how far away a data 
point was from the mean. Although Boris’ language was not strictly mathematical, for 
instance by naming the “squares” the “boxes”, he coordinated the size of the size of 
squares with the deviation of data points from the mean. Indeed the squares were just 
scales that represented the variance (the square of the average distance from the mean) of 
the data points. Anita and Boris used informal language to describe their ideas of 
mathematical meanings of variability. There are pedagogical questions in literature 
whether or not informal, personal meanings students express about concepts should be 
encouraged by teachers. However, many researchers and educators (e.g., Maker & 
Confrey, 2005; Healy & Sinclair, 2007) have encouraged teachers to pay closer attention 
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to the ideas students come with about specific concepts to inform teachers’ design of the 
learning tasks.  
Semiotic mediation considers particular tools and objects that participants interact with in 
a dynamic geometry environment as signs. This study explored how the dragging tool can 
be used as an instrument of semiotic mediation for learning statistics.  
The different signs produced during the interaction with the dragging tool had some 
relationship. For instance, the sizes of the squares related to the distances of the individual 
data points from the centre. Moreover, the arithmetical values of the mean and standard 
deviation also increased (or decreased) as the data points were dragged farther away from 
(or closer to) the centre, and participants used the signs to check their predictions. From 
these relationships, it can be argued that the DGE provided space and time within which 
participants experienced the notion of variability.  
The study provides some evidence of the potential of dynamic mathematics environments 
in helping student make meaning of variability. The design of the tasks responds partially 
to delMas et al.’s (2005) work by drawing students away from using formula and 
calculation, to focussing more on exploring the relationships between the mean and 
standard deviation in the learning environment. The study contributes toward building 
students’ strong consideration of variability (Reid & Reading, 2008) which they need as 
a foundation for statistical reasoning, thinking and literacy 
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INTERPLAY BETWEEN CONCEPT IMAGE & CONCEPT DEFINITION: 
DEFINITION OF CONTINUITY 

Gaya Jayakody 
Simon Fraser University 

This study looks at the interplay between the concept image and concept definition when 
students are given a task that requires direct application of the definition of continuity of 
a function at a point. Data was collected from 37 first year university students. It was 
found that different students apply the definition to different levels, which varied from 
formal deductions (based on the application of the definition) to intuitive responses (based 
on rather loose and incomplete notions in their concept image). 

Keywords : Continuity, Concept image, Concept definition, Cognitive conflict  

Among others, functions, limit, derivative and continuity have been widely recognized as 
some of the advanced mathematical concepts that not only students but also teachers find 
somewhat hard to grapple with. In addition to research carried out on the understanding 
of these concepts individually (Bezuidenhout, 2001; Vinner, 1987; Cornu, 1991), there 
has also been research done on understanding of the relationships between some of these 
concepts (Aspinwall et al., 1997; Duru et al., 2010). Further, the presentation of these 
concepts in a particular text book is discussed by Tall & Vinner (1981). This paper aims 
to look at how students work with the concept of continuity. Concept image and concept 
definition by Vinner (1991) will serve as a theoretical framework for the analysis of the 
data. ‘Concept image’ is the name given to the total cognitive structure of a concept which 
includes all the mental pictures, properties and processes related to it. The definition of a 
concept on the other hand, is a form of words used to specify that concept and is termed 
as ‘concept definition’(Tall & Vinner, 1981). 
This study is driven by the following questions: To what extent do students recall and 
apply the definition of continuity when handling tasks involving continuity? What notions 
of continuity are present in their concept images?  
RESEARCH METHOD 
Thirty seven student responses to the following question were collected and analyzed for 
this study.  

 

Let              𝑥𝑥
2+ 𝑥𝑥 − 2
𝑥𝑥 − 1

  ; 𝑥𝑥 ≠ 1 

                 𝑎𝑎  ; 𝑥𝑥 = 1 
 Which value must you assign to 𝑎𝑎 so that 𝑓𝑓(𝑥𝑥) is continuous at 𝑥𝑥 = 1? 

𝑓𝑓(𝑥𝑥) 
=        
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The students were in their first year of undergraduate studies specializing in the biological 
and medical sciences and were taking a Calculus course. They had covered the topics 
functions, limits, limit laws and continuity at the time of data collection. Based on the 
definition that was taught in this course “A function 𝑓𝑓(𝑥𝑥) is said to be continuous at 𝑥𝑥 =
𝑐𝑐 if lim

𝑥𝑥→𝑐𝑐
𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑐𝑐)”, a complete answer to the above question may include three distinct 

points.  

• Identifying the condition that must be satisfied for 𝑓𝑓(𝑥𝑥) to be continuous at 𝑥𝑥 = 1.  
For 𝑓𝑓(𝑥𝑥) to be continuous at 𝑥𝑥 = 1, lim

𝑥𝑥→1
𝑓𝑓(𝑥𝑥)  must be equal to 𝑓𝑓(1) which is 𝑎𝑎. 

• Finding the limit of 𝑓𝑓(𝑥𝑥) when 𝑥𝑥 approaches 1. 

lim
𝑥𝑥→1

𝑓𝑓(𝑥𝑥) = 𝑥𝑥
2+ 𝑥𝑥 − 2
𝑥𝑥 − 1

 = lim
𝑥𝑥→1

 (𝑥𝑥−1)( 𝑥𝑥+2)
(𝑥𝑥 − 1)

  =  lim
𝑥𝑥→1

  𝑥𝑥 + 2  = 1+2 = 3 ;𝑥𝑥 ≠ 1  

• Concluding that 𝑎𝑎 must be 3. 
𝑓𝑓(1)  = 3  and 𝑓𝑓(1) = 𝑎𝑎  hence 𝑎𝑎 = 3. 
These steps need not be in this same exact order but there must be some logical sequence 
in the way the students organize their answer. The consultation of the definition in the 
first step requires them to proceed to the second step where they need to find the limit of 
𝑓𝑓(𝑥𝑥) when 𝑥𝑥  approaches 1. A student may do this step first ‘knowing’ it needs to be done 
in their head and may state the condition afterwards. Because without calling on the 
definition, there will not be a necessity to find the limit. The second step is a matter of 
finding the limit of a function where the function is a rational which produces an 
indeterminate form with direct substitution. This step hence, may not call on the definition 
of the limit but only on the procedures of finding the limit. Last step is the conclusion of 
the answer. 
RESULTS 
Five different types of answers could be identified. Only the first four categories are 
presented in this paper since the page limitation does not allow the fifth category to be 
discussed which was special cases that showed the need of individual analysis. The first 
four categories which show the application of the definition to different degrees are listed 
in a certain order which is from a poor answer to a good answer from a marker’s 
perspective.  

 
Type 1 -  The correct answer for 𝑎𝑎 is obtained but taking the limit of 𝑓𝑓(𝑥𝑥) when 𝑥𝑥 
approaches 1 is not explicitly shown. 
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Four (out of 37) students in the group gave the answer in this category as shown in figure 
1. It is hard to say whether these students are thinking of taking the limit but not showing 
it or they are merely doing an algebraic manipulation of the expression. The line 𝑓𝑓(1) =
�(1) + 2� can be interpreted at least in two ways.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
          Figure 1: Type 1 
 
Case 1 : ‘plugging a value into the function’ 
 

 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 2)  and hence 𝑓𝑓(1) = ((1) + 2) or  
 

Case 2 : applying the condition for continuity and hence stating an  identity 
 
        lim

𝑥𝑥→1
𝑓𝑓(𝑥𝑥) = lim

𝑥𝑥→1
(𝑥𝑥 + 2) = �(1) + 2� & this must equal to 𝑓𝑓(1), 𝑓𝑓(1) =

((1) + 2) 
 
The way they have presented their answer it appears as though the students meant the first 
case rather than the latter. This is because if they meant the second case, the way the 
argument is ordered, it should be written as �(1) + 2� = 𝑓𝑓(1), not as 𝑓𝑓(1) = ((1) + 2). 
The concept definition of ‘continuity of a function at a point’ contains the concept of ‘limit 
of a function’. If students have trouble understanding the concept of limit and hence 
possess a blurred concept image of limit, then, this has a significant impact on the concept 
image of continuity. The portion of their concept image, which is evoked by this problem, 
does not seem to contain or have any overlap with the concept of limit. Their working can 
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be best described as an effort to merge the two pieces of the function. This can be pointing 
to the notion that students were found to have by Tall and Vinner (1981) too, of the need 
for a function to be in one piece to be continuous. It appears that they simplify the case 
when 𝑥𝑥 ≠ 1 which is 𝑥𝑥

2+ 𝑥𝑥 − 2
𝑥𝑥 − 1

 to (𝑥𝑥 + 2) and then assign it to the case when 𝑥𝑥 = 1.  

The features of the responses of this type also suggest that the task has not made these 
students to consult the concept definition but that they have worked on certain notions in 
their concept image of continuity. This intuitive response is modeled by figure 2 as 
illustrated by Vinner (1991, pg. 73).  

 
 
 

 
 
 
 
 
 
 
 
     
 
 

    
 
 
Figure 2: Intuitive Response 

 
 
 
 
Type 2 – The limit is taken and the value for 𝑎𝑎 is given without noting that the limit must 

equal              to 𝑓𝑓(1).  
 
 
 
 
 
 

Input (task) 
  

Concept definition Concept image 

Output (answer) 

Input (task) 
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Figure 3: Type 2 
 

In this category (12 out of 37) the students have taken the limit and have just concluded 
that it is equal to 𝑎𝑎 (see figure 3). This kind of an answer can come from a correct reference 
to the definition. What is lacking in terms of writing is, not explicitly showing or stating 
that the calculated limit must equal the function value at 𝑥𝑥 = 1 . And it is not 
acknowledged that 𝑓𝑓(1) = 𝑎𝑎. However, this may have been thought through to obtain the 
answer as 𝑎𝑎 = 3.  

Another possible process that may be on work here is a rote memorization of a 
procedure rather than any attention given to the definition. Since this is a familiar and 
‘routine’ kind of question, students may have developed an algorithm for it, as part of the 
concept image. It may be a rule like ‘find the limit of the function given and assign it to 
the letter’. Only this procedure, in that case, may be evoked when presented with this style 
of a question.  
 
Type 3 - The limit is taken and notes that it should be equal to 𝑓𝑓(1) and hence to 𝑎𝑎. 

 
 
 
 
 
 
 

        Figure 4: Type 3                               
 

These students (4 out of 37) have explicitly stated that 𝑓𝑓(1) is equal to the answer they 
obtained for the limit and hence have exhibited an important part of the definition before 
concluding the final answer for 𝑎𝑎 (see figure 4). And as shown in figure 4, the definition 
is embedded in their answer. It can be concluded that, in their concept image they have a 
complete concept definition image, which they have been able to appropriately apply in 
this task. Based on the presented written work, students in this type are a step ahead of the 
students under type 2. Even if one argues that these students too can be applying a mere 
memorized algorithm, it is evident that their ‘algorithm’ is more closely grounded to the 
definition.    

76 Proceedings, MEDSC 2012  
 



 
Type 4 – A complete logical answer with all reasons is given.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

                            Figure 5: Type 4 
 

The answers were with a good logical sequence of reasoning without missing any points 
as shown in figure 5. Thirteen of the students had given answers in this category. It is 
clearly demonstrated how they formulate their answers by consulting the concept 
definition. And no sign of side tracking or being disturbed or intervened by unnecessary 
notions that may be present in the concept image is visible. Hence, this can be modeled 
by figure 6 as illustrated by Vinner (1991, p. 72) of a purely formal deduction. 
                            

 
 
 
 
 
 
 
 
 

 
 
 

Figure 6: Formal Deduction 
DISCUSSION & CONCLUSIONS 

Concept definition Concept image 

Input (task) 

Output (answer) 
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Response types 2, 3 and 4 show clear attention given to the definition in different degrees. 
Vinner (1991) claims that the majority of students do not use definitions when working 
on cognitive tasks in technical contexts and that college courses do not develop in the 
science students, not majoring in mathematics, the thought habits needed for technical 
contexts. However, as far as using definitions goes, this preliminary study suggests that, 
majority of students who are not majoring in Mathematics do refer the definition but in 
different levels. They seem to have a concept definition image developed to different 
levels as part of their concept images. Or, if the assumption- that their writings reflect 
their cognitive processes- is removed, this can be pointing to a different category of levels 
in transforming their cognitive processes into writing.  
What seems to emerge from type 1 is the tendency of some students to tackle problems in 
ways that they have built for themselves with little rigor which works and produces the 
correct answer. Vinner says that ‘as long as referring to the concept image will result in a 
correct solution, the student will keep referring to the concept image since this strategy is 
simple and natural’ (Vinner, 1991, pg. 80). This brings us to the following questions yet 
to be answered. Can this be overlooked as they produce the correct answer and be satisfied 
about their performance, as these students are not majoring in Mathematics? Or should 
these be resolved by creating cognitive conflicts that make students confront these 
erroneous methods?   
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EFFECT OF DYNAMIC GEOMETRY ON CHILDREN’S PERFORMANCE IN 
ANGLE COMPARISON TASKS 

Harpreet Kaur 
Simon Fraser University 

This paper examines the effect of the use of dynamic geometry environments on children’s 
thinking about angle. Using a driving angle model in Sketchpad, kindergarten children 
were able to develop an understanding of angle as “turn,” that is, of angle as describing 
an amount of turn. After the classroom lessons with dynamic sketches, students were 
interviewed on various angle comparison tasks. It emerged out that gestures and motion 
played an important role in their developing conceptions of angles as well as in their 
decision making on angle comparison tasks. 
 
Keywords: Dynamic Geometry Environment, Angle, Gestures, K-2. 

INTRODUCTION 
Being multifaceted concept of angle can pose challenges to learners, even into secondary 
school (Close 1982, Mitchelmore & White 1995). Despite these difficulties, children show 
sensitivity to the concept of angle from very early years (Spelke, Gilmore and McCarthy, 
2011). Angles are normally introduced to children quite late in formal school settings. For 
example, in British Columbia, they are introduced in grade 6 (12 years old), even though 
students are expected to describe, compare, and construct 2-D shapes, including triangles, 
squares, rectangles and circles in grade 2. The strong capacity of young children to attend 
to and identify angles in various physical contexts motivated us to see whether a more 
dynamic conception of angle —namely, angle-as-turn—might support their developing 
understanding at an earlier age. 
We have been investigating other geometry-related concepts at this age too, using DGEs, 
including shape identification, symmetry and parallel lines (Sinclair, Moss & Jones, 2010; 
Sinclair & Kaur, 2011). Previous research reports on the effectiveness of Turtle Geometry 
(Logo) for teaching the concept of angle (Clements, Battista, Sarama & Swaminathan 
1996; Simmons & Cope, 1990). However, we believe that dynamic geometry environment 
(DGE) might be helpful in thinking of angles as turns and rotation more effectively. In 
this paper, we report on a one-on-one interview with a split class of kindergarten/grade 1 
children (ages 5-6) who were taught concept of angle using The Geometer’s Sketchpad. 
We focus on the emergence of the concept of angle-as-turn and its use in angle comparison 
tasks as well as discuss the specific mediating role of the use of the software on this 
thinking. 
 
CHILDREN’S UNDERSTANDING OF ANGLE 
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In the research literature, the concept of angle is shown to have different perspectives, 
namely: angle as a geometric shape, union of two rays with a common end point (static); 
angle as movement; angle as rotation (dynamic); angle as measure; and, amount of turning 
(Close, 1982; Henderson & Taimina, 2005). Due to different prevalent definitions of the 
term angle, teachers often face difficulty in knowing what definition of angle to use 
(Close, 1982). Mitchelmore (and colleagues) and Clements (and colleagues) have done 
abundant research in the area of angle concept over the past twenty years. Much research 
has been conducted on the development of the concept of angles, focusing at the grades 
3, 4 and higher levels. Mitchelmore & White (1995) suggests that angles occur in a wide 
variety of physical situations that are not easily correlated. Despite the excellent 
knowledge of all situations, specific features of each situation strongly hinder recognition 
of the common features required for defining the angle concept (Mitchelmore, 1998).  
 
Later works of Mitchelmore involved teaching experiments (White & Mitchelmore, 2003) 
in which they divided angle situations into three clusters—2 line angles (corners of room, 
intersecting roads, pairs of scissors), 1-line angles (doors, windshield wipers), and 0-line 
angles (the turning of a doorknob or a wheel). The situation is more problematic for 
students where the two arms (of angle) are not clearly visible. Research using Logo shows 
that students tend to visualize the turn of turtle as turn of their body but making these turns 
involves writing numerical commands (Clements, Battista, Sarama & Swaminathan 
1996). The DGE does not involve the writing of the commands and can thus be used at an 
earlier age to develop more qualitative understanding of angle.  
 
Research has reported about the young children’s difficulties in understanding the turn as 
an angle (relating turning to angles in general) as well as connecting static angles to turns 
(Mitchelmore, 1998; Clements, Battista, Sarama & Swaminathan, 1996). Thus, young 
children do not spontaneously conceptualize turning in terms of angle and they don’t 
naturally connect static angles to turns. Other popular misconception about angles is 
related to the relative size of angles. Students think that the length of the arms is related 
to the size of the angle (Wilson and Adams 1992; Stavy and Tirosh 2000; Clausen-May 
2005; Munier, Devichi & Merle, 2008). The emphasis on quantity aspect of angles leads 
students to think  ‘the longer the rays, the greater the measure of the angle’ (Keiser, 2004, 
Stavy and Tirosh 2000, Clausen-May 2005). Stavy and Tirosh (2000) reported this 
misconception could develop among children as a result of intuitive rule ‘More A - More 
B’. Another reasons for such misconception are the introduction of angle as a shape rather 
than a measure as well as the limited experience of angles as shown in textbook (Clausen-
May, 2005). This misconception seems to be very hard to overcome. Lehrer, Jenkins, and 
Osana (1998) conducted a longitudinal study involving children in grades 1–3 who were 
followed through grades 3, 4, and 5. Their results show that “the length of the line 
segments had a substantial influence on children’s judgments of similarity … the effects 
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of length on children’s judgments about angles did not diminish during the three years of 
the study (1998, p. 149)”.  We believed that the DGE approach would be helpful in 
developing the dynamic as well as static concept of angle. Kaur and Sinclair (2012) 
reported about children’s readiness to learn about angle using the Sketchpad. 

THEORETICAL PERSPECTIVE 
In previous research, we have found Sfard’s (2008) ‘commognition’ approach is suitable 
for analysing the geometric learning of students interacting with DGEs (see Sinclair, Moss 
& Jones, 2010; Sinclair & Kaur, 2011). For Sfard, thinking is a type of discursive activity. 
Sfard’s approach is based on a participationist vision of learning, in which learning 
mathematics involves initiation into the well-defined discourse of the mathematical 
community. The mathematical discourse has four characteristic features: word use 
(vocabulary), visual mediators (the visual means with which the communication is 
mediated), routines (the meta-discursive rules that navigate the flow of communication) 
and narratives (any text that can be accepted as true such as axioms, definitions and 
theorems in mathematics). Learning geometry can thus be defined as the process through 
which a learner changes her ways of communicating through these four characteristic 
features. We have previously presented a developmental trajectory related to identifying 
shapes in terms of different levels of discourse and now we are trying to do the same thing 
with angles, but we will look first at how the different components of the discourse change 
as the students work within the DGE. We are particularly interested in investigating how 
the students might move between different word uses and to examine the informal 
language they use to talk about angles.  
Similarly, given the importance of gestures in communication of abstract ideas (Cook & 
Goldin-Meadow, 2006), and their potential to communicate temporal conceptions of 
mathematics (Núñez, 2003; Sinclair & Gol Tabaghi, 2010), we chose to extend Sfard’s 
approach to incorporate gestural forms of visual mediators. Kita (2000) focuses on the 
cognitive functions of gestures, which play an important role in communication. He points 
out that the production of a gesture helps speakers organize rich spatio-motoric 
information, where spatio-motoric thinking organizes information differently than 
analytic thinking (which is used for speech). We thus expect that children will use gestures 
to convey spatio-motoric information, even though they might not be able to convey the 
analytic thinking used in speech. Moreover, children’s gesture might be non-redundant 
with their speech. Our goal in looking at the gestures will be to see how they communicate 
different ideas about angles; particularly the mobile ones associate with angle-as-turn.  

EXPLORING THE UNDERSTANDING OF CONCEPT OF ANGLE 
Participants and tasks 
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We worked with kindergarten/grade1 children (aged 5-6) from a school in a rural low SES 
town in the northern part of British Columbia. There are 20 children with diverse ethnic 
backgrounds and with a wide range of academic abilities. We designed lessons related to 
angle along with the classroom teacher, who has a Masters degree in mathematics 
education and has been developing her practice of using DGEs for a couple of years. The 
teacher and students worked with angles in different ways using Sketchpad for six lessons 
in a whole class setting with an IWB (Interactive Whiteboard). Each lesson lasted 
approximately 30 minutes and was conducted in a group with the children seated on a 
carpet in front of a screen. After five months, seven students were interviewed on angle 
comparison tasks. The students were presented with the triads of angle sketches (Table1) 
and asked to determine “which two are most alike and give a verbal justification for your 
choice?” Total seven triads were printed on 7 different sheets with one triad on each. Each 
triad was shown to students one by one. Four angle triads (1,2,4,5) are adapted from 
Lehrer (1998) longitudinal study. Three (3,6,7) additional triads were included in this 
study. Interviews were videotaped and some of them were transcribed. Present paper 
analyses the responses of one student on the angle comparison tasks. 
 
Dynamic angle sketches 
We used two different sketches to explore the concept of angle with the children. We 
began with a simple angle diagram (Fig.1). In the sketch, dragging the vertex of an arm 
of the angle changes the angle. The research suggests that children have difficulty seeing 
a static angle as a turn. The second sketch used is a ‘driving angle model,’ which shows 
both a static as well as dynamic sense of angle (Fig.2). It includes a car that can move 
forward as well as turn around a point. The turning is controlled by a little dial (which 
has two arms and a centre). There are four action buttons (Turn, Drive Forward, Erase 
Traces and Reset) that control the movement of the car.  

