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Plenary Session: 

 

INTERNATIONAL STUDIES IN MATHEMATICS EDUCATION: 

TIMSS AND PISA 

David Robitaille 

 

For the past 50 years or more, more and more countries have become involved in 

large–scale studies focusing on the teaching and learning of a number of subjects, 

but in mathematics rather than any other area, who runs these studies? Why do so 

many countries participate in them? Can the result of such studies be used for 

anything more than seeing who came first? 

 

 

 

Research Reports: 
 

PRESENTING TOM: A LIFE IN MATHEMATICS 

Veda Abu-Bakare 

Relationships with mathematics cover the continuum from enchantment and 

engagement to accommodation and disillusion in myriad shifts and turns. What can 

we learn about mathematics from studying relationships with mathematics and 

what can we use as evidence? Partly biography and partly philosophy of 

mathematics, this research explores how we come to terms with mathematics and 

what mathematics demands of us. In this paper, I consider the phenomenon in 

general and report on one life in mathematics.  

 

 

GESTURES IN A GRADE 12 CLASSROOM 

Darien Allen  

The goal of this research is to investigate the impact of teachers’ gestures on 

students’ mathematical understanding. This paper reports preliminary results of a 

larger study of the extent to which secondary students notice mathematically-

relevant gestures that teacher make in the classroom while presenting concepts 

and, if so, whether they use these gestures themselves in their own mathematical 

communication. Prior studies have shown the important role spontaneous gestures 

play in student learning but this study explores how students mimic gestures used 
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by the teacher. Preliminary results show that students will spontaneously mimic 

gestures when explaining a particular concept and those students who do so tend to 

have a better understanding of the concept than students who do not mimic the 

target gesture.  

 
 

USE OF THE PHENOMENOLOGY THEORY PERSPECTIVE IN 

THE ANALYSIS OF PROFESSIONAL ACTIVITIES FOR IN-

SERVICE TEACHERS 

Melania Alvarez 

This research paper considers how Phenomenology Theory can be used in the 

analysis of professional development workshops for in service teachers in order to 

gain a better understanding of the challenges faced in this endeavour by the 

professional developer (PD) in order to elicit change in teachers’ practice. The goal 

of the professional development was to introduce teachers to a new math program, 

which is mathematically and pedagogically different from what most of the 

teachers involved in these sessions have been exposed to in the past: this is a 

problem-solving centered program which demands a deeper knowledge of 

mathematics from teachers and a constant awareness of students’ understanding 

throughout the lessons.  

 

LEARNERS’ VAGUE NOTIONS OF THE LAW OF LARGE 

NUMBERS 

Simin Sadat Chavoshi Johlfaee  

The law of large numbers is at the heart and soul of probability at any level. In this 

work I have tried to look into the participants’ understanding of the law of large 

numbers in one of its most basic and ubiquitously addressed forms: the probability 

assigned to the outcome of a fair coin. Five individual interviews reveal the 

inadequate understanding of this key concept manifested in the contradictory 

arguments and poor judgment of probability of certain events made by the 

participants. The interview is then followed by a task that is aimed to help the 

participants develop a feel and an insight for the law of large numbers, which come 

to life through the results of many simulation trials. Computer simulation of coin 

flipping experiment is used to aid the interviewees who couldn’t comment on the 

probability questions otherwise (due to not remembering formulas) connect with 
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the problem and to invite them to reflect on their beliefs by comparing their 

expectations with the simulation results. 

 

INTERACTING AGENCIES AND THEIR INFLUENCE ON 

EMOTIONAL EXPERIENCES 

Sean Chorney 

This research report adopts a theoretical perspective of interacting agencies when a 

student engages with a mathematical digital tool.  Adopting the notion that external 

activity is analogous to inner activity originally posited by Vygotsky, students 

emotional experiences outlined by Leont’ev are analysed. Using the tools of 

discourse analysis as well as the implementation of written reflections outlined by 

Sanino is used to access the inner workings of the student while they engage with 

an exploration activity based within a dynamic geometry environment. 

 

A CASE STUDY: STUDYING, SELF-REPORTING, AND 

RESTUDYING BASIC CONCEPTS OF ELEMENTARY 

NUMBER THEORY 

  
O. Arda Cimen & Stephen R. Campbell  

The objective of this case study is to look in depth into personal factors affecting 

metacognitive monitoring and control in self-regulated study and restudy of basic 

concepts of elementary number theory. We incorporate a wide spectrum of 

observational methods enabling us to record overt behaviour, psychometric 

questionnaires, and covert behaviour related to various psychophysiological 

responses. All this is applied toward an attempt to gain deeper insights into 

personal factors implicated in motivation, metacognition, and beliefs, pertaining to 

self-regulated learning and mathematics anxiety. Ultimately, our aim is to provide 

“learner profiles” that can be used to better inform assessment and tailor 

instructional design, and mathematics education research. 
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UNDERGRADUATE STAT STUDENTS’ CONCEPTIONS OF 

VARIABILITY IN A DYNAMIC COMPUTER ENVIRONMENT 

George Ekol 

Students were provided with five key words related to variability and asked to 

describe them in their own words. Then they applied the same concepts to measure 

variability using dynamic computer models designed in Geometry Sketchpad. 

Students’ descriptions and discursive expressions were videotaped and analysed 

using Sfard’s (2007) commognition framework, while Rabardel’s (2001) 

instrument-mediated activity theory provided a framework for the dynamic 

computer models. Partial results show that students have more developed and 

sophisticated metaphors when describing concepts not directly related to statistics. 

For concepts directly related to statistics, they are likely to struggle between using 

their own words, and using formula and procedure in the books. I argue that having 

fewer conceptual models and metaphors is one main source of difficulty in 

learning variability. The study’s on-going objective is to address this gap by 

designing and applying dynamic computer models. 

 
 

 THE INTERPLAY BETWEEN DIAGRAMS AND GESTURES  
Shiva Gol Tabaghi 

This paper reports on the two students’ interactions with the dynamic diagram that 

designed to illustrate vectors and their image under different linear 

transformations. The interactions with dynamic diagram caused the participants to 

use gestures and to sketch diagrams in describing their imageries of the behaviour 

of vectors and their image. We refer to Châtelet’s theory (2000) on 

diagram/gesture relationships to emphasize the capacity of dynamic diagrams that 

enabled the participants to capture and to arouse gestures and diagrams. 

 

 

EFFECT OF DYNAMIC GEOMETRY ENVIRONMENTS ON 

CHILDREN’S UNDERSTANDING OF THE CONCEPT OF 

ANGLE 

Harpreet Kaur 

This paper reviews literature on children’s understanding of the concept of angle 

and proposes some ideas for a future study which aims at investigating the effect of 
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computer-based Dynamic Geometry Environments (DGEs) on young learners’ 

understanding of angle.  

 

TENSIONS IN TEACHING MATH FOR TEACHERS:  

MANAGING AFFECTIVE AND COGNITIVE GOALS 

Susan Oesterle 

This paper presents partial results of a study which investigated the experience of 

teaching mathematics content courses to preservice elementary teachers.  

Interviews with ten mathematics instructors who teach these courses revealed 

several major tensions, including one that arises as instructors strive to set 

priorities and balance their affective and cognitive goals for their students.  An 

analysis of two of the instructors’ expressions of this particular tension will 

provide insight into the factors that contribute to it and how it is managed.  

Implications for practice are considered. 

 

CONCEPTUALIZING ROLE AND POSITION IN 

INTERACTIONS AMONG TEACHERS ENGAGED IN 

COLLABORATIVE DESIGN OF MATHEMATICS LEARNING 

ARTIFACTS 

Armando Paulino Preciado Babb 

The collaborative design of mathematics teaching and learning artifacts by teachers 

and other educators has proved to be effective as both developing curricular 

material and teacher professional development. Teachers' collaborative design, in 

this paper, refers to the design of these artifacts that includes: (1) the collaborative 

design of the artifact based on negotiated goals or purposes, (2) its implementation 

in the classroom, and (3) the debriefing of the results. The purpose of the paper is 

to conceptualize role and position of participants in teachers' collaborative design 

from a social perspective framed in embodied cognition. Such conceptualization 

would help to understand the dynamics and interactions—co-determinations—of 

teachers, and other educators, engaged in this mode of collaborative work. 

 



8 Proceedings, MEDSC 2011  
 

CALCULUS BEYOND THE CLASSROOM: APPLICATION TO A 

REAL-LIFE PROBLEM SIMULATED IN A VIRTUAL 

ENVIRONMENT  

Olga V. Shipulina  

This study concerns the correlation of mathematical knowledge with a 

corresponding real life object within the theoretical framework of Realistic 

Mathematics Education. By simulating the interactive milieu in the Second Life 

Virtual Environment (VE), this study explores how students find a ‘real-life’ 

optimal path ‘practically’, and how they then re-invent the corresponding calculus 

task. The instructional design, based on simulation in VE allowed students to 

explore mathematical solutions relative to their intuitive findings in VE. By 

mathematizing their own ‘real-life’ activities, students connected them with 

corresponding mathematics at an intuitive level. 

 
 

MATHEMATICS, ABSTRACTION AND TEACHING: 

REVISITING TIMMS 1999 VIDEO LESSONS 

Krishna Subedi 

Mathematics is an abstract subject. When teachers plan, one of their most 

important challenges is to figure out ways of translating abstract concepts into 

understandable ideas. This paper explores the notion of mathematical abstraction 

from teaching view point and proposes a theoretical framework of Reducing 

Abstraction in Teaching (RAT). By analysing mathematics classroom practices 

from the public release video lessons of TIMMS 1999, this paper illustrates various 

tendencies of teachers dealing with mathematical abstraction. It also exemplifies 

some instances where ‘reducing abstraction’ seems to be an  effective teaching 

strategy while in other cases it may go unsupportive for the development of 

student’s mathematical understanding.  
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WORD PROBLEMS IN BUSINESS MATHEMATICS 

EDUCATION: IMPACT ON STUDENTS’ MATHEMATICAL 

ACHIEVEMENT 

Ike Udevi-Aruevoru 

Business mathematics is usually an introductory mathematics course in post-

secondary institutions for students specializing in business administration, 

accounting, and other finance programs. Its primary objective is to equip the 

students with the mathematical knowledge and skill set they need to solve 

mathematical problems common in business operations. Usually, these are text 

descriptions of business transactions requiring mathematical solutions, and are as 

such, word problems. 

  

USING A CONVERSATIONAL APPROACH: CAN THIS 

INFORM A TEACHER ABOUT STUDENTS’ UNDERSTANDING? 

Kevin Wells 

In the classroom, students may engage in several casual conversations with their 

teacher or peers regarding mathematics. Typically, these conversations are 

informal and may not be consciously used by the teacher as a means of formative 

assessment. This paper investigates the possibility of analysing the structure of 

casual classroom conversations to question if a student’s ability to hold a 

conversation reflects on their conceptual understanding of the topic in hand.  
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PRESENTING TOM: A LIFE IN MATHEMATICS  

Veda Abu-Bakare 

Relationships with mathematics cover the continuum from enchantment and 

engagement to accommodation and disillusionment in myriad shifts and turns. 

What can we learn about mathematics from studying relationships with 

mathematics and what can we use as evidence? Partly biography and partly 

philosophy of mathematics, this research explores how we come to terms with 

mathematics and what mathematics demands of us. In this paper, I consider the 

phenomenon in general and report on one life in mathematics.    

BACKGROUND 

Of all the disciplines in which we (as human beings) engage and of which we 

demand that our youth and citizens have some degree of knowledge, mathematics 

is one of the few that engenders extremes of emotions. In a recent book, Loving + 

Hating Mathematics: Challenging myths of mathematical life, Hersh and Jon-

Steiner (2011), a mathematician and a psychologist respectively, explore the 

breadth and scale of responses to and relationships with mathematics and the 

resulting effects on ourselves, those with whom we interact, and the wider society. 

Feelings for and about mathematics set in at an early age, and the relationships 

taken on and forged as we wrestle with the subject are often so strong that they 

lead to expressions of anxiety and pain (Black et al., 2009). The famous 

psychoanalyst, Jung, expressed his own anxiety and dismay at being defeated by 

mathematics:  “The teacher pretended that algebra was a perfectly natural affair, to 

be taken for granted, whereas I didn’t even know what numbers were. […] No one 

could tell what numbers were, and I was unable to even formulate the question. 

[…] All my life it remained a puzzle to me why it was that I never managed to get 

my bearings in mathematics when there was no doubt whatever that I could 

calculate properly. Least of all did I understand my own moral doubts concerning 

mathematics” (cited in Pimm, 1994, p. 115, original emphasis). 

My own interest in this little-explored area of mathematics education approach 

arose from reading Burton (2004) in which she related the results of a survey she 

conducted with 76 UK research mathematicians to discern from their trajectories 

and experiences what is involved in becoming and being mathematicians. From a 

review of the sociological, psychological and pedagogical literature relating to 

mathematics (Burton, 2001; 1999a; 1999b; 1995), Burton had proposed an 

epistemological model of mathematics: person- and social/cultural-relatedness, 

aesthetics, nurturing of intuition and insight, recognitions of different approaches, 

and connectivities. In a pilot-study, I tried out her questionnaires with two 

mathematician-colleagues and found that only the first component figured in the 
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interviews - their trajectories and experiences were intensely personal and related 

more to internal factors and to the surrounding social and cultural milieus. In this 

paper, I tease out the trope of engagement with mathematics and report on one life 

in mathematics.  

THEORETICAL CONSIDERATIONS 

The phenomenon of interest is the scope and diversity of relationships with 

mathematics, how we come to terms with it, and what it demands of us. 

Mathematics itself almost defies definition and description. At one end, Devlin 

(1996) defines mathematics as the science of patterns and the other end, Hersh 

(1997) asks eponymously: What is mathematics, really? One approach that we may 

adopt is that of sociology of science studies since the 1980s which has put aside the 

question of asking what science is, and instead asks, what can we learn about 

science by studying what scientists do? And what can we learn about science by 

following scientists around (Latour, 1999; Pickering, 1992). Hence my questions 

of interest are: What does studying engagement with mathematics tell us about 

mathematics? What can we learn about the subject and engagement with it from 

following mathematicians around? What are the forces (personal, psychological, 

psychoanalytical, political, and social) that shape the engagement? What does 

studying engagement with mathematics tell us about what mathematics demands of 

us as individuals?   

This research may be placed within three theoretical discourses: psychoanalytic, 

sociocultural, and discursive according to the factors that are emphasized and 

examined. I will focus on the psychoanalytic approach which focuses on identity, 

the interplay between conscious and unconscious processes, and the role of 

emotions and relationships (Boaler and Greeno, 2000; Britzman, 1998).   

In this paper, I present and discuss an interview carried out with a male 

mathematician, Tom, of long standing at a major university. The interview was 

taped using video and audio, and lasted just over two hours. It was semi-structured 

and organic; I had a few prepared questions but for the most part, my purpose was 

to hear his reflections about the subject and his journey and experience of it.  

PRESENTING TOM, ONE LIFE IN MATHEMATICS 

I begin by presenting the agents (people and objects) at play in Tom’s journey and 

then his feeling for mathematics as it developed. Then I consider more of the 

psychoanalytic dimensions of the experience. 

Agents (People and Objects) 

Tom, at the outset, declares the primary influence in his trajectory to be “the other 

people”. In the careful naming and description of his teachers from elementary 
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school to high school in his former country, then to high school in Canada and to 

his years at university, Tom indicates the persisting power of the influence of his 

teachers. Because of his family’s relocation in his childhood, school is a place of 

refuge for him. He lingers on the memory of his teachers in elementary and high 

school. In high school in Canada, his mathematics teacher “was another kindly 

lady in her fifties, she looked at this [his mathematics book that he had brought 

with him] and it started with cubic equations, Cardano’s formula and stuff like this 

and she said, oh, we don’t do this here … so she just said to me, just go ahead, 

dear, and finish your book (laughs at the memory)”. 

Tom describes the other two students who started with him in his Math and 

Physics program at university and the teachers who influenced him. In second 

year, they had “two new teachers who had brought the New Math with them.  All 

of a sudden we were faced with sets and the famous symbol for being a member of 

a set.”   

Besides the other people in Tom’s trajectory, many objects ‘conspire’ greatly in his 

becoming a mathematician. For the interview, Tom had brought a slide rule, an 

abacus, and a few pages of an interview with M__ (one of his two classmates who 

had gone on to be a great mathematician). The four objects I consider here are 

books, the slide rule, the abacus, and millimetre paper.   

 Despite what Tom says in the following sequence about not having much 

experience with books and not being “very bookish”, books (always “a little 

book”, perhaps to minimize the influence?) figured prominently in his recounting 

[I had asked about the prompts, the desire, so to speak, in coming to know 

mathematics]: “… so how does it start? I mean, you hear something or you are 

looking at a book, M__ always said to me, don’t try to read a math book from 

cover to cover,… so I wasn’t very bookish, I didn’t have much experience with 

books, I think Halmos’ book, Finite Dimensional Vector Spaces, was the only 

book I read cover to cover without jumping around”. 

Besides the math book that he had brought with him from his old country, Tom 

mentions among others, You and Nature, which he listed as “another one of these 

influences, haphazard influences”, Bertrand Russell’s autobiography, “a little 

book” given to him by a theoretical physicist who had come to see him after he had 

done well in the Provincial exams and was written up in the papers (he had told the 

reporter he wanted to be a theoretical physicist), “a little book by Landau which 

you may know, Foundations of Analysis”, a book by Loomis that had just come 

out on factor harmonic analysis, and “a little book” by Schrödinger. 

Tom describes the slide rule as “a big help, BIG HELP”; with it he makes his 

second self-discovery (his first was carrying in elementary school) of how 
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logarithms worked and how to find the square root of 2 (“it gave me this feeling 

that in mathematics you can figure out things by yourself”). He notes that the 

abacus “was something that was missing in my upbringing because the discovery 

about the carrying and all that and the place-value system (moves the beads on the 

abacus) would have been trivial had I had this thing in hand (smiles, puts down 

abacus, sits back and crosses arms)”. A final object Tom describes is millimetre 

paper, “that kind of thing you know, it gives more room to the imagination, when 

you have a piece of paper which just has a coordinate grid on it just for guidance, 

you are much freer than any kind of blocks or rods”. 

Tom’s enthusiasm for these objects attests to their agency in his journey (he insists 

that today we are using the wrong ones). They gave him the realization that 

mathematics is an individual activity; that it could be done by one’s self without 

anyone’s help. Further, while Tom acknowledges his teachers, he uses the 

metaphor of learning tumbling to indicate the gradual development of skill, “at first 

you need teachers to help you and then you don’t”.  

Feeling for Mathematics  

First, Tom expresses his feelings vividly for the Math he was learning as people 

came and went. In high school in Canada, he “disdained the kind of math they 

were doing. They were rationalizing surds (in a drawn-out bemused manner), 

basically doing a little bit of number theory and quadratic fields without saying so, 

and I already understood it, of course, and I kind of looked at it disdainfully and 

continued my thing”. In his first year at university, Math is a “hodge-podge and 

unpleasant”.  

Tom describes passion in Math: “..but there is something about mathematics that 

eventually becomes passionate, a kind of cognitive passion that is aroused or 

something and it doesn’t leave you”. From this remark, it was a surprise to hear 

him say that he was “lukewarm” about mathematics even at the Master’s level and 

remained so for a long time.  

Second, Tom’s reluctance to accept the label of a mathematician even by second 

year is another surprise. “Oh, hell, no (emphatically)… it happens very late 

(emphatically)…it takes a long, long time, if you read M__’s essay you see that 

even for him it took until second year at university until he saw himself as a 

mathematician”. Here is a description that I had not foreseen: “I became just a sort 

of a run-of the-mill mathematician … but I think that if Sputnik hadn’t happened, 

maybe I wouldn’t have been a mathematician”. Tom is also torn by his father’s 

wishes that he follow in his footsteps and become an engineer. 

Third, with respect to what mathematics is and how mathematics happens, Tom 

ventures that “it is an experience” and that if we were to speak for another two 
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hours, “we would still draw a blank in the end”. At one point, he threw his hands 

up and said that the question of what is mathematics cannot be answered and is 

unknowable, that it was like asking what is life or what is the unconscious. As for 

how mathematics happens: “…somewhat, it’s a start, I mean, you hear something 

or you are looking at a book … something that you find curious and you start 

thinking about it, and then you go backwards and forwards until you fill it all in, 

and so (slowly) this is how it starts, you see something that’s a little odd and you 

say to yourself, well, that’s strange, how might that come about, and then if you 

have an idea, if you are lucky you have an idea, oh yeah, it’s probably because of 

this, and then you start fiddling around on paper or on the blackboard, try this 

calculation out, no, this is not quite it, oh, but it may be that and so, you carry on 

like this and if you get more deeply into it with some partial success and so on, 

then you stick with it another day and so on, so it draws you in and finally you are 

obsessed with it”. 

Fourth, Tom presents himself as a curious onlooker, on the “outside” looking in. 

He describes being on the train to and from high-school in his old country and 

helping boys who were a year ahead of him with Geometry, and being in the room 

with mathematicians at university and supplying a lemma. He calls himself “a 

camp follower: but not so much out of cowardice, I think, but by curiosity, those 

kids over there are playing with a different kind of object, I want to go there and 

see what they’re playing with,  why are they having so much fun, there was so 

much like that coming out in mathematics”. 

The insights in to what mathematics is and how it is experienced provided here 

point to the process of engagement with mathematics as being slow, gradual, and 

uncertain with no flashes. There are small victories but mostly a sense of 

desultoriness. In the reference to passion, it is not the “uncomfortable raciness” in 

Sinclair (2010) but a “cognitive” passion that holds you tentatively at first, then in 

more gradually sustained manner and finally “it doesn’t leave you”.  

While these threads deal with Tom’s relationship to mathematics, they cannot be 

considered as summative because it seems to me that the keys to understanding the 

relationship lie elsewhere. As I listened to Tom and reflected on the interview later, 

it was clear that there were phantoms that could not be ignored. I cast these as: 

Standing in the Shadow, the Notion of Dislocation, and the Notion of the 

Unsayable.  

Standing in the Shadow 

Throughout the interview there was a palpable presence of a third person in the 

room, namely Tom’s classmate at university, M__. I had not heard the name before 

and since I believed that I had indicated to Tom that I was interested in his journey, 
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I was startled by how often and with what regularity Tom brought M__ into the 

conversation, especially when I had no thought that the response would include 

M__. [M__ is an eminent Canadian mathematician, well-known for his research 

program and winner of many prizes in mathematics].  

The first reference to M__ came in the first two minutes of the interview in 

response to my thanking him for his time. Tom says, “and I actually appreciate it 

too because, for example, I read this essay by M__ which is 22 pages long”. In the 

next two minutes after remarking on the influence of “other people”, Tom says, “if 

I compare (crosses arms), because I looked at M__’s essay again (gestures at the 

document), it was very well thought out obviously and obviously he did some 

research … it’s an interesting one for me to hold up as a kind of mirror (holds up 

his hand to simulate). He’s become a great mathematician, truly great (voice 

rising), I mean as I told you, in a category almost by himself, I mean the people 

that would be mentioned as the greatest mathematicians of the last half of the 20th 

century would be apart from him would be people like…um…I just said Andrew 

Wiles would perhaps not quite make it, but Serre, Jean-Pierre Serre and 

Grothendieck, Alexander Grothendieck and uh, a few people like that, you know at 

most ten of that stature and so I was very lucky to have somebody, someone like 

that as a fellow student and I had no inkling (emphasis in voice) that he would 

become so famous”. 

I cite at length here to show the elevated position in which Tom holds M__. Much 

later in the interview, Tom repeats the same phrasing about M__ with a telling 

gesture: “I just told you how the math department here was wrong about M__ and 

me (holding up his hand with his index and middle fingers in a vee). M__ became 

a great mathematician (with a downward twist of his hand, the positions of the 

fingers were reversed), truly great (voice rising)... but the faculty had it the other 

way around”. 