                      
             Figure 1: Angle as a Shape                        Figures 2: Driving Angle Model 
The traces offer a visible, geometric record of the amount of turn. (For details See Kaur 
& Sinclair, 2012).  
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Table 1: Angle comparison triads 

 
Working with angle comparison tasks 
Present paper will present the interaction with a girl named Chloe on angle comparison 
tasks. Teacher presented the first triad to Chloe and asked: 

Teacher: Have you seen things like that before?  (Showing angle triad) 
Chloe: Yeah on the smart board we do that?      

Figure 3 (500, 500, 1200 triad) 
       Teacher: Oh yeah…which one out of these three you think is most different? 

Chloe: I think that one (Pointing at 3b) 
Teacher: That one is most different? (Pointing at 3b) 
Chloe: Yeah, that one is the smallest  
Teacher: Okay (Taking out the next sheet of triad) 
Chloe: And those two are pretty big 

After looking at the triad with angles 50,50 and 120 degrees, Chloe instantly said that 
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1(b) is different. The use of the words ‘smallest’ and ‘pretty big’ indicates that initially 
she was paying attention to the length of the arms of the angles. She started the 
comparison of triads based on the visual appearance of the length of arms of the angles.  
But as soon as she is presented with the next sheet with other triad, she changed her 
mind and gave a different answer with entirely new explanation. 

Teacher: How about these three? (Showing next triad sheet) 
Chloe: Well in a different way all of those can be different. (Flipping the next sheet 

halfway, looking at and then talking about the previous task) 
Teacher: What do you mean in a different way all of these can be different? 
(Taking away the second sheet) 
Chloe: Well, that one is wider. (Pointing at c and drawing the angle over the c with 

index finger of right hand extended…tracing over the 3(c) starting from top point 
to the lowest point and then repeating the drawing with index figure from bottom 
to top backwards)) 

Chloe: And that one is just like that one kind of (Drawing b and a respectively with 
index finger of left hand tracing over the 3(b) and then 3(a) starting from top 
point to the lowest point), except that one is just smaller (talking about 3(b)). That 
one is tiny bit bigger (Using her left hand thumb and four fingers together as arms 
and bringing them close together and then taking them further from each other). 
That one is wider (Again drawing 3c with right hand index finger) 

Chloe’s use of words ‘in a different way all of these can be different’ shows that she 
analyzed the triad from more than one perspective. Later she started to think in terms of 
angles being different in terms of wideness.  She used the words like ‘wider’, ‘that one is 
just like that one kind of’, ‘just smaller’, ‘and tiny bit bigger’ for the comparison of same 
triad second time. Chloe’s use of the words ‘that one is just like that one kind of’ while 
gesturing for drawing a and b with left hand’s index finger, shows that she is talking 
about angles a and b being same due to same amount of wideness, except the fact that 
length of arms are different. It is worth noting that in case of all triads, Chloe drew a and 
b with left hand’s index finger, while the c figures were drawn with right hand index 
fingers.  The drawing of angles with index fingers acted as a visual mediator for Chloe 
to decide about the wideness of angles. 

 Teacher: Okay, that makes sense. How about these three? (Showing the next sheet 
with another triad) 

 Figure 4 (300,600,1200 triad) 
Chloe: That one is most different (Drawing 4c with the right hand index figure from 

top to bottom point) because if you could stretch that one (Pointing at 4a) a tiny 
bit further, it will be just like that (Pointing at 4b).  
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While comparing a 30, 60 and 120 degrees triad, Chloe’s use of words ‘stretch that one a 
tiny bit further’ again reveals that she is paying attention to the relative position of arms 
of the angle. This kind of dynamic thinking might be invoked due to DGE based 
instruction where the car turns from one position to another with a particular angle 
showing the traces. Also, It is also interesting to note that Chloe could recognize the 
triads 1 and 2 (in Table 1) being same. This shows that the length of arms does not effect 
her conception of angles and she has understood the angle as a turn. Chloe used the 
drawing of angles with index fingers as the visual mediator to decide the wideness of 
angles. 

Teacher: Okay…how about here? (Showing the new sheet) 

 
Figure 5 (300,600,900 triad) 

Chloe: Umm…(thinking)...I think that one (Pointing at 5(a) and drawing with the left 
hand index finger) 

Chloe: Because that one (pointing at 5c and drawing with right hand index finger) all 
you have to do to put a tiny bit more like that way (opening wide hands and then 
turning them inwards to make the angle smaller) and turn it over (gesturing with 
hands to flip the angle) And in that you have to put a lot farther and turn it over. 

 
                            Figure 6a                      6b                    6c 
Chloe didn’t compare the angles being different on the basis of the orientation of the 
angles. This time for comparison of angles, Chloe looked at angles in terms of the turn 
involved. She opened her hands wide enough to show angle 5c (figure 6a) and then 
suggested ‘all you have to do to put a tiny bit more like that way’ (figure 6b) and turn it 
over to get angle 5b. The use of words ‘put a lot farther’ along with gestures (Figure 6c) 
shows that she is again thinking in terms of angle being dynamic. The Chloe’s use of 
motion in her explanation of static angle figures shows that instruction of angles within 
dynamic geometry environment can enable children to link the static angle concept with 
the dynamic turns. She considered her hands being the arms of the angles and stretched 
them inwards to show a smaller angle. Clearly, her comparison involves the motion and 
transformation. Chloe used the embodied visual mediators for deciding which angle is 
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different. Her routines for comparing the angles involved use of motion and 
transformations focusing more on the relative position of the arms as well the amount of 
turn involved from one arm to another.  
Teacher: How about this? (Showing another triad) 

 
Figure 7 (30,30,90) 

Chloe: Hmm…is this upside down? 
Teacher: Haha…(laughing turning the page other way)….you clever girl 
Chloe: Umm..(thinking)… ….that one (c )…because you have to put that lot more 

together, about that much (opening hands wide open and bringing them inwards 
to make smaller angle) (Figure 8 a and 8 b) 

      
       Figure 8a and 8b: Gesture for      Figure 9a and 9b: Gesture for flipping 
        reducing the wideness of angle                     the angle 
And then you have to phhh.. (gesturing to flip the hands together)(Figure 9a and 9b).. 

turn it over. And in these two, well you have to just make that one (pointing at 7b) 
a little bit bigger and turn this way or turn that one over. 

For the comparison of the angles, Chloe developed a routine of assuming her hands as 
the arms of the angle and then turning them inwards or outwards to compare the amount 
of turn of one or more angles. It is interesting to note that Chloe used drawing with 
index fingers as visual mediators in case of triads 1 to 3 and she used gestures of hands 
as arms of angles in case of triads 4 to 7 of Table 1. This implies that she preferred to 
use index fingers for sideways oriented angles and hands for the upward or downward 
facing angles. 
 
DISCUSSION AND CONCLUSION 
Chloe’s frequent use of gestures for drawings angles with index fingers shows that she is 
making frequent use of embodied visual mediators for comparing the angles. Chloe’s 
use of words ‘‘wider’, ‘stretch that one a tiny bit further’, ‘have to put that lot more 
together’, ‘turn it over’ shows her propensity to reason in terms of motion and 
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transformation, which can be attributed to the dynamic geometry environment. Clearly, 
her routines of assuming hands as arms of angles and then stretching it in and out 
(figures 6a, 6b, 8a, 8b) to match the angles shows that she is very comfortable in 
connecting static angles to turns as well as understanding the turn as an angle. This gives 
an initial evidence that DGE can help in overcoming young children’s difficulties in 
relating turning to angles as reported by Mitchelmore, 1998; Clements, Battista, Sarama 
& Swaminathan, 1996. Also, Sfard’s framework can be extended to incorporate the 
embodied routines as Chloe used the routine of assuming hands as arms of angles and 
then moving it inwards and outwards to compare the angles again and again. Chloe’s 
thinking of angles in terms of turning and wideness of arms provides the evidence that 
DGE might be helpful in overcoming the misconceptions related to effects of length of 
arms on children’s judgments about angles. 
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NUMERACY EXPERIENCES AND MODELLING BEHAVIOURS  
Minnie Liu 

Simon Fraser University 
Literature has shown that models and model-eliciting activities are important aspects in 
the learning of mathematics and a powerful tool in promoting students’ higher order 
thinking.  On the other hand, numeracy and numeracy tasks are vaguely defined and are 
not fully recognized as useful tools to promote students’ higher order thinking.  In this 
article, I examine the similarities and differences between model-eliciting activities and 
numeracy tasks, and examine the possibility to integrate numeracy tasks into the 
curriculum.  
 
INTRODUCTION 
Numeracy plays an important role in developing students’ ability to interpret 
mathematical information, solve problems, and make mathematically informed decisions 
(Steen, 2001).  However, while there exists much discussion about numeracy and the 
closely related mathematical literacy, these terms lack agreed upon definitions.  As such, 
there is little to help us delineate numeracy, numeracy tasks, and numerate behaviour.  
On the other hand, modelling, model-eliciting activities, and modelling behaviour are 
well represented in the research literature.  In this article, I look at the possible 
similarities between numeracy tasks and model-eliciting activities, and try to map the 
characteristics of model-eliciting activities on to numeracy tasks.  
In what follows I briefly discuss numeracy and mathematical literacy, and examine the 
characteristics of numeracy tasks, models, and model-eliciting activities.  I focus on 
models used for the purpose of learning mathematics and model-eliciting activities found 
in secondary mathematics classrooms.   
NUMERACY, MATHEMATICAL LITERACY, AND NUMERACY TASKS 
In general, numeracy involves the making sense of numbers and carries with it 
quantitative and numerical aspects.  It can be loosely defined as “a concrete skill 
embedded in the context of real-world figuring.” (Cohen, 2001, p. 25)  A numerate 
person is able to use, understand, apply, and interpret mathematical information, and 
effectively communicate this information with others. Such a person also has an 
awareness, respect, appreciation, and understanding that mathematics is relevant and 
important, and possesses an ability to learn and do mathematics when needed (Steen, 
2001). 
 
While both numeracy and mathematical literacy involve using mathematics in the real 
world setting in a practical and functional manner, these terms emphasize slightly 
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different focuses. Numeracy focuses on the numerical and quantitative aspect.  
Meanwhile, mathematical literacy emphasizes a strong link to being literate, and 
highlights the important goals and components of numeracy, including “mathematical 
thinking, constructing understandings, monitoring and regulating mathematical thinking 
and technology in mathematics.” (Yore et al., 2007, p. 574)    Mathematical literacy also 
relates a mathematically literate person to those who are knowledgeable and educated, 
proposes that those who are mathematically literate are able to identify and use the 
resources of mathematics in their everyday lives, and implies “an integrated ability to 
function seamlessly within a given community of practice.” (Ewell, 2001, p. 37)  
Furthermore, literacy carries with it a social and communicational aspect, and suggests 
the ability to understand and communicate context-based contents effectively.  While 
these terms emphasize slightly different focuses, they are very similar in the sense that 
they both promote students’ mathematical thinking and understanding, communication 
skills, and allow students to develop into functional and numerate individuals.  Although 
slightly different, in this article I use the terms numeracy and mathematical literacy 
interchangeably. 
 
Numeracy tasks can be used to promote students’ numeracy skills.  Numeracy tasks can 
be loosely defined as novel problem solving questions situated in real life situations.  
These tasks are generally ambiguous, require students to make sense of the question and 
data provided to generate suitable solutions, present these solutions in a mathematical 
way, and sometimes extend or generalize these solutions to similar problems.  As such, 
these tasks rely on the sophisticated use of mathematics, and require students to extend 
their thinking beyond computation.  Also, numeracy tasks require students to work in 
teams and promote their communication skills.   
 
There are various ways to classify numeracy tasks.  McAskill et al. (2004) suggest the 
organization of numeracy tasks based on topics we find in the mathematics curriculum.  
Although this is a convenient method to organize numeracy tasks, I feel that this 
organization method may further contribute to the belief that mathematics can be broken 
down into isolated units, where these units are not connected or related to each other. 
Another way to classify numeracy tasks is by task goals (Liljedahl, 2010).  It shifts the 
focus of numeracy tasks away from specific mathematical topics found in the curriculum 
to solving the problem by applying various mathematical knowledge and skills.  It also 
gives students the freedom to solve the problem using whichever method they believe to 
be the most appropriate and encourage them to make connections between various 
mathematical skills they learn in class and outside of class.  Based on this classification 
scheme, there are four types of numeracy tasks: fair share tasks, planning tasks, 
estimations across a large number of variable tasks, and modelling tasks (Liljedahl, 
2010).  Fair share tasks require students to divide something fairly but not necessarily 
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equally.  Since fairness is not well defined in the task, the strategy for sharing is often 
challenging.  Planning tasks require students to make sense of a situation and do some 
planning based on, for example, spatial orientation and budget.  The third type of 
numeracy tasks, estimation across a large number of variables tasks, involve making 
estimations across a wide range of contexts in order to arrive at possible solutions.  One 
common characteristic between these three types of numeracy tasks is that they do not 
require students to make generalization or to apply their solutions to similar problems. 
The fourth type of numeracy task is modelling tasks.  Modelling tasks require students 
to construct a suitable model based on their interpretation and manipulation of the data 
given in the question, refine and make adjustments to their models to make sure they are 
applicable to the data given and to other sets of data in similar contexts, and produce a 
final report which presents the strategy used to solve the problem. 
 
The following numeracy task, 2004 Summer Olympics Results, is an example of 
modelling tasks.  The first part of the 2004 Summer Olympics Results task asks students 
to rank 20 countries based on the number of gold, silver, and bronze medals they won 
during the 2004 Summer Olympics games.  In order to approach this task, students need 
to invent a model to weigh the number of gold, silver, and bronze medals, and to 
quantify this data to give each country a final score.  In part II of the task, students are 
asked to rank another set of data using the model they develop in part I.  In order to 
construct a meaningful way to rank the countries, students need to account for the 
various scenarios that are not presented in part I.  They also need to adjust and refine 
their models to break ties and to avoid situations where ties occur, and to generalize their 
models developed in part I to be applicable to part II of the task.  Eventually, students 
come up with a model that allows them to rank countries efficiently and effectively. 
Numeracy tasks are a great way to help students understand the role of mathematics in 
diverse contexts and situations.  They allow students to reflect on the mathematics they 
learn, make well-founded judgments, and to apply this mathematics to solve problems in 
meaningful ways.   
MODELS AND MODEL-ELICIATING ACTIVITIES 
Mathematical models are conceptual systems that focus on structural characteristics of a 
system, including the relationships and interactions between various objects within the 
system and objects outside of the system.  As such, models allow us to explain, 
manipulate, and predict the behaviours of the system they describe.  Models are not 
restricted to written language or graphs and equations.  They come in various forms, 
including spoken language, written symbols, drawings, experience-based metaphors, 
mathematical equations, computer simulations, etc., and they range from simple to 
sophisticated, concrete to abstract, and single to multiple representations. Since various 
representations emphasize (and de-emphasize) different aspects of a system, multiple 

92 Proceedings, MEDSC 2012  
 



representations are often needed for learners to understand, describe, and explain the 
system as a whole.   
 
Lesh and Doerr argue that models reside in both the minds of the learners and are 
embodied in the various representations.  While models as conceptual models are 
comparable to schemas for interpreting experiences, which rest in the minds of the 
learners, the representations of these models take various forms, such as “spoken 
language, written symbols, concrete materials, diagrams or pictures, computer programs, 
experience-based metaphors, or other representational media” (Lesh and Doerr, 2003, p. 
11), and are used as ways to communicate with others.  They allow learners to project 
their conceptual systems, which reside internally within them, into the external world.  
The term “model-eliciting activities” originates from Lesh’s work on modelling 
activities (Lesh and Doerr, 2003; Lesh et al., 2000; Lesh et al, 2003).  They are thought 
revealing activities that evoke the construction of models.  They are open-ended 
problem solving activities that are contextualized in a real world setting.  These 
activities allow students with various mathematical knowledge and abilities to interpret 
and approach the problem in meaningful ways.  There are six principles to effective 
model-eliciting activities: 

1. The Model Construction Principle 
2. The Reality Principle 
3. The Self-Assessment Principle 
4. The Construct Documentation Principle 
5. The Construct Shareability and Reusability Principle 
6. The Effective Prototype Principle 

The model construction principle states that the goal of model-eliciting activities is the 
construction of models that are able to describe, explain, and predict situations.  The 
reality principle ensures the activity is situated in a real life setting and allows students 
to make sense of the problem based on their experiences and knowledge.  The self-
assessment principle allows students to make judgments regarding their approaches to 
solve the problem.  Proper assessments allow students to modify, refine, and improve on 
their solutions.  The construct documentation principle requires students to record their 
thoughts and responses to the problem and foster self-reflection.  These documents 
reveal the progress and possible changes in students’ ways of thinking and their 
understanding.  They also shift the attention from the end product to the process which 
gives rise to the solutions.  The construct shareability and reusability principle ensures 
the models students create are transportable, modifiable, and reusable.  A non-
transportable model that is created specifically for a specific situation is definitely not as 
useful as one that can be generalized to other situations.  Finally, the effective prototype 
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principle provides students with “rich and memorable contexts for learning and for 
discussing important mathematical ideas.” (Lesh et al., 2000)  Problems that follow the 
effective prototype principle allow students to go back and reflect on the way they solve 
the problem and build important mathematical ideas from the problem. 
Model-eliciting activities are very different from traditional problem solving activities.  
Instead of making sense of classroom mathematics and expanding this mathematics into 
the real world, model-eliciting activities make sense of the world through mathematical 
models.  
 
Another important aspect about model-eliciting activities lies not in their characteristics 
but in the instructions given to the problem solvers.  Based on Lesh’s work, model-
eliciting activities always involve an audience and a proposal as one of the end products, 
which requires problem solvers to explain and demonstrate their model to an audience 
and convince the audience their model is effective and suitable in solving the problem.   
Model-eliciting activities serve as great learning opportunities for mathematics students, 
while models function as tools for students to understand, approach, and solve problems.  
Model-eliciting activities promote the use of models while revealing students’ thinking 
as they develop and refine their solutions. Furthermore, model-eliciting activities foster 
students’ communication skills.  Due to the nature of these activities, students often 
work in teams.  This requires students to interact and communicate with their team 
members, other teams, and the problem poser.  Students need to clearly articulate their 
ideas, the problems they encounter, possible solutions, etc. to their audiences in order to 
be successful (Diefes-Dux et al., 2004; Lesh and Doerr, 2003). 
 
Lesh and Doerr (2003) provide examples of model-eliciting activities in their book 
chapter, Foundations of a Models and Modeling Perspective on Mathematics Teaching, 
Learning, and Problem Solving.  In the next paragraphs, I briefly describe the volleyball 
problem, which is one of the model-eliciting activities in the chapter, to give the readers 
a sense of these activities.   
The volleyball problem begins with a description of a volleyball camp in a small town, 
where there is no systematic procedure to divide players into equal teams.  Students are 
given a set of tryout scores of a small group of volleyball players (n = 18) and are asked 
to create a systematic way to divide the players into equal teams based on these tryout 
scores.  The six tryout scores include: height of the player, vertical leap (height), running 
ability (time), serve results (accuracy), spike results (accuracy), and coaches comments.  
Students are also asked to write a letter to the organizers explaining the procedures so 
the organizers can apply these procedures in the upcoming volleyball camp where they 
are expecting a large group of volleyball players (n > 200). 
In order to solve this task, students need to analyze the six tryout scores and create a 
volleyball playing potential index by weighing and combining both quantitative and 
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qualitative measurements.  This is similar to creating consumer guides for products in 
the market, where a number of qualitative scores are quantified and combined with other 
quantitative scores.  In this task, for example, students need to come up with a 
meaningful way to deal with opposite scoring systems, such as vertical leap (high scores 
(height) for good results), and running ability (low scores (time) for good results).  
Depending on their importance, the scores may be weighed differently, and students 
need to justify their decisions.  Moreover, students need to create a model that allows the 
camp organizers to divide volleyball players into equal teams accurately and efficiently.  
In other words, not only does the model need to work for the small sample given, it also 
needs to work for large samples.  
 
This example closely follows the criteria listed for model-eliciting activities.  The task is 
situated in the real world (volleyball camp in a small town) and requires the construction 
of a model (volleyball playing potential index) where data (the tryout scores) are 
interpreted and manipulated.  The quantification of data allows the organizers to 
determine the potentials of volleyball players accurately and thereby divide large groups 
of volleyball players into equal teams efficiently.  Students also need to reflect on the 
effectiveness of their models and make necessary adjustments and refinements.  Finally, 
students are asked to write a letter (or a proposal) to the organizers to describe their 
model.  This allows students to explain and justify their choices made, and demonstrate 
and communicate their thinking in the process of solving the task. 
 
As I compare the volleyball tasks to the 2004 Summer Olympics Results task, I can see 
many similarities between them.  For example, both tasks are situated in the real world.  
Also, students are required to interpret and manipulate data, and develop a way to 
combine and quantify data.  They need to modify and refine their model and to account 
for possible ties.  In addition, the model constructed need to be transferable to solve 
similar problems.  Finally, students need to present their model and convince others this 
is a suitable way to solve similar problems.   
 
There are many similarities between model-eliciting activities and modelling type 
numeracy tasks.  For example, these tasks are both situated in the real world.  Also, 
students are required to interpret and manipulate data, and develop ways to combine and 
quantify data.  They need to modify and refine their models in order to arrive at a 
suitable solution to the problem.  In addition, the models constructed need to be 
transferable to solve similar problems.  Finally, students need to present their models 
and convince others these models are suitable ways to solve similar problems.   
Based on these similarities, I argue that modelling tasks, which are a specific type of 
numeracy task, can be described or classified as model-eliciting activities.  If this is the 
case, there should be similarities between modelling behaviours and numeracy task 
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behaviours.  This also allows the possibility to map what is already known about models 
and model-eliciting activities on to numeracy, and provide numeracy and numeracy 
tasks with more structures, and develop concise definitions for these terms. 
Lesh et al. (2000) describe three stages of observable modelling behaviour.  During 
early stages of model-eliciting activities, students often interpret the problem in different 
ways, and attempt to simplify and reduce the amount of information.  At this stage, 
students tend to focus on specific relationships, patterns, and trends, but ignore other 
information.  They may also express concerns that additional information is required to 
solve the task.  Therefore, at this early stage, students may aim at different goals, and 
envision different strategies and approaches to achieve these goals.  Furthermore, 
students often switch unconsciously between different ways of thinking.   
 