Notion of Dislocation 

I had come away from the interview mystified as to Tom’s having spent a life in 

mathematics and coming across as indifferent to it. I didn’t understand the 

interview until I read the word, dislocation, in Fulford (1999). Of Nabokov, 

Fulford writes: “He passed along some his most poetic reactions to dislocation in 

Speak, Memory, one the great autobiographies of the century. […] In many other 

books he led his readers through the special uncertainties of immigrants, adrift in 

new worlds, threatened by failure, loneliness, and poverty, threatened even by 

madness if they cannot accept calmly the radical change that is their fate.” (p. 119) 

The sense and power of place, the movement from place to place, and the affective 

events surrounding the transitions in Tom’s narrative provide compelling keys to 
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understanding much of Tom’s trajectory. Fulford (1999) citing Paul Auster, the 

American novelist, writes: “We construct a narrative for ourselves, and that’s the 

thread we follow from one day the next”. As Auster sees it, each more or less 

healthy man or woman has a story that helps create and sustain the necessary 

integrity of the personality” (p. 13). Tom’s narrative as whole, in its careful and 

delicate rendering, preserves that need for wholeness of Self. 

The Notion of the Unsayable 

In searching for an understanding of this interview, I happened upon a chapter in a 

handbook of narrative inquiry, Rogers (2007): The Unsayable, Lacanian 

Psychoanalysis, and the art of narrative interviewing. Similar to the discovery of 

‘dislocation’, the discovery of the word, the Unsayable, in the literature, unlocked 

much of what I had been pondering in Tom’s interview. Rogers writes: “It’s a 

curious truth that even as we speak, we circle around what it’s not possible to say, 

reading one another about what to elaborate, what to revise (and even try to erase), 

coming, almost inevitably, to what eludes any possibility of being heard. This is 

what I call the unsayable” (2007, p. 99). 

Dissatisfied with interpreting interviews according to various research stances, 

Rogers formulated her own method of Interpretive Poetics as a means of listening 

to the Unconscious with five layers: story threads, the divided “I”, the address, 

languages of the unsayable, and signifiers of the unconscious (2007, p. 109). I will 

consider only two here: story threads and the languages of the unsayable here 

(though the others are worthy of study, especially the divided “I”, opposing voices 

of the ideal self, “I”, undermined by the faltering “i”). The story thread is like the 

melody of a song that one listens for instead of the message. Listening for it in an 

interview is to note where it disappears and re-emerges, where it leaves its trace. 

The two story threads I can see in Tom’s narrative are that of 

dislocation/movement and the seemingly contradictory dispassion for mathematics 

in a life of mathematics. The languages of the unsayable are writ in “negations, 

revisions, smokescreens (diverting attention to a safer place), and silences. Tom’s 

“you see I didn’t have an idyllic childhood like M__’s”, his references to M__ with 

unerring regularity, and the unknown consequences of the events of his childhood 

all point to the Unsayable. As Pimm (1993) writes in a moving essay, “We all have 

mastered some aspects of mathematics. What do we truthfully know of the 

processes and the psychic costs involved?” (p. 38)  

CONCLUSIONS AND IMPLICATIONS 

In drawing these threads together, I consider Pimm’s (1994) argument for another 

psychology of mathematics education that leaves “the social and the rational” 

behind and points inwards (p. 112), and for the role of ‘unconscious activity’ in 
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mathematics. Pimm notes that meaning (one of the two major themes of 

mathematics education, the other being existence) is more than referential but 

about associations of all kinds, and partly about “unaware associations, about 

subterranean roots that are no longer visible even to oneself, but are nonetheless 

active and functioning” (p. 112).  Tom’s particular narrative of a life engaged in 

mathematical activity reveals that overshadowing the mathematics is the person, 

the experiences and the influences, and the relation to others, and ultimately, the 

ways the unconscious lays bare the self and identity.  

With respect to the Unconscious and mathematics, Pimm (1994) wonders about 

Freud’s “windows into the unconscious” and asks if there any particularly 

mathematical ones. While his quotation of Turkle on Lacan may be taken as 

related to the mathematics of creation, I think some of it is still helpful here: “For 

Lacan, mathematics … is constantly in touch with its roots in the unconscious” (p. 

114).  With respect to Tom’s presentation of self and engagement with 

mathematics, it was interesting to me that he did not list his accomplishments but 

talked about them in minimizing, off-hand ways, and that he spoke clinically about 

something in which he had engaged for nearly all his life. From his website later, I 

saw a list of 32 publications in mathematical journals. For all his modesty and 

diffidence, there had been ample opportunity and time for what he had achieved, or 

perhaps he may have thought it was beyond me.  

This interview confirmed to me that engagement in mathematics is intensely 

personal and is inextricably bound to the sense of self and the psyche. Indeed I 

register here my gratitude to Tom for his generosity of spirit in speaking with me. I 

note the psychiatrist, Coles (1989) quoting one of his teachers, William Carlos 

Williams: “We have to pay closest attention to what we say… Their story, yours, 

mine – it’s what we all carry with us on this trip we take, and we owe it to each 

other to respect our stories and learn from them” (p. 30). 

The implications for mathematics education from this research are twofold. One is 

that we continue to expose and uncover the myths of mathematics and of engaging 

in mathematics. The second is that we continue to explore what engagement with 

mathematics demands from us and does to us as individuals.  Tom, speaking of his 

second year of university and the excitement of new teachers and of encountering 

the famous symbol of inclusion for sets shows that coming to terms with the 

language and symbols of mathematics is new and challenging, requiring  much 

effort on the part of those who undertake mathematics. Do we find mathematics or 

does it find us? How do we as teachers enable or guide our students to a lasting and 

rewarding engagement with mathematics? 
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GESTURES IN A GRADE 12 CLASSROOM 

Darien Allan 

Simon Fraser University 

The goal of this research is to investigate the impact of teachers’ gestures on 

students’ mathematical understanding. This paper reports preliminary results of a 

larger study of the extent to which secondary students notice mathematically-

relevant gestures that teachers make in the classroom while presenting concepts 

and, if so, whether they use these gestures themselves in their own mathematical 

communication. Prior studies have shown the important role spontaneous gestures 

play in student learning, but this study explores how students mimic gestures used 

by the teacher. Preliminary results show that students will spontaneously mimic 

gestures when explaining a particular concept and those students who do so tend 

to have a better understanding of the concept than students who do not mimic the 

target gesture. 

INTRODUCTION 

Hand gestures are present everywhere in our lives. They can be defined as the hand 

movements that occur with speech. Gestures can add emphasis, additional and 

complementary information, or even contradictory information to our speech. In 

the classroom, gestures can allow students to express ideas that they cannot yet 

express in words, and thus are an important communicatory tool.  

The gestures used by students and by teachers can have significant impact on 

students’ learning. Teachers’ use of gestures in conjunction with speech has been 

shown to influence and improve student understanding. “Teachers produce 

gestures that can have an impact on what their students take from a lesson” 

(Goldin-Meadow, 2004, p. 320). Singer and Goldin-Meadow (2005) summarize 

other researchers’ findings in stating that “spoken instruction presented with 

gesture promotes learning better than the same spoken instruction presented 

without gesture” (p. 85). Gestures that teachers use can enhance student learning 

by providing additional information to students and also by giving students an 

example to imitate and thus improve their own understanding.  

More recently, significant research has been done on the role of gestures in 

mathematical thinking and learning (e.g., Núñez, 2003; Radford, 2009; Sinclair & 

Gol Tabaghi, 2010). The production of gestures allows students to organize 

information and over time learn the language to describe them (Robutti, 2006). For 

example, when students first learn about slopes they may not know or remember 

the terminology for vertical and horizontal lines, but can use their hands and arms 

to demonstrate what a line with a slope of zero or an undefined slope would look 
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like. A student describing the motion of a soccer ball while tracing a parabolic arc 

in the air is giving the observer a visual image of the path the ball takes, but is also 

concretizing the concept for herself. Not only do gestures help students convey 

meaning, the use of gesture actually improves student understanding.  

The role of gesture is especially important in mathematics in part due to the often 

significant difficulties students have with formal mathematical language. Formal 

mathematical writing tends to be dehumanized and information-dense. As Núñez 

(2003) writes, “Formal language in mathematics […] is not as rich as everyday 

language and cannot capture the full complexity of the inferential organization of 

mathematical ideas. It is the job of embodied cognitive science to characterize the 

full richness of mathematical ideas” (p. 70). Using gesture to communicate abstract 

ideas allows for richer communication than what language can provide. A number 

of studies have shown that students who use gesture are more successful on 

mathematical tasks than those who do not (Cook & Goldin-Meadow, 2006; Singer 

& Goldin-Meadow, 2005). Students who might struggle to find the appropriate 

language to describe a concept can alleviate their difficulties by showing what they 

mean. Indeed, quantitative studies in brain and cognition research have shown that 

“gestures supply a concrete context for what are often viewed as abstract 

mathematical concepts” (Lim et al., 2009, p. 312).  

Teachers’ use of gestures in conjunction with speech has been shown to improve 

student understanding. Singer and Goldin-Meadow (2005) show that learning 

improves when instructions are presented verbally and with gesture, rather than 

verbally alone. Cook and Goldin-Meadow (2006) explicitly taught children 

gestures to copy and had the students practice using them. They found that children 

who used gesture to express a correct problem-solving strategy were more likely to 

solve a problem correctly on a later assessment than those who did not use gesture 

or did not express a strategy. This shows that students can benefit from using 

explicitly taught gestures.  

THEORETICAL FRAMEWORK 

This research and analysis comes from a multi-perspective approach.  First, I draw 

from constructivism in the sense that students cognitively construct knowledge 

individually and that social interaction and social context play a significant role in 

students’ formation of knowledge and understanding.  Interaction with both peers 

and the teacher is vital.  Second, I believe that students understand and express 

their learning in many ways.  That is, I take an embodied and a multimodal 

approach (Arzarello, Paola, Robutti, & Sabena, 2009) to teaching and learning.  A 

multimodal approach will serve more students and promote understanding at a 

deeper level than any single method of instruction.  Specifically, I assume that 
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gesture has a role in students’ understandings and explanations and that this role is 

linked to speech and language (Goldin-Meadow, 2004). 

The idea that gesture has a valid role in learning seems to be generally accepted, 

however, the specific role that gesture plays is still under investigation and debate. 

This particular study is designed to extend the work of Cook and Goldin-Meadow 

(2006) to more advanced learning situations and to focus on a more naturalistic 

context in which students are not directly taught specific gestures. The goal of the 

research is to explore and investigate the impact of teachers’ gestures on students’ 

mathematical understanding. This paper is a report of preliminary results of a 

larger study of the extent to which secondary students notice mathematically-

relevant gestures that teachers make in the classroom while presenting concepts 

and, if so, whether they use these gestures themselves in their own mathematical 

communication. Thus the role that these gestures play in students’ learning in 

relation to particular mathematical concepts will also be examined. 

THE STUDY 

Participants  

The participants were 31 students in a grade 12 International Baccalaureate 

Mathematics Standard Level class. The students are generally above average in 

terms of ability and have positive attitude towards mathematics and learning in 

general. The teacher is one of the researchers and has been teaching this course for 

five years and the majority of these particular students for the past year. 

Method 

Three specific gestures were devised to use while teaching a particular lesson on 

horizontal, vertical, and slant asymptotes. The lesson was taught twice, first to one 

half of the class, without using the target gestures, then to the second group with 

the target gestures.  

The three target gestures were used for three particular concepts. These concepts 

were chosen for different reasons, but one common connection is that the concepts 

are all abstract concepts that, according to the teacher’s experience, students have 

trouble with. 

The first was to indicate the difference between a secant and a tangent line; 

specifically, to indicate how a secant line joins two points on a curve, and when 

those points become arbitrarily close the secant line becomes the tangent line (see 

Figure 1). This gesture was chosen because the teacher wanted to illustrate the 

connection between the secant line and the tangent line and to reinforce the 

concept of the tangent line. 
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The third still-shot in Figure 1 shows a curve approaching a horizontal asymptote, 

which was not one of the target gestures, but was a gesture that was used in both 

lessons. This gesture was used in both lessons because it had been used in previous 

lessons for both groups of students. 

   

Figure 1: Tangents, secants and a horizontal asymptote 

The second target gesture depicted a curve crossing a horizontal asymptote (see 

Figure 2). The left arm shows the horizontal asymptote and the right index finger 

draws the curve starting above the horizontal asymptote, crossing it, and then 

curving back up to approach the asymptote. As the curve approaches the 

asymptote, the teacher switches from using the index finger to using her palm to 

show the behaviour of the function approaching, but not crossing, the horizontal 

asymptote. This concept was chosen to address a common misconception that 

students have based on the types of functions they experience in the traditional 

curriculum. Students believe that a curve cannot cross any asymptote ever, whether 

it is horizontal or vertical. The teacher wanted to give an example showing that a 

curve can cross a horizontal asymptote. 

    

Figure 2: Crossing a horizontal asymptote 

The third, and final, target gesture was chosen to introduce a new type of 

asymptote to students: a slant, or oblique, asymptote (see Figure 3). The left arm of 

the teacher is held on a diagonal to indicate the oblique asymptote and the right 

index finger draws the curve. As the curve approaches the asymptote the teacher 

switches from the index finger to the palm. 
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Figure 3: Showing the slant asymptote 

Immediately following the lessons six students from each group were interviewed 

individually. The interview questions were:   

What was the topic of today’s class? (How would you describe what you did 

today?) 

How are a secant and a tangent line related? (How is a tangent line different 

from a secant line?) 

How did Ms. Allan describe the idea of a horizontal limit? Can you cross a 

horizontal asymptote? (Why not?) What would that look like? 

What do you mean by a slant asymptote? (What would that look like?) 

How would you explain what you learned today to someone who was in the 

other half of the class? (Well, can you explain it again?) 

Was there anything difficult or hard about the idea of a horizontal limit or slant 

asymptote?   

Questions in brackets were asked if the student needed more prompting. 

A few days following the lesson, a short video clip (without sound) of the teacher 

using a particular gesture was shown to each of the twelve students (individually) 

who were interviewed. Students were asked to identify what concept the teacher 

was demonstrating in the clip.  

The videos of the lesson were analysed to ensure that the target gestures were not 

used in the first lesson, and to determine the number of occurrences of the gestures 

in the second lesson. The videos of the interviews were analysed to determine what 

gestures (if any) students used in their responses to the interview questions and 

during the lesson.  

RESULTS 

None of the three target gestures were used in the lesson without gestures. The 

only gestures that appeared in the lesson without the target gestures were the 

normal everyday hand movements of the teacher as well as gestures indicating a 

curve approaching a horizontal asymptote and pointing to the left and right to 
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indicate a value of x approaching negative infinity and positive infinity 

respectively. Vertical, horizontal, and slant asymptotes were shown with various 

arm positions and hand movements; these occurred rarely in the non-gestures 

lesson and more frequently in the gestures lesson. 

The three target gestures were each used multiple times during the with-gesture 

lesson (see Table 1). The lesson with target gestures lasted twenty-five minutes 

with the bulk of the gestures in the first ten to fifteen minutes and then a few at the 

end of the lesson. The gestures were used primarily to introduce and illustrate a 

concept before addressing the algebraic portion of the lesson.  

Student usage of gestures during the lessons (both with and without target 

gestures) was limited. Students spent the majority of the lesson taking notes and 

asking an occasional question. One student used a gesture showing a horizontal 

asymptote by moving his right hand back and forth in a horizontal motion (palm 

down) and then later showed a curve approaching a horizontal asymptote by 

drawing an arc with his right hand, fingers extended, rising to the horizontal. The 

same student also showed a vertical asymptote using a vertical “chopping” motion 

with his right hand. This student performed these gestures while seated at a desk. 

He was in the class taught with gestures. 

The students were interviewed within one hour of the lesson (both the non-gesture 

and gesture), with the exception of one student who was interviewed a few days 

later. During the interview, students were seated in a chair facing the interviewer 

without a table so that they would not be inhibited in their gesture use. At times the 

interviewer had to try to prompt students to explain by asking what something 

would look like or asking the students to show her. Sometimes this elicited 

gestures and sometimes it did not. 

Four of the students replicated the gesture used in the class where two points are 

shown to be approaching each other, indicating that the tangent is the slope 

between two points as the limit of the distance between the points approaches zero. 
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Target Gesture Number of Uses 

During Lesson 

Number of Students 

who Mimicked (no 

gestures lesson)  

Number of Students 

who Mimicked 

(gestures lesson) 

Secants and tangents  2 1 4 

Horizontal asymptotes 12 2 5 

Crossing a horizontal 

asymptote 

3 3 4 

Slant asymptotes 3 0 3 

Table 1: Summary of the number and type of gestures used 

A gesture indicating a curve approaching a horizontal asymptote was shown once 

during the non-target gestures lesson and two of the students showed a gesture 

similar to this during the interview. In comparison, this gesture was used twelve 

times during the lesson with target gestures and during the interview was used by 

five students. Only one of the students in the gesture lesson did not replicate the 

gesture; and in fact this student made no gestures whatsoever. 

Three students in the non-gesture lesson and four students in the gesture lesson 

made a gesture depicting a curve crossing a horizontal asymptote and then 

approaching it. Of the seven, only three showed the curve approaching the 

asymptote with a flat palm; the other four drew the entire curve with an index 

finger. The three who used the flat palm were in the gestures lesson. 

In response to the question about slant asymptotes many students responded that 

they were asymptotes that were not vertical or horizontal. Some of the students 

drew a diagonal line with the flat of their hand. None of the students actually 

mimicked the target gesture used in the lesson, but the three noted in the table used 

another gesture which was to show the slant asymptote with their left arm, the 

vertical with their right arm, and then to draw the curve between the two with their 

right index finger. 

Other gestures made by students during the interviews were vertical, diagonal or 

horizontal motions with arms or hands to show asymptotes. 

When shown the video excerpt of the teacher demonstrating a curve approaching a 

slant asymptote, nine out of ten students correctly identified the topic. These ten 

students were out of the twelve who were interviewed. One student asked to watch 

the clip twice. Six students made gestures while describing the video clip. These 

gestures either indicated a slant asymptote or a curve that would have a slant 

asymptote. Two of these students were in the non-gestures lesson and the other 

four were in the lesson with gestures. Of these six, two students from each lesson 
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did gestures showing a hyperbola bounded by an oblique and a vertical asymptote. 

They did this by drawing the hyperbola in the air with an index finger. The other 

two students (both from the gestures lesson) showed both the hyperbola with an 

index finger and the asymptotes using their arms held on a vertical and a diagonal. 

PRELIMINARY CONCLUSIONS 

The following sections discuss an analysis of the results of the preliminary study 

and contain some suggestions for researchers as the study progresses. 

Student Use of Gestures in Interviews 

It is clear from the majority of the interviews that the use of the gestures during the 

lesson does promote the use of gestures by students. This confirms the results of 

the studies by Cook and Goldin-Meadow (2006) but for older students. However, 

there are some results suggesting that the use of gesture during instruction had no 

effect. Some possible reasons for these results follow. 

One reason why three students from the non-gesture class may have mimicked the 

gesture showing the crossing of the horizontal asymptote is because both classes 

were shown the sketch of the function, and the gesture was basically the same. In 

the future it will be more helpful to make the gesture more unique, or not show the 

sketch, though it should be noted that three of the four students in the gestures 

lesson did mimic the specific change from index finger to palm as the curve 

approached the asymptote.  

One student who was in the with-gestures lesson did not do any gestures during the 

interview or after being shown the video clip. It may just be that this student does 

not use gestures. 

Watching the Video Clip  

The majority of the students were able to identify what was being demonstrated 

when shown the video clip without sound. The student who responded incorrectly 

was in the non-gestures lesson and stated that in the clip the teacher was showing 

that you could cross a horizontal asymptote but not a vertical. 

Some students gave additional explanation or information after watching the clip. 

Other Interesting Results 

Some interesting misconceptions and gaps in understanding became apparent 

during the interview process. For example, a number of students did not voice a 

completely correct understanding of the secant line and the tangent line. One 

possible reason for this is that they have had much less exposure to the term secant 

than the tangent. Also, many of them still hold to the belief that the tangent line 

can only touch the curve at one point (and never intersect the curve again). Another 
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misconception voiced by one student was that you can cross a horizontal 

asymptote, but only once. This was likely due to the particular example given in 

the lesson as it only crossed the horizontal asymptote once. 

In general, it was noticed that the students who used smaller gestures were those 

who were less confident in their understanding. As well, the students who used no 

gestures at all were either very weak or very strong students. This is in accord with 

the results of studies that show that students who use gestures most often are those 

who are coming to understand a concept. The weakest students do not have enough 

understanding of the idea to create a gesture, and the stronger students may not 

need to use a gesture to communicate the concept. Those students who had a deep 

understanding of the material and used gesture may have done so in order to help 

explain the concept to the interviewer, or in response to the particular question 

which prompted them to explain it to another student.  

Notes for the Future 

In the future, as mentioned above, it will be useful to make the target gestures more 

distinct from any sketches that might be shown. That is, the gestures should be 

more metaphoric than iconic (McNeill, 1992). 
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USE OF THE PHENOMENOGY THEORY PERSPECTIVE IN 

THE ANALYSIS OF PROFESSIONAL ACTIVITIES FOR IN 

SERVICE TEACHERS 

Melania Alvarez 

This research paper considers how Phenomenology Theory can be used in the 

analysis of professional development workshops for in service teachers in order to 

gain a better understanding of the challenges faced in this endeavour by the 

professional developer (PD) in order to elicit change in teachers’ practice.  The 

goal of the professional development was to introduce teachers to a new math 

program, which is mathematically and pedagogically different from what most of 

the teachers involved in these sessions have been exposed to in the past: this is a 

problem-solving centered program which demands a deeper knowledge of 

mathematics from teachers and a constant awareness of students’ understanding 

throughout the lessons.  

INTRODUCTION 

With some frequency we see changes in the math curriculum and consequently a 

change in math programs at schools is required; as a result there is a consistent 

need for professional development workshops to help teachers transition into new 

programs. Professional development of teachers in support of curriculum change is 

one of the main challenges school districts face; this is mainly due to lack of 

resources or adequate ways to address teacher concerns with the instruction of the 

new curriculum.  

Even when research shows that not many teachers used much of what they ‘learned’ 

in professional development sessions (Guskey, 2002); professional development is 

viewed by policy makers, administrators and teachers as the main agent of change 

for improving teachers’practice and consequentially student achievement. 

The purpose of this phenomenological study is to describe and explain the factors 

that affect teachers’ practice as a result of a professional development experience 

and the attempts on the part of the professional developer to better engage teachers 

in the process. An important goal is to determine the factors and characteristics of 

teachers’ learning and beliefs that are more likely to contribute to sustained 

engagement in acquiring new knowledge and pedagogical skills which will 

contribute to changes in teaching as a result of professional development sessions.  

The researcher will systematically reflect on the live experiences and behavior by 

teachers reacting to what occurs during professional development sessions. She 

will also analyze the challenges that the professional developer (PD) faces in order 
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to engage teachers to develop a community of learning where they will support 

each other as they face the implementation of a new math program.  How should 

the professional developer become aware of and deal with teachers’concerns, 

fears, indifference, or enthusiasm? What happens at particular professional 

development sessions? Who is engaged and how? And who is not and why? How 

are teachers’ knowledge, belief and values exposed by certain behaviours, and how 

can these behaviours help or deter the purpose of the professional development 

session? What are the challenges from the PD perspective: barriers, self-doubt, 

etc.? 

Fundamentally this research tries to answer the following question: what are the 

external and internal factors that influence teachers’ engagement and change in a 

professional development experience?  

FRAMEWORK 

Phenomenology is the descriptive methodology of human science, which explores 

and describes lifeworld experiences, and whose main goal is to discover the 

emerging meanings of those experiences; it can be defined as “the study of 

structures of experience or consciousness” (Woodruff 2011). Phenomenology 

uncovers the meaning of a phenomenon by uncovering the many layers that 

socially and culturally influence a person’s experience in their lifeworld;  where 

lifeworld is defined by Van Manen (1997)  as “the world of immediate experience”, 

the world as “already there” (p.182).  Phenomenological research studies things as 

they arise in our experience and for this reason the researcher must first “describe 

what is given to us in immediate experience without being obstructed by pre-

conceptions and theoretical notions” (Van Manen 1997, p.184).   