As students progress in solving the task, they develop more sophisticated ways of 
thinking.  Instead of looking at isolated pieces of data, students look at the data as a 
whole, and begin to identify various relationships, patterns, or trends in the data.  They 
organize data and information in meaningful ways.  Students may also realize the flaws 
in their initial ways of thinking and the need to modify their strategies to the problem.   
Students then create models to make meaningful and useful mathematical descriptions 
and explanations of the situations given in the problem, make predictions to the system’s 
behaviour, and test and refine their models.  During the process, students also reinterpret 
the data and go beyond their initial ways of thinking.  They make meaningful judgments 
of the various approaches to the problem, thereby sort out the weaknesses and combine 
the strengths of particular approaches.  Lesh and Doerr (2003) refer to this as multiple 
modelling cycles. 
 
Eventually, as students arrive at their conclusions, they take into account the various 
possibilities that may affect the way data can be processed.  Their concluding solution 
may include supplementary procedures to gather additional information, or a series of 
telescoping procedures to organize data into groups and apply a different set of 
procedures to each group.  While suggesting these three stages as the process of solving 
model-eliciting activities, Lesh et al. (2000) also recognize that students’ behaviours 
may not closely follow these stages.  Nonetheless, these three stages of behaviours 
provide researchers with a possible framework for observable behaviours.   
 
CONCLUSIONS 
In this study I looked at the similarities between modelling tasks and model-eliciting 
activities.  Based on Lesh’s framework around model-eliciting activities and Liljedahl’s 
classification of numeracy tasks, I find that there are interesting similarities between 
modelling tasks and model-eliciting activities.  Further research directions include 
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empirical studies on modelling behaviours during model-eliciting activities and numeracy 
tasks.  If modelling tasks are a type of model-eliciting activities, then we should be able 
to see modelling behaviours during these numeracy tasks.  Another research direction is 
to look at the possibility to turn other categories of numeracy tasks into modelling tasks 
or model-eliciting tasks by modifying the instructions to the task, and examine the 
possibility of integrating numeracy tasks into the curriculum. 
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GESTURES AND TEMPORALITY: CHILDREN’S USE OF GESTURES ON 
SPATIAL TRANSFORMATION TASKS 

Oi-Lam Ng 
Simon Fraser University 

 
This paper discusses findings from a task-based interview with 5 elementary school 
children working on a spatial transformation task. The paper focuses on children’s 
gestural and verbal communication when engaging in the task.  Findings suggest that 
children use gestures as multi-modal resources to communicate temporal relationships 
about spatial transformations. Although research has shed light on the use of gestures to 
represent functions deictically, iconically and metaphorically, this work has not 
addressed aspects of temporality and the dynamic nature of gestures. This paper raises 
questions for further research in the area of gestures and communication to address the 
temporal aspects of mathematics. 
Keywords: Geometry and Geometrical and Spatial Thinking, Elementary School 
Education, Cognition, Reasoning and Proof 
 
GESTURES AND MATHEMATICAL THINKING 
The goal of my research has been to extend Presmeg’s (1986) work on “dynamic (moving) 
imagery” for describing the dynamic roots of certain geometrical concepts that are 
visualized and understood by high school mathematics students.  My own work on the 
effects of teaching with dynamic geometry technology also points to learners’ conceptions 
of mathematics in a dynamic, temporal sense.  Lehrer (1998) shows that children are 
capable to think dynamically before they receive formal schooling, further leading me to 
attend to the dynamism of young children’s geometry. What does dynamic thinking look 
like, and what mathematics might be involved? 
The embodiment of mathematics has led to growing interest and development in the field 
of gestures in mathematics education research.  Recent gesture studies in a mathematical 
context have focused on different functions of gestures: iconic, indexical and symbolic 
(Radford, 2003), how gestures accompany and synchronize with speech when 
communicating mathematical meanings (McNeil, 1992), and in the way students mimic 
teachers’ gestures in mathematical communication (Singer & Goldin-Meadow, 2005).  
While these studies have provided insights into the multidimensional nature of 
mathematical thinking, there is a lack of common framework theorizing the relationship 
between gestures and mathematical thinking.  Moreover, much of this work focus on the 
relationship between speech and gestures and study gestures as independent from 
cognitive processes.  With this dualist approach, gestures are external acts that represent 
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the mathematical thought from within and embodied acts that make cognitive processes 
explicit.  In contrast, Sfard’s (2008) commognitive approach provides a lens to combine 
gestures and thought as one process.  In this view, thinking and communicating, in the 
form of utterances or gestures, are two parts of one entity.  Moreover, Sfard (2009) 
suggests that gestures and utterances complement each other by serving different 
functions in communication.  In this paper, I utilize Sfard’s commognitive framework to 
analyze children’s gestures in their communication. 
Although gestures have been widely examined in mathematical discourse in recent years, 
studies have yet to address the temporal functions of gestures in mathematical discourse.  
McNeil (1992)’s categorization of gestures into deictic, iconic, metaphoric, and beat, only 
broadly characterizes the type of functions served by gestures.  For example, deictic 
gestures serve as pointing devices, while metaphoric gestures serve to represent the 
mathematical objects themselves (McNeil, 1992).  These categories have not capture the 
dynamic nature of gestures, in particular, when gestures are used to convey temporal 
relationship.  Given a paucity of research in the area of gestures and temporality, my study 
aims to address the use of gestures to communicate temporal relationships in mathematical 
thinking.   
THEORETICAL PERSPECTIVES 
Gestures, utterances, and thinking 
Sfard’s (2008) commognitive framework is helpful for examining the relationship 
between gestures and mathematical thinking.  Her non-dualist approach disobjectifies 
thinking as part and parcel of the process of communicating.  She defines language as a 
system that includes all kinds of symbols in communicational acts, and gestures as bodily 
movements fulfilling communicational function (Sfard, 2009).  “Language is a tool for 
communication, whereas gesture… is an actual communicational action.” (p.194) This 
communicational act can be interpersonal when it is directed to another person, or 
intrapersonal when directed towards the actors themselves (communicating to oneself).   
With this view, the actors may be conscious or unconscious of their gestures.  Using 
Sfard’s communicational approach will enable studying children’s mathematical thinking: 
“talking and gesturing stop being but ‘expressions’ of thinking and become the process of 
thinking in itself.” (p.195)   
Furthermore, Sfard’s (2009) commognitive approach suggests that gestures and utterances 
take on different roles in mathematical thinking.  “Utterances and gestures are the building 
blocks of commognitive process… Each of these modalities contributes to commognitive 
processes at large and to mathematical commognition in particular” (p.195). Recursivity 
is a linguistic feature in mathematical discourse offered by utterances.  The unlimited 
possibility to expand linguistically allows human to work in meta-discourse, or thinking 
about thinking.  On the other hand, gestures enable effective communication to ensure all 
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interlocutors “speak about the same mathematical object” (p.197). Gestures are essential 
for effective mathematical communication.   

Using gestures to make interlocutors’ realizing procedures public is an effective way to 
help all the participants to interpret mathematical signifiers in the same way and thus 
to play with the same objects. (p.198)  

Furthermore, gestures can be realized actually when the signifier is present, or virtually 
when the signifier is imagined. Sfard illustrates how a student uses ‘cutting’, ‘splitting’, 
and ‘slicing’ gestures to realize the signifier fraction. Since these gestures were performed 
in the air where the signifier fraction is imagined, it was an instance of virtual realization. 
Gestures and temporality 
The classifications of gestures proposed in gesture studies are problematic in mathematics 
education for its inability to capture the dynamic nature of gestures.  In particular, leading 
gesture specialist David McNeil’s (1992) classification of gestures into deictic, iconic, 
metaphoric, and beat, are useful to identify the general functions of gestures, yet they do 
not distinguish between the static and dynamic nature of gestures.   These categories of 
gestures are too broad and do not consider how the message is communicated by the 
gestures.  For example, when a person makes a metaphoric gesture to realize the signifier, 
a linear function, it could be a static one, with the arm or hand representing the function, 
or a dynamic one, with the hand or finger tracing the motion of the path.  In the latter case, 
the dynamic gestures communicate temporal relationship of the linear function as opposed 
to the shape of the linear function statically.   
Núñez (2006) in his book chapter “Do Real Numbers Really Move?” studied how 
mathematicians use hand gestures as a way to express dynamic thinking of functions, 
continuity, and other abstract mathematical ideas.  Furthermore, these mathematicians say 
“approaching,” “tending to,” “going farther and farther,” to express a sense of motion, 
while producing metaphoric gestures tracing the trajectory of the point or particle with 
their fingers.  Sinclair and Gol Tabaghi (2010) also examine motion in gestures, in 
particular, mathematician’s hand gestures depicting movement of vectors, providing 
evidence of time and motion-based conceptualization of vectors.  These are two of few 
studies that examine the use gestures to communicate temporal relationship in 
mathematics: 

The gestures (and the linguistic expressions used), however, tell us a very different 
conceptual story. In both cases, these mathematicians are referring to fundamental 
dynamic aspects of the mathematical ideas they are talking about. (Núñez, 2006, p.177) 

To summarize, I use Sfard’s commognitive framework to study children’s gestures as part 
of their mathematical discourse (thinking) while they engage in mathematical tasks.  In 
addition, I focus on children’s use of dynamic gestures in spatial transformation tasks.  I 
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aim to observe the type of gestures that they communicate and instances that their gestures 
realize aspects of temporality in mathematics. 
METHODOLOGY OF RESEARCH 
Participants and tasks 
I adapted the spatial transformation task used by Goldin-Meadow et al. (2006) and Levine 
et al. (1999) with minor alteration for my task-based interview.  The task contains two 
halves of a shape that could be spatially transformed to form a vertically symmetric figure.  
From Goldin-Meadow et al. (2006) and Levine et al. (1999), I selected two questions from 
each of the four problem types and ordered them randomly to form a set of eight questions.  
The four types of spatial transformation are: direct translation, diagonal translation, direct 
rotation, and rotational translation.  A 2x2 choice array accompanies each question; it 
contains four whole shapes of which one of them is the correct answer.  Figure 1 shows 
the problem types and a sample choice array.   

Figure 1: Example of a spatial transformation task and problem types.  The choice array 
is given to the participant along with one of a) to d).  The participant is asked to choose 

which figure in the choice array can be transformed from the two halves. 
During the interview, subjects were asked, “if you were to put these pieces together, which 
one of those will they make?”  After the children provided their answers, they were asked 
to justify their choices or show their reasoning.   
My research associate conducted a semi-structured interview with five children in the 
classroom of their elementary school.  The subjects are kindergarten (age five to six) 
students who live in a low socioeconomic, suburban neighborhood in Northern British 
Columbia, Canada.  Each interview was roughly ten minutes long and was videotaped 
with the camera facing the interviewer and the subjects.  All voice and bodily movement 
during the interview was recorded.  The interviews were transcribed for data analysis. 
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I adapted the spatial transformation task used by Goldin-Meadow et al. (2006) and Levine 
et al. (1999) because the task allows children to express static features of the figures as 
well as dynamic movement in their reasoning.  The task is age and level appropriate; data 
from their studies shows that children of 5 to 6 years of age used a variety of strategies 
when completing the task.  These strategies include: 

• Movement: Any indication of movement of the pieces  
• Feature: Any indication that the child is focusing on a particular feature of either 

the piece(s) or the whole  
• Whole: Any indication that the child is seeing the pieces as a whole  
• Alignment: Placing the piece(s) on top of the corresponding portion of the whole 
• Other: Any strategy other than one listed here 

Goldin-Meadow et al. (2006) found that children used the “movement” strategy most 
frequently, on average 5 times out of 8 questions.  The children frequently used strategies 
expressed in gestures without accompanying speech.  Their study focused on observing 
sex difference in using the “movement” strategy as well as comparing overall girls’ and 
boys’ performance on the tasks.  Their methodology was to record the frequency of each 
type of strategies used; they did not report that children used more than one strategy at a 
time when completing a given question. 
ANALYSIS OF DATA 
Children’s strategies for solving spatial transformation tasks 
I observed a significant amount and wide variety of gestures used across all five children 
engaged in the task.   They gestured whether or not they answered the questions correctly, 
and some gestures were expressed with accompanying speech while some were not.  In 
general, the children gestured both deictically to point to the feature or the shape, and 
metaphorically to explain movement, findings that resonate with Goldin-Meadow et al. 
(2006).  Table 1 illustrates some examples of children’s gestures and utterances in their 
reasoning. 
Another interesting observation was that, overall, the children used more gestures in the 
beginning of the task than when towards the end.  All children, except for one (who did 
eventually begin to make that gesture in the last four questions), used a “movement” 
gesture in the beginning of the task.  This movement gesture involves moving the fingers 
or hands to mimic moving the pieces together.  Some used this gesture extensively, and 
in general, all children used less of this gesture as they progressed in the task. 

Table 1: Examples of Strategies 
Categories Utterance examples Gesture examples 
Movement “Because them shapes, when 

they stick together, they can 
Place one index finger on each 
piece, and then move the fingers so 
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make that thing.” (Child 3) that the tips of the fingers touch. 
(Child 5) 

Features “Because of the pointy things.”  
(Child 1) 

Point to the specific feature (corner) 
of a shape with the index finger. 
(Child 3) 

Whole “…like a fortune cookie.” 
(Child 4) 
 

Make a circle with her arms above 
her head (Child 1) 

Alignment “If you put that… you can see 
through the paper, and you can 
measure the sides, and you will 
know what shape it will make.” 
(Child 2) 

Place the choice array sheet on top 
of one of the original piece. (Child 
2) 

Other “Because I know this.” (Child 5) Gestures that are not categorized in 
the above list. 

 
Dynamic gestures and temporality 
As mentioned above, I observed that all children made a “movement” gesture in the 
beginning of their interviews.  Some used one hand, connecting their fingers to gesture 
the moving together, while some used two hands.  This sliding gesture is a metaphoric 
one: it expresses the sliding together of the two pieces to form one whole, where the 
fingers enact the pieces and the transformation.  This gesture provides evidence that the 
children were dynamically thinking about the movement of the pieces.  It expresses 
temporality by tracing the motion of the pieces and their location in time from the 
beginning to the end of the movement. 
All children in the present study used different strategies when completing the task: by 
pointing to the specific features of the shapes (“because of these corners”), perceiving the 
shape as a whole (“it’s a trophy”), and suggesting movement of the pieces (“because if you 
put them together, it makes this shape”).  They also made the “movement” gesture most 
frequently, findings that resonate with Goldin-Meadows et al. (2006).  However, when I 
compare children’s use of “movement”, “features”, and “whole” gestures in my study with 
Goldin-Meadows et al. (2006), some aspects of temporality emerge.  The children in my 
study were making “movement” gestures first and then followed by another 
strategy.  Some children even made this “movement” gesture twice in the same question, 
first when they attempted to answer the question, and second when they were asked to 
justify their answers.  This suggests that they had been dynamically thinking about the 
movement of the pieces before they provided their reasoning.  The key here is that they 
were not just reasoning in one category at a time.  The fact that they used the "movement" 
gesture before justifying with "features" and "whole" suggests that they were both 
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thinking dynamically and attending to details of the shape.  This was not discussed in 
Goldin-Meadows et al. (2006).   
Example: child 1’s gestures 
In the following excerpt, I illustrate Child 1’s sequence of gestures and utterances in 
response to her third question in the task (see Table 2).  The child was given the same 
question as seen in Figure 1, with problem type “b)”.  

Table 2: Excerpt of Child 1’s Utterances and Gestures 
  Utterance Gesture 
1 
2 
3 

Interviewer:  
 

How about this 
one here, these 
two, which one 
will it make? 

 

4 
5 
6 
7 

Child 1: <2 second pause> Uses right index finger to touch the two 
half pieces on the question sheet back 
and forth three times, moving from one 
piece to another alternatively. 

8 
9 

 It will make this 
one. 

Makes pointing gesture with right index 
finger to touch the top right figure on the 
answer sheet. 

10 Interviewer: That one?  
11 Child 1:  Yea.  
12 Interviewer: How do you 

know? 
 

13 
14 

Child 1: ‘Cause, see these 
pointy things? 

Makes pointing gesture with right index 
finger to touch the sharp features of the 
figure. 

15 
16 
17 

 Then that goes 
down, 

Makes pointing gestures with right index 
finger to touch the top left side of the 
figure and then move downwards 
towards the bottom left. 

18 
19 
20 

 and this goes 
down, 

Continue with the same gesture but now 
move from the top right of the figure 
towards the bottom right. 

21 
22 
23 

 and that’s how it 
makes a… <3 
seconds pause> 
window! 

Place left index finger and thumb at the 
middle, narrow part of the figure. 

24 Interviewer: Oh they are  
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windows. 
Child 1 first made a “movement” gesture (line 4) by moving and touching the pieces back 
and forth with her finger.  Then, when asked how she solved the question, she explained 
that, “’cause see these pointy things? And that goes down, and this goes down, and that’s 
how it makes a window!”  Her utterances, in “pointy things” (line 13) and “windows” 
(line 24) were accompanied by gestures and exemplified using “features” and “whole” 
strategies respectively.  Therefore, Child 1 has used all three strategies, “movement”, 
“features”, and “whole” in solving this question.  This observation is consistent with the 
other four children, who occasionally used a combination of strategies both verbally and 
in their gestures after initially gesturing the movement of the pieces.  Figure 2 shows Child 
1’s gesture sequence in the above excerpt. 

 
 
a) “Movement” gesture (line 4)    b) “Feature” gesture (line 13)      c) 
“Whole” gesture (line 21) 
 

   
 
 
         Utterance: none               Utterance: see these pointy things?  
Utterance: it makes a window! 

Figure 2: Child 1’s Gesture Sequence.  
DISCUSSION 
My data provides strong evidence that children rely on gestures to communicate 
mathematically: to communicate both with the interviewer and with themselves to 
internalize their thinking.  This claim can be supported by the amount and variety of 
gestures that the children produced, as well as in the way that the children frequently 
gestured without accompanying speech.  Data also shows that the children used a 
combination of “movement”, “feature”, and “whole” strategies in the same question, as 
illustrated in Child 1’s excerpt.  Child 1 first produced a “movement” gesture, followed 
by utterances that characterized “feature” and “whole” strategies while using her fingers 
to refer to the parts of the figure that she was speaking about (see Figure 2).  Sfard’s 
theoretical perspective provides a lens for explaining this phenomenon.  Using Sfard’s 
definition of gestures as a communicational act that serve to “speak about the same 
mathematical object” (Sfard, 2009, p.197), the children effectively used a combination of 
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utterances and gestures to communicate their mathematical thinking.  Their “movement” 
gestures enable them to effectively communicate their dynamic thinking by enacting the 
transformation of the pieces metaphorically.  On the other hand, the children also made 
use of deictic gestures to point to the features and trace the outline of the figure as they 
spoke about them in speech. 
In Sfard’s term, the “movement” gestures are actual realization since they signified the 
pieces on the paper actually moving towards each other.  These dynamic gestures were 
used most frequently by the children and exemplified aspects of temporality in children’s 
communication about mathematics.  By analyzing the sequence of the children’s gesture, 
I found that the children were both thinking about the dynamic movement of the pieces 
and attending to the static properties of the shape.  This constitutes a very important 
finding in my study; one that has yet been discussed in relevant studies in the field.  My 
study suggests that young children are not only capable of thinking about spatial 
transformations dynamically, but they can also communicate the dynamic nature over 
static properties of geometry.  This discussion aligns with Núñez (2006) who argues, 
“motion… is a genuine and constitutive manifestation of the nature of mathematical ideas” 
(p.168).  Given that temporality is not captured by formalisms and axiomatic systems in 
the mathematical discourse, my findings discuss the possibility for more opportunities for 
young children to interact with temporal mathematical relationships and dynamic 
geometry environment.   
Finally, more research is needed to explain the finding that children used fewer 
“movement” gestures during the course of the interview.  I speculate that this could be 
due to the children’s compromise to move towards an adult discourse: the mathematical 
discourse.  In Sfard’s (2008) term, there exists a commognitive conflict between the 
children’s and the adult’s discourse; the children may well have compromised the way 
they communicate mathematically as a result of negotiating with the leading discourse of 
the adult, one that dismisses temporality and dynamism.  Further research that examine 
the change of children’s gestures in expressing temporality over time will be needed to 
warrant this claim about the commognitive conflict between children’s and adult’s 
discourse. 
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MATHEMATICS AS DESIRE: THE LIFE OF ANDRÉ WEIL 
Veda Roodal Persad 

Simon Fraser University 
 

When mathematicians write about their involvement with mathematics, what lies beneath? 
What do such accounts tell us about the nature of the discipline and the attendant 
demands, costs, and rewards? Working from the autobiography of the French 
mathematician, André Weil (1906-1998), and using the Lacanian notion of desire, I 
examine the forces that shape and influence engagement with mathematics. I contend that, 
at an elemental level of human development, these forces turn on the notion of subjectivity 
and the forms of desire.  
Keywords: Affect, Desire, Emotions, Subjectivity  
 
In a simple yet powerful sentence, Tony Brown (2008, p. 91) encapsulates wherein 
mathematics lies: “Mathematics is accessed through the accounts of others.”  My interest 
in general is in seeing what we can learn about the discipline of mathematics from the 
testimonies of others who have engaged with it. In this paper, I want to investigate what 
we can learn about the discipline of mathematics from the autobiography of one 
mathematician, André Weil (1906-1998). My purpose is to consider the following 
questions: When mathematicians write about themselves and their work, what lies 
beneath? What do they offer as insights about the discipline or about those who engage in 
it? While mathematics is often considered as cold and conscious, rational and logical, I 
contend that engagement with the discipline is a function of the Psyche and the 
psychosocial Self, and that in our wide range of emotional responses to mathematics 
(Hersh and John-Steiner, 2011) lie the keys to understanding our relationships with the 
discipline and hence in eventually shaping how we present and engage with the discipline.  
Relationships with and responses to mathematics were first conceptualized in 
mathematics education research as affect (McLeod, 1992) where the affective domain was 
defined as the area of emotions, attitudes, beliefs, moods, and values relating to 
mathematics. Blanchard-Laville (1992) gives an early application in this vein in the in-
service training of mathematics teachers.  Then in 1993, a landmark issue of the journal, 
For the learning of mathematics, edited by the late Dick Tahta, brought to the fore the 
psychodynamics of mathematics education, teasing apart aspects of the self, conscious 
and unconscious, that we bring to bear on our responses to mathematics including defence 
mechanisms (Nimier, 1993) and transformations (Nicodemus, 1993). Further the notion 
of the unconscious was explored in various papers including Skelton (1993) on the work 
of the Chilean psychoanalyst, Ignacio Matte Blanco, The unconscious as infinite sets 
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(Skelton was unbelieving when he came across this text as he thought that his two interests 
of mathematics and the unconscious were so disparate), and Sutherland (1993) on the 
“emotional side” of mathematics and her inability to find “theoretical explanations for 
what [she] observe[d] about students when [she] work[ed] in the classroom.” (p. 43)  
The research has since moved laterally from the theories of Piaget (psychological) and 
Vygotsky (sociocultural) of the individual as a cognizing subject immersed in cognitive 
relationships with other “objects”, namely, students, teachers, classroom, and curricula to 
psychoanalytic perspectives and notions of the subjectivity, focusing on the subject who 
confronts and responds to the discipline. Notable among these researchers are Baldino and 
Cabral (1998, 1999, 2005, 2006, 2008), Bibby (2009), Brown (2008, 2011), and Walshaw 
(2004) This paper follows in this qualitative interpretive tradition of examining the self 
not as a coherent, stable identity but as a Subject immersed in a web of forces and 
influences, shaping a subjectivity that impels our various responses to the discipline of 
mathematics. Walshaw (2004, p. 127) writes:  

Psychoanalysis presents complex and well-developed theories of subjectivity. 
Arguably, psychoanalysis has many shortcomings, yet it does provide us with the most 
promising theories of how the subject is at once fictional and real. 

My points of reference are the Lacanian notions of subjectivity and desire.  I present a 
brief sketch of the relevant notions of Lacanian theory and then show how these figure in 
Weil’s life as rendered in his autobiography. 
THEORETICAL PERSPECTIVE 
I employ as a critical method some of Lacan’s psychoanalytic theory as he sought to 
‘reread’/rewrite/reformulate Freud. As Žižek (2006, p. 4) writes, “Lacan enlisted a motley 
tribe of theories from the linguistics of Ferdinand de Saussure, through Claude Levi-
Strauss’s structural anthropology, up to mathematical set theory and philosophies of Plato, 
Kant, Hegel and Heidegger.” In his ‘return’ to Freud, Lacan presents a theory of human 
development that excavates and elaborates the notions of subjectivity and desire.   
The Three Registers 
Lacan posits three psychic registers or orders of experience: the Imaginary, the Symbolic, 
and the Real. These registers are not to be understood as developmental stages as they 
obtain at every sphere of human activity. They function interdependently as they work to 
shape the constitution of the subject. There are three caveats: 1) Lacan’s registers do not 
line up neatly with Freud’s categorization of the id, the ego and the superego, 2) there are 
various renditions and reformulations of these three as the theory evolves over time by 
Lacan and his followers, and 3) the order in which the three registers are listed varies 
among those who take up Lacan’s work. I will consider them as they appeared historically 
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over the years of his work: The Imaginary (1936-1952), the Symbolic (1953-1962) and 
the Real (1963-1981).  
The Imaginary is the realm of “images, conscious or unconscious, perceived or imagined” 
(Lacan, 1973/1981, p. 279) of the people and objects in the world present to us. These 
idealized images are formed in childhood and persist even into adulthood.  One’s sense of 
‘self’ starts from the mirror-stage, i.e., from the child seeing its specular image in a mirror 
or in beholding another child. This marks the beginning of a méconnaissance or 
misrecognition of ‘self’ as the child imagines the image to be whole and coherent while 
perceiving itself as fragmented. The Symbolic, derived from the “laws” of the wider world 
in its structure and organization, disturbs the shaping or the interpellating (Latin: 
inter/between, within, pellere/push) of the subject. The Symbolic is enabled by language 
as it is language that gives us the structures for the signifiers for the “I” and the Other, for 
loss, lack, and absence, for the misidentification of the self with the Other, and for the 
formation and experience of desire. The Real is the unmarked backdrop against which the 
Imaginary (image-based) and the Symbolic (word-based) come into play, the screen on 
which images and words unfold and move.  
Towards the end of his work, Lacan saw these three interlinked as a Borromean knot (three 
circles linked so that if one is cut the other two fall apart). These knots occupied him to 
such an extent that his later seminars always included careful drawings of knots (Turkle, 
1976). 
The ego and the Subject 
Lacan distinguishes between the ego and the Subject, S, in his L-schema (1966/2006, p. 
40).  For Lacan, the ego is an Imaginary function, both a defensive and inauthentic agency.  
Starting from the mirror stage, there is always a lack, a sense of loss and alienation, a 
splitting in the subject on encountering the ‘other’. Lacan distinguishes between the small 
‘other’ and the big ‘Other’. The small other is the Imaginary others, the ones we see as 
whole and coherent, the ones whom we see as a reflection of ourselves, the ones whose 
desires we think are completely fulfilled by us. The big Other is the Symbolic order and 
language into which we are born and into which we must insert ourselves if we are to 
become subjects. Separation from the Symbolic order and language produces a lack and 
hence, Lacan describes the subject as the barred subject, $, divided and decentred. 
Alienation and separation are two constitutive forces for the subject. Homer (2005) writes: 
“[A]lienation, for Lacan, is unavoidable and untranscendable” (p. 71). Separation, distinct 
from alienation, marks the beginning of the differentiation of the subject from others and 
the big Other, and, indeed, marks the beginning of desire.  
The objet petit a, the object cause of desire 
For Lacan, desire is to be distinguished from need and demand. Examples of need are 
hunger and thirst in that they can be satisfied. Greater than need is the subject’s demand 
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in its dawning recognition and search of self in relation to others and the Symbolic order. 
From the lack of the subject and the lack of the Other, desire emerges. In Lacanian 
arithmetic when need is subtracted from demand, what remains is desire. “[I]t is this 
irreducible ‘beyond’ of the demand that constitutes desire”. (Homer, 2005, p. 77) 
Desire, created and expressed through language, is borne out of the desires of others 
(imaginary and symbolic) and out of the two lacks in the subject and the Other. The subject 
seeks to find its place in the Other’s desire and to differentiate itself and its desire from 
the Other’s desire. While the subject cannot realize the Other’s desire (there is something 
always unattainable or exceeding in the Other’s desire), there is something in the subject 
that remains, the remainder, the objet petit a, the object-cause of desire that makes the 
subject a desiring subject. Lacan provides an elaborate graph of desire built up in 
successive stages, culminating in the ‘che vuoi’ (literally, what do You (meaning the 
Other) want, what is it that the Other is asking of the subject?). Hence one of Lacan’s 
dicta: Desire is desire of the Other. 
In the analysis of desire in Weil’s account that follows, I adapt the forms of desire 
articulated by the Lacanian theorist, Bracher (1993, pp. 20-21) based on the distinction 
between the desire to be and the desire to have, and consider the following three: 1) The 
desire to have (possess) the Other as a means of enjoyment; 2) The desire to become the 
Other (this desire takes the form of identification or love/devotion); and 3) The desire to 
be the object of the Other’s love (admiration, idealization or recognition). 
DESIRE IN WEIL’S LIFE  
To summarize, André Weil (1906-1998): French mathematician of Jewish parents (who 
provided no observance of or instruction in Judaism); educated at the Ecole Normale 
Supérieure (ENS) with notable teachers including Hadamard and peers including Cartan, 
Delsarte, and Dieudonné; founded a major new field in mathematics (the algebraization 
of geometry); formulated conjectures that were related to key conjectures that contributed 
to Wiles’ proof of Fermat’s last Theorem; served time in prison as a conscientious objector 
during the War; occupied positions at two prestigious US universities, the University of 
Chicago and the Institute of Advanced Study at Princeton; one of the founding members 
of the Bourbaki group; inveterate traveler; writer of one the few autobiographies of 
mathematicians.  
The primary force in Weil’s life in becoming and being a mathematician and spending a 
life in mathematics can be seen as Desire. Jameson (1977, p. 340) writes of the “logic of 
wish-fulfillment, le désir, as the organizing principle of all human thought and action.”  
By considering the three desires above, I show how Weil’s account may be read as a study 
in Desire. 
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Desire to have (possess) the Other as a means of enjoyment 
Weil’s passion for mathematics begins at an early age and continues through his 
education. The following extracts from his autobiography show how the Imaginary 
aspects of his engagement with mathematics (the content, the means of acquiring the 
content such as textbooks and teachers, and his own attempts at doing mathematics) 
contribute to his enjoyment of mathematics. His first observation about mathematics 
comes when he is eight years old: “Once when I took a painful fall, my sister Simone 
could think of nothing for it but to run and fetch my algebra book, to comfort me.” (Weil, 
1992, p. 23) This is an astounding sentence as small children in times of pain generally 
turn to a parent or a favourite teddy bear. That an algebra book is a transitional object (to 
use Winnicott’s term) for Weil is indeed singular.  Textbooks greatly influence his 
developing interest in mathematics:  

… I still have an algebra text written by Bourlet, for third, second, and first form 
instruction, which was given to me in Menton in the spring of 1915. Leafing through it 
now, I see it is not without its defects; but it must be said that this where I derived my 
taste for mathematics. (pp. 21-22)  

This will resonate with anyone who has preserved a similar textbook over the years as a 
keepsake of times of great delight and persuasive power.  
Weil is further swayed by a teacher, Monsieur Collin who impressed on him the demands 
and fascination of mathematics:  

I do not think that any teacher could have been better than Monsieur Collin in 
developing both rigorous thinking and creative imagination in students… definitions 
had to be memorized and Mr. Collin was merciless towards any gap in solutions or 
proofs. With him, mathematics was truly a discipline in the fullest sense of this beautiful 
word. (p. 26).  

From Mr. Collin, Weil experiences the triumph of logic and rationality in capturing and 
rendering the discipline. 
All of this is nothing compared to the intense and powerful enjoyment of creative 
mathematical activity.  

Every mathematician worthy of the name has experienced, if only rarely, the state of 
lucid exaltation in which one thought succeeds another as if miraculously, and in which 
the unconscious (however one interprets this word ) seems to play a role. In a famous 
passage Poincaré describes how he discovered Fuschsian functions in such a moment. 
About such states, Gauss is said to have remarked as follows: ‘Procreare jucundum (to 
conceive is a pleasure’; he added, however, ‘sed partuire molestum (but to give birth is 
painful)’. Unlike sexual pleasure, this feeling may last for hours at a time, even for 
days. Once you have experienced it, you are eager to repeat it but unable to do so at 
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will, unless perhaps by dogged work which it seems to reward with its appearance. It 
is true that the pleasure experienced is not necessarily in proportion with the value of 
the discoveries with which it is associated. (p. 91) 

Weil writes of two such moments, one relating to working on Mordell’s conjecture 
relating to his thesis and another relating to a discovery of a result resolving a problem on 
polynomial series. By now, Weil is versed in the highs and lows of mathematical 
discovery and activity and their attendant emotions. 
Desire to become the Other as a form of identification or love/devotion 
The subject forms itself in the images of others and of what others expect and desire of 
him/her. Lacan writes of the subject as a signifier for another signifier (1966/2006, p. 
713). Both “mathematics” and “mathematician” are master signifiers for Weil; they loom 
large as the big Other for Weil. From early on, Weil receives clear signs of what it means 
to be in or to do mathematics, and to be a mathematician. These are instrumental in 
shaping him as a mathematician and a mathematical subject. To what does Weil aspire in 
his conceptions of a mathematician and in his desire to identify as a mathematician?   
From Monsieur Collin, Weil learns to appreciate the rigour and precision in mathematics: 
“What I remember most about Monsieur Collin’s lessons prior to entering the first form 
is that he showed me once and for all that mathematics operates by means of rigorously 
defined concepts.” (pp. 26-27)  When it came to definitions: “I do not recall in what terms 
Monsieur Collin taught me the definition of the word “function”… once the definition 
was given, he would not tolerate anyone’s using the word “function” for anything not 
corresponding to the definition.” (p. 27) Hence, in the Imaginary order, the conception of 
mathematics that Weil received and took to heart was a very particular one of rigour, firm 
foundations, and precise rendering. This was to be borne out in the way that the future 
Bourbaki project was conceived and executed, its express aim being to place mathematics 
on a careful axiomatic basis and to set the standard for rigorous exposition with 
pedagogical intent. 
With regard to identifying with the discipline and aspiring to be a mathematician, Weil’s 
admiration and recognition of Monsieur Collin’s efforts in “making a mathematician of 
me” is great: “I think there is no one, with the sole exception of Hadamard, from whom I 
learned more about mathematics from Monsieur Collin. Before I became his pupil, I was 
basically self-taught: he made a mathematician of me, and he did so above all by means 
of his unrelenting criticism.” (p. 27) Later on Weil writes that “[t]he bibli[othèque] and 
Hadamard’s seminar are what made a mathematician out of me.” (p. 40) Weil further 
credits Monsieur Collin for teaching him “how to write-up mathematics” where he learns 
to limit himself to “two pages into which everything had to fit” and not to take shortcuts 
such as saying “it is obvious that…” (p. 27). This is reminiscent of a remark by Alain 
Connes [also educated at the ENS] about communicating a particular mathematical 
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discovery (“and because I had been taught by Chevalley, I wrote this up in half a page”) 
to a colleague who found it somewhat terse. 
How is Weil formed as a mathematical subject? For Weil, a big part is his exposure to 
analysis, both grammatical and propositional, in a “non-trivial symbolism”.  

[Monsieur Monbeig at the lycée] was an exceptional teacher, full of unconventional 
ideas. For the purposes of grammatical analysis, he had invented a personal system of 
algebraic notation, perhaps simply to spare both himself and his students time and 
effort; but it seems to me, looking back, that this early practice with a non-trivial 
symbolism must have been of great educational value, particularly for a future 
mathematician… At one time it has been thought that young children should be primed 
for the study of mathematics by being forced to speak of sets, bijections, cardinal 
numbers, and the empty set. Perhaps I was no less well prepared by my study of 
grammatical analysis – both verbal and, as it was called at the time, “logical” (that is, 
propositional) analysis – at the hands of Monsieur Monbeig. I must say in any case that 
nothing I later came across in the writings of Chomsky and his disciples seemed 
unfamiliar to me. (p. 20) 

As preparation for being a mathematician, Weil also writes about as the geometry of the 
triangle and the focal theory of conics as sharpening the “geometric imagination” and of 
the method of “complete enumerations” as something that is disparaged today but leaves 
him with favourable memories. He notes, “a facility with algebraic manipulation as 
something a serious mathematician is hard put to do without.” (p. 35) Weil also mentions 
a wide range of other subjects such as poetry, history, French literature, Greek, and Latin 
as part of his education. Most of all, he learns that it is “best to learn the rules before 
breaking them.” Here Weil has a clear sense of the demands that mathematics imposes. 
Weil fashioned himself in the example of his teacher, Hadamard: “I had formed the 
ambition of becoming, like Hadamard, a ‘universal’ mathematician: the way I expressed 
it was that I wished to know more than non-specialists and less than specialists of every 
mathematical topic. Naturally, I did not achieve either goal.” (p. 55) Hadamard has been 
referred to as the last ‘universal’ mathematician – “the last that is, to encompass the whole 
of the subject, before it became so large that this was impossible”. (Derbyshire, p. 159) 
This romantic notion of a ‘universal’ mathematician, of one who understands every topic 
in mathematics is appealing to Weil in his wish to conquer the field. To this end, he 
combined his passion for touring with “a specific mathematical variety”, that of visiting 
and meeting with mathematicians “in their natural habitat”.  Indeed the list of 
mathematicians whom he met and visited in various cities is staggering [the list includes 
Berlin (Brouwer, Hopf, Schmidt), Finland (Ahlfors, Nevanlinna), Frankfurt (Dehn, 
Epstein, Hellinger, Siegel, Szász), Gottingen (Courant, Noether), Hamburg (Artin), 
Moscow (Pontrjagin), Rome (Lefschetz, Mandelbrojt, Volterra, Zariski), and Stockholm 
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(Cramér, Mittag-Leffler)]. While this may be interpreted as a mere gratification of a scopic 
drive to see (and hence to possess in some way) people and landscapes, Weil describes it 
as a way of determining whether they [mathematicians] are worth reading (“Despite all 
the errors to which this method exposes one, it actually saves considerable time.”). This 
also hints at a possible fear of competition and a wish to see if others were gaining on him, 
as it were. 
Desire to be the object of the Other’s love (admiration, idealization or recognition). 
Why does Weil write an autobiography? Very few mathematicians have done so. I argue 
that Weil’s account of his life in mathematics can be seen as a quest for recognition from 
the Other as devotion and service to a Cause. There is great pride in that ‘glorious day’ 
when he sees his name in print for the first time in recognition of him and his work. From 
then on, Weil’s various mathematical results and especially his work as a major force in 
Bourbaki can be seen as offerings to the big Other of mathematics. Weil has a clear sense 
of the Symbolic order from early on:  

One day my father, taking a walk with me along the boulevard told me that my first 
name came from the Greek word meaning “man”, and that this was one reason it had 
been given. Did he go on to say that I must prove worthy of this name? I do not recall; 
but certainly that was the intention of his words, and it is thus that the meaning sticks 
with me. (p. 13) 

To be worthy of his name is then the root of Weil’s desire to be the object of the love of 
the big Other of mathematics. Hence Weil has an early sense of duty in his life and his 
autobiography is his address to that call. Weil feels a duty to himself as a mathematician 
of a country that has sustained serious losses of its mathematicians: “Already while at the 
Ecole Normale, I had been deeply struck by the damage wreaked upon mathematics in 
France by World War I” (p. 126). A second duty for Weil is his duty to the discipline of 
mathematics and the community of mathematicians; his account may also been seen as a 
letter addressed to mathematicians. Weil seeks to reproduce and to enhance the knowledge 
system in which their sense of themselves as mathematicians is inscribed. He seeks to take 
his place in that community and to ensure that his legacy is remembered on his own terms. 
Žižek (interpreting Lacan) writes that a letter always gets to its final destination, even 
when there is no addressee.  Weil’s autobiography is his attempt to not choose death and 
obscurity but to assure and secure his place in the history of the discipline on his own 
terms. 
 

118 Proceedings, MEDSC 2012  
 



CONCLUSION 
Insofar as a cultural phenomenon succeeds in interpellating subjects – that is, in 
summoning them to assume a certain subjective (dis)position – it does so by evoking 
some form of desire or by promising satisfaction of some desire. (Bracher, 1993, p. 19)  

A cultural phenomenon such as mathematics survives and flourishes by inducting its 
practitioners in its ways, by offering rewards (praise and ignominy), and by stirring up 
desire, both attracting and repelling.  From the above analysis, Weil’s interpellation as a 
mathematical subject is then a product of forms of desire. For Weil, “mathematics” is a 
powerful complex of notions that functions as a master signifier in the Imaginary, the big 
Other in the Symbolic, and the object-cause of desire in the Real. Indeed, Weil’s account 
is part of his answer to the che vuoi of mathematics as the big Other.  
What are Weil’s desires? That he becomes a mathematician and engages in a life in 
mathematics is primary for Weil. That his life was to be in mathematics or that he valued 
mathematics was not evident in the beginning: “It was not yet obvious, either to my family 
or to my teachers, or even to me that I was destined for a career in mathematics.” (p. 28) 
His father had planted the seed of his name meaning ‘man’ in Greek. When Weil writes 
of Hadamard making a mathematician of him, Hadamard becomes his mathematical father 
and for Weil, the expression ‘making a mathematician of him’ is very nearly synonymous 
with ‘making a man of him’. Weil chose for the title of his account in French, Souvenirs 
d’apprentissage, which has more of a flavour of a training or apprenticeship. It is only in 
the English rendering of the title that we get some hint of the work having to do with being 
in mathematics. My reading of this is that mathematics is so elemental a signifier for Weil 
that it is not necessary for him to include such a sign. Lacan refers to this as 
“disappear[ing] as a subject beneath the signifier [that] he becomes.” (1966/2006, p. 708) 
What does it take to lead a life in mathematics? Weil’s life in general has mostly an even 
tenor despite the hardships caused by grave forces such as war and prejudice. For Weil, 
mathematics requires degrees of both isolation (he completed some of his best work while 
in prison) and collaboration (he thrived on getting to know and keeping up with the 
developments of mathematics around him). It also requires episodes of creativity that 
cannot be summoned at will but perhaps are given as rewards for sustained effort, and 
unswerving one-pointed dedication to a goal whose sights keep coming in and out of 
focus. Žižek (1991) writes: “The real source of enjoyment is the repetitive movement of 
this closed circuit [the path to and from the goal].” (p. 5)  
Reading Weil’s autobiography, one gets the sense of Mathematics as Being; that he was 
a consummate mathematician and could be no other. There is the sense of existential 
destiny and inevitability, a sense of little else that absorbed him. Do we find mathematics 
or does it find us?  
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NUMBERS ON FINGERS 
Vajiheh (Mina) Sedaghat Jou 

Simon Fraser University 
 
This paper describes TouchCount application (designed for iPad) and its two Counting 
and Adding worlds. We explore how a five-year old child (Kindergarten level) builds 
meaning through communicative-touch based activity involving talk, gesture and body 
engagement. The main goal of this paper is to show the impact of touch-based interactions 
on the development of children’s perception and motor aspects of ordinality and 
cardinality of numbers. In this case study, we found a strong value of mathematics 
embodiment in emergent expertise in producing and transforming numbers, which can be 
supported with the Perceptuomotor integration approach theory.  
 