In order for things to present themselves in the lifeworld of an individual they have 

to be part of the consciousness of a person and for that person to acknowledge 

them; if this is not the case then they cannot be part of the lifeworld of a person. 

Manen (1997) and Giorgi (1997) also point out that consciousness is intentional, 

therefore in order to explore a given phenomenon in the lifeworld of a person one 

must research how it is manifested to the consciousness of that person; they view 

intentionality as the inseparable connectedness of the human being to the world.  

We must keep in mind that human agency is always oriented; however 

intentionality is not always conscious: “Intentionality is only available to 

consciousness upon retrospective reflection.” (Mostert 2002) 

Phenomenology seeks for the essence, the true being, of the “things for themselves” 

as opposed to how they are experienced in the lifeworld. Van Manen (1997) 

defines essence as that which makes a thing what it is before cultural and social 

meanings are attached to it.  
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To find the essence the researcher must examine a phenomenon by first asking, 

what is it like?  And afterwards what is it like for me in my world?  It is through 

reduction that the researchers look for the essence of the phenomenon. “As we then 

explore the lived experience within the lifeworld, bringing the phenomenon to 

consciousness and aware of intentionality, we attempt to reduce reflection beyond 

the immediate context and aim to discover the essence or essentialness of the 

phenomenon. This is the fibre of phenomenology” (Mostert 2002); for this reason 

the phenomenological researchers must provide rich descriptions of the 

phenomenon and within its context. (Kensit 2000, p.104) 

Summarizing: the theoretical framework that guided this research is a 

phenomenological reflection on teachers’ behaviours while learning, and teachers’ 

change through learning in the social context of professional development sessions.  

The researcher’s goal is to do a phenomenological analysis of individual change 

and as well as group change as teachers experience learning with and from their 

peers. An objective is to determine how new knowledge is incorporated into an 

existing schema and how teachers can participate in a discourse that extends their 

knowledge and system of beliefs if the professional development is effective in 

addressing its goals.  

METHODOLOGY 

Participants and setting 

The participants in this study were the teachers involved in the professional 

development and the professional developer. The professional developer is a 

participant because her reflections on teachers’ behaviours will be part of the study.  

A new school-wide math program was being implemented at a school in the Lower 

Mainland in British Columbia, Canada. Thirty of its teachers teaching grades K to 

6 participated in the research. The teachers were divided in seven groups 

corresponding to the grade they were teaching. Each professional development 

session tended to a particular grade. There was never a session where two or more 

grades worked together, except for the introductory session where the professional 

developer gave an introductory overview of the program and most of the teachers 

at the school came to this session.   

This professional development was led by the researcher of this study, who took 

the role of the professional developer and who had experience with the program to 

be implemented. The main goal of this professional development was to help 

teachers become familiar with the math program to be implemented at the school, 

but another goal the professional developer had in mind was to get teachers to look 

at the materials in a critical way such that if in the future another program was to 

be implemented, they would look for key facts to get a better idea of its content 
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and pedagogical philosophy. The professional developer envisioned herself more 

as a coach than an instructor and wanted to support the development of a relatively 

“self-sufficient” community of practice for each of these groups of teachers 

participating in the sessions. The professional developer (PD) was a temporary 

coach that was there to point out the nuances in the new program and bring out 

interactions among teachers to help them learn from each other; and if it was the 

case to be able to tackle future changes in the curriculum as a group without 

necessarily having to have someone from outside to guide them through the whole 

process every time there was a change in the curriculum. 

In phenomenological research, the researcher cannot be detached from the process 

and according to Mouton and Marais (1990, p. 2) in many cases the explicit beliefs 

of the researchers regarding the issued to be researched have to be part of the data. 

This makes it quite natural for the researcher to take on the role of a PD in a study 

like this.  

Process 

Each group of teachers met with the PD between 10 and 15 hours distributed 

between 3 to 6 sessions.  

The PD’s main concerns were:  

1. To be able to address the needs and concerns of the teachers in order to 

engage them in a pursuit to further develop their practice and math content 

knowledge. 

2. Opportunities for teachers to take risks in sharing their beliefs among their 

peers.    

3. To be able to have sufficient time for the teachers to learn and maintain 

their learning.  

4. Accountability. 

Throughout the professional development sessions the PD supported the teachers 

with both readings and explanations of particular math concepts and ideas that 

came up during the session. 

During some sessions the PD asked teachers in a group to first explain how they 

would teach a particular mathematical concept; after the ensuing discussion, 

teachers were exposed to the books and workbooks used by the math program 

without the benefit of the manual.  Teachers were asked to compare between their 

initial take on the concept and how the materials in the program dealt with it.  

Afterwards the manual was introduced with the goal of furthering discussions 
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regarding the teaching of the concept. Teachers were asked about what additional 

ideas were included in the manual, and how useful it was to better teach the ideas 

students found in the book and workbooks. For some groups the same procedure 

was done for several sessions, and for others the process changed according to 

what the PD thought would be a better way to elicit engagement on the part of the 

teachers.  

It is important to point out that in this particular math program the books and 

workbooks are geared towards students and the manuals are different from many 

other manuals in that for most grades, except for kindergarten, the teachers will not 

see a reproduction of book pages in the manual. The manual presents the following 

information as they introduce a new concept: objectives, notes which inform 

teachers what ideas students have learned in the past which will help them 

introduce the new concept, how to introduce a new concept by using students’ 

previous knowledge (many times with activities that are not in the student 

materials), how to use the book in class to elicit student discussion and a workbook 

for practice and assessment.    

Data and Analytical Tools 

Data regarding the actions of teachers in a professional development setting was 

gathered in order to find if they were engaged in the discussion and how.  This was 

done by recording most of the professional development sessions and by notes 

made by the researcher during and after each session. After every session the PD 

made a few notes reflecting on the effectiveness of the session, which concerns 

raised by the teachers were addressed and the level of engagement. Most 

observations of teachers’ behaviours were made during the professional 

development sessions; however, the researcher had the opportunity to visit 

classrooms to observe the teaching practice of a few of the teachers.  

The PD gave an initial survey and a final survey but only about one third of the 

teachers filled these documents, this is an important sign regarding the issue of 

accountability.   

For the data analysis the researchers used the following protocol which is a 

simplified version of Hycner’s (1999) explicitation process used by Groenewald 

(2004) together with some steps delineated by Van Manen (1997) for the 

methodical structure of hermeneutic (interpretative) phenomenological inquiry: 

1. Investigating experience as we live it rather than as we conceptualise it; 
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2. Bracketing: researcher must bracket presuppositions in order to remain true to 

the phenomenon 

3. Phenomenological reduction: reflecting on the essential themes which 

characterise the phenomenon;  

4. Delineating units of meaning by extracting those narratives which throw light on 

the researched phenomenon (Creswell 1998; Hycner 1999). 

5. Clustering of units of meaning to form themes: units of significance are created 

by grouping units of meaning together. (Creswell, 1998; Moustakas, 1994; Sadala 

& Adorno, 2001) 

6. Summary that brings together all the units of significance obtained from the data 

within the context from which these units arise. (Hycner, 1999) This is the moment 

when the researcher “transforms participants’ everyday expressions into 

expressions appropriate to the scientific discourse supporting the research”. 

7. Create a composite: creating a balance by taking into account the part and the 

whole.  

PRELIMINARY RESULTS 

At this stage of the research we are able to provide some preliminary results for 

units of significance and some themes have emerged. We will present here the 

preliminary results on two themes. 

Use of the manuals 

During the sessions teachers were asked to look at the manuals and to discuss the 

mathematical and pedagogical content of a particular section and its lessons; they 

were given enough time to carefully read this material and correlate it with the 

students’ textbooks and workbooks. The PD noticed that some teachers would just 

browse the assigned section of the manual for a minute or two and wait for others 

to finish or try to cut short the reading time for the whole group to move on. 

Sometimes the whole group would just browse and be done within a few minutes, 

not the time one would expect for a careful analysis of the materials. When the 

researcher looked at the data to find out the reason for these behaviours and 

correlated it with other behaviours that occurred during the session and information 

she had from the teachers involved two interesting units of significance emerged:    

1. Those teachers who had been using the program for several years and who 

didn’t use the manual had a very hard time incorporating this new resource into 

their practice. They believed that because they have been using the materials for a 
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while, in some cases years, they knew how to use those materials. They resisted a 

thorough reading and discussion of the manual even when the PD pointed out some 

important conceptual ideas that were missing which were important to bring out in 

a lesson.  

2. If the materials in the manual looked ‘too familiar’ many teachers were not 

thorough in their reading of the manuals. However if the program was new to them 

and the PD pointed out some interesting ideas or key points that were new to them, 

they were more willing to take a second look at the materials than the group 

discussed above.  

Looking at the new within the old  

In the early primary years, most teachers are more interested on learning new 

activities or ways to teach a concept that in taking a second look at the 

mathematics that are taught because they think they have a good grasp of the 

mathematical ideas they are teaching. However, by making teachers aware of new 

ideas within the mathematics that they thought they knew, teachers became 

engaged in deeper mathematical discussions and were more enthusiastic about 

conveying these new ideas to their students. 

To provide here an example: The researcher used some interesting insights from 

Ron Aharoni’s book Arithmetic for Parents and she gave the teachers some 

excerpts from his book to read.  Here is Aharoni’s (2007, p. 69) discussion on the 

meaning of addition:  

 “The expression 3+2 applies to the joining of two groups … Joseph has 3 flowers, 

Reena has 2 flowers. How many flowers do they have altogether? … However, 

before we go any further, we must discern a subtlety of meaning. There are 

actually two different forms of addition: dynamic and static. In dynamic addition, 

to join means to change the situation: 3 birds were sitting on a tree, 2 joined them. 

How many birds are there now? In static, joining signifies grouping of types: A 

vase contains 3 red flowers and 2 yellow flowers. How many flowers are there 

altogether?... I do emphasize difference, especially because of the link to 

subtraction…children find static subtraction difficult”.  

This passage created quite a discussion among teachers in grades K to 2. Many of 

them could give examples of students who could add and subtract but had 

difficulty with problem solving. Some teachers discussed the possibility of what 

would change in their students’ understanding and problem solving abilities if 
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they emphasized the difference in class. They wondered about how they never 

thought about this difference in meaning before and how to introduce this new idea 

in their practice. 

There are many other examples like this in the data, with concepts that teachers 

thought they knew well, whose subtleties like the one above make the concept 

“new” in some way and more engaging.  

CONCLUSION 

Phenomenology and the process of phenomenological inquiry will not provide all 

the answers to professional development since it cannot generate systemic change. 

What it can do however is provide access to a process and a way to analytically 

reflect on that process to envision ways to engage teachers in learning and change, 

and to provide professional developers with some insight into the professional 

development experience.  

In the end we hope that research like the one initiated above will help program 

developers to create professional development workshops that are more 

meaningful and helpful to all teachers.  
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LEARNERS’ NOTIONS OF THE LAW OF LARGE NUMBERS 
Simin Sadat Chavoshi Johlfaee 

 

Simon Fraser University 

Secondary school teachers’ notion of the law of large numbers in a coin tossing 

context is discussed. The data suggests that there is an inadequate understanding 

of this key concept which leads to some contradictory arguments and incorrect 

judgment of probability of certain events. Then the participants are presented with 

a task that is aimed to help them develop a feel and an insight for the law of large 

numbers in an empirical sense through the results of many simulation trials. 

Computer simulation of a coin flipping experiment is used to aid the interviewees 

who couldn’t comment on the probability questions otherwise (due to not 

remembering formulas) connect with the problem and to invite them to reflect on 

their beliefs by comparing their expectations with the simulation results.  

LAW OF LARGE NUMBERS, HISTORICAL BACKGROUND 

In The Taming of Chance, Hacking (1990) renders an interesting account of the 

aftermath of the emergence of probability and the evolutionary process it 

undertakes during 18
th
 and 19

th
 century. Central to the initiation of the law of large 

numbers the book offers: In 1835, in the course of his statistical jurisprudence, 

Poisson coined the phrase “law of large numbers” and proved an important 

limiting theorem. This provided a further rationale for applying the mathematics of 

probability to social matters. It also seemed to explain how there could be 

statistical stability in social affairs. The progressive stabilization of the relative 

frequency of a given outcome in a large number of trials, that has been observed 

for centuries and was translated by Bernoulli to a mathematical theorem, served as 

a justification for the frequentist definition of probability as we know it now. 

Modern generalizations of this theorem are known as Laws of Large Numbers. 

These laws lead to connections between probability and statistics and they give 

validity to statistics as a methodological tool in experimental sciences. 

LAW OF LARGE NUMBERS IN MATHEMATICS EDUCATION 

Freudenthal (1972) in one of the earliest works that attempts to identify and resolve 

learners’ difficulties in understanding empirical probability discusses some issues 

related to teaching the empirical law of large numbers. He criticizes the common 

textbook practice of finding probabilities; probability of “heads” in a fair coin for 

example through repeated experiments in a classroom setting by tossing a coin 100 

times. He argues that the chances of getting an empirical estimation that falls 

between 0.48 and 0.52 are only around 2/5 if we are to use 100 coin flips. A 

sample of 2500 trials is needed in order to feel 95% confident of getting between 
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48% and 52% of the coins showing up heads. Since this is not a feasible number of 

trials to be done in a classroom setting, he suggests using an averaging technique to 

reduce the dispersion of the data coming from coin flips or to use a table of random 

numbers imitating the outcome of the real coin. In a study of naïve and emergent 

knowledge of randomness, done by Pratt & Noss (2002), children of 11-12 ages in 

the study were interviewed before and after working with a computer chance 

environment. In initial interviews they never articulated an appreciation of the 

significance of aggregating results of repeated experiments with dice, spinners and 

other randomness generators over the long term and also there was no reference to 

the frequencies of a particular outcome over a period of time (contrary to what 

Piaget & Inhelder claimed in their 1951 work stating that by the age of 12 most 

children could reason probabilistically about a variety of randomizing devices and 

had developed sound statistical notions including an understanding of the Law of 

Large Numbers). Pratt & Noss (2002) describe the computer environment “chance 

maker” as a model in which stochastic knowledge is connected to a set of 

randomness resources abstracted from everyday life, none of which is associated 

with long term aggregated behaviour. However during the course of study through 

the interaction with carefully designed external resources, two new resources, the 

Large Numbers resource and Distribution resource. emerge and develop.  They 

propose that the capabilities of computer simulation makes it “natural” for the 

students to start with small trials and quickly turn to large number of trials and at 

the same time a dynamic mode of representation of the outcomes such as a pie 

chart gradually imparts to them an insight of the Law of Large Numbers. 

COMPUTER SIMULATION IN PROBABILITY EDUCATION 

Philosophical Dimensions in Mathematics Education (Francois and van 

Bendgemen, 2007) is one of the resources that has taken to itself to reflect on 

research in statistics education around the use of technology and more particularly 

the use of simulation in teaching probability and statistics concepts such as 

understanding of sampling distributions, long run patterns, randomness, making 

inferences and so on.  However it reports on studies indicating that even a well-

designed simulation is unlikely to be an effective teaching tool unless students’ 

interaction with it is carefully structured, but for most part simulation has received 

a good evaluation as a pedagogical tool that can play a significant role in 

enhancing students’ ability to study random processes and statistical concepts: 

“Experiments and computer simulations performed in the classroom to facilitate 

learning of statistical concepts should be perceived as fundamental sources for the 

students and not simply as motivations for step-by-step teaching of the teacher’s 

intended goals”, p. 144. Simulation in interaction with theory is the perfect 

instrument to clarify and to enliven the basic concepts of probability, asserts Tijms 
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(2007). He pays great attention to the role of using simulation in teaching 

probability not only because of the practicality it offers for tackling complicated 

problems as well as to the hows and whys of the underlying probability theory 

related to those problems, but also for the didactic aid it provides. When using a 

computer for simulation, the learners are able to make the data and the result of the 

analysis graphically visible, put their ideas into test almost instantly and try more 

of the “what happens if ..” type of questions, adds Konold in his 1995 confessions 

where he discusses several critical considerations with regard to using simulations 

instructionally. 

METHODOLOGY 

The participants of this study are five secondary school in-service teachers (coded 

as MO, MS, MA, SH, and NE) holding a bachelor degree with a major in one of 

the biology, mathematics, and computer science subjects. All of the participants 

have received a formal (not advanced though) training in probability in their 

undergraduate courses. The interviews are done individually (one-on –one) and 

voice recorded. The interviews are designed in three parts: in part A the 

participants are asked to assign probabilities to certain coin flipping events and to 

express their thoughts about what those probabilities mean. In part B, by making 

use of the answers they have provided in the first part or by bringing to their 

attention the widely known facts and definitions of probability theory a conflict 

situation is brought to their attention. In part C, a task is proposed that when tried 

by the participants seem to shed some light on the conflict in the previous section.  

PART A 

Q1: If one hundred fair coins are flipped, what are the chances of getting half 

heads and half tails? 

MO: It should be around ½. 

MS: Well, each one has a ½ probability, let’s see, each has a ½ so the overall 

probability is, mmmm, in 100 coins, half may turn up heads and half will show 

tails. 

MA: The probability is ½. But wait, let me consider four coins instead, ... (after 10 

minutes of writing down all the possible outcomes and finding the answer for 4 

coins and doing the same for 6 coins, extends the method and gives the answer for 

100 coins) ok, here we go it comes to 0.08, this is the probability of half heads- 

half tails in 100 coins. 

SH: It is very big, actually bigger than other probabilities. In small number of trials 

anything might happen but as the number of flips goes up, I expect that the number 

of heads and tails get closer to each other. 
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NE: Each coin has a ½ probability of landing on heads so for the 100 coins we’ll 

have one over 2
100.

 

PART B 

At the beginning of this part some time is spent on binomial formula (the 

probability of obtaining exactly K heads in n coin toss is ), and the type of 

questions it answers and then each participant is presented with a basic form of 

computer simulated game of flipping 100 coins as described below (excerpts from 

the interview with MS are presented as example).  

The interviewer (coded as S) opens a worksheet in Excel and generates 100 zero-

one random numbers. The sum of these 100 0-1’s showing the total number of 

heads is displayed in a separate cell. Conditional formatting is used on the cell 

containing the sum so that whenever the sum is exactly 50, the cell turns blue. In 

another column of the worksheet a record of MS’s win-loss is kept by writing 

down “L” for each loss and “W” for each win (MS wins each time a 50 heads-50 

tails occurs).  The random numbers previously generated change and so does the 

game result. The rest of the conversation takes place as both S and M are looking 

at the numbers changing and what turns up as the result of each game. 

S: Here we go, the sum says 64, which means the number of heads are 64 and the 

rest of coins (36) turned up tails. Click, click, ... 

MS: That one was close; a 49! And yet another 49! 

S: Yes, and this one is 52, now 51 

MS: 52, 48, 49 again, 52, 45, 52, so many 52’s, ok this one is far out.  

S: 51, 53, 52  

MS: All of them are in a range of very close numbers. Click, click, ... 

MS: See, this is why I don’t trust probability! I haven’t won it even once. Click, 

click,... 

After half a minute a 50 appears 

MS: (cheerfully) one after all! 

Another 50 appears soon 

The game goes on with S and MS looking at numbers, saying them out loud and 

writing down the scores. 

S: Ok, let’s see, how are we doing, so far we have played this game for 245 times 

out of which you have won 16 times.  
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MS: Yeah, it is pretty rare; I’m even surprised that it happened 16 times. 

By this time, the interviewees have agreed that the empirical probability under 

discussion (half heads-half tails) is less than 10% and it gets smaller if the number 

of coins increases.  

Q: One of the interpretations/definitions of probability (as seen before) is the 

success ratio in long sequences of the repeated experiment. More specifically if a 

fair coin is tossed many times the ratio of heads to total gets very close to ½. Now 

the question is: why the probability of getting half heads-half tails in the case of 

100 coins is so low and as we saw gets lower for more coins? 

MO: Huh, you got me! Yeah, it is contradictory. We should find out which one is 

wrong. 

MS: I don't know (pause). May be we are taking two different things, we discussed 

the probability of "heads" and it is almost half (long pause) which means half of 

the times it comes up heads so the other half of the times it comes up tails. Doesn't 

it mean that all the times the number of heads and tails are equal then? 

MA: Because 100 is not that big of a number. (she is reminded again that if the 

number of coins increase, the probability of half heads-half tails will decrease, in 

response she says) actually I think that this decreasing behavior should stop at 

some point and the probability of half-half  starts to increase so that it eventually 

comes to 1/2. 

SH: (Silent for quite a while), seems funny, so the problem is that on one hand in 

any long sequence of heads-tails the ratio is very close to half but on the other hand 

the probability of getting half heads- half tails is very small, very funny! 

NE: May be this is some kind of sampling error, mmmm, but you say that if n 

increases, the probability of half heads-half tails gets smaller, huh! It shouldn’t be 

this way because even if there are some errors they should diminish when n is 

large. 

PART C 

Background 

One of the well-known misconceptions about probability is the illusion of linearity; 

a term borrowed from Van Dooren et al. (2003). They present evidence of 

problematic judgment in probabilistic situations in which the proportional 

reasoning is applied to non-linear problems.  The particular example they use is the 

birthday problem in which many incorrect answers are provided for questions such 

as these: How many people are needed in order for having a 50% chance of at least 

two birthday matches? If within a given number “n” of people there is a 20% 
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chance of birthday match, what will the probability change to if the number “n” is 

doubled? The authors propose that a curriculum in which proportional reasoning is 

over emphasized might very well create hindrances in the students’ probabilistic 

reasoning.  

The Activity 

The task presented in this paper is inspired by the illusion of linearity: if the 

learners expect the number of success to increase proportional to the number of 

trials, then perhaps they’ll get surprised to see it behave differently and reconsider 

their approach. The interviewees are invited to decide on a certain set of outcomes 

in the experiment of 100 coin flips such that they have even chances of winning. In 

other words the ultimate question is: what are the numbers of heads that provide a 

50% chance of winning? 

The question is presented to the interviewees in several steps: 

Q1: Instead of betting on “50 heads exactly” you can bet on three different number 

of heads and I’ll bet on the rest. Which three numbers will you pick?  

In answer to this question there was a strong consensus that 49, 50, and 51 should 

be chosen, here is an example of the answers: 

SH: The numbers we saw were just oscillating between the numbers close to 50 but 

not 50 itself. I think if I add 49 and 51 to my bet, it will cover a lot more of the 

chance. It is reasonable, 50 is the most probable so the numbers close to it should 

be almost the same. 

Q2: What would you suggest in order to calculate the chances of your win if you 

bet on 49 or 50 or 51 heads? 

MO, MS,  & SH: We can either use the formula or use the random numbers again, 

this time we need to format the sum cell so that it turns blue if the sum is between 

49-51. By repeating the game so many times we can find out what are the chances 

like. 

MA: Use the binomial formula for 49 and 51 separately; add the results to 8%. 

NE: Since 49 and 51 are very close to 50, then we can estimate the probability of 

those just by ignoring a small error and use the same thing we got for 50. So if we 

use 11%, this time we have a 33% or so chance of winning and if we use 8%, it 

comes to around 24%, not sure which one is correct. 

At this point after a short discussion, the participants agree to use the binomial 

formula for further calculations since it is faster. 



45 Proceedings, MEDSC 2011  
 

Q3: So the chances of winning are improved but it is not even. Let’s calculate the 

number of cases close and symmetric to 50 that needs to be added in order to get 

50% chance of winning. By using binomial formula the following results are 

obtained: 

Number of heads bet 

on: 

Probability of 

winning 

50 only: 0.079 

49, 50, 51: 0.235 

48, 49, 50, 51, 52: 0.383 

47, 48, 49, 50, 51, 52, 

52: 

0.515 

Q4: So the probability of 503 comes to almost 50%. Let’s now consider flipping 

500 coins instead of 100, how many numbers should be added to the middle 

number so that we can have a 50% chance of winning?  What would be the answer 

for 1000 coins? 

Four out of five participants expressed that since the number of coins is multiplied 

by five, so we need to add 30 numbers to the middle bet, in other words 25015 

has 50% probability of showing up. Likewise for 1000 coins the answer is: 

50030. The other interviewee believed that since 500 coins are too many and the 

number of possible heads-tails is huge, it is safe to grab an even bigger interval 

from the numbers around the middle case.  