Keywords: Counting, Adding, perceptuomotor, Digital technology 
 
 
Modern-day learners expect information to be at their fingertips. They interact, play, 
source information and socialize through instantaneous mediums such as mobile phones, 
tablets, iPads, etc. Today’s children use technology not only to entertain themselves and 
their peers but also to learn. There is a number of Mathematics educational software that 
is developed for computers and laptops; learners interact with them via mouse, keyboard 
or/and electronic pens. Interacting with computers via those devices, needs hand-eye-
coordination which is a hard task for young children. Moreover, they” indirectly” 
manipulate objects through the computer via keyboard and mouse. Alternatively, touch-
sensitive interfaces feature of iPad enables children to “directly” interact and manipulate 
objects via both their hands and all their ten fingers. Additionally, auditory, visual, tactile 
senses and kinesthetic touch through gestures (flicking finger, sliding finger, taping, 
nudging, pinching, spreading, etc.) let to learner to be engage bodily in learning strongly.   
Finger-number interaction 
Fingers play a vital role in developing number sense for children. They use their fingers 
for counting while simultaneously thinking and saying the numbers. In fact, the use 
of fingers to represent a number is ubiquitous across ages and cultures. Children use finger 
counting, even if they are discouraged to do so, sometimes even before they are able to 
utter the number word sequence. Butterworth (1999) argues that fingers play a functional 
role in the development of a mature counting system. Researchers have found at least five 
distinct brain areas, including somatosensory cortex, are involved in representing the 
fingers. In addition, Finger movement and finger positions are associated with numerical 
meaning (Butterworth, 2000). Researches on neurosciences have revealed that there is a 
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strong relation between fingers and numbers. In fact,  There is a relation between  number 
and neuro-functional fingers (Andres, Seron, & Olivier, 2007).  Gracia-Bafalluy and Noël 
(2008) found that improving finger gnosis in young children (grade one) provide provides 
more useful support to number sense than grade two and three students (Gracia-Bafalluy 
& Noël, 2008).  
Vision also plays a very important role in counting and showing quantities when young 
children develop conceptual understanding of counting(Crollen, Mahe, Collignon, & 
Seron, 2011). Therefore, using fingers to create numbers when it is supported by 
audiology and visual provision will support and augment cardinality and ordinality of 
numbers for counting and adding. 
There are many number-related apps on iPad, though most of them are game-based. In 
most of these games, the learner is not able to create and manipulate numbers with all his/ 
her fingers and both hands. Thus, in order to develop one-to one correspondence between 
numbers and fingers and enhance number sense and mathematical relation TouchCount 
has been designed. 
 TouchCount: 
Currently, there are two sub-applications, one for Counting (1, 2, 3,…) and the other for 
Adding (1+2+3+…). The app runs in three different languages: French, English, and 
Italian (Sinclair, 2013). 
 

  
Figure 1: (a) Default Counting world with numbers on the horizontal bar; (b)No gravity 

Counting world; (c) Two groups in the Adding world; (d) resulting sum with colour-
based record of the addends. 

Counting and Adding World (1, 2, 3…) 
The initial goal of counting world is to enable development of one-to-one correspondence 
between ordinal numbers and objects. Small dots appear on the screen when user taps 
their finger on it. The numbers (dots) will be represented in both written form and spoken 
word. In the default mode, numbers fall down off the screen, unless they are placed on the 
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horizontal bar. User can also swipe number (dots) off the screen or reset the application 
by its designed key (Figure 1-(a) and (b)). 
As the Counting world emphasis on ordinality of the numbers, Adding world is designed 
to target cardinality of numbers. In this world, a group of numbers will be created each 
time that user taps on the screen that is labelled by its cardinality (See Figure 1 (c)). 
Pinching these groups makes the fundamental metaphor of addition, which is gathering 
together. The Adding world is intended to provide an embodied practice for the addition 
operation (Sinclair, 2013). 
As it is stated in Sinclair (2013), Nunes and Bryant (2010) claimed that children “need to 
understand cardinality; they need to understand ordinal numbers, and they need to 
understand the relation between cardinality and addition and subtraction (p.8).” as three 
type of connections between quantities and number words. Therefore, “while the Counting 
world focuses on ordinality and the objectification (Sfard, 2008) of number, the Adding 
world specifically targets the idea of cardinality” (Sinclair, 2013). 
THEORETICAL FRAMEWORK 
In general, we are fascinated in emergent of learning and the role of tools and artifacts in 
a technology-based environment. Moreover, having the nature of the interface, we are 
interested in using a theory, which emphasizes on the role of embodied practice on 
learning mathematics when a learner is engaged in an activity with digital technology. 
Therefore, we adapt Nemirovsky’s Perceptuomotor integration approach. In this 
theoretical framework, “mathematical expertise involves the systematic interpenetration 
of perceptual and motor aspects of playing mathematical instruments." The 
perceptuomotor integration approach lays on a non-dualism view of human cognition and 
therefore, a strong version of mathematical embodiment. It assumes mathematical 
learning occurs through a transformation of a bodily engagement of a learner in a specific 
mathematical activity.  Therefore, we are interested in developing fluency and associated 
changes in the way that learners move, pause, gesture, talk and, etc. “As the 
perceptuomotor fluency emerges, greater interpenetration of perceptual and motor aspects 
is revealed by retentions and pretentions that each includes both perceptual and motor 
aspects” (Nemirovsky, 2011, p. 21). 
METHODOLOGY 
Several Kindergarten children were interviewed, all aged between 5 and 6 near to the end 
of the academic year. Each interview took about 20-30 minutes. Having the 
perceptuomotor integration lens as theoretical framework besides being interested in 
emergent instrumental expertise as an embodied phenomenon, we chose some episode 
that could appreciate our goals with that represented a range evolving perceptuomotor 
expertise for one of the children named Sarah. Sarah is selected for discussion in this paper 
because she showed higher lever of tool fluency and engagement in the interview.  
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RESULTS 
The session starts in Counting world with the interviewer asking a question: “Can you put 
some numbers there?". Without any instruction, Sarah starts by placing her right index 
finger on the screen. 
10 iP One 
11 S [Smiles, puts all right hand fingers and palm on screen] 
12 iP Six 
13 S [Pauses, looks at interviewer and smiles] 
14 S [looks back to the screen, pinches all fingers and puts them on the screen 
while her palms touches screen as well] 
15 iP Thirteen 
16 S [looks at interviewer, smiles] 
17      S [looks back to the screen, taps repeatedly with all her fingers] 
17 iP Twenty eight 
18 S [Starts taping continually with all fingers like playing a piano] 
19 I WOW, it’s raining number, isn’t it? 
20 S [laughs] 
21 I So, If you put your fingers up here…[Pointing to horizontal bar line] 
It seems she does not listen to the interviewer instruction instead she listens and repeats 
the number that iPad is saying. 
22 iPad  Two hundred and twenty seven 
23 Sarah  [laughing] two hundred and twenty seven! 
The interviewer then gives Sarah an instruction to pull out a number and  put on the 
horizontal bar. Then she asks Sarah 
30 I  what is your favorite number? 
31 S A hundred 
32 I [Rests the App] How would you get just 100? 
 Although, it seems Sarah is able to find 100 but she fails to put 100 on the bar and misses 
100.  She tries again but she passes and misses 100. In the third try, Sarah’s tapping 
become purposeful, regular and rhythmic which suggests she can anticipate when 100 will 
come. 
 In another episode Sarah explore the Counting world to find “infinity”. She taps on screen 
rapidly with her two hands:  
41 S :  Let’s see when I stop what big answer is” [smiles, tilts her head down and 
taps quickly on screen.]  
42 I  Okay 
43 S If I get to [smiles tilts her head up and looks aside] 
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44 S Infinity! [smiles looks at interviewer] 
45 I  Oh! 
46 S She continues tapping when she looks down on iPad and sometimes aside. 
When she stops tapping, all raining numbers has fallen and no number is seeing on 
screen. Sarah waits to iPad says the number! She is looking for the cardinality of 
Infinity. 
50 I [laughs] It’s too big. Let’s see, if you tap up here will get to see what the 
number. Tap up here. You got to one thousand one hundred and eighty five.  
51 S [Astonishes, looks around and smiles] 
52 I WOW! 
 
The interviewer then switches to the Adding world. 
60  I  this is one you may make the groups and put them together.  
61 I [Using pinch gesture on the air] 
 Immediately; without direct instruction, Sarah uses pinch gesture to “gather” 
numbers together. Interviewer asks Sarah to make a Seven. In the first attempt, Sarah 
make a 7 by gathering 5 and 2. Then, the interviewer asks for a group of seven in another 
way than adding 5 and 2, as she perceived at that time Sarah made 7 by the chance. 
Sarah’s try on making 7 by adding 2 and 4 fails and she realizes that 2 and 4 makes 6 and 
not 7. Thus, she continues: 

70 S 3 and 4?  
71 I OK. Let’s try it 
72 S [Taps with index, middle and ring fingers.] (Figure 2- A). 
 
73 iP Three 
74 S [Taps again with same three right-hand’s fingers.] (Figure 2-B). 
75 iP Three  
76 S [Looks at her three fingers to check] Ops!  

Sarah forget to make a 4; thus, she taps on the screen and make a 1 (Figure 2-C). 
77 iP One 
78 S  [At the same time Sarah whispers] One 
 

Then she pinches 1 and 3 by index and thumb fingers and makes four following by 
gathering 4 with 3.  

79 S  (Whispering) Put together (Figure 2-D).  
 80 S (Smiles tilts her head back). I made it!  
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Figure 2: Making 7 by adding three different groups 3, 3, and 1 

 
81 I Good job, you made it with three different groups, a group of 3, a 

group of 3 and a group of 1. 
82 S One, three, three.  
83  S (Moves on chair, bends on screen) 

Then Sarah stops speaking with a long pause, touches upper edge of iPad, looks around, 
puts her hand under her chin.  

85 I what are you thinking about? 
86 S [looks around, puts hand under her chain]. I am thinking (pause) 

making (pause) adding, 10 and 10 to see what that makes. 
88 I Wow, that’s a good idea. Can I show you a trick? As long as you have 

your fingers down [Interview put her five left-hand fingers on screen]; see how it says 5 
there, I can keep adding to that group [interviewer keeps adding to 5 by tapping with her 
right-hand index finger on screen]. And let it go. That might be an easier way for you to 
do it (Figure 3-A). 
Consequently, Sarah resets the app and makes 10s by the same method rapidly (Figure 3-
B).  Then she pinches 10 and 10 and makes a twenty.  

89 iP Twenty 
90 S That’s why they say, 5, 10, 15, and 20. 

 
Figure 3: making big numbers with both hands 

 
It seems Sarah has found the importance and role of “Fiveness” in producing numbers and 
its relation with number of fingers in each hand.  
After about 5:04 minutes spending time in “adding World” Sarah became an expert in 
using both hands and all fingers to make numbers and gathering them up, which is in the 
line of perceptuomotor theory. Her justification and gestures in the upcoming episode 
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reveal her competence in achieving both mathematical concepts of addition and motor 
actives. 

91 S [puts her five fingers on iPad] 
92 iP Five 
93 S [taps with all fingers] 
94 iP Ten 
95 I  Oh, cool you made 10 really nicely there. 
96 S [Pinches 5 and 10] 
97 S Fifteen 
98 I Cool! 
99 S  I did a 5 [putts her right hand fingers into left hand] (Figure 4-1), 10 

[puts her left hand fingers into right hand] (Figure 4-2) and then I just made a 15( grabs 
numbers on the air and putting them together, Figure 4-3), added them together. 

 100 I Yea, you added them together, good job! 

  
Figure 4: Sarah's gesture for making 15. 

 
Previously, gestures were made on the screen; now they are in the air, maybe because 
Sarah comprehended the metaphor of adding.  
DISCUSSION 
In this research Sarah was actively engaged in Counting and Adding worlds by responding 
to interviewer questions, exploring the worlds and reasoning. Nemirovsky’s 
Perceptuomotor integration approach suggests that learning is understood in terms of 
alternative shifts in bodily experience so we traced such movements in our study. In the 
starting point of the interview when Sarah was exploring in counting world, she realized 
that she can make numbers with all her fingers, and each finger is the correspondent (10 
to 20) to a number. There are several occasions that she expresses her pleasure and proud 
of making and creating many (e.g. rain of numbers) or specific number (100 as her favorite 
number). Sarah showed evidence of fluency in a sense of ordinality of numbers once her 
tapping came purposefully and rhythmic. The results presented that she could anticipate 
what numbers come before and after one hundred. Sarah’s success in the pull out a number 
putting on the horizontal bar reveals a kind of objectification. In addition, her attempts to 
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reach and objectify infinity can be an evidence of her strong bodily engagement in the 
activity.  
Moreover, we found several dimensions of tool fluency and associated changes in the way 
that Sarah interacted with the device that was demonstrating in her pauses, gestures, talks 
and acts. She showed high level of shifts in bodily experiences from using one hand to 
both hands and eventually gesturing on the air (Figure 4) (Robutti, 2006), which is a result 
of her learning (Kim, Roth, & Thom, 2011). Sarah’s expertise developed further as she 
came to integrate relatively all fingers, and both hands use with small errors. 
The displayed episode in Adding world, demonstrated noticeable shifts in Sarah’s bodily 
engagement. Sarah showed a development of tool fluency in this world. For example, 
when she tried to produce a group of 7, she successively added three groups of numbers 
with each other (82). Sarah’s gesture in last episode indicates her integrated understanding 
on adding numbers in a sense of making or creating numbers and then “gathering” them 
together in the air which its initial idea arose from working on Adding world (figure 4).  
Moreover, making big numbers with 5s and 10s suggests Sarah’s awareness on Fiveness 
in creating number.  
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BRINGING ‘REALITY’ INTO CALCULUS CLASSROOMS: 
MATHEMATIZING A PROBLEM SIMULATED IN VIRTUAL ENVIRONMENT  

Olga V. Shipulina 
Simon Fraser University 

The study explores how students, who had completed the AP calculus course, 
mathematized the optimal navigation real-life problem simulated in the Virtual 
Environment (VE). The particular research interest was to investigate the factors 
determining the ways of students’ horizontal and vertical mathematizing, including the 
role of their empirical activity in VE and the role of intuition. It was found that empirical 
knowledge prevails over intuitions and that horizontal mathematizing is fully grounded 
on empirical activity. 
INTRODUCTION  
A troubling problem with current education is the practical application of knowledge. 
Graduates do not know how to apply knowledge to many problems that arise outside the 
walls of school (Ilyenkov, 2009). A serious mismatch exists and is growing between the 
skills obtained at schools and the kind of understanding and abilities that are needed for 
success beyond school (Lesh, & Zawojewski, 2007). The problem of ‘the practical 
application of knowledge’ is especially significant for calculus, which has numerous 
applications. 
The idea of including the out-of-school world in mathematics education, implying that 
focus be put on real-life applications, is not new and was emphasized in education 
policy in many countries (Palm, 2006). Regarding teaching and learning calculus, in the 
late 1980s the Calculus Reform movement began in the USA. One of the desired 
characteristics of calculus course was that students and instructors would find the 
applications real and compelling. Palm and Burman (2004) reported that, in Finland and 
Sweden, in many of the tasks encountered by students in school mathematics the 
situation described in the task, is a situation from real life.  
A traditional way of description of the contextualized tasks containing out-of-school real 
life situations is a so-called ‘word problems’. Word problems are firmly entrenched as a 
classroom tradition, particularly in North American schools (Gerofsky, 1996). And yet, 
there has been long lasting debates about the reasons for the lack of word problems’ 
effectiveness as a link between abstract mathematics and real-life phenomena.  
The contemporary computer technologies can provide much better simulations of real 
world situations in mathematical classrooms for connecting the mathematical abstract 
with out-of-school situations, which is a point of this research. The purpose of this study 
is to utilize Virtual Environment (VE) as a method of simulating real-life situations so 
that to bring the reality to the calculus classrooms. The task for the students was to find 
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the optimal path in VE empirically, and then to transfer the simulated in VE real-life 
situation into a mathematical formal task. The particular research interest was to 
investigate whether/how students’ empirical activity in VE influences their 
mathematical activity.  
THEORETICAL BACKGROUND 
More than forty years ago Freudenthal (1968) posed the problem of lack of connection 
between mathematical knowledge and its real-life object. The Freudenthal Institute has 
developed a theoretical framework of Realistic Mathematics Education (RME) 
(Freudenthal, 1968, 1991), which is based on Freudenthal’s idea that mathematics must 
be connected to reality. The use of realistic contexts became one of the determining 
characteristics of RME approach to mathematics education. The most general 
characteristic of RME is mathematizing, wherein the realistic contexts must be used as a 
source for mathematizing. 
Treffers (1986) formulated the idea of ‘progressive mathematizing’ as a sequence of two 
types of mathematical activity – horizontal mathematizing and vertical mathematizing. 
He suggested that horizontal mathematizing consists of non-mathematical real world 
situations, transforming the situations into mathematical problems. Vertical 
mathematizing is grounded on horizontal mathematizing and includes reasoning about 
abstracts within the mathematical system itself.  
Another important aspect of RME is a special role of models. According to Streefland, 
cited in (Van den Heuvel-Panhuizen, 2003), models can fulfil the bridging function 
between the informal and the formal level: by shifting from a ‘model-of’ to a ‘model-
for’. At first, the model is a model-of a situation that is familiar to the students. By a 
process of generalizing and formalizing, the model eventually becomes an entity on its 
own. It becomes possible to use it as a model-for mathematical reasoning. 
The RME theory has been accepted and adopted by some educational institutions of 
England, Germany, Denmark, Spain, Portugal, South Africa, Brazil, Japan, and 
Malaysia.  In spite wide acceptance and adaptation of RME, the recent research shows 
that there is still a wide gap between the world of knowledge obtained at school and the 
world of conceptions found in real-life experiences. The claim of this paper is that the 
reason of why students do not connect the mathematical world with reality is because 
they continue mathematizing only ‘word problems’ but not real-life situations which 
include the students’ activities directed at the objects to be mathematized.  
MATERIALS, METHODS, AND PARTICIPANTS  
Second Life VE was used for programming an interactive setting for the empirical real-
life optimal path finding task. The simulated setting includes a pond with shallow water 
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and two platforms: one platform is located on land near the water’s edge; another is 
located in the water (Fig.1). 

 
Figure 1: Simulated in the Second Life VE interactive setting. 

The setting was programmed so that walking/running speed on land is twice as fast as 
walking/running speed in water.  
The task for the student in this VE was to travel between the two green platforms trying 
to find the path, which would give the shortest time of travel. The environment was 
programmed to record the time spent for each trip with a corresponding distance 
travelled by land and to display this information on the banners (Fig.1).  After each trip 
the student had to transfer the data into a specially designed guiding–reflecting journal, 
which was an integral part of the instructional/experimental design. 
The aim of the guiding–reflecting journal is to connect the student’s optimal navigation 
practice in the VE with the calculus optimal path finding task, which in turn is available 
in almost every calculus textbook (Pennings, 2003). According to RME instructional 
design theory, the teacher provides guidance, playing a ‘proactive role’ within the 
classroom setting. In this study every student decides whether and to what extent he/she 
needs guidance. In other words, the students had a free choice: either to construct and 
develop their own models-of the situational problem or to accept and develop the 
journal’s model. The journal contains blank space for independent reasoning and 
provides help/hints/directions for those students who need guidance and/or additional 
information. 
 
The model offered in the journal corresponds to the calculus optimal path-finding task 
described in (Pennings, 2003). Namely, the task is to reach an object B, located in water, 
from the position A, located on land close to water edge, and to find such a path that 
would minimizes the time of travel from A to B (Fig. 2).  
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Figure 2: Possible paths: from location A on Land to location B in water. 

 
Path AB is the most direct and shortest, but also is of the longest water distance. Since 
the speed in water is slower than speed on land, the choice could be to use the shortest 
water distance which means sprinting down the beach to the point on shore closest to the 
‘water’ platform, which is C, and then turning a right angle and moving to B.  Finally, 
there is the option of using a portion of the land path, up to D, and then entering into the 
water at D and moving diagonally to the water platform.  
Let z denote the distance between A and C.  Let y= z - dl, and x represents distance 
between B and C.  Speed on land is sl ; speed in water is sw. Then time spent for the trip 
is 

𝑇𝑇 = 𝒛𝒛−𝒚𝒚
𝒔𝒔𝒍𝒍

+ �𝒙𝒙𝟐𝟐+𝒚𝒚𝟐𝟐

𝒔𝒔𝒘𝒘
                                                 (1) 

The condition of minimal time: 

T/ (y)=0, or     (𝒛𝒛−𝒚𝒚
𝒔𝒔𝒍𝒍

+ �𝒙𝒙𝟐𝟐+𝒚𝒚𝟐𝟐

𝒔𝒔𝒘𝒘
)/= 0                           (2) 

𝑦𝑦 = 𝒙𝒙

�
𝒔𝒔𝒍𝒍
𝒔𝒔𝒘𝒘
+𝟏𝟏 �

𝒔𝒔𝒍𝒍
𝒔𝒔𝒘𝒘
−𝟏𝟏

                                (3) 

The designed study contained three main stages. The exploration trial was the first 
stage of experimental design that allowed students to explore the pond with its shallow 
water and to feel the speed difference on land and in water. The goal of exploration trial 
was to let students get feeling of ‘being’ in the environment before starting the next, 
second, stage of the designed study which is an optimal navigation in the VE. The third 
stage of the designed study is mathematizing the VE activity, which implies the journal 
work only. 
The students ranging in age from 17 to 18 years, who had completed the AP calculus 
course at a high school of participated in the research study. The participants’ 
exploration of the computer environment was screen recorded by SMR software. Their 
work with the journals was video-recorded. 
RESULTS 
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The first participant, named Kenneth, performed fully independent, non-guided 
mathematizing. His VE activity was characterized by deliberate planning, realizing the 
trip strategies, and collecting empirical data for ‘transforming a problem field into a 
mathematical problem’ (Treffers, 1997). I call such activity ‘empirical mathematizing’.  
Kenneth spent 3.45 min exploring the environment and had an opportunity to feel the 
speed difference in two different mediums. Moreover, he was informed by journal 
instructions that the speed on land is two times faster than the speed in water. 
Nevertheless Kenneth’s first two trips were straight lines between the platforms, which 
maximize lower speed water part of his path (Fig. 3). 

 
Figure 3: Kenneth’s three strategies. The first is of maximum water distance (left 

diagram); the second is of minimum water distance (middle diagram); the third strategy 
is Kenneth’s best time trip (right diagram). 

Obviously, Kenneth chose the straight line as a shortest distance having in mind an 
intuitive model that the shortest distance would give him the shortest time. Kenneth’s 
tacit intuitive model prevailed over his knowledge about speed difference due to its 
robustness (Fischbein, 1989). Remarkably, that already after two trips in VE Kenneth 
asked, “Actually, can I do math?” which means that his level of confidence in calculus 
application was very high and not typical for the school student (Ernest, 2002). Not 
relying on this intuitive approach, Kenneth decided to continue empirical 
mathematizing. Kenneth used the strategy of minimizing distance in water in third and 
fourth trips in VE. His best time strategy was the path between minimal and maximal 
water distances (Fig. 3 above). After testing all three strategies Kenneth constructed his 
graphical model-of the situational problem which was fully grounded on his empirical 
activity (Fig.4). 

 
Figure 4: Kenneth’s graphical model-of the problem. 

Interesting moment happened when Kenneth’s vertical mathematizing resulted in “plus 
or minus” land distance, which obviously was a mathematical abstraction. This turned 
Kenneth back to situational horizontal layer for verification the plausibility of the 
obtained formal results.  
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The second student, named Jason, spent less than 30 sec for it being in water during a 
very short time. He did not want to explore the environment longer, so, obviously he 
didn’t feel the difference between speeds in water and on land. Nevertheless, he chose 
first trip strategy under the influence of information that speed on land was faster than 
speed in water (Fig.5). 

 
Figure 5: Jason’s two first trips in VE. 

Jason received this information before his first trip from the journal, and from the 
researcher. He commented this strategy as “Land is faster” and completed the next trip 
according to the same strategy of trying to minimize the distance in water (Fig.5). 
Overall, Jason completed 10 trips the strategies of which, according to his comments, 
were either maximal or minimal water distances. The result of Jason’s empirical 
mathematizing did not allow him to construct such model-of the situational problem, 
which would allow him to develop a model-for mathematical reasoning (Fig. 6).  

 
Figure 6: Jason’s graphical model-of the problem. 

As a result, Jason decided to develop the journal model. He demonstrated excellent 
independent vertical mathematizing.  
The third student, named Nick, spent 3.5 minutes for the exploration trial and had 
enough time to feel the speed difference in two mediums. Nevertheless, Nick’s first trip 
was of the same strategy as the Kenneth’s first trip-the strategy of a straight line between 
the platforms giving the shortest distance between the platforms but longest water 
distance (see Fig.3 above). Kenneth’s and Nick’s tacit intuitive model that shortest 
distance should give the shortest time prevailed over knowing that the speeds were 
different in different mediums. The remarkable change in Nick’s empirical 
mathematizing approach happened after 6 trips of different strategies, when he wrote in 
his comments, “I noticed the angle in which I enter the land from water is key in 
reducing the time”. He planned all the other trips according to his new ‘angle’ approach. 
Nick demonstrated how empirical mathematizing can result in the construction of his 
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own original model-of the situational problem which he developed into model-for 
mathematical reasoning (Fig. 7). 

 
Figure 7: Nick’s graphical model-of the problem. 

Nick was persistent in mathematical verification of his empirical finding. He spent more 
than 10 minutes working on his original model independently, and another 6 minutes 
working on the journal model development. He performed all stages of mathematizing: 
from empirical to horizontal, grounded on empirical; from horizontal to vertical 
grounded on horizontal.  
All three students showed the crucial role of empirical mathematizing in construction of 
the models-of the situational problem. During empirical activity the participants 
demonstrated the interference of intuitive cognition. Particularly, Kenneth’s and Nick’s 
first trip strategies were determined by tacit intuitive model, which prevailed over newly 
received knowledge. Nevertheless, all three participants demonstrated that empirical 
knowledge obtained from their empirical mathematizing prevailed over intuitive 
cognition and fully determined the models-of the situational problem. Therefore, if 
students are provided with opportunity for empirical mathematizing, their new empirical 
knowledge prevails over intuitions; their horizontal mathematizing is fully grounded on 
empirical mathematizing. 
The students’ way of mathematizing depends on their stage of knowledge, according to 
the epistemological empowerment model, described by Ernest (2002). Particularly, 
Kenneth demonstrated the Constructed Knowledge Stage, characterized by confidence 
for integrating Connected Knowing (the intuitive knowing) and Separated Knowing (the 
impersonal rational reasoning). Jason’s epistemological empowerment relates to the 
earlier, Separate Knowing stage. This earlier stage of knowing is a rational mode in 
which the subject realizes that there are objective logical rules, impersonal rational 
reasoning and uses them. Nick’s confidence in developing his own model allows 
relating his empowerment to the Constructed Knowledge stage. Since at some point 
Nick lost his confidence and decided to develop the journal model, his epistemological 
empowerment may correspond to the stage between the Connected Knowing and the 
Constructed Knowledge. 

CONCLUSIONS 
The study showed that instead of real-life situations described by ‘word problems’ with 
ready-made images to be mathematized, the real-life activity can be simulated in a VE. 
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A background assumption which was made at the beginning of the research was that the 
VE technology provides simulation on the computer screens close to the reality; and the 
real-life problems simulated in VE can be considered as the problems of the real 
physical world. The fact that all three students developed their models-of the situational 
problem on the basis of their empirical activity in VE suggests that VE indeed provides 
simulation close to reality; close enough to meet the purpose of this study. This, in turn, 
contributes to fundamental principle of RME by making formal mathematics as a natural 
extension of students’ experiential reality. Another contribution to RME is connected 
with identifying the role of empirical mathematizing and empirical knowledge in 
construction of the models-of the situational problems and as such, in horizontal and 
vertical mathematizing. 
Interesting finding concerns the role the intuitive cognition plays on different stages of 
mathematizing. Particularly, on the basis of the research results it was suggested that 
new empirical knowledge obtained from empirical mathematizing prevails over 
intuitions formed from a previous experience. 
It was also shown that the way of mathematizing depends on the stage of 
epistemological empowerment. Therefore, the instructional design based on utilization 
of VE simulations should develop students’ epistemological empowerment through the 
development of their applicable skills.  
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SECONDARY MATHEMATICS TEACHERS’ TINKERING: HOW TO TEACH 

SOLVING RADICAL EQUATIONS 

Natasa Sirotic 
Simon Fraser University 

This report presents findings from a collaborative teaching experience on the topic of 
solving radical equations in a Grade 11 mathematics classroom. An in-service 
professional development process was employed in a K-12 suburban school over an 
extended period of time in which teachers created, implemented, and reflected upon 
their mathematics lessons in the traditions of “community of inquiry” and “lesson 
study”. Teachers’ discourse during the phases of planning for instruction and reflecting 
upon the teaching experience were analyzed with respect to what teachers notice about 
students’ mathematical thinking. Through the process the teachers became attuned to 
critically examine their practice and how it affected what students are doing, thinking, 
and understanding. 
 
Keywords: Teacher Education-Inservice/Professional Development, Mathematical 
Knowledge for Teaching, Instructional activities and practices 
 
INTRODUCTION 
This report comes from an ongoing study on the development of mathematics teaching 
practices at an independent, K-12 coeducational, nondenominational, university 
preparatory school, the West Coast Academy (WCA) in British Columbia. Departments 
at the school work closely together to improve students’ learning. All the 16 teachers 
that teach mathematics at any grade level at the school participated in the study 
voluntarily through a type of situated professional development practice (Chazan, Ben-
Chaim, & Gormas, 1998) known as “lesson study”. Lesson study is a well-defined 
process for ongoing professional development of teachers that originated in Japan over 
50 years ago, but it first gained attention in North America with the publication of The 
Teaching Gap (Stigler & Hiebert, 1999). It has been documented by several authors who 
have researched it and led a number of its implementations across North America 
(Fernandez & Yoshida, 2004, Fernandez, 2005, Lewis, 2006). In the traditions of 
“lesson study” and “community of inquiry” (Jaworski, 1998), the teachers at WCA 
worked together as a professional learning community (Wenger), engaging in 
considerable shared planning, observation, and discussion of lessons. Typically, in each 
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lesson study cycle, a team of teachers who teach the same or neighbouring grade levels 
collaboratively designed a mathematics lesson to challenge a difficult topic or to learn 
about an aspect of students’ ways of thinking. Next, the lesson was taught by one of the 
teachers in the team while the other team members observed and documented students’ 
learning; then, the teachers collectively reflected upon and revised the lesson, and finally 
implemented it again in another classroom with a different teacher teaching it. In some 
of the lesson study cycles the researcher acted as a facilitator (in teams of teachers 
teaching K-5 grade levels), in some also as a participant (in the team of teachers the 6-8 
grade levels), and in some solely as an observer and a researcher (in the team of teachers 
teaching 9-12 grade students).   
It is not the lesson study itself that is the research focus. Instead, the research study seeks 
to find out what is needed for teachers to be able to initiate, recognize, stimulate, and 
sustain the mathematical thinking of their students. As such, this study aims to foster 
sensitivity among teachers to recognize and create a culture of mathematical thinking in 
their classrooms, as well as to raise the level of mathematics instruction and learning in 
general. Lesson study acts as a window into the “full act of teaching”, in which teachers 
can learn about how students think and learn. This report focuses on a single lesson in a 
Grade 11 mathematics classroom, developed by a team of 3 experienced secondary 
mathematics teachers. It discusses the ways in which teachers speak and think about 
students’ mathematical thinking, and how they see their role in building a culture of 
mathematical thinking in the classroom through their instructional practice. The main 
source of the data is from the collaboration and discussions (audio taped and transcribed 
partially), the lesson implementations (videotaped), and the artifacts that were created 
during the process (lesson plans and instructional materials).   
 
DATA COLLECTION AND METHODOLOGY 
The three teachers, Sam, Florence, and Fred met twice to develop the lesson on teaching 
Grade 11 students about solving radical equations. Florence, who taught the lesson in 
her class for the first implementation, wrote the lesson plan, which included the input 
from the other two teachers. This artifact included details, such the goal of the lesson, 
the learning tasks that will be offered to students and the questions that the teacher 
would ask, as well as some of the anticipated student reactions and evaluation points that 
the teacher would make at the critical points of the lesson. At the end of the school day, 
the teachers discussed how the lesson worked, paying special attention to how students 
learn and what makes the topic difficult for the students, as well as how they might 
engage students’ interest in what seemed like a dry and rather technical topic. The 
slightly revised lesson was then implemented by Fred with his class of Grade 11 
students on the following day. The teachers discussed the revised lesson and evaluated 
the improvements that they had made in how the lesson affected student learning. Both 
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lessons and the two post-lesson discussion were videotaped, and the lesson planning 
sessions were audiotaped. 
Lessons can be planned, observed and reflected upon from a variety of perspectives, 
such as social, the discourse that goes on, lesson structure, resources being used, modes 
of presentation, and so on. Since the overarching goal of the lesson study 
implementation at WCA was to foster the development of students’ mathematical 
thinking, the author is interested in the mathematical analysis of the lesson, as this seems 
to be the key for finding out about what is available for students to learn in terms of the 
nature of the object of learning.  
FRAMEWORK 
Mathematical thinking has been a major aim of mathematics education, and also a major 
research topic of lesson study. In the literature there are two traditional references for 
describing mathematical thinking, one from the perspective of mathematical processes 
(Polya, 1945, Mason, 1982, Schoenfeld, 1992), and the other with the focus on 
conceptual development of mathematics (Freudenthal, 1973). Besides these two major 
trends there is also attention to disposition with regards to mathematical ways of 
thinking and attitude (Kilpatrick et al., 2001). These three perspectives are embodied in 
Katagiri’s theory of mathematical thinking which has been used in the context of 
classroom practice and lesson study for developing mathematical thinking (Isoda & 
Katagiri, 2012). In his theory there is a distinction between “mathematical attitude”, 
“ways of thinking”, and “ideas”, which could all be used in different ways as a driving 
force for mathematical thinking. They are the classical distinctions of affect, processes, 
and content which all play an important part in instruction. We take this framework as a 
lens through which to study what teachers do in their practice, and how they think about 
cultivation of a classroom culture where mathematical thinking is the norm, and not just 
something that happens accidently to some students.   
On the other hand, Watson devised a way of mapping the development of mathematical 
ideas in lessons, which is based on the 7 key features, not hierarchically ordered 
(Watson, 2007). The author shares her perspective that “all task-types are available for 
deep analysis of mathematical affordances, and that such analysis can help teachers 
develop sensitivity to variations of presentation, layout, symbol use, language, diagram 
and hence to variations in perception, recognition, interpretation on the part of learners.” 
(Watson, 2008) 

Table 1: Key Features of Lessons 
Focus of episode Shifts of mathematical activity 

Teacher makes or elicits declarative / 
nominal / factual / technical statements 

remembering 
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Learners copy, imitate, follow 
instructions 

developing fluency, reporting/recording 
actions 

Teacher directs learner 
perception/attention 

public orientation towards concepts, 
methods, 
properties, relationships 

Teacher asks for learner response personal orientation towards concepts, 
methods, properties, relationships 

Discuss implications analysis, focus on outcomes and 
relationships 

Integrate and connect mathematical 
ideas 

synthesis, connection 

Affirm/ act as if we know … rigour, objectification, use 
 
The lesson on radical equations is analyzed in relation to these 7 features and discussed 
it from the perspective of Katagiri’s theory of mathematical thinking. What was 
available for the students to experience in this lesson, mathematically? What 
improvements were the teachers in this team able to enact from one lesson to the other, 
in their efforts to evoke their students to think mathematically?  
FINDINGS 
Here we present the development of the lesson, in a form of a blending between what 
actually happened and what the teachers intended in the lesson plan. The middle column 
represents actual and/or anticipated student reactions, and also what is made available to 
the learners, mathematically (including what appears on the board). The third column 
captures the ways in which teachers spoke and thought about student thinking. It 
contains teachers’ comments from pre and/or post lesson discussions selected by the 
researcher as representative of teachers’ talk regarding students’ mathematical thinking. 
As this is a study of teachers, and not of students, we do not make the distinction 
between anticipated and actual student responses, as long as they are consistent with 
each other. The whole lesson unfolds as a conversation between the teacher and the 
students in an interactive whole class instructional style.  
In the first part of the lesson, the teacher announces the goal of the lesson, writes up the 
title “Radical Equations”, and begins with reminding the students of the different kinds 
of equations the students are already familiar with. The teacher is setting the stage for 
the lesson by drawing students’ attention to the mathematical ideas of domain, restricted 
values, and when an equation might not have a solution. This part belongs to the first 
and third category of the lesson features, presented in Table 1. A small excerpt from the 
last sequence of this part is presented in Table 2. 

Table 2: Setting the Stage 
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What the teacher does and 
says 

Students’ responses Comments 

Rational equations: Would you 
be able to write an example of 
a rational equation?   
What is the set of numbers for 
which this equation is defined? 
Or, does this type of equation 
have any limitations in its 
domain? 
Or, do you see any ‘red flag’ 
in this equation? 
 
What will happen if x = 0? 

22
1

x x
x x

− =
+

 

We know that division by 
zero is not possible, so 
we need to exclude that 
possibility. It means that 
the denominators in this 
equation have to be 
different than zero: 

1 0x + ≠   ⇒      x ≠  -1               
           and         x ≠  0 
It is not possible to divide 
by zero, so for x = 0 the 
equation is not defined! 

Domain is always 
some kind of a 
problem for students. 
 
Limitations and the 
reasons to look for 
them in any equation, 
especially in a 
rational function is 
important, and it is 
expected that students 
will have some 
difficulties with this. 

 
In the next stage of the lesson, the teacher focuses the students’ attention to the notion of 
radical, and addresses some well-known students’ difficulties surrounding the 
interpretation of the root symbol (key features 3 and 4). A teacher who works 
mathematically can identify the difficult bits of mathematics and address those heads on; 
otherwise, the students will likely generate their own conceptions as a result of thinking 
mathematically: pattern-seeking, generalizing, interpreting, applying.  The teachers in 
this team are all experienced mathematics teaches, who deeply care about their students, 
and this was one of the key points they identified as requiring more attention in the 
reimplementation of the lesson. The leverage they got from this adaptation was 
enormous in the sense of accomplishing the main goals of the lesson.       

Table 3: Dealing with a potential difficulty proactively 
Before we move forward, the 
question is – what does the 
term radical in mathematics 
mean? 
Give me an example! 
 
Here we will explore roots of 
perfect “numbers”; this means, 
square root or any other root 
that turns out to be rational. 

That means the result of 
any root.  
 
Examples:  

15 , 3 29 , 8 12 , 11 6 , etc. 
 
 
Students had a few 
seconds to think about the 
possible result, and the 
first student who 

Students had learned 
about radicals before, 
and about irrational 
numbers, but we 
don’t expect 
everybody to know 
them.  
 
It is known that 
students have 
difficulties when 
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But first, we have to know the 
sign of the square root of a 
positive number. 
What is the result of 9     ? 
 
 

volunteered to respond 
said: The result of  9 = 
± 3 

square root is in 
question. 
 
The most common 
mistake students 
make is to say that the 
root of a number is ±  
(positive or negative).  

        
The teacher proceeded to deal with this error, explaining that, “value under the root has 
to be nonnegative in order for square root to exist in the set of real numbers, so the result 
has to be nonnegative too.” We see this as a case of epistemological obstacle; that is, an 
inherent phenomenon arising from the need to learn notation and interpretation. Is the 
square root an operation, or is it a number? One of the desirable aims of formal 
education is to be able to read the meaning of an expression. In literature, conceptual 
development in relation to the reading of a meaning through the symbols is described 
using the notion of “procept” (Gray & Tall, 1994).   

Table 4: Relating square roots to solutions of quadratic equations 
Now take a look at this 
quadratic equation:  2 9 0x − =  
What would be the solution of 
this quadratic equation? 
 
 
 
Compare this result to 9 . 
Do you notice the difference?  
And why is it so? 

We will start with:  2 9x =      
Consider first these two 
equalities: ( )23 9+ =   and 
( )23 9− = ; looking at 
them, we can conclude 
the solutions 
        x = 3 and x = - 3 
or  9x = ±  ⇒  3x = ±  
As we said, 9 is always 
equal 3, (not ± 3). 

The given quadratic 
equation has two 
solutions, one 
positive and one 
negative, while 9  is 
just a positive 
number. We need to 
pay attention to this 
problem and explain 
it better, so that 
students don’t make 
that mistake in the 
future. 

Next, teacher poses the question about the value of 2( 3)− , justified by, “This is also 
students’ usual mistake – to cancel out square and square root, so the result is -3”. The 
discussion of permissible values for radical expressions was considered an essential 
component for establishing the “ways of thinking” for the part of the lesson that 
followed next.  

Table 5: Establishing the permissible values 
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What could be the value of the 
root: 4x +    ? 

This is called a radical 
expression. 
Is this root positive, zero, or 
negative? 
 
 
When does this number exists? 
 
I hope that we now know what 
a radical is. 

Again, the value of a 
square root is always 
nonnegative, so the value 
of 4x + , if it exists, has 
to be nonnegative. 
That number exists when 
the value under the root is 
nonnegative, (there is no 
real value of the root if 
the value under the 
square root is negative 
number). That means: x + 
4  ≥  0  ⇒x  ≥  - 4 

At the beginning, 
students usually 
forget to make the 
statement about the 
value under the root – 
to be sure that it is 
nonnegative.  
To reinforce that, we 
need to question them 
again and again about 
the possible values 
for the value under 
the root.  

 
Discussion about the permissible values for radical expressions was seen as a necessary 
component for establishing “ways of thinking” about the topic. Mathematical activity in 
the next segment of the lesson relates to considering the constraints for possible 
solutions. This is one of the psychological functions essential for successful 
mathematical reasoning. Some authors who studied how concepts are formed in a 
mathematics classroom concluded “students’ mathematical failure is often triggered not 
by the lack of specific mathematical knowledge but by the absence of cognitive 
functions of analysis, planning, and reflection” (Kinard & Kozulin, 2008, p7). This 
segment of the lesson falls into the 5th category of Watson’s key features from Table 1, 
which pertains to the mathematical activity of analysis. It is worth mentioning that in her 
study of practices of teachers, Watson concluded that the 5th and the 6th categories are 
underrepresented in the lessons of non-specialist teachers, and yet they are essential for 
the integration of the learners’ mathematical activity for the development of their 
mathematical repertoire and ideas (Watson, 2008, p5).    

Table 6: Why does a solution “crash”?  
Consider this radical equation.  
What is the set of numbers for 
which this equation is defined? 
What are the limitations? 
What we have said for the 
values of a square root? 
Then, under this condition we 
can start solving the given 
equation.  

    3 5x x− + =  
We have to look at the 
expression under the root 
first. We know that it has 
to be positive or zero in 
order for the root to exist:  
x – 3 ≥  0    or    x ≥  3 
  

3x −  = 5 – x 

We predict that 
students will try to 
square both sides of 
this equation first, 
without making any 
limitations for the 
right side. To show 
them how serious this 
mistake is, we let 
them square it first, to 
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In order to solve the equation 
we will keep the root on the 
left side of the equation, and 
move x to the right side.  
 
Next, to solve this equation we 
have to eliminate the root. 
How to do that? 
 
May we do that? What do you 
think? Before we answer that 
question, let’s eliminate the 
root without any limitation.  
 
 
Are we satisfied? 
Are 1x  = 4 and 2 7x =  really the 
solutions of the given radical 
equation? Check it! 
How to know if the zeros 1x  = 
4 and 2 7x =  really are the 
solutions of the given 
equation?  
 
Check 1x  =  4  first. 
 
 
 
 
Now, check for 2 7x = . 
What that means? 
Could we know it beforehand?  
OK, we could, but seems that 
we did not care. How come? 
Where is the mistake? 
Yes, we could know that if we 
did our work properly. 