The correct probability is calculated from binomial formula (83%, 94% for 25015 

and 50030 respectively) by the interviewees stirring the following reactions (two 

interviewees had to quit since they didn’t seem to follow and the time limit 

wouldn’t let us go back and reflect on previous steps): 

MO: You sure we did it right? (pause) so, for 100 coins the deviation was 3%, but 

for 1000 coins 3% of deviation from the middle number covers 94%? It is very 

strange! It is not how a normal curve behaves. This is like several normal curves 

that become sharper and sharper around the average, until it gets too steep. 

MS: These numbers say that if I flip 1000 coins and bet on either of 50030 cases, 

in 94% of the times I’ll win? It is almost like winning every time!  Can I try it with 

random numbers? (He proceeds to play the game with 1000 random 0-1’s with the 

sum cell turning blue whenever the number of heads is between 470, 530). It’s all 

blue! No kidding! 
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SH: Wow, so it doesn’t behave that way, how to put it, non-linear? (long pause) so, 

as the number gets larger and larger, fewer middle numbers are needed to collect a 

probability of 50%, may be not fewer numbers, I mean less in ratio, compared to 

how big the number itself is. Could you tell me 500what number has a 50% 

chance of occurring for 1000 coins? (he is provided with the answer which is 

50010), mmm, ok, here it goes: for 100 coins we needed 6% of the middle 

numbers, for 1000 coins all we need is 2%. For 10000 coins perhaps it is less than 

1%, or even less, very close to zero. Is this the answer to the paradox thing you 

asked (referring to the question in part B)? 

At the end, the three interviewees commented that now they have more trust in the 

50% probability of either sides of a coin and they now perceive it differently. MO 

and SH also mentioned that they had learned about the law of large numbers 

before, but never tried it numerically and now they are seeing it as a law that 

guarantees that the number of unwanted and outlier outcomes compared to the 

number of trials, diminishes to zero. 

 DISCUSSION 

Most of the participants expressed a belief at first that the probability of a half 

tails-half heads situation with 100 coins is ½. One explanation for this faulty 

judgment could be sought for in the representativeness heuristic; first introduced 

by Tversky & Kahneman, later discussed and elaborated on by many researchers 

particularly by Konold, Pollatsek, et al. (1993). The explanation this heuristic 

provides is that the participants assign the same ratio of head to tails as is the case 

for the whole population. Since the hundred coins tossed is a representative of the 

whole coin toss population, it is reasonable to assign the same probability. Another 

alternative way to explain the answer could also be well interpreted through the 

“outcome approach” proposed by Konold (1989) that accounts for incorrect 

probabilities assigned to events because the answer is regarding the outcome of 

each of individual trials only.  Also one might suggest that lack of tangible 

experience with limit-based notions (in this case The Law of Large Numbers), 

contributes to development of inadequate or non-coherent ideas about probability. 

This study indicates that developing even an average understanding of the 

frequency-based probability heavily relies on the learner’s experience of large 

number of stochastic trials. When teaching empirical probability (unknown to 

some interviewees) a teacher could very well use what computer simulation offers 

as a tool to help learners construct a valid understanding of a random behaviour 

through repeated trials. As the data suggests, Law of Large Numbers is perceived 

as an overall tendency of the outcomes toward acertain behaviour. The 

proportional reasoning of learners and the linearity illusion they hold around 
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probability could be employed to make a more accurate and realistic sense of The 

Law of Large Numbers.  
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INTERACTING AGENCIES AND THEIR INFLUENCE ON 

EMOTIONAL EXPERIENCES 

Sean Chorney 

This research report adopts a theoretical perspective of interacting agencies when 

a student engages with a mathematical digital tool.  Adopting the notion that 

external activity is analogous to inner activity originally posited by Vygotsky, 

students emotional experiences outlined by Leont’ev are analysed. Using the tools 

of discourse analysis as well as the implementation of written reflections outlined 

by Sannino is used to access the inner workings of the student while they engage 

with an exploration activity based within a dynamic geometry environment. 

INTRODUCTION 

This paper is about the role of digital tools in the classroom and their relevance and 

effect in mathematical learning.  Often the computer is viewed as an amplified tool 

but computers, in general, are different from other tools in that they offer numerous 

ways of engagement.  They can function in different ways at different times with 

different users.  This versatility allows users to be expressive and creative: to 

express their agency.  Given this freedom of expression mathematical learning can 

be enhanced or it can be affected negatively.  When the mathematical learning is 

affected negatively, often the student is to blame. Since the student is the central 

figure in an interaction with a tool, breakdown is often attributed to the student.  I 

think that this perspective can have significantly harmful effects on student’s 

personal sense in mathematical activity.  Given the computer’s power and 

versatility, I suggest that the computer imposes its own agency in any interactions.  

I grant agency to the computer in this paper particularly because it can de-center 

our perspective and offer new descriptions of interactions.  Adopting that students 

have agency and granting agency to computers offers a new perspective for 

analysis. 

Papert (1993) describes computer software as an expressive technology.  

Considering their range of possibilities and feedback, the material agency of 

computers is an important topic of study. Computers provide a way to see how 

both technological and social processes interact and present an environment where 

students can make choices.   

I suggest that there are other aspects of tool use that are significant factors in 

students’ engagements with tools:  breakdown, surprise, dismay, shock and 

pleasure are all viable reactions and, I contend, relevant in working with tools.  I 

suggest that the emotional dimension is often absent from the frameworks 

commonly employed in mathematics education.  I also suggest that personal 
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attitudes, feelings, tactile experiences, inefficient use and non-appropriation are 

issues that researchers should consider, especially with regards to sophisticated 

digital tools.  Leont’ev’s (1978) definition of emotional experience is identified as 

the student’s reflection of her motives and the possibility of fulfilling those 

motives.  Saninno (2008) appeals to this definition and states: “This definition 

raises the important and complex issue of tangible manifestations of emotional 

experience and its materialization in action” (p.273).   

My research goal is to understand the dialectical engagement of student agency 

and a dynamic geometry software’s agency, namely The Geometer’s Sketchpad, 

by attending to the interaction emergent in activity.   

THEORETICAL FOUNDATION AND FRAMEWORK 

Traditionally, agency has only been attributed to humans (Giddens, 1984; Dant, 

2005) to indicate their ability to act independently, exercise choice or express 

themselves. This idea of agency is synonymous with intention or will.  There are, 

however, recent extensions of agency such as those proposed by Pickering and 

Malafouris, both of whom include material agency.  Material agency is the act of 

the material, or its influence upon our actions.  According to Pickering (1995), 

there are things in the world, and we interact with them; these things provide 

resistances and obstacles and consequently impose limits upon us.  Pickering 

considers obstacles a natural part of interacting with things, and accommodation 

the most appropriate response to those obstacles.  He points out that scientists will 

accommodate their actions or even their intentions to overcome the obstacle.  Since 

this model depends on the resistances afforded by the material, Pickering also 

argues that scientists’ goals are often not known prior to the interaction.  This issue 

of goal parallels Leont’ev’s idea of motive. Pickering is an important individual for 

two major reasons.  He proposes the construct of material agency and explains its 

relevance, and he presents a perfomative idiom of practice that entails a dialectic of 

agencies. 

This imposition of an obstacle is material agency.   “Agency” is a contentious 

term; the idea of material agency is a fairly new one that many will find 

challenging to identify. Agency, by many accounts (Malafouris, 2004; Coole, 

2010), is an emergent product of activity; Coole states that we need to “rethink 

agency not as an essential characteristic of the rational subject, … but as those 

contingent capacities for reflexivity, creative disclosure and transformation that 

emerge hazardously within the folds and reversals of material/meaningful flesh” 

(p. 113). 

In this paper, “agency” will be defined quite broadly as “essentially who or what is 

the cause of the doing” (Malafouris, p. 23).  It considers “any element which bends 
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space around itself, makes other elements dependent upon itself and translates their 

will into a language of its own” an actor (Malafouris, p. 33).  It asserts that denying 

the agency of non-humans furthers the belief that scientists are the ones that give 

materials life.   

I seek to start a dialogue that addresses some fundamental attributes of material 

influence on students’ experiences in handling and appropriating a mathematical 

tool.  Agency focuses on organic attributes rather than describing rational 

development. Agency is a focus of this study for a number of reasons.   Firstly, I 

contend, agency is a viable and relevant construct to approach “who or what is the 

cause of the doing.”  In the absence of a theoretical account of tools, I suggest that 

agency is a good starting point that may reveal some generative ideas. Secondly, I 

propose that agency is accessible.  This accessibility originates from the activity of 

interlocutors: through discursive analysis, the agency of both the individual and the 

program will be identified. Thirdly, the activity of agency is always existent and, I 

contend, all around us.  Paraphrasing Pickering, there are things going on in the 

world all around us.  This agency may initiate from humans, or it may not.  Finally, 

agency does not focus on cognitive or affective aspects specifically; instead, it 

attends to all forms of behaviour.  If the student is developing in a cognitive sense, 

that development may be accessible by attending to their choices and actions, their 

agency in action.  If, however, they are unmotivated, this lack of motivation too 

will likely be identified by expressions of agency.   

The purposes of this study are, first, to look at this interaction of agencies in this 

process of activity, and, second, to consider the end result of the activity and 

interpret the process in terms of the student’s experiences and the material 

influences on that experience.   

Part of Pickering’s argument is that the scientist could not achieve much on their 

own; that is, they need materials to perform.  Although Pickering does not 

elaborate, it seems that this point indicates that materials do not just resist but can 

enhance performances as well.  His analysis offers an important aspect to consider 

in the formation of progress and growth.  His simple model can be put simply as 

follows: materials can be understood as having agency when their structures, 

make-up and design restrict the subject within a context of activity.  

The attitude shared by the aforementioned researchers lays a foundation for 

describing mathematics as a discipline of negotiation, of conjectures, and of 

exploration. It also posits the view that often what students say reveals more than 

just propositional conjecturing: it reveals a declaration of agency. 

I align myself with the view that the learning of mathematics is an activity of 

negotiation and activity.  Learning mathematics involves more than accepting or 
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memorizing specific facts.  As opposed to an accommodation and transfer 

paradigm, mathematics is developed in the communication and practice of 

investigations and/or problem solving.   

METHODOLOGY 

The process by which I will access their reactions, interactions and thinking is by 

using discourse analysis tools.   Discourse analysis is a methodology that emerges 

from a variety of different disciplines and can be used for a wide range of research 

pursuits.  There are tools in discourse analysis, such as voice, deixis, and modality 

that are well suited for this study. As Sinclair and Jackiw (2010) state: “verbal 

representation better allows us to pursue social, rather than cognitive, implications 

in technology design” (p. 154). 

Discourse analysis tools attempt to get at these specific attributes by looking at the 

subject, focusing on the semiotic events and interpreting the activity through 

language.  It is an expressive and social perspective.  It holds that the spoken or 

written word, or any semiotic event, provides a way to access certain aspects of an 

individual’s beliefs, attitudes and commitments.  As Rowland (2000) states, 

discourse analysis provides “language for the explicit communication of thought, 

and… a code to express and point to concepts, meanings and attitudes” (p. 3).  

In addition to discourse analysis I also consider a method of data collection 

implemented by Sannino.  Sannino (2008) identifies a gap in discourse analysis 

and activity.  In dealing with the aspect of Vygotsky’s (1978) notion of inner 

speech, she addresses the need to access both external and internal conversations.  

While Sannino primarily focuses on conversations with others or oneself, I extend 

the idea of conversation to one that addresses the interaction of agencies, including 

the agency of materials.   I will implement her method of collecting of data as an 

investigation addressing “two ‘dialogues’ unfolding over time, one external (the 

interactive process) and the other internal (the intra-active process)” (p. 276).  

After the activity is complete, students will be asked to write a detailed description 

of their experience with the software program.  This particular method has its 

limitations but to approach this writing with the intention of contextualizing the 

activity in relation to their own recollection is a method that goes beyond external 

expression and has the potential to access inner speech.  Sannino makes the point 

that often such an autobiographical account will attend to critical features of the 

interaction that can be re-analyzed by the researcher in the context of the activity. 

The computer expresses its agency in major ways: on the one hand, it changes 

practices; on the other, its potential for interaction, expression and connection with 

the reciprocating individual makes it a powerful agent in the mathematics 

classroom.   



52 Proceedings, MEDSC 2011  
 

RESEARCH CONTEXT AND PARTICIPANTS 

Data collection took place in a Vancouver high school with students working with 

The Geometer’s Sketchpad (GSP).  Students worked in pairs and were presented 

with the following problem: 

  

You are given a quadrilateral ABCD. Construct the perpendicular bisectors of its 

sides: a of AB, b of BC, c of CD, d of DA. H is the intersection point of a and b, M of 

b and c, L of c and d, K of a and d. Investigate how HMLK changes in relation to 

ABCD. Prove your conjectures (Olivero & Robutti, 2007). 

 

Data was collected by means of a software capturing software, SMRecorder.  

SMRecorder recorded all the activity on the screen as well as recorded the verbal 

utterances of the two students. 

The students started from an initially blank screen, a new file.  They constructed 

the initial quadrilateral and then were expected to make conjectures.  They spent 

approximately 40 minutes working on the construction and conjecture component 

of the activity.  After the activity, the students were asked three days later to write 

reflections of their experiences.  In general, students were relatively successful in 

finding at least one correct conjecture.  The following is an analysis of one 

particular interaction between two students, Chris and Adrian. 

Chris and Adrian constructing and conjecturing 

This data represents some short excerpts of students’ work.  Adrian had control of 

the mouse. 

In the initial stages, Adrian constructed the quadrilateral, Chris watched as Adrian 

inadvertently added some extra labels to the diagram. 

1 Adrian: No, what is this?  Giggling, laughing 

2 Chris: Get rid of these letters (pointing)…(after watching Adrian unsuccessfully 
attempt to delete the extra labels)…don’t worry about it. 

3 Adrian: Let’s just move them.  No, no, no, no! 

4 Adrian: You want to start a new file? 

5 Chris: Ya, let’s start over.  

While Adrian builds and labels the quadrilateral, a few extra clicks of the mouse 

bring some new labels that are difficult to delete or hide.  He spends a few minutes 

attempting to delete these extra labels, in the process, he creates some more.  This 

aspect of GSP is annoying as they both indicate later in their reflection.  Mistakes 

like this should be easily rectified with <ctrl><z>; however, in this particular case 

it is not.  The reactions here indicate that Adrian and Chris were both surprised as 
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well as experienced a challenge to their original motive.  They decided to start a 

new file as indicated in line 5.   

Further on in the activity Adrian is measuring each angle that he considers relevant 

and he uses the calculate menu item to add angles to identify which angles add to 

180 degrees.   In his attempt to clean up all the angle measurements he begins to 

delete the individual angle measures and keeps only the summation expressions.  

But when he deletes the individual angles the summation statements disappear as 

well.  
6  Chris:  Dude! 

7  Adrian: Oh….wait, no…that disappears too. 

8 Chris:  Let’s start over. 

Adrian and Chris are challenged as they explore the image for relationships.  

Moving and dragging for a few minutes, Adrian is trying to see something.  He 

pulls and drags the points from one end of the screen to the other in an attempt to 

identify some relation and but the diagram implodes and explodes and Adrian falls 

into a trance. 

9  Chris: Come on stop it, put it back. 

10  Adrian:  That’s very intense. 

Chris gets a bit frustrated with Adrian having complete control of the mouse and 

starts to draw the image on paper.  He cannot see the complete diagram on the 

screen and asks Adrian to manipulate the diagram so that he can see the whole 

image. 

11  Chris :  Can you change it so that I can see all the dots? …Ya, okay.  

Adrian expands his diagram so that one of the vertices moves off the screen. 

12  Chris:  Where’s F?  

13  Adrian:  It’s way out there.  (pointing).  

These episodes indicate evidence of both material and personal agency.  The 

utterances “Let’s start again” (line 5 and 8) or “Let’s just move them” (line 3) both 

employ the “I” voice, indicating an expression of agency from the student’s 

perspective.  Questions or expressions such as “No, what is this?” (line 1) or “ 

Where’s F” (line 12)  are examples of manifestations of material agency.  The 

students are not in control, nor do they know why something is occurring the way 

it is, as in line 1.  There are some references to the things on the computer screen 

as indicated by expressions such as “put it back” (line 9) or “Can you change it…” 

(line 11).  The students are accepting the “it” of the computer to act.  From a 

discourse analysis perspective, their voice clearly varies between an “I” voice and 

an “it” voice.  



54 Proceedings, MEDSC 2011  
 

DISCUSSION  

Comparing a static traditional diagram experience with the practices of interaction 

on a computer is radically different.  Although Chris is not in contact with the 

mouse or has any control over the construction he is involved in the experience.  

Adrian and Chris are sharing the computer screen. They are both able to share the 

same visual experience.  Just this fact alone speaks to the agency of the computer.  

Without the computer screen visible to both students, their shared experience 

would be different.  The material in this context provides a common medium in 

which most activity takes place.  This common media provides a shared experience 

but also a challenge of agency, for example, when the pair does not agree to the 

necessary action such as in lines 6 or line 9.   

As indicated in lines 6 through 8, Adrian and Chris use the measurement tool along 

with the summation operation to determine if any of the angles they are working 

with are supplementary.  This is a radically different practice than more traditional 

roles of deductive reasoning. While a static diagram may impose the expectation of 

“seeing” supplementary angles, GSP, in this case, supports a very different action.  

The students measured all the angles and then identified supplementary angles by 

way of combining numbers together.  So noticing that angle ABC=45.2 degrees 

and angle GHI=134.8 degrees was the method of identifying supplementary 

angles.  In a static diagram this method may not be as justified because the sum of 

the measurements of the angles may not remain 180 degrees.  But in GSP, the 

students were able to alter the diagram by dragging and noticed that the angles 

stayed relatively the same. 

 

Another observation of interest was observed in how the students chose to redo 

their constructions. This particular action is an important aspect of the computer as 

it allows for a new approach to constructed work.  One can always get rid of a 

paper construction but to recreate the image would be as time-consuming as the 

original attempt.  On the computer, the re-creation may happen much faster as the 

tools, the menu items for example, are known and are familiar, as was the case 

with Adrian and Chris.  In line 5 and in line 8, there was no hesitation to recreate 

the diagram already created.  

 

In the presented episodes there is also evidence of emotional experience.  As 

Leont’ev indicates, emotional experience is a reflection upon one’s motives.  There 

were examples in these episodes where motives were changed.  In an effort to 

clean up the organization of the data presented on the screen, Adrian attempted to 

delete individual angle measurements.  In recognizing that the summation 

statements were also deleted, Adrian stopped that action. Expressions of “Dude!” 
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(line 6) indicate that there is a challenge to one’s motive and a corresponding 

feeling of frustration from Adrian who question his actions in line 7.  These 

feelings of frustration were confirmed in Adrian’s reflections written a few days 

later.  Pickering identifies this as a resistance and identifies a need for 

accommodation.  

CONCLUSION 

The inner activity of the students is one of dealing with resistance and 

accommodation.  These manifestations occurred in the form of starting over, 

getting excited, identifying with the points, getting frustrated and altering motives.  

The students are not only interacting with a tool, their emotional experiences are 

not just innate expressions but reactions to manifestations of agency from an agent 

that does not necessarily act predictably.  The fluid dynamic activity with the 

technological tool allowing for instant feedback offered an environment of 

exploration and an opportunity for expressing agency.  
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A CASE STUDY: 

STUDYING, SELF-REPORTING, AND RESTUDYING BASIC 

CONCEPTS OF ELEMENTARY NUMBER THEORY 

O. Arda Cimen & Stephen R. Campbell 

 

The objective of this case study is to look in depth into personal factors affecting 

metacognitive monitoring and control in self-regulated study and restudy of basic 

concepts of elementary number theory. We incorporate a wide spectrum of 

observational methods enabling us to record overt behaviour, psychometric 

questionnaires, and covert behaviour related to various psychophysiological 

responses. All this is applied toward an attempt to gain deeper insights into 

personal factors implicated in motivation, metacognition, and beliefs, pertaining to 

self-regulated learning and mathematics anxiety. Ultimately, our aim is to provide 

“learner profiles” that can be used to better inform assessment and tailor 

instructional design and mathematics education research. 

OBJECTIVES 

The broader objective of this investigation is to look in depth into personal factors 

affecting metacognitive monitoring and control in self-regulated study and restudy 

of basic concepts of elementary number theory. The specific objective of this 

investigation is to begin doing so with a single case study. What is unique about 

this investigation in educational research is that we incorporate a wide spectrum of 

observational methods, enabling us to record overt behaviour using audiovisual 

techniques and psychometric questionnaires, and covert behaviour related to 

psychophysiological responses of various organs, including brain, heart, lung, and 

skin, along with muscle response and eye movement. We further augment our 

observational control by presenting our stimuli via computer and using screen and 

keyboard capture. 

Our justification for this more rigorous approach to behavioural control stems from 

a theoretical framework that views cognition and learning as embodied. 

Accordingly, recording and integrating embodied behavioural responses should 

shed light on cognition and learning that would otherwise remain hidden using 

more limited traditional techniques such as field notes and audiovisual recordings. 

In essence, this observational approach is to audiovisual recordings as the latter is 

to studies relying solely on field notes (e.g., Campbell, 2010). 

We focus here on study and restudy of basic concepts of elementary number theory 

that include the division theorem, divisibility, divisibility rules, factors, divisors, 

multiples, and prime decomposition (Campbell & Zazkis, 2002; Zazkis & 
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Campbell, 2006; Campbell, Cimen, & Handscomb, 2009). Our aim is to gain 

deeper insights into personal factors affecting study and restudy of this material, 

interjected with self-reports of judgments of learning (Nelson, Dunlosky, Graf, & 

Narens, 1994). 

THEORETICAL FRAMEWORK 

All methods of observation and measurement have intrinsic limitations. Hence, it is 

not the case that every nuance of learning and lived experience will be observable, 

measurable, or identifiable in brain and body behaviour. Rather than attempting to 

seek out and identify psychophysiological manifestations for various subtle aspects 

of thinking and learning, we will likely meet with greater success in applying our 

various means of observational control to matters involving experiences that are 

more intensely embodied, such as anxiety. Indeed, the very fact that anxiety is such 

a deeply embodied phenomenon, to the extent of being physically disabling, in 

itself warrants inclusion of psychophysiological methods into our repertoire of 

observational methods. We expect to see evidence of anxiety, for instance, with 

increases in heart rate and respiration (e.g., Kelly, 1980; Dew, Galassi, & Galassi, 

1984). Accordingly, we incorporate methods from psychophysiology with more 

traditional observational methods in educational research.  

METHODOLOGY 

We have chosen to focus on some basic concepts of elementary number theory for 

a number of reasons. First, it is our views that concepts of elementary number 

theory, especially with regard to division and divisibility, have a natural role to 

play in helping elementary and middle school students make the transition from 

arithmetic to algebra (Campbell, 2001).  

Our instrument for investigating metacognitive monitoring and control of study-

restudy of basic concepts from elementary number theory, comprised six pages of 

subject matter content delivered using gStudy (Perry & Winne, 2006). This subject 

matter content for study-restudy was specifically designed to involve three levels 

of learning: the first involving computation (C), the second involving 

understanding (U), and the third involving reasoning (R). Our participant was 

allowed to study this material at her leisure. The study material was then presented 

to our participant in a manner that highlighted different parts thereof (Figure 1), 

enabling her to provide a judgment regarding her learning (JOL), i.e., whether she 

understood that content very well, well, or not well. Once this was done, she was 

given an opportunity to restudy the material in preparation for a test. 
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Figure 1: Screen capture of participant indicating JOL 

Our model for interpreting our data on metacognitive monitoring and control is an 

adaptation of Elliot (1999) and Elliot and McGregor’s (2001) motivational 

distinctions between mastery-performance and approach-avoidance, fused with 

Nelson et al.’s (1994) notion of self-reported judgments of learning (JOLs) 

resulting from metacognitive monitoring (Figure 2).  