If we square both sides of 
the equation, the root will 
be eliminated.  
 3x −  = 5 – x     2/             
(square both sides of the 
equation) 
  x – 3 = (5 – x)²               
…students solve the 
quadratic equation using 
the quadratic formula… 
Seems that the solutions 
of this radical equation 
are:   
 1x  =  4 and 2 7x =  
If we substitute these 
solutions into the given 
equation, we will know 
whether these are the 
solutions. 
Substitute the solutions 
into the given equation: 
 3 5x x− = −  
for 1x  =  4  ⇒   

4 3 5 4− = −    ⇒   1  = 1 , 
and the equation is 
satisfied, (because 1 = 1). 
On the other hand, for 

2 7x =    ⇒ 7 3 4 2− = =

⇒  2  = -2, which is not 
correct.  
That means that  2 7x =   is 
not the solution of the 
given equation. 
Is it possible to predict 
that a solution will 
“crash” ahead of time? 

see what the 
consequences are if 
we don’t pay enough 
attention. 
 
Students really didn’t 
realize that they made 
a mistake by not 
making statements 
about the right side of 
the equation. 
 
 
 
 
Knowing that 
students will have 
difficulties in 
deciding what to do 
with equations like 
this, we offered one 
very simple example, 
end asked questions 
first, before 
explaining how to 
approach the solution 
of this equation. 
 
 
We want to intrigue 
students to get a sense 
that there is predictive 
power in 
mathematics, which 
they can access if 
they think carefully. 
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In terms of the lesson features we qualify this segment as being in the 5th and 7th category 
of key features described in Table 1, while in terms of Katagiri’s framework, this is where 
the teacher instigated a shift in mathematical attitude. Students wanted to know what is 
happening, how come that solution did not work. They wanted to know this from a 
structural perspective, what was missed in the process, and they were not satisfied to be 
left with “having to check” and then “getting a crash”, but wanted to know instead how 
they could reach this conclusion beforehand. The teacher used this opportunity to tell a 
story about the failed Iron Workers Memorial Bridge, where the engineers at the time 
overlooked a constraint and failed to include it in their analysis. The students were very 
ready to hear the rest of the story.  

Table 7: Solving radical equations under the analysis of constraints 
Now, the limitation under 
which we may square both 
sides of the equation is x  ≤   5, 
and the solution  2 7x =  does 
not satisfy that limitation. That 
means that we could know 
much earlier that 2 7x =  is not 
the solution of the given 
equation. This way, putting 
limitations through the process 
of solving the equation, we 
know in advance what could 
and what could not be the 
solution, and we will not fall 
into the trap of taking the 
result what is not the solution. 
Even more, sometimes, like in 
this example, 1 2x − = − , we 
see the solution immediately, 
namely, the solution is the 
empty set or, the equation does 
not have the solution. That 
means that we solved this 
radical equation even before 
we started the process of 
solving it. That way, putting 
the limitations first, we shorten 
the solving process.  

We made the mistake 
when squaring both sides 
of the given equation 
without checking the 
right side, because:  
Left side of the equation 
is a square root, and we 
know that it has to be 
nonnegative. If so, then 
the right side of the 
equation has to be 
nonnegative too, because 
it is an equation, and left 
side have to be equal to 
the right side, or:  5 – x  
≥  0 
If the right side of the 
equation was negative, by 
squaring we made it 
positive. We cannot just 
change the sign of one 
side in the equation 
without changing the 
other side too. So, we had 
to make limitation that 
the right side is 
nonnegative too. That 

Now we underline the 
problem, making sure 
that students really 
see the need for 
making statements 
(limitations) before 
squaring both sides of 
the radical equation. 
We think that 
students now have 
elementary sense 
about the procedure 
and ideas regarding 
solving radical 
equations, but that is 
just a beginning. In 
order to truly 
understand the 
process, more 
examples have to be 
done, and these 
examples should vary 
in range. This was 
just one of them, a 
very simple kind. 
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means:  5 – x  ≥  0 ⇒  5  
≥   x   or   x ≤   5 

The teacher then proceeded with 6th and 7th type of lesson episode focus, and expanded 
the example space with two additional tasks, always working on the analysis of 
constraints first. 

 Fred: This was a discussion of the solution of one of the radical equations. The same 
principle we have to apply whenever we need to solve a radical equation. It means 
that we have to take all the precautions whenever we do the next step in the process of 
solving such equations. It applies not only to the roots and the signs of the expressions 
in the equation, but also to the denominators of the fractions, if they exist, in the 
equation. We always challenge the students by questioning them about the possible 
solutions, making them aware of possible shortcuts in the process of solving radical 
equations. This was such example, and we can again remind the students about the 
possibilities we need to explore. Students will eventually find the examples in the 
textbooks, for example Mathpower 11, where they give the only way of solving 
radical equations by checking the solutions et the end by substituting the solution into 
the given equation. But this is not a way of developing mathematical thinking in 
students’ math education. 
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TEACHER JUDGEMENTS IN THE CLASSROOM: WHAT IS IT WE ATTEND 
TO? 

Kevin J. Wells 
Simon Fraser University 

When meeting a group of students for the first time teachers can often make judgements, 
wittingly or not, about the students’ ability. In this paper I will examine some possible 
clues teachers attend to which may be enabling them to make this judgement. In this 
instance I am considering the feedback a teacher receives from observing a group of 
students problem solving. I show that certain features of the dialogue, along with the 
body language of the students, can offer clues as to the level of understanding the 
students have regarding the material. Using tools of Conversation Analysis and an 
analysis of gesture, I show that certain features are recognizable amongst students that 
are successful in their problem solving, and suggest that the experienced teacher may 
develop a subconscious recognition of such traits. 
 
Keywords: Understanding, Conversation, Gesture, Teacher attention 
 
INTRODUCTION 
Reform based teaching encourages the development of a mathematics discourse within 
the classroom. Correspondingly, discourse based research has often been used as a way 
to probe student understanding (e.g. Williams & Baxter, 1996). In this research I use 
conversation analysis combined with gesture analysis to gain insight to the differences 
between groups of students as they work on mathematics problems. I examine the 
structure of the discourse with the intent of looking for similarities and differences 
between the students, which may serve as signals to the classroom teacher.  In particular, 
I examine the question as to how a teacher may claim to quickly determine a student’s 
understanding without having to carefully analyse the discourse. 
THEORETICAL FRAMEWORK 
Wittgenstein (1967) notes that the possibility of a student understanding something will 
depend on whether the student can go on to write independently (143), while getting 
someone to understand requires changing their way of looking at things. Importantly, 
understanding is considered to be a source of correct usage (146) and Wittgenstein 
suggests not thinking of understanding as a ‘mental process’ at all, but as the set of 
circumstances in which a student is able to ‘go on’. If we relate Wittgenstein’s ideas to a 
conversation, then understanding could manifest itself in terms of the ability of a student 
to ‘go on’ with the particular exchange. This can be tied in with the idea, from 
Conversation Analysis (CA) (Sacks, 1984), of the adjacent pair, in which a second 
utterance of an exchange is functionally dependent of the first. This connection is clearer 
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if we adopt the distinction between a conversation, as an exchange of ideas of which the 
interlocutors are willing to change, and a discussion, as statements of ideas which the 
interlocutors make but do not alter (Davis, 2001). The onset of simultaneous speech, 
overlapping, and intonation are also important indicators of information in such a 
conversation (Wooffitt, 2005).  
Rorty (1979) views conversation as the ultimate context within which knowledge is to 
be understood, while Ernest (1998) suggests that conversation is central to learning. In a 
reform-based classroom, where group work and collaborative problem solving is a 
focus, conversation between students may be seen as central to the process. While these 
conversations have been studied by researchers (as sumarised by Walshaw & Anthony, 
2008), the lens is often on the detailed utterances of the students. However, as Morgan 
(1998) points out with regard to examples of student writing (p. 154), such content is 
subject to interpretation, suggesting that such analysis can only be done by someone 
practiced in this area. Morgan also notes that in assessing written work ‘teacher 
judgements are largely formed in an intuitive way’ (p. 127).   
 
Halliday (2009) has observed that if communication is to take place then students must 
make intelligent guesses, based on their interpretation, about the meanings to be 
exchanged. This view is supported by Pask (1975, p. 49), who considered that if a 
student is able to explain a topic then this is evidence for a concept being present. If the 
explanation is agreed upon by the interlocutor then that is evidence for a concept 
equivalent to a concept entertained by the other person. If the person can further explain 
how the concept is constructed, and if the explanation is agreed upon by the interlocutor, 
then that is evidence for shared understanding. While we might take leave to further 
examine the notion of what is meant by a concept, I will take a dictionary definition of a 
concept as ‘something conceived in the mind’, ‘an abstract or generic idea generalized 
from particular instances’ (Merriam Webster). This view of a conversation, then, is one 
wherein two or more students are exchanging explanations of what they are doing. In 
order to do this effectively they must have some degree of understanding with regard to 
the topic in hand. This would also suggest that the more students are able to ‘go on’ with 
the conversation, then the deeper their understanding. Where students are in a discussion 
the dialogue is characterised by isolated statements. This does not necessarily mean the 
speaker has no understanding, but that we cannot easily recognise it. 

I further suggest that CA can be enhanced by including an analysis of body language 
and, in particular, gesture analysis (e.g. McNeil, 1992, Gerofsky, 2010). Roth (2001), 
building on work by Kendon (1997) and Levinson (1997), suggests gesture to be a 
central feature in cognition. Although the writers in these fields are often viewing 
through different lenses, the analysis of gesturing, what McNeil describes as ‘a  window 
to our thoughts’, is about trying to make sense of the subconscious thinking that is 
occurring beneath the level of the spoken word. The implication from the work of 
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McNeil and Goldin-Meadow (2003) seems to be that we can use gesturing to help, not 
only to help interpret meaning, but to be aware of things that even the gesturer may not 
be. Goldin-Meadow, for example, has researched extensively on the speech-gesture 
mismatch as an indicator of what she frames as a ‘readiness to learn’. While CA is often 
used to give a very detailed analysis of conversations, the original research of Sacks was 
important in asking what it is that the structure of a conversation tells us about the 
speaker. Sacks was able to determine if a caller was a determined suicide case from the 
way they participated in a conversation. Factors in the way callers responded to 
questions and in the structure of their reply rather than in the responses themselves, told 
Sacks more information than the utterances. I see this as being similar to the way we can 
use gesturing in that it can provide us with something more than the words in use. It 
seems that there is a natural link to be found in this area. Such a combination of these 
two areas I refer to as Conversation-Gesture Analysis (CGA). This process has the 
potential to analyse a dialogue in great detail, but in this study I am more concerned with 
particular aspects of the introductory group speech rather than the discourse as a whole. 
METHODOLOGY 
This report is part of a larger study of two grade 5 classes over the period of a school 
year. The analysis selected is for first encounters with groups of students during the first 
few weeks of the year. Each group was selected by the classroom teacher as a normal 
part of their classroom procedure, and worked on mathematics relevant to the 
curriculum content at that time. A camera was set up on a tripod at a distance from the 
group in order to capture body language, while a second video recorder was placed face-
upon the desk to pick up language more clearly. The classroom teacher’s practice of 
stationing some groups outside of the classroom helped with the quality of recording by 
reducing background noise. The students in this study attended a midsize independent 
school in metro Vancouver, Canada. As is typical in the Vancouver area, the school 
contains a broad mix of nationalities with several students being ESL. Several hours of 
video was analysed in the course of this study, with each of the students being captured 
at sometime early in the year. I focus on two particular groups in order to illustrate more 
general results.  
I began analysing the transcripts by looking for trends which might suggest something 
about the students’ understanding. I was initially interested in how/if conversations 
developed and their relations to success in the problems. The videos were first 
transcribed for text using software which allowed the video to be slowed down 
considerably to help determine utterances. By comparing the two recordings of each 
session the text could be determined to a high level of accuracy. The video portion of the 
recordings was then viewed again in order to add the gesturing and body language to the 
transcript. The transcript was then examined using the tools of conversation analysis to 

153 Proceedings, MEDSC 2012  
 



look for particular points of interest as suggested by ten Have (2007). The matter of this 
report arises from observations of conversational structure and gesturing.  
 
EXAMPLES AND DISCUSSION 

Case 1. The class has been given the problem of calculating whether or not they have 
been alive for a) a million seconds b) a million minutes c) a million hours. A group of 
four boys have been recorded (N, M, S, and E). One boy, N, immediately speaks up. 

Table 1: Transcription notation used 
[ ] indicates an overlap (.) indicates a short pause  (n) indicates a pause n 

seconds long  

capitals indicate louder 
tone 

o indicates the start/stop of a quietly spoken section   

. indicates a falling tone   : indicates stretched sound or elongated sounds in 
repetition 

? indicates a rising end 
tone 

↑ indicates a rising shift in intonation immediately 
before the rise   

Underline is an 
emphasis 

= indicate there is no gap between utterances 

(h) indicates breath 
intake   

((used to add comments added)) 

~ indicates the 
preparation stage of a 
gesture 

* indicates the stroke/hold stage of a gesture 

.- indicates the retraction stage of a gesture 

 
Table 2: Case 1 transcript 

 time  Markup Images 

1 12.1 N: umm (.) well what I think we should do is go 
like 24 x 60 so we can figure out the minutes in 
a da?y (hh)  
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[~/*****/-] ((S nods 3 
times)) 

and my guess is that its close to a tho.usand 

((He looks down at the question sheet and then 
up to S)  

2 21.2 M: =24 times 60? (0.3) 

((He looks at N in a puzzled way; N returns his 
look. Both boys have their hands below the 
desk top)) 

 

3 22.7 N: Yeah (.) or 60 x 24  

[~/***hold       ] 

((turning to face M)  

4 24.2 E: osame answer [no matter what]o 

((He looks through his binder but pauses and 
looks at N as he speaks; his hands still. 
Immediately after speaking he continues to sort 
through his binder)) 

  

5 25.8 M:  [why 60] (.)  

6 27.1 N: cuz there’s 60 minutes in an h↑our (0.5)  

7 29.2  

 

 

 

M: O↑:::h ye::ah.   

 ((rolling `head gesture)) 

[~~/***/--] 

((N turns to S, smiles, then raises his 
eyebrows)) 
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This opening exchange was selected because it illustrates a common start to a discourse. 
N takes on a leading role by expressing his opinion of how the problem should be 
attempted. In this case, however, he also includes an estimate and this helps to give the 
impression of a student who is thinking about what he is saying. Even the way he 
speaks, beginning with ‘well’ and ending with a falling intonation suggests this to be a 
confident statement. In most cases like this the group would then continue to follow N’s 
lead and continue with the problem. Here, however, M immediately presses N for an 
explanation, resulting in a conversation indicated by adjacent connected utterances. The 
two boys continue their conversation over the comment of E (4) who illustrates a 
commonly seen behaviour of occupying himself with a related but diversionary task, 
only adding safe comments to maintain part of the discourse. S, in this clip adds nothing 
verbally to the initial exchange but nods in agreement to N’s suggestion. He seems 
content to follow N’s lead. The body language of both N and M suggest confidence in 
what they are doing, as they look relaxed and speak without hesitations or the use of 
fillers. E’s contribution, in contrast, is added sotto voice and his body language is more 
reserved, sitting slightly back and to the side. S sits on the adjacent corner of N’s desk 
but turns his shoulders to face N and M. (fig. 1) He is clearly involved in the exchange 
although he does not add to the opening conversation. 

 
Figure 1: Group Posture 

 
Pausing at this opening conversation, I was aware, without realizing why, of having 
formed impressions about these four students’ abilities, even though they had only been 
working for 30 seconds. This reaction piqued my interest in paying closer attention to 
the start of any session when a student appears for the first time. I had the impression of 
N as a student who has an understanding of how to solve the problem. M’s questioning 
seemed indicative of a student who is seeking to understand rather than simply follow 
N’s lead, and he continued to press N until he had an understanding of what N was 
suggesting. N, for his part, was able to ‘go on’ with the problem when questioned. In 
other recorded sessions, it was noticeable if a student was willing to press for an 
explanation and, when a student was pressed, if s/he was able to ‘go on’ with their initial 
thought. I suggest that this ability to engage in a conversation in this manner was a 
trigger to think favourably of such students. In an analysis of all recordings, in the 
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majority of cases, students who began in this manner were able to successfully complete 
the problem or make substantial progress towards completing it.  
 
In the continued session M takes the lead in attempting the calculation, a role N is happy 
to observe. S will later attempt to duplicate (unsuccessfully) M’s calculations. At no 
point in the discourse did S or E offer anything new to the solution. On closer 
observation, when M was calculating, E poised his pencil over his notebook but did not 
write (field observation). As M performed his calculations, N would lean over to his 
work and ask for clarifications or offer advice. He did not perform the calculations 
himself. S exhibited behaviours which suggested that he was confident in his ability but 
weak in his execution. He also did not seem to be open to change in the same way M 
demonstrated. His later contributions were more in the nature of a discussion of his 
calculation rather than a conversation; even when N explained to him that his calculation 
could not possibly be correct, he found an excuse for this rather than accepting his 
mistake.  
 
Interestingly, there is no hand gesturing in this opening exchange. The only noticeable 
gestures are facial. This may be because the students are positioning themselves 
relationally to their understanding at this early stage. As the exchange continued, only 
small beat or deictic gestures were evident. For N, this changed when he was asked by 
the teacher to explain his ideas; he then used full arm gestures (see fig. 2) as he pointed 
out how you could move from minutes to years and know if he had lived for a million 
minutes. This was a common feature of students who seemed to have an understanding 
of the material, in that their understanding seemed to be correlated to broad gestures.  

 
Figure 2: N explains his thinking to the teacher 

    

 
Case 2. In this example, two students, D and R, have been asked to discuss an 
estimation problem they have previously been working on individually. D immediately 
begins with confessed inability, spoken softy with a posture low to the desk. There is 
sense that she is embarrassed by this; in contrast, in many examples from the same class 
other students state their inability with no obvious sense of misgiving. Fortunately, R, 
whose posture is tall, responds in a positive and open manner, offering to help. D 
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response, however, is not conversational and I suggest that this is due to her continued 
lack of understanding; she cannot yet follow R’s explanation so that her response to R is 
to offer an excuse (3). Note that, although R is explaining her process to D (2), R’s 
posture is separate and turned away. Her hand to her mouth indicates that she is thinking 
through her own process. She is describing what she did rather than conversing. D 
ignores R’s explanation and instead describes what she tried (5). R now closes the space 
between the two girls and as a result D’s posture gradually straightens. The two girls 
begin to converse, as seen by the adjacent pairs which follow on. R is engaged in D’s 
process and makes comments to support her. There is also overlap (6) as R connects 
with D’s comments. D begins to gesture as she outlines her work, at first using deictic 
gestures (5) combined with a beat which may indicate that D is relaxing. She then uses a 
flat hand gesture which is raised (7) in a suggestion of recognition, indicating that she is 
now responding to R. In addition, her posture remains upright. This gesture is of a class 
which McNeil (1992) classifies as metaphoric mental, indicating a state of mind. This 
suggests engagement with the material.   
 
A first impression of this exchange suggests D to be a student who lacks confidence in 
herself in this area, but who expects to be doing better. R comes across as a student who 
has confidence and feels that she understands the work – she is able to explain her 
thinking and ‘go on’ with this explanation when pressed by D. When compared to M’s 
questioning from case 1, however, there is a different sense of purpose. M processes N’s 
response in a conversational way while D, although supported by R in a conversation, is 
primarily concerned with what she did. In both students, however, there is a sense of 
being open to further learning.  

 
1 

 

00.
0 

D oI didn’t really g::et it?o 

((She looks around the room before looking up to 
M, her posture is closed and low))  

2 08.
0 

M oh. (.)well (..) I will expla:in what I did (..) so 
I::(4.1)  

[~/*/--.]      [~~~/***/-.-.-.] 

((A spread hand)) ((She raises her hand then 
sweeps it to her mouth before resting her elbows 
on the table)) 

  
3-4:  

((D tells M 
that she has 
just come 
back from 
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being off 
school. M 
responds but 
her reply is 
inaudible.))  

it was (.) says estim↑ating so (.) I (..) went down to 
(..) th?irty (.) divided by six..and I got four 
remainder o::ne (..) so I just I just like rounded to 
the nearest..umm.. te?n. = 

((Her forearms flatten to the desk)) 

same with this  on?e..then I got five rem.ainder 8 
(4.9) 

[~~~~~~~~~~~/*****/-.-.-.] 

((Rolls her hand to point with her pen)) 

 

5 40.
9 

D umm.. like (2.1) I have d::ifferent .. (1) di.fferent 
(2.3) and what I tried to do? was I tried to do umm 
like (1) umm (2.4) 

((She picks up her paper and is looking down at 
it)) 

you know it’s (.) eight divide by fi-sixty?five (..) 

[~~~~~~~~~~~/******/hold] 

((She moves her hand to point at her paper)) 

 I said that I could do two divided by sixtyfive but 
do that. f↑our ti?mes (.) and then just add up [all 
of] 

 

6 1:0
4 

M  [you] can’t do two divided by sixtyfive ri.ght  It’s 
sixtyfive divided by t::wo.  

((rests her chin on her hands and looks at D)) 

 

7 1:0
8 

D (0.9) sixtyfive divide by two (.) sorry (1) and    

[~~~/*** hold                             /-.-.-.] 
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((moves her right hand to her ear and raises a flat 
left hand; her eyes widen)) 

and then umm (1.5) and then I could have d.one 
like  

[~~ hold   

umm (3)and then I could have done like umm 
added all 

/***/-.-.-.] 

the an::sw.ers so. 

 ((raises her left hand to her ear and holds it there 
then rolls her hand out on the stroke )) 

 

 

Table 3: Case 2 transcript 
Following this initial exchange, D asks R if she can ‘try rounding the way you did’. This 
results in D confronting the question of whether to round 65 to 60 or 70 for the purpose 
of the estimation. In this query she uses iconic gestures which indicate that she is now 
connected to the mathematical process (fig. 2). Her hand first indicates herself, followed 
by a representation of 5 and then a chopping gesture for first sixty and then seventy.  