 Mastery / intrinsic 

motivation 

Performance / extrinsic 

motivation 

Approach / taking time JOL: not well understood JOL: very well understood 

Avoidance / not taking 

time 
JOL: very well understood JOL: not well understood 

Figure 2: Metacognitive monitoring and control of content and time allocation for 

study-restudy 

We understand ‘mastery-approach’ to represent taking time in restudy to learn 

something for its own sake that was judged to be not well understood, whereas 

‘mastery-avoidance’ represents not taking time for restudy of content judged to be 

well understood. ‘Performance-approach’ serves to better consolidate content 

judged as well understood, whereas ‘performance-avoidance’ represents not taking 

additional time to restudy content considered poorly understood. Accordingly, 

‘mastery’ and ‘performance’ represent intrinsic and extrinsic motivation 
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respectively, and ‘approach’ and ‘avoidance’ represent time allocated to study-

restudy.  

DATA SOURCES AND EVIDENCE 

Behavioural data 

Using a 64-channel BioSemi EEG system enabled us to examine the average 

power in different frequency ranges generated by our participant during the study 

and restudy periods (Kahana, 2006). Our participant was also “wired up” to 

monitor fluctuations in heart and respiration rates. We presented the gStudy 

stimulus to our participant using a Tobii 1750 eye-tracking monitor, which detects 

reflections of infrared light pulses on a participant’s retina to precisely trace what 

is being looked at from moment to moment.  

An ultra-sensitive microphone allowed for highly sensitive recordings of think-

aloud narratives. Infrared video cameras recorded important aspects of the 

participant’s behaviour, such as facial expressions and body movements, from 

three vantage points. Several steps were taken to maximize the accuracy of eye-

tracking data of the study-restudy material such as increasing font size and spacing 

of the study material. Data streams were integrated, time synchronized and 

analyzed using Noldus’ Observer XT (Figure 3). We relied on cross-calibrating 

audiovisual, eye-tracking, and other data to ensure we were selecting behavioural 

data for analysis at the appropriate times (Campbell & the ENL Group, 2007). 

 

Figure 3: The integrated and synchronized data set on Noldus Observer XT 

Self-report data 

The participant gave informed consent. She filled out a demographic questionnaire. 

Pre- and post-questionnaires were used prior to and after engaging our participant 

in the study-restudy activity. Pre-questionnaires, we do not go into detail here, 

included the Motivated Strategies for Learning Questionnaire (MSLQ) (Duncan & 

McKeachie, 2005), the Epistemic Belief Inventory (EBI) (Schraw, Bendixen & 

Dunkle, 2002), the Metacognitive Awareness Inventory (MAI) (Schraw & 
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Dennison, 1994), and the Math Anxiety Rating Scales (MARS) (Derek, 2003). A 

pre-questionnaire was also given that was designed to gain insight into how 

comfortable the participant was with her abilities regarding calculation, reading, 

recall, comprehension, and reasoning.  

After completing the pre-questionnaires, the participant engaged in the study 

component of the experiment.  Following completion of this initial study period, 

the participant labelled their judgments of learning (JOLs) pertaining to how well 

she learned computational, conceptual, and inferential aspects of the study 

material. After labelling the JOLs, the participant was given a 10-question 

true/false test on the study material and asked to rate her confidence in her answers 

on a scale of 0-10. Following a short rest, the participant engaged in restudy of the 

material and then rewrote the same test. Finally, the participant filled out a 

metacognitive post-experiment questionnaire pertaining to her experiences in the 

experiment. 

Participant 

The participant was a 22-year-old female undergraduate student (in Molecular 

Biology) with a Vietnamese background. Her overall health was self-reported as 

good (no anxiety disorders or symptoms and no physical problems). After the 

observation she reported being “a little worried that it was going to be hardcore 

math theory that was being tested on the exam part” before the observation.  

RESULTS 

The participant’s average heart rate for the study period was ~75.1 beats per 

minute (bpm), and reduced to ~69.0 bpm for the self-report period, and reduced 

further to ~67.0 bpm for the restudy period of the same subject content material. 

Her respiration rates were ~20.3, ~18.0 and ~17.8 breaths per minute for the study, 

self-report and restudy periods, respectively, while her respective eye blink rate 

over those three time periods were 37.5, 16.0, and 34.3 blinks per minute. These 

values are summarized in Table 1. 

 Time Spent 

(seconds) 

Heart Rate 

(beats per minute) 

Respiration rate  

(breaths per minute) 

Eye Blink Rate 

(blinks per minute) 

Study  608 ~75.1 ~20.3 37.5 

Self-Report 278 ~69.0 ~18.0 16.0 

Restudy  98 ~67.0 ~17.8 34.3 

Table 1: Time and physiological data summary for study, self-report, and restudy 

periods 
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Considering that heart rate is a strong indicator for the level of stress and anxiety 

(Kelly, 1980; Dew, Galassi, & Galassi, 1984), the results clearly indicate that the 

participant was less anxious, i.e., more relaxed, for the restudy period, in 

comparison with the study period.  

During the self-report period, the participant was re-shown the six pages of study 

material with items highlighted and she was asked to report her judgment of 

learning (JOL) regarding them (35 in total). She was asked to choose among three 

options per case for her self-reporting: not well, well and very well (Figure 1). We 

substituted scores of -1 for not well, 0 for well, and +1 for very well. We then 

tallied this scoring to give us a total JOL confidence indicator of +11. 

All the JOLs labelled by the participant as “not well” learned involved 

calculations, and our data indicates she did not spend much time on these tasks. 

Hence, in accord with Table 1, the participant can be classified as having a 

‘performance-avoidance’ orientation in this regard. The participant reported she 

learned most of the understanding tasks very well, while reporting most reasoning 

tasks she had learned well or very well.  

Question 
Question 

Type 

Test 1 

Results 

Test 1 

Confidence 

Test 2 

Results 

Test 2 

Confidence 

Question 

Type 

Number 

Theory pre-

questionnaire 

1 Calculation Incorrect 7 Correct 8 Calculation 3 

2 Calculation Correct 10 Correct 10 Calculation 3 

3 Understand Correct 10 Incorrect 10 Understand 4 

4 Understand Correct 10 Correct 10 Understand 4 

5 Reasoning Incorrect 9 Correct 10 Reasoning 3 

6 Reasoning Incorrect 10 Incorrect 10 Reasoning 4 

Table 2: Number theory test and questionnaire results 

Table 2 summarizes our results from the test that was administered after the study 

period together with the results from the same test, which was administered once 

again after the restudy period. These results align well with results of her self-

assessment from the Number Theory pre-questionnaire. She reports her level of 

comfort on a scale of 1 (not comfortable at all) to 5 (completely comfortable), with 

calculation tasks as 3, while reporting her level of comfort with understanding 

involving recall and comprehension as 4, and with aspects of reasoning as 3.5. Test 

results substantiate these reports, reiterating she is less confident with her answers 

with calculation tasks compared to understanding and reasoning tasks. Although 

she reports a higher confidence for reasoning tasks, she is less successful on this 
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type of task compared to understanding, which she self-reported prior to the 

study/restudy periods as being most comfortable with. Again, our JOL indicates 

she spent less time on the pages that involved calculation.  

Another interesting result was the answers provided on the Number Theory Post-

Questionnaire, which was directed to her after restudying the material. She stated 

that learning the task was not interesting for her (ranked 0 out of 7) and it was not 

challenging for her (ranked 2 out of 7). She indicated that, she restudied the items 

she found most difficult to understand. These answers indicate in this regard that 

she is a mastery-oriented learner when it comes to subject content involving 

understanding and reasoning. 

DISCUSSION AND CONCLUSIONS 

Based on the comparison of heart rate for the self-report and restudy periods, the 

results also indicate that reporting JOLs might help reduce the level of anxiety. The 

self-report data substantiates itself and the behavioural data substantiates itself. 

What about the EEG data? How might they further inform our learner profile for 

this participant? It is well established that various frequency ranges of 

electromagnetic energy, generated from various regional sources in the brain, 

correlate in statistically significant ways with various aspects of cognitive function 

(e.g., Kahana, 2006). The neural efficiency hypothesis suggests that experts exert 

less energy in performing cognitive tasks than do novices (Grabner, Neubauer, & 

Stern, 2006; Klimesch, 1999; Shipulina, Campbell, & Cimen, 2009). We have 

acquired similar data sets from other individuals and are in the process of 

expanding this study accordingly. 
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TOWARD UNDERGRADUATE STATISTICS STUDENTS’ 

CONCEPTIONS OF VARIABILITY IN A DYNAMIC 

COMPUTER ENVIRONMENT 

George Ekol  

In an empirical study, students were asked to describe five key terms used in the 

measurement of variability. The interviews were videotaped and analysed using a 

“thinking as communicating” framework (Sfard, 2007). Results confirm earlier 

findings that students have quite sophisticated metaphors when describing terms 

not directly related to statistics. With regard to statistical terms such as ‘the mean’ 

and ‘standard deviation’, they were more likely to state a formula or procedure 

than provide a conceptual description. I propose that having fewer conceptual 

models and metaphors is one of the major challenges students face in 

understanding measures of variability. These findings have led me to design and 

test dynamic computer models (reported in another paper), to contribute to 

students’ conceptual understandings of variability. 

INTRODUCTION 

Research in statistics education over the last two decades has drawn attention to the 

importance of statistical thinking, reasoning, and literacy (STRL) (see for example 

Garfield & Ben-Zvi, 2008). The focus on STRL is partly motivated by the need to 

prepare students to cope, and make rational decisions, with the increasing amount 

of data and information that they encounter on a daily basis. Many mathematics 

educators, statisticians, and statistics educators agree that the understanding of the 

concept of variability is central to developing and sustaining STRL in statistical 

learning. However, studies have shown that undergraduate students have serious 

challenges with the concept of variability (del Mas & Liu, 2005; Garfield & Ben-

Zvi, 2008; Mathews & Clark, 2003). Mathews and Clark (2003, cited in Garfield & 

Ben-Zvi, 2008), interviewed undergraduate students who achieved an A-grade in 

their college statistics course and found that they had difficulties with the concept 

of standard deviation. I speculate that part of the challenge is because many 

students tend to rely more on statistical symbols and formulae, rather than on what 

the symbols actually mean. Moreover, based on Mathews and Clark (2003), I 

propose that another difficulty is due to a lack of models and metaphors to support 

students’ understandings of the basic ideas underlying the symbols.  

Using Java software, del Mas and Liu (2005) designed a computer model to 

examine students’ understandings of standard deviation. In this model, pairs of 

different bar graphs were used with their mean values given. However, only one of 

the pairs of bar graphs had its value of standard deviation shown. The researchers’ 
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objective was to gauge students’ abilities to coordinate characteristics of variation 

about the mean with the size of the standard deviation as a measure of that 

variability. The study revealed that most of the students used a rule-based approach 

to compare variability across distributions instead of reasoning from a conceptual 

representation of the standard deviation. Moreover, their explanations were often 

based on finding a single value between the two graphs, rather than reasoning 

about the size of standard deviation by focussing on the spread of data around the 

mean.  

The study recommended more research in developing models that might help 

students move from a rule-based approach to a more integrated understanding of 

variability, which is generalizable to a variety of situations. In addition to that, I 

suggest that more research is needed to expand the theoretical framework for 

analyzing data obtained from dynamic computer-based models. The current study 

extends del Mas and Liu’s (2005) work by modifying the computer environment 

and making it more interactive and dynamic. The study extends the theoretical 

perspectives to include the role of movement, including gestures, in understanding 

human thinking and the strong connection between gesture and language (Seitz, 

2000; Sfard, 2007).  

The study is motivated partly by my personal interest in data analysis and by my 

work experience as a teaching assistant at a Canadian university. As a teaching 

assistant in the Department of Statistics and Actuarial Science, I noted that students 

had difficulties stating concepts of introductory statistics in their own words. 

Related studies indicate that part of the difficulty is because students do not have a 

firm understanding of the prerequisite statistical concepts such as ‘centre’, ‘mean’, 

‘distribution’, and ‘standard deviation’ (del Mas & Liu, 2005; Garfield & Ben-Zvi, 

2008). The purpose of this study is to investigate how undergraduate students talk 

about variability. Of relevance are the role of gestures in understanding human 

thinking and the strong connection between gestures and language. I will therefore 

use gestures in understanding how undergraduate students conceptualize 

variability. Using Sfard’s (2007) proposition that thinking and communicating are 

one and the same thing, I examine what roles gestures and language play in 

communicating statistical ideas. 

A second motivation relates to the growing research in statistics education on the 

use of computer-based technologies offering dynamic tools for learning statistics. 

These learning tools could be designed in dynamic geometry and dynamic statistics 

environments, or they could be sourced from the many web-based graphics tools 

and applets. I am particularly interested in understanding the connection between 

motion and human intelligence in light of Seitz’s (2000) claim that motor activity 

is the basis of human intelligence. A similar argument, although not directly 
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related to mathematics education, is credited to Talmy (1996), who from the 

analysis of written and spoken words, proposed that humans often describe static 

objects as if they were in motion. For example, a student describing the centre of a 

data set as “a gathering place” indirectly imposes motion on the data, by moving 

the data points to a central collecting point or the gathering place. Using Talmy’s 

notion of “fictive motion”, a situation in which otherwise static objects are thought 

of as if they were moving, Núñez (2006) analyzed mathematical speech and found 

many instances of fictive motion, even if the objects were defined as static and 

having no sign of movement. Given the links between gestures and dynamic 

aspects of human thinking, another goal of this study is to examine what roles 

gestures play in students’ understandings of variability. Importantly, I am also 

interested in the contribution of dynamic models to students’ conceptual 

understanding of variability.  

Conception of ‘variation’ and ‘variability’ 

The term ‘variation’ is closely associated with the concepts of ‘variable’ and 

‘uncertainty’. ‘Variability’ is a quality of an entity to vary, including variation due 

to uncertainty or chance (Makar & Confrey, 2005). In this study, ‘variability’ is 

taken as observable characteristics of a variable or an entity and ‘variation’ is the 

quantification or measuring of the amount that data deviate or vary from the centre, 

specifically from the mean (Reading & Shaughnessy, 2004). Describing 

‘variability’ in this way calls for an understanding of statistical concepts such as 

‘distribution’, ‘arithmetic mean’, ‘deviation’ and ‘standard deviation’ (del Mas & 

Liu, 2005). However in this study, I expand the list to include six terms: ‘distance’, 

‘centre’, ‘distribution’, ‘deviation’, ‘mean’, and ‘standard deviation’ and apply 

them to the measurement of variability. For the purpose of this paper I will use 

only five of them.  

Specifically the study addresses itself to: What changes might occur in students’ 

thinking about the concept of variability, from static representations to more 

dynamic representations, afforded by dynamic computer-based models? I will use 

Sfard’s (2007) theory, which links thinking to communicating. I hypothesize that 

the dynamic models might contribute to students’ thinking and talking about 

variability in a more “dynamic” way. For example, students will impose fictive 

motion on otherwise static statistical objects. Furthermore, I speculate that 

dynamic models might provide students with a rich collection of conceptual 

metaphors to support their understanding of variability. Finally, I propose that after 

interacting with models, students will refer less to symbols and formulae when 

describing measures of variability such as the mean and standard deviation.  

METHODS 
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Participants and setting 

Participants were undergraduate students registered in three sections of an 

introductory statistics course at a university in British Columbia, Canada, where I 

was a graduate student and worked as a teaching assistant. The sections were 

taught by different instructors in the Department of Statistics & Actuarial Science. 

Selection for the interview was done randomly from students who attended classes 

in any of the three sections. Participants represented a wide range of interest in 

their major areas of study, including health science, engineering, business, 

computer science, criminology, psychology and education. To ensure uniformity, 

the interviews were conducted after students had already covered the relevant 

topics, including the mean and standard deviation, in their statistics classes. Each 

participant was interviewed only once for about one hour. The interview session 

comprised two segments:  non-dynamic and dynamic. 

Non-dynamic segment  

In this segment, participants were asked to say what they thought of the terms 

‘distance’, ‘centre’, ‘mean’, ‘deviation’, and ‘standard deviation’. The interview 

had only one open question: “What comes to [your] mind when you hear the 

word…?” All interviews were video recorded and transcribed. 

Dynamic segment  

The dynamic segment of the interview is not reported in this paper because of page 

limitations. However, an outline of the dynamic models is presented below in 

pictorial form. Dragging (moving data with the mouse from one point to another) 

was the main activity by participants during the dynamic segment of the interview. 

  

Figure 1: The GSP window showing point C 

on the square moved to C′ by dragging, during 

the testing stage. 

Figure 2: The GSP window showing the 

dynamic model for the mean and standard 

deviation before data points are moved on the 

horizontal axis. 
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Figure 3: The GSP window showing much 

variability in the data before moving the data 

points 

Figure 4: The GSP window showing least 

variability in the data after moving the data 

points. 
 

 
 

Figure 5: The GSP window showing high 

variability in the data distribution shown by the 

“flat” curve located just above the horizontal 

axis. 

Figure 6: The GSP window showing almost no 

variability in the same data shown by the 

“smooth” bell curve. 

 

RESULTS AND DISCUSSION 

The transcript analysis of the non-dynamic interview focused on categorizing and 

describing how students explained the terms ‘distance’, ‘centre’, ‘mean’, 

‘deviation’, and ‘standard deviation’. In the transcript below, the abbreviation ‘Int’ 

stands for the interviewer, while each student is given a pseudonym. Square 

brackets […] indicate that a sentence is either incomplete or the student voice was 

not audible. Finally, curly brackets {…} indicate that a sentence has been 

shortened. 

Students’ descriptions: 

‘Distance’ as “one point to another” 

Int:   What comes to mind when you hear the word ‘distance’? 

Kim:   The points of, you mean the distance related to points or just physical 
distance? [stretches her arm]. 

Int:    The word distance. 

Kim:  Just distance? Ok in physical size, distance just means two places […] 
distance, I think for linear distance, is just one point to… another [moves 
hand ], um I’m not sure the terminology is like it’s a vector […] 

Kim’s use of gestures makes distance to have some temporal quality. Her 

references to “physical distance” and “one point to another”, accompanied by hand 

movements, also carry the urgency of time and motion in space.  

For Remi, distance is a number plot, 

Remi: [Distance is] a number plot […], ah like a plot of numbers [moves  

his hands], a distance between them {…}. 
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Like Kim, Remi’s descriptions of distance are also accompanied by gestures, 

mainly hand movements.  

‘Centre’ as “a gathering place” or “something popular” 

Then students were asked to talk about ‘centre’. 

Int:   What about the word ‘centre’? 

Kim:   Centre just means a gathering place, the word like centre can mean 

something popular {…}  

Kim’s description of ‘centre’ as a “gathering place” or “something popular” was 

accompanied by hand movements which portrayed the activity of “gathering”. The 

word ‘gathering’ itself implies an activity of moving oneself, or moving an object 

to a common point. It can, however, also be argued that something popular is 

bound to attract people’s attention, resulting in people, either physically moving 

there, or turning their head to watch the popular thing. Either way, Kim’s 

description imposes motion on the word ‘centre’.  

Remi, on the other hand, used the phrase “a bull’s eye” as a metaphor to describe 

the word ‘centre’, and he also frequently moved his hands and body as he talked 

about ‘centre’. 

Int:   What about the word ‘centre’? 

Remi: Centre is more like a bull’s eye [makes a small circle in space with his 

finger] that’s what comes to mind […] 

Int:  Bull’s eye? 

Remi:  Yeah, a bull’s eye, like the targets, and they have like a, they have like a 

[…] [moves his right hand] 

Remi proceeded to draw a circle on paper and marked a point in the centre of the 

circle to illustrate his idea of a “target” or “bull’s eye”. A “bull’s eye” is a phrase 

commonly applied with regard to the game of darts. Although there are other 

contemporary uses of the phrase “bull’s eye”, I suspect that Remi had in mind the 

activity of playing a game of darts. The word ‘centre’ in that case is not just a static 

object in his mind, but takes some active usage as well, in a game of darts.  

‘Mean’ as “a sum divided by the number of numbers” 

Int:   What comes to mind when you hear the word ‘mean’? 

Krista:  {…}  The mean is like the average, like um, um, yeah it’s like you add 

[moves two hands around to show adding together] numbers there and 

divide by the digits there are and you just get it. 
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Although Krista focussed on describing the procedure for obtaining the mean 

rather than its conceptual meaning, her descriptions had lots of hand movements. 

Her use of the verbs such as: ‘add’, ‘divide’ and ‘get’, show emphasis on the 

procedure for obtaining the value of the mean. It seems that hand movements 

support both procedural and non-procedural thinking.  

Like Krista, Remi also used similar descriptions such as “adding”, and “dividing”, 

which are procedural with regard to the concept of the mean,  

Int:  How about ‘the mean’? 

Remi: Um, mean the same thing as the statistical thing, yeah pretty much adding 

all the numbers and dividing them by the number of numbers [hand 

movement].  

Remi seems to suggest that as long as a concept is a “statistical” one, there is an 

established procedure for executing it. This is implied in his expression, the “same 

thing, the statistical thing, pretty much adding, and dividing the numbers”.  

‘Standard deviation’ as “how far something deviates from the main point” 

Int: How about ‘standard deviation’? 

Anne:  [Standard deviation is] how far something deviates from a point {…} kind 

of how far [opens her hands] something is from the main point.  

Anne seemed to have referred to most of the previous concepts in her description 

of standard deviation.  By using the phrase “how far”, Anne imposes some 

physical distance on the description of standard deviation. Her use of the phrase “is 

from the main point” clarifies her description even more. I think that by “main 

point”, Anne was referring to the mean or the centre, although she did not directly 

mention the mean. Her response showed some conceptual understanding of 

standard deviation.  

Remi’s description of standard deviation was quite unlike Anne’s because he 

described the symbol for standard deviation, instead of the conceptual 

understanding of standard deviation.  

Int:   What pops up in your mind when you hear the word ‘standard deviation’? 

Remi:  I would think of a symbol, [I] forget the Greek letter, [uses his finger to 

sign in space, the Greek letter sigma(σ)], yeah or maybe there is another 

one, it’s like variance, I would think of that, yeah there is lots of formula, 

more abstract concept, that’s what comes to mind. 

Int: Just abstract, no pictures, nothing graphic? 

Remi:  No, not quite, just [moves his right hand as if to say he had nothing more to 

add]  
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Remi’s symbolic descriptions of standard deviation are quite consistent with his 

earlier descriptions of the mean. It is not obvious what Remi meant by saying that 

standard deviation is a “more abstract concept”. In any case, he was not going to 

say any more about standard deviation during the interview. I can only speculate 

that Remi meant the concept of standard deviation is a challenge to describe in 

one’s own words. This is not surprising because, as was mentioned at the 

beginning of this paper, studies have reported that students find the concept of 

standard deviation extremely challenging (del Mas & Liu, 2005; Garfield & Ben-

Zvi, 2008). According to the data, Remi did not apply any of the terms he was 

asked to talk about in the interview, which might have given him some clue to 

describe standard deviation.  

CONCLUDING REMARKS 

Students’ descriptions of the key words were full of fictive motion, as if they were 

describing moving objects. For instance, Kim talked of ‘centre’ as a “gathering 

place”, implying an activity of moving data to the centre. Similarly, Remi 

described ‘centre’ as “a bull’s eye”, apparently linking centre to a game of darts. 

Based on Talmy’s (1996) notion of fictive motion, an expression which labels a 

static object as though it was moving, I argue that the students’ dynamic 

descriptions of static objects, as if they possessed mobile attributes, mirrored the 

dynamic nature of their thinking. However, dynamic thinking was observed both in 

situations where students only described procedures about the concepts and in 

situations where some students showed a clear understanding of the concepts. I 

propose that dynamic thinking supports both procedural and conceptual thinking. 

Students used well developed metaphors when describing terms which are 

typically more broadly used words. For instance ‘centre’ was variously described 

as: “a gathering place”, “something popular”, “a target”, and “a bull’s eye”. On the 

other hand, purely statistical terms such as ‘mean’ and ‘standard deviation’, did not 

have such rich metaphors. Instead students used symbols and procedures for 

describing ‘mean’ and ‘standard deviation’. Based on previous studies (e.g. del 

Mas & Liu, 2005), I propose that lack of conceptual models and metaphors is one 

of the challenges students have with measures of variability such as the mean and 

standard deviation. The implications of this finding are presented in my next study.  
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THE INTERPLAY BETWEEN DIAGRAMS AND GESTURES  

Shiva Gol Tabaghi 

 

This paper reports on two students’ interactions with a dynamic diagram 

(dynagrams) that was designed to enable students to experiment with geometric 

representations of vectors and their image under different linear transformations. 

In describing their interactions, the students spontaneously used both gestures and 

diagrams. We show how the dynagrams gave rise to new gestures and, in turn, to 

new diagrams—thus confirming Châtelet’s (2000) thesis about the interplay 

between gestures and diagrams, as well as their inventive potential.        

DIAGRAMS IN MATHEMATICAL THINKING   

Mathematics education researchers have highlighted the essential role of diagrams 

in problem solving (Diezmann & English, 2001; Polya, 1957; Nunokawa, 2006). 

These studies focus on the use of diagrams as illustrations or representations of 

problem situations and their role in helping students solve problems. Our research 

considers the diagram not as a mere representation of mathematical ideas and 

relationships but as means to work materially with mathematical objects in 

inventive and embodied ways. 

Most static diagrams that are found in mathematical textbooks could be seen as a 

representation of final results of mathematical ideas. For example, the diagram in 

Figure 1 illustrates the end product of a transformation of two vectors, u and v, 

under matrix A. The diagram is meant to illustrate that v is an eigenvector since Av 

is a scalar multiple of v, but u is not. To correctly read the diagram, one must know 

the eigenvector (v) and its associated eigenvalue (scaling factor) before sketching v 

and Av, whereas u could be an arbitrary vector. This static diagram has a 

representational role since it depicts the geometric representation of the 

eigenvector v and the arbitrary vector u. It neither reveals the process of finding the 

eigenvector v nor does it draw attention either to the invariance property of v (i.e. 

its collinearity with Av) or to the existence of infinitely many eigenvectors 

collinear with v.     

 

Figure 1: Static diagram of vectors and their transformations (Lay, 2006, p.303) 
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We are interested in the use of a diagram as an experiment in which students 

perform processes to develop an understanding of mathematical ideas. This use of 

a diagram is similar to the Ancient Greeks’ use of diagram in which they 

performed their diagrams (Netz, 1999) rather than using them as representational 

tools, such as the one in Figure 1. We are interested in dynagrams for their 

potential to communicate the mobile and temporal aspects of mathematics that are 

often absent from the static diagram. In particular, we examine the way in which a 

dynagram, designed to enable students to find eigenvectors and eigenvalues, 

affects these students’ ways of communicating about these concepts. This interest 

is fuelled by the recognition that visual images—and dynamic imagery in 

particular—are a key component of mathematical understanding (Sinclair & Gol 

Tabaghi, 2010).     

THEORETICAL FRAMEWORK 

Diagrams have played a central role in the development of new mathematical 

ideas, as Châtelet’s (2000) historical investigation shows. These diagrams do not 

simply illustrate or translate an already available content; they invent new spaces 

and new ways of conceptualizing that emerge from the mobile, material acts of 

experimenting on the page. For Châtelet, the diagram is a mid-station from the 

embodied gesture to the more formal mathematics; he writes that diagrams “can 

transfix a gesture, bring it to rest, long before it curls into a sign” (p.10). For 

Châtelet, the gesture is an impulse in a sense that “one is infused with the gesture 

before knowing it” (p.10).  

Gestures have received much attention in mathematics education (Edwards, Radford, 

& Arzarello, 2009), with many researchers drawing on the pioneering work of 

McNeill (1992; 2005), who has shown that gestures are integral to thinking and 

communicating. Within a psychological perspective, McNeill identifies different 

types of gesture: deictic, iconic, metaphoric, beat. In mathematics education, the 

use of metaphoric gestures, which can illustrate abstract ideas, has received more 

attention since they can be used to communicate the developmental process of 

mathematical ideas. Unlike McNeil, Châtelet is less interested in any sort of 

classification or description of gestures—than in the implications of the gesture on 

the diagram. He draws our attention “to the dynasties of gestures of cutting out, to 

diagrams that capture them mid-flight, to thought experiments” (p.10). It is helpful 

to think about how Châtelet could have seen the diagram in Figure 1 in light of his 

theory. The curved dashed arrows are the dynasties of cutting out gestures. Those 

gestures are meant to indicate linear transformation (or mapping); one suggests 

dilation and other rotation although they both have a similar construct. The 

diagram captures or transfixes the cutting out gestures, thus creating a new fold on 

the surface. It is born with the cutting out gestures. No longer are the tips of the 
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curved dashed arrows cleaving to the points Av or Au; the arrows embody the 

effort of abstraction (that is linear transformation of v and u under matrix A) by 

participating in the concrete process of constituting a system of linear 

transformation. It is in this sense that Châtelet calls the diagram (in Figure 1) a 

diagrammatic (or thought) experiment. He writes:    

The thought experiment taken to its conclusion is a diagrammatic experiment in which 

it becomes clear that a diagram is for itself its own experiment. The gestures that it 

captures and particularly those that it arouses are no longer directed towards things, 

but take their place in a line of diagrams, within a technical development (p.12).    

His philosophical view has given rise to more recent hypothesis that working 

systematically with dynamic imagery could increase students’ material interaction 

(see de Freitas and Sinclair, 2011).  This is in contrast to the static and confining 

aspects of textbook diagrams that take away students’ inventive acts by which 

mathematics can be grasped through using gestures and embodiment.  

de Freitas and Sinclair point out that Châtelet emphasizes the relationship between 

gestures and diagrams, while also insisting on the diagram’s capacity to give rise to 

new gestures. In this study our goal is to examine the participants’ interactions 

with the dynagram to learn more about the diagram/gesture relationships. 

METHODOLOGY OF RESEARCH 

This study draws on data collected during a larger study on the effect of dynamic 

geometry software on students’ modes of thinking. Data was collected using one-

on-one semi-structured clinical interviews. Each interview lasted about 30 minutes 

and was videotaped. The participants were two students; Jack was pursuing his 

undergraduate degree in computer science and Mike was completing his Master’s 

of Science degree in secondary mathematics education at a medium-sized North 

American University. They were given a sketch and a worksheet (that included the 

formal definition of the concepts of eigenvector and eigenvalue and the task). The 

eigen sketch enabled them to explore linear transformations of a vector named x; 

by dragging vector x, its image vector, Ax, is being up-dated as the result of 

transformation under matrix A. As shown in Figure 2, the sketch includes a 

draggable vector x, its image vector Ax, and vectors u and v that are representative 

of the column vectors of matrix A. The sketch also includes numeric values of the 

matrix-vector multiplication (Ax).  

 



78 Proceedings, MEDSC 2011  
 

 

Figure 2. A snapshot of the eigen 

sketch 

 

The sketch design allowed them to change the values of the matrix A to create the 

given matrices on the task shown in Figure 3.    

Given a sketch that represents matrix A  and an arbitrary vector x . Double click 

on entries of A to change their values to the givens below, then drag x  to find 

eigenvector(s) and associated eigenvalues(s), if they exist. 
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Figure 3.  The interview task used to collect data 

ANALYSIS OF DATA   

We provide excerpts of the interviews where participants’ discourse accompanied 

by gestures or diagrams. The experts enabled us to respond to our research 

question: what is the effect of dynagrams on the participants’ ways of 

communicating (through gesture and diagram) the concepts of eigenvectors and 

eigenvalues?   

We identify instances of diagram/gesture relationships in participants’ interaction 

with the dynamic diagram. We prefer to use Châtelet’s theory in analyzing the 

participants’ gesture rather than classifying their gesture. This is because it is hard 

to identify a metaphoric gesture from an iconic gesture. According to McNeill 

(1992), an iconic gesture depicts a concrete event or picture, whereas a metaphoric 

gesture depicts an abstract idea. But, we could not determine whether a gesture’s 

referent is concrete or abstract.     

Mike’s interaction with the dynamic diagram: gesturing      

Mike had completed a linear algebra course during his bachelor’s degree and he 

could not recall the concepts of eigenvector and eigenvalue at the beginning of the 

interview. He looked at the formal definition of the concepts on the worksheet and 
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had difficulties making sense of them. He then used the mouse pointer several 

times to indicate the geometric representation of the vectors x and Ax on the 

dynagram as he tried to match the symbolic representations used in the definition 

with the ones used on the dynagram. After putting aside the worksheet, he used his 

right index finger to indicate the vectors x and Ax and also moved his right index 

finger along the vectors u and v shown on the screen as he was tracing the vectors 

from tail to tip. 

Shortly after his interaction with the dynagram, Mike started using the verb “to line 

up”. While he interacted with the eigen sketch to find a set of eigenvectors of the 

third given matrix, he was prompted by the interviewer (1
st
 author) to describe his 

method:  

Mike: Since I want the x to line up with the Ax [drags x in the first quadrant where 

the two vectors overlapped] I am gonna have to find some spot [...] that they go to 

the same direction so if I go around 360 degrees I am interested in the spots like 

there [drags x in an anti-clockwise direction into the third quadrant where x 

overlaps with Ax and then uses line dragging]. 

His use of the verbs “to line up” and “to go” suggests evidence of time and motion 

in his description of the processes that he went through in finding eigenvectors. His 

statement suggests that he concretized the concept of eigenvectors as a special 

vector that lines up with its image vector. This is very different from the static 

symbolic equation, Ax=λx, that is emphasized in the formal definition of the 

concepts of eigenvectors and eigenvalues.  

Towards the end of the interview, Mike used his hands as vectors to illustrate the 

behaviour of the vectors x and Ax. He placed his right hand extended fingers on his 

left hand extended fingers as he said “[...] x and Ax to line up in the same direction, 

[...]”, shown in Figure 4. He then placed his right hand extended fingers pointing to 

right direction on his left hand pointing to left direction, as shown in Figure 5, to 

illustrate collinear eigenvectors that have opposite directions. He also rotated his 

right index finger around, as shown in Figure 6 while he said “I would move x 

around 360 degrees to see if these two cases showed up”.  
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Figure 4. Mike’s hands 

point to the same direction 

Figure 5. Mike’s hands 

point to the opposite 

directions 

Figure 6. Mikes’ index 

finger rotates around a 

circle 

As evidenced, Mike’s gestures were triggered from his interaction with the eigen 

sketch. This confirms Châtelet’s (2000) theory on the diagram/gesture 

relationships in that the diagram—a dynamic one in this case— gave rise to 

gesture. In fact, his hands have become vectors that he moved and positioned them 

to depict the collinear property of eigenvectors. Mike’s gestures and speech 

suggest that he provided an embodied geometric description of finding eigenvector 

as he used his hands as vectors to gesture the geometric representation of x and Ax 

where x is an eigenvector.  

Jack’s interaction with the dynamic diagram: gesturing and diagramming 

Jack had taken a linear algebra course recently (about two months prior to the 

interview). He did not have a difficulty in making sense of the definition, but did 

not remember it completely. Like Mike, he used his right index finger to point to 

the given symbols on the worksheet as he read the definition. He then used the 

mouse pointer several times to indicate the matrix A and the geometric 

representation of the vectors x and Ax on the sketch as he tried to match the 

symbolic representations used in the definition with the ones used on the sketch.  

Shortly after finding the eigenvectors of the first given matrix, I prompted him 

asking about the eigen sketch representation of eigenvectors associated with the 

eigenvalue equal to one. In response, Jack used his hands to represent the two 

vectors as shown in Figure 7. He then brought his hands together and placed them 

exactly on each other (as shown in Figure 8) to illustrate the geometric 

representation of vectors when the eigenvalue was one.  This shows that the use of 

the dynagram enabled him to use his hands as vectors to gesture about eigenvectors 

associated with eigenvalue equal to one. It is noteworthy that he did not use 

gestures when he was looking at the formal definition.  
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Figure 7. Jack’s hands are 

positioned parallel to each 

other 

Figure 8. Jack’s hands are 

exactly placed on each other  

Figure 9. Jack positions 

his hands in an angular 

shape   

Jack also gestured after seeing the dynagram of eigenvectors associated with a 

negative eigenvalue. He positioned his hands extended fingers in an angular shape 

as shown in Figure 9. This again suggests that the dynagram gave rise to new 

gestures for Jack.  

After completing the interview task, Jack was prompted by the interview to dscribe 

how he went about finding eigenvectors. Jack said: “I tried to make x touch Ax” as 

he dragged x in a spiral fashion beginning far from the origin, turning in an anti-

clockwise direction, and ending at the origin. He then drew a diagram to illustrate 

eigenvectors for a negative eigenvalue as shown in Figure 10. He drew this after 

gesturing geometric representation of eigenvectors associated with a negative 

eigenvalue as shown in Figure 9. The interaction with the dynagram enabled him 

to use his hands as vectors and to position them in order to depict the collinearity 

of two vectors. Then, he sketched the diagram of two vectors positioned collinearly 

with opposite directions on a sheet of paper as he tried to describe his 

understanding. This confirms Châtelet’s ideas that “the gesture envelopes before 

grasping and sketches its unfolding long before denoting or exemplifying” (p.10, 

2000).  

Similar to Mike, Jack initially pointed to the symbols and the objects, but did not 

have much sense of what they are. By the end, his hands and arms have become 

the vectors communicating his understanding of eigenvectors. This implies that the 

gestures came right out of his interaction with the dynagram.  
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Figure 10. Jack’s drawing of 

eigenvectors 

DISCUSSION 

At the beginning of the interview, Jack and Mike both used gestures to refer to the 

symbols and the objects on the dynamic diagram. By the end of the interview, their 

gesturing had evolved so that their hands have become the vectors that were 

positioned in specific ways. Incidentally, their use of hands as vectors in describing 

eigenvectors is similar to that of mathematicians (see Sinclair and Gol Tabaghi, 

2010).  

Jack’s case is further interesting, in the context of our study, because he also 

sketched a diagram of an eigenvector associated with a negative eigenvalue on the 

worksheet. His diagram in Figure 10 immobilized his gesture in Figure 9 in order 

to produce on paper an eigenvector associated with an eigenvalue.   

The gestures that came right out of their interaction with the dynagram reveal that 

both Mike and Jack embodied the invariance property of eigenvectors that is the 

collinearity of eigenvectors. In contrast to Châtelet, who is interested in the new, 

inventive diagrams produced by mathematicians (and emerging from gestures), 

here we focus on the new gestures that arise from particular kinds of diagrams. 

With Jack, we also show how the gesture to diagram move can occur. Our findings 

confirm de Freitas and Sinclair’s (2011) hypothesis that working systematically 

with dynamic imagery can increase students’ mathematical understanding.   

Unlike dynagrams, most diagrams that are found in textbooks tend to represent 

final results of mathematical ideas rather than illustrating processes that 

accompanied the development of ideas. The absence of time and motion makes a 

static diagram seem like a representation of a finished process. In contrast, the use 

of dynagrams such as the one described in this study offers students opportunities 

to perform mathematical actions. This perspective of diagrams echoes Bender’s 

and Marrinan’s view of diagrams as process-oriented tools that are situated within 

experience and map “the chain of thoughts and gestures of attention that give them 

meaning” (p.19).  
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We plan to enlarge our understanding of diagram/gesture relationships by studying 

closely the diagramming that occurs after gesturing, and not just diagramming that 

happened spontaneously in the case of Jack’s interaction with the eigen sketch.  

We think that Châtelet’s theory provides an insight of a participant’s mathematical 

understanding and will continue to employ it in our future study to broaden our 

understanding of diagram/gesture relationships.   
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THE EFFECT OF DYNAMIC GEOMETRY ENVIRONMENTS 

ON CHILDREN’S UNDERSTANDING OF THE CONCEPT OF 

ANGLE 

Harpreet Kaur 

This paper reviews literature on children’s understanding of the concept of angle 

and proposes some ideas for a future study which aims at investigating the effect of 

computer-based Dynamic Geometry Environments (DGEs) on young learners’ 

understanding of angle. 

INTRODUCTION  

The concept of angle is a multifaceted concept that can pose challenges to learners 

even into secondary school (Close, 1982; Mitchelmore & White, 1995). Despite 

these difficulties, children show sensitivity to the concept of angle from very early 

years. For example, Spelke, Gilmore, and McCarthy (2011) found that 4- to 6-

year-olds display use of distance and angle information in map navigation tasks, 

leading to the possibility of formation of holistic representations of the geometric 

displays (such that distance and angle are encoded and retrieved together). There 

has been an increasing interest in children’s mathematical understanding acquired 

prior to formal instruction due to increasing stress on linking school mathematics 

to children’s everyday experiences. Angles are normally introduced to children 

quite late in formal school settings. The curriculum document, Mathematics K to 7: 

Integrated Resource Package (British Columbia Ministry of Education, 2007) 

introduces the concept of angle at grade 6, while the students are expected to 

describe, compare, and construct 2-D shapes, including triangles, squares, 

rectangles and circles etc., at the grade 2 level. The strong capacity of young 

children to attend to and identify angles in various physical contexts motivated us 

to investigate their angle conceptualisation in early school years through formal 

teaching with the use of dynamic geometry environments (DGEs). 

The use of computers might be appropriate in teaching the concept of angle in 

early school years. We have been investigating other geometry-related concepts at 

this age too. Previous research has shown that it is possible to develop 

mathematical concepts such as shape identification and symmetry, even at the 

kindergarten level, with the use of DGEs (Sinclair, Moss, & Jones, 2010; Sinclair 

& Kaur, 2011). In the research literature, there is evidence of using a computer 

micro world like LOGO for teaching the concept of angle (Clements, Battista, 

Sarama, & Swaminathan,1996; Simmons & Cope, 1990, 1993). The students 

showed the notion of embodied conception of angle by linking the angle turns with 
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the turns of their bodies. We believe that DGE might be helpful in visualizing the 

angles in the form of turns and rotations more effectively. 

CHILDREN’S UNDERSTANDING OF ANGLE 

In the research literature, the concept of angle is shown to have different 

perspectives, namely: angle as a geometric shape; union of two rays with a 

common end point (static); angle as movement; angle as rotation (dynamic); angle 

as measure; and, amount of turning (Close, 1982; Henderson & Taimina, 2005). 

Due to different prevalent definitions of the term angle, teachers often face 

difficulty in knowing what definition of angle to use (Close, 1982). There are 

always difficulties in showing “where the angle is” in cases of traditional 

geometric shapes of angle.  

 

Figure 1 

In the research literature, Mitchelmore (and colleagues) and Clements (and 

colleagues) have done the most prolific research in the area of angle concept over 

the past twenty years. Much research has been conducted on the development of 

the concept of angles, focusing at the grades 3, 4, and higher levels. Mitchelmore 

and White (1995) suggest that angles occur in a wide variety of physical situations 

that are not easily correlated. Mitchelmore (1997, 1998) conducted an investigation 

of children’s informal knowledge of a variety of physical angle situations. He 

found that children had an excellent knowledge of all situations presented, but that 

specific features of each situation strongly hindered recognition of the common 

features required for defining the angle concept. Mitchelmore and White (1995) 

proposed a framework for research on the development of the angle concept, based 

on the theories of abstraction (Skemp, 1986) and situated knowledge (Brown, 

Collins, & Duguid, 1989). It is suggested that children initially acquire a body of 

disconnected angle knowledge situated in a large number of everyday experiences; 

they then group situations to form angle contexts such as turns and corners; and 

finally they form an abstract angle concept by recognizing similarities across 

several angle contexts. In subsequent studies, Mitchelmore uses the idea of stages 

or levels of understanding.  Mitchelmore and White (2000) identify three stages of 

knowledge about angles:  

• Situated angle knowledge. Knowledge of specific situations where angles are 

observed by the child, for example, a steep hill or a corner.  

A

B

C
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• Contextual angle knowledge. More general knowledge that integrates related 

situations; for example, slope of hill with slope of roof, or turn of a doorknob 

with turn of a jar lid.  

• Abstract angle knowledge. More general knowledge that integrates different 

angle contexts, for example slopes and turns. 

Later works of Mitchelmore with other colleagues involve teaching experiments 

(Prescott, Mitchelmore, & White, 2002; White & Mitchelmore, 2003) in which 

they divide angle situations into three clusters—2 line angles (corners of room, 

intersecting roads, pairs of scissors, body joints), 1 line angles (doors, windshield 

wipers, clock hands, and slopes), and 0 line angles (the turning of a doorknob or a 

wheel). The researchers wrote a sequence of 15 lessons which initially explored 2-

line angles and then moved on to 1-line angles. There were other interesting 

theoretical perspectives offered by Fyhn (2006, 2008) including the angle concept 

embedded in physical activity and real life experiences such as jumping. 

Some misconceptions related to the concept of angle are found in the research 

literature. Students tend to develop the misconception that “longer sides imply 

larger angles” as a result of the intuitive rule “More A–More B” (Stavy & Tirosh, 

2000). The other misconceptions related to angles found in the literature include 

cases like: the size of an angle varies with the length of the arms, the size of an 

angle varies with the size of arc made with the angle vertex as centre, a right angle 

only exists between vertical and horizontal lines, and different orientations of an 

angle is a source of confusion. 

RELEVANCE OF DGES FOR TEACHING OF ANGLE 

DGEs such as The Geometer’s Sketchpad enable the creation of dynamic 

representations of various mathematical shapes such as triangles, rectangles, 

circles, etc. They also provide additional features like continuous dragging of these 

shapes to different sizes and orientations, while retaining the fundamental 

properties of the shapes. DGEs enable learners to build a rich set of examples of a 

particular concept, as opposed to the limited number of examples available in more 

static environments, thus enabling them to generalize (Battista & Borrow, 1997). 

Sinclair (2010) has proposed that use of DGEs at the early primary grades may 

have a lasting impact in developing imagery and sustaining further learning. 

Young learners show a propensity to reason in terms of motion and transformation, 

but this is not supported by the static environment of the classroom (Lehrer, 

Jenkins, & Osana, 1998). DGEs enable morphing and visualization of 

mathematical objects in reality, where it can be shared with others also. Thus, a 

single shape describing an angle can be morphed to see different types of angles by 

turning it in different directions and changing the size of its arms. Thus, DGEs help 
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enable children’s thinking to move from general to particular, leading to the 

immediate mastery of broad classes of examples and problems. 

Mitchelmore (1997, 1998) found that children demonstrate situated knowledge of 

turns, slopes, crossings, bends, corners, etc., but have difficulty in recognizing the 

common features which define the angle concept. So, this indicates that they 

already have some experiential and embodied understandings of angle, which can 

be used to develop more formal understandings. DGEs support some of the 

particular embodied notions of angle, such as turning (movement) and rotation. 

DGEs would be good at developing the static as well as dynamic perspective of 

angle. DGEs can be very helpful in overcoming the misconceptions related to 

angles. For example, students can drag the arms of the angle and notice the 

resulting change in angle simultaneously, by using the measure angle feature in 

Sketchpad.  

Research using Logo, which is a programming based micro world in which 

students have to write commands for the movement of a turtle, shows that students 

tend to visualize the turns of turtle as turns of their body, but making these turns 

involves writing numerical commands (Clements et al., 1996). Students tend to 

develop confusion between external and internal angles while using Logo. For 

example, Simmons and Cope (1990, 1993) found that some students labelled a 60 

degree angle as 120 degrees and the corresponding 120 degree angle was described 

as 60 degrees.  In each case, they used the number of degrees of turtle rotation 

required to produce the resulting angle rather than the actual angle which was 

presented. A dynamic geometry environment such as Sketchpad does not involve 

the writing of the commands and can thus be used at an earlier age to develop more 

qualitative understandings of angle. The ‘trace’ feature of Sketchpad might be very 

helpful in visualizing the process of turning along with the final position. Thus, the 

dynamic environment of Sketchpad enables one to see the process along with the 

product of a phenomenon. Furthermore, a strong understanding of angle at early 

primary grades can be very helpful in developing other ideas, which are typically 

done at this level. For example, usually at kindergarten level students are taught to 

identify shapes such as triangle, square, rectangle, etc. The development of the 

concept of angles at an early school level may provide a whole new set of 

possibilities for better understanding of different geometric shapes and their 

properties. 

THEORETICAL PERSPECTIVE 

The central role of tools in learning and their lasting effect on the way learners 

think is acknowledged by Vygotsky in cultural-historical activity theory. 