Fig 2: D uses iconic gesturing as her confidence grows 

    

 
As the conversation continues, both girls begin to gesture more, and the gestures become 
more expansive.  Throughout the conversation D seeks to understand what she is doing 
and R tries to help her. This case differs from the example in case 1 where both N and M 
helped each other and tried to see the other’s point of view.  
DISCUSSION 
Having made field notes on my initial sense of the students’ competence in the subject, 
and analysed the recorded data, I consulted the classroom teacher on his early sense of 
how the students were doing in the subject. I sought this opinion without speaking of my 
own findings to this point. It was interesting to note that my initial reaction matched that 
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of the classroom teacher, and this was generally true for other recordings. Those 
students who did not matchup tended to be the quieter ones. It may be that quiet students 
can give mixed signals to a teacher at an early stage. Following this I then examined a 
diagnostic test each student in the grade wrote at the start of the year, based upon the BC 
Government curriculum for grade 4 (developed by Vancouver IslandNet). I again found 
that the majority of students matched my initial impressions. At the end of the academic 
year I followed up by asking the classroom teacher about the progress of the students, 
including which student he thought had improved the most. His response was to suggest 
that D would be his choice.  My intent here is not to claim accurate knowledge of the 
students from such an early setting, merely to suggest that an experienced teacher may 
develop an awareness of what to look for in successful students, even if they are unable 
to express what it is they attend to. Such awareness may be used to assist students 
learning, but also has the danger of labelling. It is worth noting that the way the teacher 
interprets these markers to suggest understanding may not directly relate to 
understanding. 
In developing an awareness of students’ understanding of a topic I suggest that there are 
several factors, which might be attended to. In keeping with the ideas of Wittgenstein 
and others, as discussed above, the ability of a student to ‘go on’ in a conversation about 
a topic, in which a meaningful exchange of ideas occurs and where both parties are 
willing to adjust their position, is a key factor. Students, who are involved in a 
discussion, where ideas or opinions are stated but where there is no willingness to accept 
changes, demonstrate a lower level of understanding. They are unable to ‘go on’ with an 
idea and often, when pressed, withdraw the idea or make an excuse for any 
inconsistencies pointed out. (I would point out that sometimes a student gets flustered by 
a question and is later able to respond more adequately.) A second marker seems to be 
the student’s willingness to press an interlocutor to explain a statement. A third marker 
may be suggested by the body language of the student. In particular the gesturing a 
student does when explaining work seems to be more positive and on a larger scale 
when the student is more confident about what they are saying. A careful analysis of 
these three markers can give the classroom teacher important information about the level 
of understanding the student has. Perhaps more significantly, however, is that these 
markers are able to be observed on a more casual basis and may be used by the teacher 
to intervene in group discussions in order for them to be more effective.  
 
Determining the potential of a student from a brief encounter is clearly fraught with 
danger, yet it seems to be something many teachers admit they do. An obvious issue is 
that such an early conclusion funnels the teacher into treating students to match their 
expectations, perhaps being harder on some students and more forgiving to others as a 
result. It would be prudent for any teacher to be aware of what is potentially feeding 
these conclusions and to be willing to work with and around them. By recognizing our 
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own thought processes I suggest we are better equipped to treat each student in a fair and 
consistent manner. 
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PARADOXES OF INFINITY – THE CASE OF KEN 

Chanakya Wijeratne 
University of Colombo 

Previous studies have shown that the normative solutions of the Ping-Pong Ball 
Conundrum and the Ping-Pong Ball Variation are difficult to understand even for 
learners with advanced mathematical background such as doctoral students in 
mathematics.  This study examines whether this difficulty is due to the way they are set in 
everyday life experiences. Some variations of the Ping-Pong Ball Conundrum and the 
Ping-Pong Ball Variation and their abstract versions set in the set theoretic language 
without any reference to everyday life experiences were given to a doctoral student in 
mathematics. Data collected suggest that the abstract versions can help learners see 
beyond the metaphorical language of the paradoxes. The main contribution of this study 
is to reveal the possible negative effect of the metaphorical language of the paradoxes of 
infinity on the understanding of the learner. 

Keywords – Infinity, Paradoxes, Cognitive conflict 
 

PARADOXES OF INFINITY – THE CASE OF KEN 
INTRODUCTION 
Historically it took a long time for the concept of infinity to have a proper place in 
mathematics. Perhaps more than any other concept in mathematics it is the concept of 
infinity that troubled the mathematicians most. It was Cantor in the late nineteenth 
century who came up with a mathematical theory to explain certain aspects of infinity.  
Paradoxes involving infinity have been used as a lens in mathematics education research 
for identifying students’ difficulties in understanding infinity. One study was conducted 
by Mamolo and Zazkis (2008) who used the paradoxes Hilbert’s Grand Hotel and the 
Ping-Pong Ball Conundrum. This study is a part of PhD thesis research of Mamolo 
(2009) which also included the Ping-Pong Ball Variation. In Mamolo (2009) the author 
reports that even students with advanced mathematical background including some 
doctoral students in mathematics had trouble understanding the normative solutions of 
the Ping-Pong Ball Conundrum and the Ping-Pong Ball Variation. In Mamolo and 
Zazkis (2008) the authors say  

What we believe is desirable is an instructional approach that will help students 
separate their ‘realistic’ and intuitive considerations from conventional mathematical 
ones. This is in accord with recommendations made by Dubinsky and Yiparaki 
(2000) in their study of quantification. They observed that using ‘real life’ intuitive 
contexts to teach evaluation of mathematical statements is more harmful than helpful. 
Having noted that ‘‘the conventional wisdom to teach by making analogies to the real 
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world can fail dramatically’’, they advised the reader ‘‘to remain in the mathematical 
realm’’. (p. 283) 
In this study I examine the interplay between some variations of the Ping-Pong Ball 

Conundrum and the Ping-Pong Ball Variation set in everyday language and their 
abstract versions. I examine whether the abstract versions set using only mathematical 
entities can help learners see beyond the metaphorical language of the paradoxes. The 
main contribution of this study is to reveal the possible negative effect of this 
metaphorical language of the paradoxes on the understanding of the learner.  
I first give a brief introduction to the concept of infinity in mathematics. Then the Ping-
Pong Ball Conundrum and the Ping-Pong Ball Variation, and their normative solutions 
are given. Then I give the questions in the questionnaire: a variation of the Ping-Pong 
Ball Conundrum and a variation of the Ping-Pong Ball Variation and their abstract 
versions, and their normative solutions. A brief summary of research regarding students’ 
intuitive understanding of infinity based on the Ping-Pong Ball Conundrum and the 
Ping-Pong Ball Variation in Mamolo (2009) follows next. Then I describe the 
theoretical perspectives underlying our investigation which lay the foundation for the 
subsequent presentation of the research design and the findings in this study. I conclude 
with some pedagogical and research considerations.  
Infinity in Mathematics 
Cantor’s mathematical theory of cardinality of infinite sets is based on the very simple 
idea of one to one correspondence.  A one to one correspondence is a one to one and 
onto function. Two sets A and B have the same cardinality or more informally the same 
size or the same number of elements if there is a one to one correspondence between 
them. But this idea leads to very counter intuitive results. Two infinite sets can have the 
same cardinality, or more informally the same number of elements, even though one is a 
proper subset of the other. 
For example, the set of positive integers and the set of positive even integers have the 
same cardinality as ( ) 2f n n=  is a one to one correspondence between the sets. This is 
very counter intuitive as the set of positive even integers is a proper subset of the set of 
positive integers. This is startling when one realizes that for any n, {1, 2, … , n} 
contains only  2

n    even numbers.  This counter intuitiveness troubled some of the best 
mathematicians in the history. For example,  Galileo established a one to one 
correspondence between perfect squares and natural numbers but he reasoned that the 
attributes ‘equal,’ ‘greater,’ and ‘less,’ are not applicable to infinite, but only to finite 
quantities. Even Bolzano reasoned that set [0, 12] has more elements than the set  [0, 5] 
even though he saw that each element in [0, 5] corresponds with exactly one element in 
[0, 12] and vice versa. So the knowledge of finite sets constitutes an obstacle to the 
understanding of cardinality of an infinite set – in other words the knowledge of finite 
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sets is an epistemological obstacle that a learner has to overcome in understanding the 
cardinality of an infinite set.  
According to Hilbert, the idea of infinite is not in our lived experience. In Hilbert 
(1926), he says “Our principal result is that the infinite is nowhere to be found in reality. 
It neither exists in nature nor provides a legitimate basis for rational thought — a 
remarkable harmony between being and thought.” (p. 140). 
Aristotle distinguished between two types of infinity: potential infinity and actual 
infinity. One can think of potential infinity as a process which at every instant of time 
within a certain time interval is finite. Actual infinity describes a completed entity that 
encompasses what was potential.  
The Ping-Pong Ball Conundrum An infinite set of numbered Ping-Pong balls and a 
very large barrel are instruments in the following experiment, which lasts one minute. In 
the first half of the minute, the task is to place the first 10 balls into the barrel and 
remove the ball number 1. In half the remaining time, the next 10 balls are placed in the 
barrel and ball number 2 is removed. Again, in half the remaining time (and working 
more and more quickly), balls numbered 21 to 30 are placed in the barrel, and ball 
number 3 is removed, and so on. After the experiment is over, at the end of the minute, 
how many Ping-Pong balls remain in the barrel? 
In this thought experiment there is an infinite sequence of time intervals of length 
1 1 1
2 4 8, , ,...  and all these time intervals are contained in the time interval of [0,1] .  Since in 
the time interval of length 1

2n  the ball numbered n is taken out, at the end of one minute 
the barrel is empty.  
The Ping-Pong Ball Variation An infinite set of numbered Ping-Pong balls and a very 
large barrel are instruments in the following experiment, which lasts one minute. In the 
first half of the minute, the task is to place the first 10 balls into the barrel and remove 
the ball number 1. In half the remaining time, the next 10 balls are placed in the barrel 
and ball number 11 is removed. Again, in half the remaining time, balls numbered 21 to 
30 are placed in the barrel, and ball number 21 is removed, and so on. After the 
experiment is over, at the end of the minute, how many Ping-Pong balls remain in the 
barrel? 
In this variation the same infinite sequence of time intervals of length  1 1 1

2 4 8, , ,...  is there 
and all these time intervals are contained in the time interval of  [0,1] . But in the time 
interval of length 1

2n  the ball numbered 10( 1) 1n − + is taken out. So at the end of one 
minute the barrel will have the balls numbered 2, 3, … , 9, 10, 12, 13, … , 20, 22, … - 
this corresponds to the set {10( 1) 1/ }N n n N− − + ∈ . Even though in each time interval of 
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length 1
2n one ball is removed, just like in the Ping-Pong Ball Conundrum, the outcome at 

the end of the minute is very different from the Ping-Pong Ball Conundrum.  
Mamolo (2009) contains a research done with 8 participants with advanced 
mathematical background on the understanding of the Ping-Pong Ball Conundrum and 
the Ping-Pong Ball Variation. Two of the participants were doctoral students in 
mathematics at the time. All of them were familiar with comparing infinite sets via one 
to one correspondences, and also with Cantor’s diagonal argument establishing the set of 
real numbers as having larger cardinality than the set of natural numbers. But she found 
that despite the sophisticated mathematical knowledge of participants only 3 participants 
provided a resolution to the Ping-Pong Ball Conundrum that was consistent with the 
normative solution. Two of these 3 participants and another one was presented with the 
Ping-Pong Ball Variation. One of them had taught Cantorian set theory to prospective 
teachers in the past. But he reasoned that the barrel should be empty in the Ping-Pong 
Ball Variation. One of the other two came to an understanding that the barrel would 
have infinitely many balls but that that would be a bigger infinity of balls than the balls 
taken out. Only one was able to come to a resolution that was consistent with the 
normative solution.  
Mamolo (2009) says that the cognitive leaps facing an individual who attempts to 
develop an understanding of actual infinity include a leap from the intuitive to the 
formal. She further says that infinity is a concept for which no ‘real world’ analogy can 
do justice and that her research suggests that the ability to clarify a separation between 
intuitive and formal knowledge is an important leap toward accommodating the idea of 
actual infinity.   
So it is worth investigating if abstract versions of the Ping-Pong Ball Conundrum and 
the Ping-Pong Ball Variation can help students make the leap from the intuitive to the 
formal. As it is difficult make abstract versions of the Ping-Pong Ball Conundrum and 
the Ping-Pong Ball Variation I came up with the following questions: 
1. A large barrel has Ping-Pong balls numbered 1, 2, 3 … The following task is done in 
one minute. In the first half of the minute the ball number 1 is removed. In half the 
remaining time the ball number 2 is removed. Again, in half the remaining time the ball 
number 3 is removed, and so on. At the end of the minute, how many Ping-Pong balls 
remain in the barrel? 
 2. A large barrel has Ping-Pong balls numbered 1, 2, 3 … The following task is done in 
one minute. In the first half of the minute the ball number 1 is removed. In half the 
remaining time the ball number 11 is removed. Again, in half the remaining time the ball 
number 21 is removed, and so on. At the end of the minute, how many Ping-Pong balls 
remain in the barrel? 
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3. Let 1 { }n nA A n−= − for n = 1, 2, 3, … where 0A  is the set of positive integers. Describe 

1

.n
n

A
∞

=
I  

4. Let 1 {10( 1) 1}n nA A n−= − − +  for n = 1, 2, 3, … where 0A  is the set of positive integers. 

Describe 
1

.n
n

A
∞

=
I  

Questions 3 and 4 are the abstract versions of Questions 1 and 2 respectively. In 
Question 3, nA corresponds to taking the ball numbered n from the barrel in the time 
interval of length 1

2n  in Question 1. But in Question 3 there is no apparent sense of time. 

What is in the barrel at the end of one minute in Question 1 corresponds to 
1

n
n

A
∞

=
I in 

Question 3. Now, 
1

{ / : }n n
n

A x n N x A
∞

=

= ∀ ∈ ∈I .  As : nn N n A∀ ∈ ∉  and  
1

: n n
n

n N A A
∞

=

∀ ∈ ⊇ I  , it 

follows that 
1

n
n

A
∞

=

= ∅I . There is a similar analogy between Questions 2 and 4. Question 1 

and the Ping-Pong Ball Conundrum have the same normative solutions and likewise 
Question 2 and the Ping-Pong Ball Variation have the same normative solutions.  
THEORETICAL PERSPECTIVES 
What kind of thinking is involved in understanding paradoxes like the Ping-Pong Ball 
Conundrum? Barbara, Dubinsky and McDonald (2005) suggest that it is advanced 
mathematical thinking. They define Advanced Mathematical Thinking as thinking that 
requires deductive and rigorous reasoning about mathematical notions that are not entirely 
accessible to us through our five senses. They say that comparing |N| with |2N| may require 
Advanced Mathematical Thinking and the ability to understand that there is a one-to-one 
relationship between N and 2N is probably not available through experience in the 
physical world. 
I consider two other theoretical frameworks to analyze the data. One is APOS analysis of 
conceptions of infinity by Dubinsky, Weller, McDonald, and Brown (2005).  They 
suggested that interiorizing infinity to a process corresponds to an understanding of 
potential infinity -   infinity is imagined as performing an endless action. The ability to 
conceive of the process as a totality occurs as a consequence of encapsulation of the 
process to an object, and corresponds to a conception of actual infinity. I chose APOS as 
it describes well how one might think of a concept like infinity. 
Can Questions 1 and 2, the variations of Ping-Pong Ball Conundrum and the Ping-Pong 
Ball Variation, help in some way to understand the abstract versions? So the other 
theoretical framework is reducing abstraction by Hazzan (1999). According to this 
perspective abstractness of mathematical concepts can be reduced by connecting them to 
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real-life situations and establishing a right relationship (in the sense of Wilensky) between 
the learner and the mathematical concept. 
SETTING AND METHODOLOGY 
Participants Ken is a PhD student in mathematics at a big ten university in the Midwest 
in the USA. He has already passed qualifying exams and done the advanced topics 
exams. He is currently doing research in C* algebras. The author taught him Measure 
Theory in his final year of undergraduate studies in Sri Lanka.  He learned Cantorian set 
theory in his third year of undergraduate studies. 
My questions require Advanced Mathematical Thinking defined by Dubinsky et al. 
(2005): their normative solutions do not relate to experience in the physical world and 
require deductive and rigorous reasoning about mathematical notions such as one to one 
correspondence, transfinite arithmetic and intersection of infinitely many sets. It is 
reasonable to say that Ken is capable of advanced mathematical thinking and so he is a 
good selection to investigate the interplay between the concrete versions and the abstract 
versions in the questions. 
First Ken was emailed a questionnaire that contained the research questions to get his 
written responses. After that he was interviewed by the author over skype and it was 
audio recorded. Ken answered in both Sinhalese and English. Later the interview was 
transcribed by the author.  
RESULTS AND ANALYSIS 
He answered all the questions correctly. So my selection of him for this investigation is 
justified. He wrote the following at the end of the questionnaire: 
The way I thought: Problem 4 formalises the process described in problem 2. I thought 
of An as the set of balls remaining in the barrel in the nth step of the process described in 
2. So the intersection corresponds to the set of balls that remain in the barrel after 
completing the whole process. For problem three I thought the same way as I gave the 
solutions.  Actually, I realised the similarity of problem 3 to one when I came to 
problem 4 and noticed its similarity to problem 2.  The picture in 2 helped specially in 
part (iv) of problem 4. 
He clearly has seen the connection between the concrete versions and abstract versions. 
When he says “The picture in 2 helped specially in part (iv) of problem 4.” I see that he 
reduced the abstraction in Question 4 by going back to Question 2. More evidence of 
this can be seen in the following excerpts from the interview: 

  Interviewer: and then number two last part helped you in number 4 last part 
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Ken: yeah in the sense that in number 4 I knew it is going to be an infinite set so but 
when I thought about what is it going to be the way I got the answer was thinking like in 
number 2 problem 4 
Even though arguably Ken is capable of Advanced Mathematical Thinking, he has 
trouble understanding the process in Questions 1 and 2: 
Ken: yeah, yeah [in Sinhalese] mata eke penne eke digatama karan yanna puluwan 
vadakda kiyala api hithanna onda kiyala prashnayak thibuna eke problem one eke last 
part eka kiyavanakota e process digatama karanna yanna puluwanda kiyala mata 
hariyatama sure vune ne [what I see in that is I had a problem that whether we should 
think whether it can be done continuously when I read the last part of problem 1, I was 
not sure whether this process can be continued.] 
He describes in Sinhalese as he finds it easy to explain in Sinhalese his thoughts about a 
difficult point. The abstract versions helped him to see that the process can be continued: 
 Interviewer: yeah then when you look at number 3 that means? 
Ken: Rather than Question 3 giving me an answer to problem 1 last part it helped me to 
see that we can assume that the process can be continued.  
Interviewer: yeah yeah 
Ken: that means to answer that question we have to assume that the process can be 
continued. This I understood when I read the third question 

What is effect of these abstract versions on him? 
Interviewer:  what if you did not get number 3 and 4 you got 1 and 2 
Ken: [in Sinhalese] ow [yeah] then … I would still probably I need to take more time I 
will probably end up assuming that I have to think that this process can be done and  I 
would still give the same answer but after I mean it take bit more time to kind of assume 
that to take that 
So without questions 3 and 4 he thinks he would have answered question 1 and 2 the 
same way but it would have taken him more time. 
Ken never questioned the plausibility of the questions 3 and 4. As an advanced graduate 
student in pure mathematics he knows the mathematical language well. He can work in 
the mathematical realm. So he did not have any trouble with questions 3 and 4.  
Though he interiorised the action of removing the ball numbered n in question 1 as a 
process he could not encapsulate this process to an object.  
Ken: I first looked at I mean I started from the first question but I didn’t write down 
answers because er at some point I was little bit confused about problem 1 because since 
it was kind of a practical procedure although it was clear what was going on I mean 
specially answering the last part 
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Interviewer: aha 
Ken: what to be or what is left after one minute 
APOS analysis can be applied to questions 3 and 4 as well. Apparently Ken did not have 
any trouble with encapsulating the intersection of infinitely many sets to an object – he 
got little help from question 1 and 2 in describing this object.  
CONCLUSION 
Paradoxes involving infinity can provide a window to infinity. The cognitive conflict 
elicited by a paradox is difficult for a learner to resolve. Resolving this cognitive conflict 
requires the learner to make a cognitive leap from the intuitive to the formal or from the 
real world to the mathematical realm.  
But some of the paradoxes make this cognitive leap difficult as they are too far away 
from the reality but yet set in the everyday life experiences. If we compare Zeno’s 
paradox of Achilles and Tortoise and the Ping-Pong Ball Conundrum we can see that 
Achilles and Tortoise is about a real life situation and the Ping-Pong Ball Conundrum is 
not a real life situation though it involves real life objects. Even in the mathematical 
realm the concept of infinity is a difficult concept to grasp. Bolzano and Galileo could 
not grasp infinity though they considered abstract mathematical entities like intervals 
and sets of numbers. So when the concept of infinity is presented through everyday life 
experiences but far away from reality situation it adds to the difficulty of grasping 
infinity. We can see it from Ken. My findings agree with Mamolo (2009) who found 
that even students with advanced mathematical background including some doctoral 
students in mathematics had trouble understanding the normative solutions of the Ping-
Pong Ball Conundrum and the Ping-Pong Ball Variation. There is further evidence in 
Mamolo and Zazkis (2008):   
Based on the results of our research, and specifically acknowledging the similarity in 
responses of students with different mathematical sophistication, we suggest that a 
formal mathematical view of infinity implied in conventional resolutions of the 
paradoxes may not be reconcilable with intuition and ‘real life’ experience. (p. 180) 
The Ping-Pong Ball Conundrum and the Pin-Pong Ball Variation have the appeal to 
draw learners to the concept of infinity. This is an important aspect of an instructional 
tool. The use of paradoxes as effective instructional tools in mathematics is well 
documented. But for them to be a window to infinity, I believe, they should be presented 
with the mathematical underpinnings.  
The variations of the Ping-Pong Ball Conundrum and the Ping-Pong Ball Variation I 
included in the questions have the same effect of the Ping-Pong Ball Conundrum and the 
Ping-Pong Ball Variation with much less complication. They have the same normative 
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solutions. We believe that they provide a bigger window to infinity. With their abstract 
versions they could be excellent instructional tools.  
The concept of infinity in mathematics is very mathematical and counter intuitive. This 
research reveals that the metaphorical language of the paradoxes could have a negative 
effect on the understanding of the learner. It also indicates that my variations of the 
Ping-Pong Ball Conundrum and the Pin-Pong Ball Variation and their abstract versions 
could be excellent research tools in investigating the student understanding of the 
concept of infinity through paradoxes.  
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