Davydov’s curriculum, based on cultural-historical activity theory, emphasizes the 
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presence of three properties in conceptual thinking of students (Moxhay, 2008). 

First, their thinking should be object-oriented, it must be grounded in 

transformational actions with real objects and students should be able to transform 

the conditions of the tasks to find the solution. Second, it should be generalized; it 

must relate to a whole system of related tasks. Third, the students’ must show 

reflective thinking; they must be able to understand the basis of their own actions. 

What is important for concept development is the creativity that results from the 

students’ transforming the conditions as a result of their collective discussion and 

trial-and-error work. DGEs provide a good basis for the first two properties by 

providing ways for transformational actions and a whole system of related tasks. 

The third component, reflective thinking, can be developed by providing 

appropriate guidance by the teacher. 

The van Hiele model (1986), which is considered to be the best-known theoretical 

account of students’ learning about geometric concepts, does not adequately help 

to explain the mediating role of symbolic tools (including language and computers) 

in children’s mathematical thinking (Sinclair, 2010). Sfard’s (2008) 

communication-based framework provides a good way to explain the underlying 

basis of children’s understanding and the causes for changes in understanding. For 

Sfard, thinking is a type of discursive activity. Sfard’s approach is based on a 

participationist vision of learning, in which learning mathematics involves 

initiation into the well-defined discourse of the mathematical community. The 

mathematical discourse has four characteristic features: word use, routines, 

narratives and visual mediators. Learning geometry can thus be defined as the 

process through which a learner changes her ways of communicating through these 

four characteristic features. Embodied cognition also informs the theoretical 

orientation of this research. Núñez (2006) investigates the role of motion in 

mathematical concept development. She shows that mathematicians think about 

mathematical objects in highly dynamic, temporal and embodied ways, even 

though their formal written work implies a highly static conceptualization. 

METHODOLOGY 

The objectives for the proposed research are: (1) to develop and design productive 

sets of dynamic images and sketches related to angles using Sketchpad that can be 

helpful to introduce the concept of angles at elementary levels. We will draw on 

the literature to adapt some tasks related to angles to the Sketchpad environment. 

(2) To implement the designed sketches in K-2 classrooms for teaching the concept 

of angles with the active participation of the students in the lesson. (3) To study the 

ways in which students perceive and interpret dynamic imagery to develop the 

concept of angles. In this research, we will try to answer the following questions: 

How does dynamic imagery affect mathematical conceptualization of angles? Can 
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young children use their everyday experience of angle to develop a more formal 

understanding of angle by interacting with DGEs? How does a robust dynamic 

conception of angle affect the development of other more static conceptions of 

angle (such as two rays with a common end point or measure)? How do children 

with a dynamic conception of angle perform on the more static angle tasks 

proposed in the literature? 

Some Sketchpad based designs: 

Students can be introduced to the concept from real life situations such as talking 

about the corners in the classroom. Then, later they can be shown some Sketchpad 

figures (Figure 2) and be asked to play with those figures to create different 

situations; where there is only no angle, one angle or more angles.  

 
Figure 2 

From the research literature, it emerged that children have difficulty seeing a static 

angle as a turn. The situation is more problematic where the two arms (of the 

angle) are not clearly visible. Sinclair (2010) has developed a model named 

‘Driving Angle’ using Sketchpad, which enables the student to see the static as 

well as dynamic perspectives of the angle at the same time (Figure 3). It includes a 

car that can move forward as well as turn around a point. The turning is controlled 

by a little dial (which has two arms and a centre). This will enable the student to 

see the static turn and the dynamic turn at the same time. Students can do open 

playing with it. They might regulate motion and turns around different paths to 

create different shapes like random paths, squares, rectangles, etc. 

 

 

Figure 3 

Furthermore, we might be able to talk about the benchmark angles as half turns or 

quarter turns. The idea of right angle can be developed as being the symmetry 
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where there is presence of as much angle on one side as on the other. The other 

ideas for the Sketchpad based designs are to create some sketches, where the real 

life activities of humans such as walking, jumping, or weight lifting can be 

visualized as the change in angles between various body parts such as legs, feet, 

hands, etc. These changes can be traced to see the actual process of turning of 

various body parts. Similarly, we could try to create some models for one line 

angle situations such as doors, where the turning of the door can be traced to see 

the rotation of the door and the actual angle. The traces would enable learners to 

overcome the difficulties that they face in visualizing such angles in physical 

situations. 

We plan to investigate the research questions mentioned above through (1) 

videotaping the classroom episodes; (2) tests requiring the use of Sketchpad to 

solve the tasks related to angles; (3) paper pencil tests with tasks related to angles. 

Data of the videotaped classroom episodes will be reviewed and analysed by using 

Sfard’s (2008) framework to analyze the discourse of students during the 

instruction on the concept of angle in a dynamic geometry environment. It will 

help to see the effect of dynamic imagery on mathematical conceptualization of 

angles. For example, at lower levels students can use the terms like ‘corners’, 

‘pointy’, ‘turn’, ‘twist’, ‘tilted lines’, etc. to describe the angles, and at higher level 

they would be able to use formal terminology for the concept. Sketchpad 

experiences enriched with appropriate activities and discussions might help 

children become cognizant of their mathematical intuitions about angles and move 

to higher levels of geometric thinking of angle concepts. 
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TENSIONS IN TEACHING MATH FOR TEACHERS:  

MANAGING AFFECTIVE AND COGNITIVE GOALS 

Susan Oesterle 

This paper presents partial results of a study which investigated the experience of 

teaching mathematics content courses to preservice elementary teachers.  

Interviews with ten mathematics instructors who teach these courses revealed 

several major tensions, including one that arises as instructors strive to set 

priorities and balance their affective and cognitive goals for their students.  An 

analysis of two of the instructors’ expressions of this particular tension will 

provide insight into the factors that contribute to it and how it is managed.  

Implications for practice are considered. 

BACKGROUND 

Concern over the mathematics preparation of elementary school teachers has led to 

increasing calls for prospective teachers to take specialised mathematics content 

courses, i.e. Math for Teachers (MFT) courses, during their undergraduate 

programs (Greenburg & Walsh, 2008; Conference Board, 2010).  These courses 

are usually taught by instructors in mathematics departments, and some recent 

studies have begun to call into question whether these instructors are equipped to 

meet the needs of MFT students, particularly with respect to affect (Hart & Swars, 

2009).   

Although there has been some research done into teaching styles of post-secondary 

mathematics instructors generally (Strickland, 2008), and into the difficulties they 

face in implementing reform approaches (Wagner, Speer, & Rossa, 2007), there 

seems to be little information about mathematics instructors in the context of 

teaching MFT courses.  The original study upon which this paper is based sought 

to address this gap in the literature.  Interviews with ten mathematics instructors 

who teach MFT courses at various post-secondary institutions in British Columbia 

were analysed in order to answer questions, including:  What are the major 

tensions they experience?  What factors contribute to these tensions and how are 

they managed?  

Given space limitations, this paper will discuss only one of six major tensions 

revealed in the full study, specifically, the tension related to instructors’ efforts to 

balance affective and cognitive goals for their students. 
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SUPPORTING LITERATURE 

The research reported in this paper is informed by prior research into the cognitive 

and affective needs of prospective elementary school teachers (with respect to 

mathematics), as well as literature on tensions. 

Cognitive and affective needs 

With respect to the students in MFT courses, there is evidence to support concerns 

that they have poor understanding of the elementary school mathematics topics; 

Ball’s (1990) study of 252 preservice teachers revealed “understandings that 

tended to be rule-bound and thin” (p. 449).  Regarding their beliefs, the elementary 

preservice teachers in the group “tended to see mathematics as a body of rules and 

facts, a set of procedures to be followed step by step, and they considered rules as 

explanations” (p. 464).  Preservice elementary teachers often suffer from 

mathematics anxiety (Hembree, 1990), and some are only enrolled to “fulfil a 

requirement rather [sic] to learn more mathematics” (Kessel & Ma, 2001, p. 477). 

Although it is clear that MFT students have much mathematics to learn, and often 

come in with negative attitudes and beliefs, the literature does not provide specific 

advice on whether cognitive skills or affect should take precedence in teacher 

preparation.  In fact, there is considerable literature engaged in debate over this 

issue.  While some researchers make a case for the priority of strong mathematics 

knowledge, pointing out that such knowledge can both boost confidence and make 

teacher practice (i.e. the implementation of teachers’ pedagogical beliefs) more 

effective (Schwartz & Riedesel, 1994; Goulding, Rowland, & Barber, 2002), a 

large number advocate for an emphasis on teachers’ beliefs in specialised 

mathematics content (and methods) courses (Kessel & Ma, 2001; Liljedahl, Rolka, 

& Roesken, 2007), observing that beliefs will affect both students’ learning in 

preservice mathematics courses and their later teaching.  Still others promote the 

view that students’ knowledge and beliefs need to be challenged in teacher 

education programs (Borko et al., 1992).  This debate in the literature is reflected 

in the tension experienced by the MFT instructors described in this study. 

Tensions 

Tensions, often expressed as “dilemmas”, have been recognised as an integral part 

of teaching practice, dating back at least to the early 1980s.  In their seminal work, 

Berlak and Berlak (1981) examined the complex and sometimes contradictory 

behaviours of teachers in responding to the curriculum within socio-cultural 

contexts.  Their use of the language of dilemmas was taken further by Lampert 

(1985), who emphasised the personal and practical aspects of dilemmas. 
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Lampert (1985) proposes the view that tensions in teaching are often “managed” 

rather than resolved.  She characterises teachers as “dilemma managers” who find 

ways to cope with conflict between equally undesirable (or desirable but 

incompatible) options without necessarily coming to a resolution.   In the face of a 

teaching dilemma, the teacher must take action, finding a way to respond to the 

particular situation, even while the “argument with oneself” (p. 182) that 

characterises the dilemma remains.  For Lampert, the ongoing internal struggles 

presented by the tensions arise from and contribute to the developing identity of 

the teacher, and as such have value in themselves.  Furthermore, she comments:  

“Our understanding of the work of teaching might be enhanced if we explored 

what teachers do when they choose to endure and make use of conflict” (p. 194).   

METHODOLOGY 

Data for this study was gathered through interviews with ten participants, five male 

and five female, all instructors in mathematics departments at post-secondary 

institutions who teach the MFT course.  Theoretical sampling (Creswell, 2008) was 

used to achieve a variety in type of post-secondary institution represented, as well 

as varying degrees of experience in teaching MFT.  The ten instructors represented 

nine different institutions, and their experience teaching the MFT course ranged 

from novice to 20 years. 

The one-hour long interviews were semi-structured, beginning with a set of core 

questions but allowing for variations and additional questions to be asked as 

needed.  Such an open-ended (“clinical”) approach is advocated by Ginsburg 

(1981) in situations where discovery or identification/description of a phenomenon 

is the objective.  The questions sought to elicit the instructors’ conceptions of the 

MFT course, by asking them to examine their goals, describe the approaches they 

take, compare the teaching of MFT with teaching of other mathematics courses, 

and reflect on the challenges and the successes they experience.   

The interviews were audio-recorded, transcribed, and analysed using constant 

comparative analysis (Creswell, 2008).  An iterative coding process (Charmaz, 

2006) was employed in order to allow concept codes and themes to be identified.  

Very few new codes emerged after the tenth interview, suggesting saturation of the 

data.  Specific concept codes, including “priorities”, “wishes”, “doubts”, 

“barriers”, and “resistance”, helped to locate instances of instructor tensions in the 

transcripts. 

Analysis of the tensions was further facilitated by techniques of discourse analysis 

and considerations of positioning (Harré & van Langenhove, 1999). 
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RESULTS 

One of the major tensions that emerged through the coding and thematic analysis 

involved instructors’ struggles with managing their cognitive and affective goals 

for their students in the MFT course.  Two perspectives on how this particular 

tension is experienced will be presented here through brief analyses of the cases of 

Bob and Maria (both pseudonyms). 

Bob 

Bob’s experience of this tension emerges in the contrast between his comments at 

the beginning of his interview with respect to his primary goals in his MFT course, 

and his later reflections on the ultimate outcomes for his students. 

Bob’s reported emphasis is on building deep conceptual understanding in his 

students, although affective considerations are also very important to him.  His 

course “focuses on a very sound fundamental ability to appreciate [mathematics], 

in a theoretical way, why things work”, along with having “a secondary by-product 

of what you do in the classroom is to get the students to enjoy it”.   

The cognitive and affective are closely related for Bob.  His students’ anxieties are 

at least in part caused by, and at the same time the cause of, their lack of arithmetic 

skills, and so helping his students learn about the structure of mathematics will 

solidify their understanding, giving them confidence, competence, and enjoyment. 

At the end of his course, Bob believes that his students “have improved most in 

their technical abilities”, along with having gained some problem-solving skills, 

although these need to continue to be developed.  But he is ultimately 

disappointed, both in his hopes to build deep theoretical understanding, and in his 

hopes to increase his students’ appreciation for, and love of, mathematics.   

In terms of appreciating some of the more subtle aspects of the theory, I think that’s 

another thing that they could do better, if they had better basic arithmetic skills, 

coming in.  So...yeah, in terms of what I produce, I guess, in terms of the other goal, 

for love of math?  Unfortunately, the course is so packed, that in some ways, I think 

they do get a little bit beaten by the end, and they’re just tired. 

He does see some success with improving their technical skills, but admits that he 

is less than successful (by his own standards) in terms of affective gains.  He is 

trying to cover too much, to the extent that his students are overwhelmed. 

A closer look at this passage, with particular attention to pronoun use, offers some 

further insights.  In the first sentence, he ostensibly places the responsibility on the 

students, “they could do better, if they had better basic arithmetic skills”.  

However, as Bob is aware, the prerequisites for the course are not controlled by the 

students, or set by him, but are negotiated by the larger community.  Whether it is 
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the fault of this community or the students themselves, the lack of student skills 

coming into the course is an impediment to his ability to realise his goals for his 

students. 

He then switches to consider what he (“I”) produces.  Having already mentioned 

that students have increased their technical abilities, he moves to his “secondary” 

goal, improving affect.  The results here are “unfortunate”; he describes his 

students as “beaten” and “tired”—not at all what he desired.  The phrase, “the 

course is so packed”, is telling.  It is offered as an explanation for the students’ 

states of exhaustion; there is too much material in too little time.  But it appears 

from the use of the passive voice that Bob is not in control of the course content; 

with it he positions himself as unable to remedy this “unfortunate” situation.   The 

course, as he is expected to deliver it by his institution, demands too much of the 

students.   

Bob is not a new instructor of the MFT course, and so has likely lived with this 

problem for some time.  He is stuck in this dilemma.  On one side he has students 

who are unprepared for the level of mathematics he believes they need in order to 

“appreciate” the mathematics (both in a cognitive and in an affective sense).  On 

the other side, he has a prescribed curriculum he is expected to “cover”.  He feels a 

strong responsibility as a mathematics instructor, seeing himself as being charged 

with “delivering the content” (Bob’s words).   

From Bob’s perspective, the situation could be improved if the students were 

stronger coming in.  This is not within his immediate power to change, so he 

manages the best he can, trying to meet the needs of the students and the demands 

of the institution, never completely satisfied with the outcome. 

Maria 

Similar to Bob, Maria expressed a strong intention to improve students’ 

mathematical understanding, emphasising cognitive goals.    However, Maria’s use 

of the past tense in describing these goals in her interview, even though she was 

teaching the course at the time, suggested she was having second thoughts about 

her priorities.    

Maria was a first-time instructor of the course at the time of the interview, and was 

surprised by the needs of her students, not only their weak mathematics skills, but 

their mathematics anxiety and the barrier to learning it presented.   

So my goal was, primarily, sort of more content, and I [...] knew that there would be 

some issues of, let’s describe it as “math phobia” or anxiety, with math.  I just [was] 

still surprised to see it so strong at this level, that it overrides their learning, that it 

blocks their learning!  That’s what I discovered, and it surprised me that it would be 

this strong. 
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She went into the course expecting that she would be teaching mathematics and 

would need to deal with some math anxiety, but at some point she realised that, at 

least for some of her students, the affective issues would need to be addressed 

before they could learn the mathematics.  Maria commented that she believed she 

had lost about a third of her students, and was not sure how to get them back on 

track. 

For this group of students at this point, content?  Forget it.  I need an attitude change.  I 

need [their] perception of math to change.  And I can’t reach it anymore.  It was very 

high, you know, it was a good high in the beginning of the course, because of what I 

did, free, sort of, problem-solving, open discussion, everybody let’s just... [there was 

a] fuzzy, cosy atmosphere.  But the topic does get difficult, yeah? 

Maria feels as if she has missed an opportunity.  For this particular group of 

students, she does not believe it will be possible for them to make progress 

learning the content without an attitude change, and this change is not possible to 

attain “anymore”.  She speaks nostalgically about a time at the beginning of her 

course where her approach was different:  there was “open discussion”, “free” 

problem solving, and a friendly atmosphere.  She takes responsibility for the 

positive feelings at the beginning of the course; it was good because of “what [she] 

did”, but something changed; her approach changed, and in this excerpt the reason 

for the change is the “topic”, i.e. the mathematics, which gets more difficult as the 

course progresses.   

Again, this raises the spectre of the course syllabus.  Maria is torn between what 

she feels she should be delivering—the mathematics content—and what her 

students need.  Like Bob, she feels a responsibility to cover the listed topics.  But 

there is an additional consideration for Maria that adds to her tension; it is a 

perception that the MFT course has the potential, if not the responsibility to act as 

a filter.  Earlier in her interview, her comments with respect to the importance of 

deep mathematics content knowledge for mathematics teachers reveal a strong 

commitment to ensuring that she does her part in the preparation of future 

elementary teachers.  She does not want to let them move on to become teachers if 

their mathematics skills are too weak.   

As well, Maria’s tension between her desire to “cover” the content, as well as to 

build conceptual understanding and address her students’ affective needs, becomes 

a tension with respect to teaching methods.  Her efforts to complete the course 

content compel her to reduce in-class activities, such as open discussions of 

readings and problem-solving sessions, methods that she believes are effective.  

Covering the material is important to her, but it troubles her that she is leaving 

students behind.  Those students still suffer from negative attitudes to math and 

continue to have weak skills. 
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Maria is far from resigned to living with this tension.  She is still seeking to 

understand her students better and find methods that will be more effective for 

them, to find a way to change their attitudes so that the mathematics can be 

learned.   

DISCUSSION 

Bob and Maria’s cases are similar in that, although they both hope to foster 

positive attitudes, their priority is on developing students’ understanding of 

mathematics.  At the same time there are differences in their experiences.  Bob 

hopes to improve affect through building cognitive skills (one of the views 

reflected in the literature), but his affective aims are sabotaged by the volume of 

content. There is too much for his students to absorb given their skills coming into 

the course.  Maria’s comments reveal a growing awareness that her cognitive aims 

cannot be attained, at least for some of her students, until affective barriers have 

been removed (reflecting the other side of the affective/cognitive debate).    

Both Bob and Maria seem to manage this tension between cognitive and affective 

aims by staying true to the course syllabus and “covering the material”, even 

though they are unhappy that this means overwhelming the students and leaving 

some behind.  There are indications within the broader study that this commitment 

to the prescribed course content is a prevalent norm amongst post-secondary 

mathematics instructors, carried over from teaching mathematics courses that tend 

to be sequential in nature and whose content is agreed upon across institutions 

within the system.  It is unclear whether instructors are consciously aware of this 

norm or have considered its appropriateness in the context of MFT courses.   

Two additional factors that contribute to this tension include the weak mathematics 

skills of students coming into the MFT course, as articulated by Bob, and the 

perception that one of the roles of the course is to act as a filter to prevent those 

with poor mathematics skills from becoming elementary school teachers, as 

indicated by Maria.  Both of these concerns point to larger problems within the 

system of teacher preparation, problems with defining the level of mathematics 

proficiency elementary teachers need, and with clearly defining the role of MFT 

courses in their preparation. 

CONCLUSION 

This tension is not easily resolved.  It is certainly not simply a matter of 

refocussing priorities on affective rather than cognitive goals.  One of the 

instructors in the study whose priority was on affective goals also experienced this 

tension, expressing concern that despite her efforts, what her course provides may 

not be enough to meet either one of her students’ affective or cognitive needs 



101 Proceedings, MEDSC 2011  
 

(Oesterle, 2010).  Rather than attempt to resolve the tension, in the spirit of 

Lampert (1985), we consider instead what can be learned from it. 

The study by Hart and Swars (2009) suggests that approaches of MFT instructors 

may negatively impact student affect.  This study counters that even when MFT 

instructors are concerned about students’ attitudes and beliefs, their ability to 

respond to the students’ affective needs may be constrained by normative 

commitments to course syllabi, beliefs about the level of mathematics proficiency 

needed by future teachers, and understandings of the role of the MFT course.  

Maria’s comments about reducing in-class activities in order to get through the 

material suggest that these may also be barriers to instructors’ adoption of more 

reform-oriented approaches.  Both Bob and Maria are dissatisfied with the 

outcomes of their MFT courses, but there are indications (especially in the case of 

Bob) that they do not believe they have the power to make the necessary changes. 

One further observation is that although the debate in the literature is exemplified 

within the cases of the two instructors, the mathematics education research 

literature does not play a direct role in informing these instructors’ efforts to deal 

with their tensions. This is even more evident in the larger study.  Although with 

respect to the cognitive/affective debate, the literature to date offers no clear 

resolution, closer contact with the mathematics education community might offer 

these instructors new strategies or alternate perspectives as they strive to manage 

their tensions generally.  Further research into ways to support these instructors 

would also be beneficial. 
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CONCEPTUALIZING ROLE AND POSITION IN 

INTERACTIONS AMONG TEACHERS ENGAGED IN 

COLLABORATIVE DESIGN OF MATHEMATICS LEARNING 

ARTIFACTS 

Preciado Babb, A. Paulino 

 

The collaborative design of mathematics teaching and learning artifact by teachers 

and other educators has proved to be effective as both developing curricular 

material and teacher professional development. Teachers' collaborative design, in 

this paper, refers to the design of these artifact that includes: (1) the collaborative 

design of the artifact based on negotiated goals or purposes, (2) its implementation  

in the classroom, and (3) the debriefing of the results. The purpose of the paper is 

to conceptualize role and position of participants in teachers' collaborative design 

from a social perspective framed in embodied cognition. Such conceptualization 

would help to understand the dynamics and interactions—co-determinations—of 

teachers, and other educators, engaged in this mode of collaborative work. 

INTRODUCTION 

The purpose of this paper is to theorize on the interactions among participants, 

including teachers and educators, in the collaborative design of mathematics 

teaching and learning artifact. These artifacts include lesson plans, assessment 

rubrics, class projects, and mathematical tasks. I called the type of work considered 

in this paper 'teachers' collaborative design,' which includes the following steps: (1) 

creating, or adapting, the artifact, (2) implementing it with the students, and (3) 

reflecting on the results of its implementation. Examples of teachers' collaborative 

design have been well documented in the literature (Ponte & Chapman, 2006; 

Slavit & Nelson, 2009). A team of collaborative design can be considered as a 

learning system having an emerging structure determined by the interactions 

among its members. Understating these interactions provides insight on the team as 

a unit. In this paper, I use empirical data as a means to exemplify two, highly 

interrelated, concepts that serve to understand interaction in this context: role and 

position. These empirical data were based initially on symbolic interactionism 

(Blumer, 1969). However, for the discussion presented in the paper, embodied 

cognition will be used as a framework (Maturana &Varela, 1987). 

ROLE AND POSITION 

Socially, the role and position of members within a group—e.g. a team of teachers' 

collaborative design—include a pre-giving set of expected behaviours according to 

some specific rules or determined duties. 'Role' originally referred to "the roll of 
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paper on which the actor's part was written" (Role, 2010). 'Position' referred to 

physical space relative to another objects: "a place where someone or something is 

located or has been put ... a particular way in which someone or something is 

placed or arranged" (Position, 2010). Both concepts have evolved and expanded 

from their original meanings to a variety of contexts including social situations. 

For instance, 'role' has been defined as "the function assumed or part played by a 

person or thing in a particular situation" (Role, 2010) and "the position or purpose 

that someone or something has in a situation, organization, society or relationship" 

(Role, 2011). The latter definition links role with position, which, in a social 

context, also means "a person’s point of view or attitude towards something" 

(Position, 2010). Thus, role and position can be defined beyond a set of pre-

dermined, or expected, behaviour within a group. 

In the case of mathematics teacher education, Kaasila and Lauriala (2010), 

attempting to create an interactionist framework for students teacher learning, used 

the notion of role in a team of pre-service mathematics teachers participating in 

collaborative design. They considered that "in social situations a person must adopt 

a social role, which refers to a set of expectations of how a member of a special 

group or community is expected to act in his/her position" (p. 855). Blumer (1969), 

however, argued that "social interaction is obviously an interaction between people 

and not between roles; the needs of the participants are to interpret and handle 

what confronts them … and not to give expression to their roles" (p. 75). 

Embodied cognition serves as a framework to describe roles without dismissing the 

individual perceptions of and meaning about such roles.  

Both symbolic interactionism and embodied cognition have similar perspectives on 

the nature of objects and their relationships with human beings. For instance, these 

two perspectives denied the existence of a pre-given world in which people are 

immersed. However, symbolic interactionsim focuses on a particular type of 

interaction among human beings, whereas embodied cognition includes other 

learning structures (Maturana & Varela, 1987). Moreover, in the latter perspective 

individuals not only make meaning of their world, but they also shape the 

environment, including other individuals or learning entities. The world is not pre-

established, but enacted by each person. That is, we have multiple world and 

multiple realities according to the way each person co-evolves in a group in a 

specific situation. Interactions by means of language and action in a team of 

collaborative design are the means by which participants co-evolve. Language 

plays an important role: “Every human act takes place in language. Every act in 

language brings forth a world created with others in the act of coexistence which 

gives rise to what is human” (p. 247).  
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In this paper, the concepts of role and position are considered as shaping, and 

being shaped, by the interactions among the members of a team of collaborative 

design. Contextual factors, the environment, as participate in this coupling and will 

be taken into account for the discussion of these concepts. The concept of position 

(Langenhove & Harré 1999) serves to extend the notion of role. The descriptions 

of the roles generated by the data in the Lougheed project share some features with 

this concept: (1) the ongoing storyline developed in time, (2) the individual 

interests of each member to participate in the project, and (3) the varied 

perceptions of the role of some team members. 

The Visual Thesaurus online dictionary (Thinkmap, 2011) includes several 

definitions of role and position, as well as the connection with other concepts. 

Table 1 shows definitions of these concepts that are embedded in social contexts. 

Note that last definitions of role and position in the table coincide. Among the 

definitions presented in the table, three attributes can be identified that I have 

identified empirically in teachers' collaborative design: (1) assumption; (2) opinion 

and attitude; (3) customary or specified activities within a group. 

Role Position 

the actions and activities assigned to or 

required or expected of a person or group 

an actor's portrayal of someone in a play 

what something is used for 

any specific behaviour 

normal or customary activity of a person 

in a particular social setting 

the act of positing; an assumption taken 

as a postulate or axiom 

a rationalized mental attitude 

the act of assuming or taking for granted 

an opinion that is held in opposition to 

another in an argument or dispute 

the post or function properly or 

customarily occupied or served by 

another 

the relative position or standing of things 

or especially persons in a society 

a job in an organization 

(in team sports) the role assigned to an 

individual player 

normal or customary activity of a person 

in a particular social setting 

Table 1: Definitions of role and position in social contexts (Thinkmap, 2011). 
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Role is also defined as a type of position. Thus, role and position can be often 

considered, within a social context, as synonymous. However, position, as “the act 

of positing; an assumption taken as a postulate or axiom” can be considered as an 

extension of the notion of role (Langenhove, Harré, 1999).  

EXAMPLES FROM THE DATA 

In order to show some examples of role and position I will use data generated from 

a case of teachers' collaborative design taking place from September 2008 to April 

2009. In this project three high school mathematics teachers engaged in weekly 

one-hour meetings with the purpose of designing and implementing two 

mathematics lessons. All the meetings took place at the school where teachers were 

working. I participated as a researcher and member of the team. In addition to the 

meetings for collaborative design, two meetings were dedicated to group 

interviews, one in December, 2008, and the other in April, 2009. Individual 

interviews with each teacher were conducted in June, 2009. All the meetings were 

video recorded and analyzed using a grounded theory approach which gave as a 

result two emerging themes: (1) the focus of the conversation while designing the 

artifacts, and (2) the roles and positions of each participant during the 

conversations held by the team. I use part of the data of this study as examples of 

roles and positions from the perspective of embodied cognition. 

An important moment during the research which had an impact on my decision of 

focusing on roles was the first group interview. Before the interview teachers read 

preliminary findings of the research. During the interview, one of the teachers 

commented on my role of researcher in the team. 

Arnold:  Because I think you want to be an insider, but, can you? Cause you are 

doing this ethnography and it's really hard to become fully immersed. 

Although I participated actively in the design of the artifacts, I was an outsider 

from the community of the teachers. Arnold's perception of my role as a member 

of the design team was based on my position in the university as an instructor and 

researcher. This comment triggered as short discussion which reflects different 

perceptions about published research work. 

Arnold:  But, I think though there is a very special place as a researcher and as 

you become published; that always will set [you] outside of this 

community. 

Sofia:  I don't think publishing gives any more respect or any more trust to 

what you are saying—just because you are published. Just because it is 

written doesn't mean is any more true.  
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Arnold:  But it does exist in a professional literature, and so is a privileged 

location. 

For Arnold, this privileged position represented an authority within the team. Such 

position was not perceived by Sofia in the same way. 

Arnold:  You clearly have to have more authority on what you say. ... I would 

perhaps give more weight to what you say just because in theory you 

have more background knowledge. ... You are becoming a professional 

in this area. So, in theory you should know more. 

Brad:  Like you are the supervisor. You have your own supervisor and you are 

the supervisor of us—kind of. 

In this excerpt, Brad positioned Armando's role as a supervisor, which is a different 

role from the one Arnold stressed as a professional, or an authority, in the area.  

In the second part of the interview, members of the team described the role that 

each participant played during the project. Everyone wrote descriptions of the roles 

played by each member before taking turns explaining such descriptions. The 

video recordings were useful to contrast such descriptions with the conversations 

held by the team. 

Although there were similarities in the descriptions of these roles, particular 

individual roles were perceived slightly different among the team. Arnold always 

brought resources such as books, papers, or details of websites. 

Brad:  [Arnold], as you guys mentioned, is sort of the data-base expert. We 

come up with something, [Arnold] will have something in the locker or 

in the cabinet or somewhere. She pulls it out of the air: all this 

background and research so rich in terms of information. 

For me and Sofia, Arnold also contributed in an important way by suggesting 

better words for the students' worksheets and teacher's instructions. 

Brad was often wondering whether students would learn what was intended 

through the designed lesson, forcing the team to think about the real impact of the 

lesson on the students' learning. He also proposed the goal that the team pursued in 

the first round of the project. 

Sofia: [Brad] focused on difficulties students might have questioning. And 

came up with the question we were working on now. 

Arnold: Building on what [Sofia] said, I think it is true: that excellent 

understanding of class dynamics, problems of how weaker students are 

going to express on that topic. Clear understanding of what needs to be 

taught and how this might be done.  
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Arnold considered Brad as an experienced teacher with a good understanding of 

what has to be taught, and knowledge about weak students' troubles in learning the 

mathematical content. 

Brad also played an important role in asking questions related to the research 

project and contributed to it by commenting on the teachers' activities outside of 

the meetings. He often commented on how the impact of the activities on my 

research. Brad described himself as being focused on the original goal for the 

lesson which was for students to translate word problems into algebraic 

expressions. 

Sofia's role included contributing to mathematical tasks for the lesson, and 

refocusing the team on-task when the conversation deviated from designing the 

lesson. Additionally, Arnold and Brad perceived in her a level of expertise in 

mathematics and mathematics learning. 

Brad:  I saw [Sofia], in this context, as the mathematics expert. She was 

coming with all this terminology .... So, I was learning new things from 

you. And you [Sofia] are always doing the puzzles. I would be sitting 

and watching you actually figuring out the patterns and coming up with 

the expressions. So, you were taking a much more active role in the 

sense that you were trying out and I just sit and watch. 

Brad saw Sofia as an expert in mathematics, and at the same time, he positioned 

himself as a learner. In the individual interview at the end of the project Brad 

mentioned that he learnt mathematics content from Sofia. During the project, he 

often made questions related to some topics which were not necessary related to 

the lessons that were designed. 

When teachers were asked, in the final group interview, about their motivations for 

participating in this particular research project, they agreed that Sofia had played a 

crucial role in their decisions. Brad's choice of participating in the project was 

based on the fact that Sofia invited them and that Arnold also had accepted. 

Brad: Like you were saying, if it is a colleague you tend to believe more. If I 

just had a letter "[Armando] from SFU wants teachers to volunteer in a 

lesson study project,"...  I don't know this guy, I don't know anything 

about lesson study. I probably put it aside somewhere. But, because it 

was [Sofia]'s initiative, and then [Arnold] was on board … 

The teachers mentioned that they usually trust their colleagues, sometimes even 

more than an external expert. This was a factor that made Arnold and Brad accept 

Sofia's invitation to join the project. 
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Arnold mentioned that the first group interview was a remarkable moment, when 

teachers read the paper with some preliminary findings, to be the most interesting 

part because of the reaction of the teachers after the interview. 

Arnold:  So, for me, that was the most interesting part, because then people were 

aware: “Oh we are participating in a study group, how what would you 

say or do is being commented on.” whether I disagree or agree with you 

is different, but just how people responded, it was sort of amusing.  

This last excerpt reflects teachers' awareness of how what they had said would be 

commented on as part of the research project. Teachers were influenced by the fact 

that they were participants in a research study. This suggests that the interaction of 

the team might be not the same in a different scenario where they would not be 

participating in a research study. 

The descriptions of the roles presented here go beyond a pre-established set of 

duties or responsibilities for the team. These descriptions were based mostly on the 

type of contributions that each member made during the design process in the first 

round of the project. Roles such as the mathematics expert, Sofia, or the database 

expert, Arnold, reflect the type of contributions made by particular members. 

Additionally, my role as a participant-researcher was perceived differently by each 

member of the team: as an expert, as an authority, and as a supervisor.  

I found that these roles, and the positions taken by the team members, were 

influenced by three factors: (1) the collegiality of the team, (2) the fact that this 

was a research project focusing on participant teachers, and (3) the interests that 

each teacher had to participate in the project. On the team there were some fixed 

roles, such as the role of Arnold and Sofia as teachers who implemented the 

lessons in their classrooms. My role as a researcher was not perceived the same by 

the each of the teachers: authority, supervisor, and support and validation of their 

ideas. The fact that people perceived others' roles in different ways suggests that 

the role is made by all the perceptions—possible different—of how a member is 

expected to act in a particular situation. The concept of position (Langenhove & 

Harré 1999) serves to extend the notion of role. The descriptions of the roles 

generated by the data in the project share some features with this concept: (1) the 

ongoing storyline developed in time, (2) the individual interests of each member to 

participate in the project, and (3) the varied perceptions of the role of some team 

members. 

CONCLUSION 

The concepts of role and position explored in this paper entail constant change and 

a variety of perceptions. Although some roles were determined from the beginning, 

such as my role as researcher, the perceptions of each participants were not the 
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same. Other roles were developed by the interactions of the participants during and 

before the project. The three participant teachers had developed a collegiality 

which was reflected not only in the interactions during the project, but also in their 

decision of participating in the research project. Sofia's role as a mathematics 

expert, as perceived by Brad, might be developed before the project. Arnold 

constantly brought resources such as books and articles to the meetings. This was 

not a pre-established duty or expected role: It was a customary performance. 

The role, as perceived by each member of a team of collaborative design, forms 

part of the world that each person enact within the team (Maturana & Varela, 

1987). Such roles and positions influence, and are influenced, during the 

interactions of the team. The decisions made during the design of the lessons 

during the project are the result of the conversations and actions of the team 

members. Considering the team as a unit, or as a learning system, the interactions 

among their members represented the constantly evolving structure of the team. 

The conceptualization of role and position described in this paper served to 

understand such structure.  
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CALCULUS BEYOND THE CLASSROOM: APPLICATION TO 

A REAL-LIFE PROBLEM SIMULATED IN A VIRTUAL 

ENVIRONMENT 

Olga V. Shipulina 

This study concerns the correlation of mathematical knowledge with a 

corresponding real life object within the theoretical framework of Realistic 

Mathematics Education. By simulating an interactive milieu in the Second Life 

Virtual Environment (VE), this study explores how students find a ‘real-life’ 

optimal path ‘practically’, and how they then re-invent the corresponding calculus 

task. The instructional design, based on simulation in VE, allowed students to 

explore mathematical solutions relative to their intuitive findings in VE. By 

mathematizing their own ‘real-life’ activities, students connected them with 

corresponding mathematics at an intuitive level. 

INTRODUCTION 

A troubling problem with current education is in the practical application of 

knowledge to life. Graduates do not know how to apply knowledge to many 

problems that arise outside the walls of school (Ilyenkov, 2009). There is a 

common recognition among mathematics educators that a serious mismatch exists 

and is growing between the skills obtained at schools and the kinds of 

understanding and abilities that are needed for success beyond school (Lesh & 

Zawojewski, 2007).  

The attempts of some instructional theories to solve the problem by creating 

systems of rules of ‘how to apply knowledge to life’ impede rather than help things 

(Ilyenkov, 2009). The decisive part of cognition, going from the object to the 

abstract, remains outside of student activity. A special kind of activity related to 

correlating knowledge and its object should be implemented in contemporary 

classrooms. “Here, what is needed is activity of a different order—activity oriented 

directly at the object. Activity that changes the object, rather than an image of it” 

(p. 223).  

The problem of ‘the practical application of knowledge to life’ is especially 

significant for calculus, which was developed from real world applications and has 

a real world context. In the late 1980s the ‘Calculus Reform Movement’ began in 

the USA. The Calculus Consortium at Harvard (CCH) was funded by the National 

Science Foundation to redesign the curriculum with a view to making calculus 

more applied, relevant, and more understandable for a wider range of students.  

This paper’s purpose is to set out an instructional design based on students’ 

exploration of their ‘real-life’ activity and their primary intuitions in connection 
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with mathematical formalities. Simulated in the Second Life VE, the interactive 

milieu encouraged students to find an optimal path on the basis of their primary 

intuitions; and then with the help of a specially designed journal, to re-invent the 

corresponding calculus task. Such an instructional design allowed the students to 

learn to analyse and formalize their primary intuitive acquisitions, to 

psychologically connect mathematical concepts with ‘real-life’ intuitions, and to 

connect mathematical formalities with a real-life situation. 

THEORETICAL BACKGROUND  

More than forty years ago Freudenthal (1968) posed the problem of lack of 

connection between knowledge and its real-life object. The Freudenthal Institute 

has developed a theoretical framework, now referred to as Realistic Mathematics 

Education (RME) (Freudenthal, 1968, 1973, 1991; Gravemeijer, 1994).  

The RME instructional theory is based on Freudenthal’s idea that mathematics 

must be connected to reality. The use of realistic contexts became one of the 

determining concepts of RME.  The most general characteristic of RME is 

mathematizing; the realistic contexts must be used as a source for mathematizing. 

The role of mathematizing in mathematics education is also stressed by a number 

of authors (Wheeler, 1982; Treffer, 1986; De Lange, 1996; Presmeg 2003; Mason, 

2004; Russmussen, Zandieh, King, & Terro, 2005; Liljedahl, 2007;). Particularly, 

Treffer (1986) formulated the idea of ‘progressive mathematizing’ as a sequence of 

two types of mathematical activity—horizontal mathematizing and vertical 

mathematizing. The process of extracting the appropriate concept from a concrete 

situation is denoted by De Lange (1996) as ‘conceptual mathematization’. This 

process forces the students to explore the situation, find and identify the relevant 

mathematics, schematize, visualize, and develop a corresponding mathematical 

concept.  

The RME theory has been accepted and adopted by some educational institutions 

in England, Germany, Denmark, Spain, Portugal, South Africa, Brazil, Japan, and 

Malaysia (de Lange, 1996). In America, RME was adopted in the “Mathematics in 

Context” project for US middle schools.  In spite of such wide acceptance and 

adoption of RME, recent research shows that there is still a wide gap between the 

world of knowledge obtained at school and the world of conceptions found in 

everyday experience (Lesh & Zawojewski, 2007; Ilyenkov, 2009). 

The major idea of this paper is to point out that the reason why students do not 

connect the mathematical world with reality is because they continue to 

mathematize ‘word problems’ with ‘ready-made’ images instead of active real-life 

situations. Moreover, students do not involve their intuitive cognition while 

mathematizing ‘word problems’ and ‘ready-made’ images. Intuition, intuitive 
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cognition, intuitive understanding, and intuitive solutions form some of the basic 

components of mathematical activity along with formal aspects such as axioms, 

definitions, and algorithmic components (Fischbein, 1994). Furthermore, intuition 

gives the behavioural meaningfulness of a mathematical notion (Fischbein, 1987).  

Although a number of authors have stressed the important role of intuition in 

mathematics education (e.g., Fischbein, 1987, 1989, 1994; Tall, 1991, 1996, 2000; 

Burton, 1999), they do not point out its role in RME instructional design theory, 

which is purported to connect mathematics with reality.  

METHODOLOGY: MATERIALS, METHODS, AND PARTICIPANTS  

The Second Life VE was used to program an interactive setting for a real-life 

optimal navigation task. The simulated setting includes a pond with shallow water, 

surrounded by bushes and trees (Fig. 1).  It was programmed so that 

walking/running speed on land is sufficiently larger than walking/running speed in 

water. 

 

Figure 1: Simulation in the Second Life VE interactive milieu for finding an 

optimal path. 

The task for the student in this VE was to travel between the two green platforms 

(see Figure 1), trying to minimize the total time of travel for the trip. One platform 

is located on land near the water’s edge; another is located in the water. The 

environment is programmed to record time spent for each trip and the distance 

traveled by land.  After each trip the student had to transfer this data into a 

specially designed guiding–reflecting journal, which is an integral methodological 

part of the instructional design.  
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The aim of the guiding–reflecting journal is to connect the student’s optimal 

navigation practice in the VE with the calculus optimal-path-finding task. The 

journal contains instructions, tables for transferring data collected from every trip 

in the VE, reflecting questions, guiding instructions, and questions initiating the 

student’s reasoning. The journal guides the student’s mathematical reasoning. It 

contains schematization of the problem and areas for independent reasoning. The 

back page of the journal offers some formula tips and a detailed solution of the 

calculus problem. The geometrical schematization and solution provided in the 

journal were adapted from Pennings’s (2003) work. Figure 2 demonstrates a 

schematization of the task.  

 

Figure 2: Schematization of some possible paths provided in the guiding-

reflecting journal. 

According to the schematization, A is a land platform, B is a water platform. The 

shortest path from A to B is the most direct path AB. Since the speed in water is 

slower than on land, students can choose the path with the shortest distance 

traveled in water, path AC and then CB, where ACB is a right angle. Finally, there 

is the option of using a portion of the land path, up to D, and then entering into the 

water at D and moving diagonally to the water platform. In this diagram x 

represents the distance between B and C; dl  and dw are distances traveled by land 

and by water, respectively. The distance between A and C is z, and y = z – dl. 

The solution of the minimal path finding task includes the following reasoning: 

According to the schematization above, T = Tl + Tw  . Since Tl = 
  

  
   and Tw  = 

  

  
 , 

then   
  

  
 +
  

  
  which gives  T = 

   

  
 
√     

  
, where     and    are  speeds on 
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land and in water respectively; T is the trip time; Tl  is time spent for the land 

portion; and, Tw  is time spent for the water portion of the trip. 

The condition of minimal time is   T′(y) = 0, or  ( 
   

  
 
√     

  
)′ = 0 

Following the journal instructions, the student obtains the final formula:  

  
 

√
  
  
   √

  
  
  

 

The journal provides the exact values of virtual distances and speeds in the VE. 

The student is instructed to use these values to calculate the optimal distance 

traveled by land with corresponding minimal time using the formulas above, and to 

compare the mathematically obtained values with his/her best finding in the VE.  

Ten students, ranging in age from 17 to 18 years, who had almost completed the 

AP calculus course at a secondary school, participated in the research study. Each 

participant provided a signed Parent Consent Form. They also read and signed the 

Assent Form before participating. The experiments were conducted in the school’s 

Teachers’ Room. Each session of 60–90 minutes included an exploration trial, 

followed by the main task which consisted of the participants’ work with both the 

computer and the guiding-reflecting journal. The mathematical part was devoted to 

the participant working solely with the journal. The participants’ exploration of the 

computer environment was screen recorded using SMR software. Their work with 

the journals was video-recorded. During one session the computer lost the SMR 

data while automatically updating its basic software. Therefore, the collected data 

from 10 sessions included screen recordings of exploration trials and VE tasks 

from only 9 sessions, video-recordings of students’ working with journals, and the 

completed journals from all 10 sessions.  

RESULTS 

The first part of the data analysis was devoted to students’ finding the optimal path 

in the VE based on their primary intuitions. The students’ first trips in the VE 

demonstrated that students have different life experiences connected with optimal 

navigation, therefore different intuitive solutions. Figure 3 shows four different 

choices of students’ first paths. 
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Figure 3: The diagrams of four different choices of first trips with which students 

started their optimal-path-finding task in the VE. 

Analysis of nine computer screen recordings showed that the first trips of four 

students were the shortest distances as shown in diagram 1.  Three students started 

finding the optimal path by trying to minimize the water portion as shown in 

diagram 2. One participant also tried to minimize the water portion in his first trip 

by running around the pool as shown in diagram 4. Only one out of nine students 

intuitively chose the first path corresponding to the exact mathematical solution of 

the problem (see diagram 3).  

The second part of the data analysis was devoted to students’ capacity to 

mathematize their activity, utilizing newly obtained knowledge of calculus. One of 

the ten students mathematized the problem horizontally and vertically without any 

guidance. He started to mathematize the problem during the completion of the 

optimal navigation task in the VE. After two trips in the VE this participant asked 

“Actually can I do math?” After another two trips he started drawing diagrams, 

schematizing his activity in the VE. He then completed two final trips (totalling six 

out of ten offered in the journal) and then switched to developing a mathematical 

solution of the problem. Although he did not find the final formula due to an initial 

mistake in writing connections between time, distance, and speed (which he later 

corrected), he showed an excellent example of horizontal and vertical 

mathematizing of a real-life situation. A second participant was able to 

mathematize the problem following the guidance of his journal. He was good with 

differentiation and used the tips in the journal effectively. The remaining 

participants required both journal guidance and oral explanation of the 

mathematical solution to the problem.  

CONCLUSIONS AND IMPLICATIONS FOR MATHEMATICS 

EDUCATION 

The conducted experiments confirmed that the problem of applying calculus 

knowledge to a task beyond the classroom still exists. It was shown that only one 

student out of 10 participants was able to convert his real-life activity into 

mathematical symbolic problem solving without any guidance. The chief outcome 

of this research is a new approach to RME instructional design. Particularly, we 

demonstrate that instead of situations described in ‘word problems’ with ready-

made images to be mathematized, the real-life activity can be simulated in a VE.  

We showed a particular example from calculus which allowed students to try to 

1 2 3 4 
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solve the optimal-path-finding problem ‘physically’ on the basis of their primary 

intuitions and then mathematize the problem with guidance of a specially designed 

journal. This ‘real life’ activity in the simulated VE helps students to become 

aware of tacit conflicts between their intuitions and the formal mathematical 

solution.  Such awareness helps to shape ‘right’ intuitions, which in turn gives the 

behavioural meaningfulness of a mathematical notion (Fischbein, 1987).  Practical 

‘real-life’ activity in a simulated VE and its further mathematizing connects the 

particular activity with corresponding mathematical formalities. Implications of the 

offered instructional design can bring real-life problems from outside the school 

into the classroom.  
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MATHEMATICS, ABSTRACTION AND TEACHING: 

REVISITING TIMMS 1999 VIDEO LESSONS 

 
Krishna Subedi 

Mathematics is an abstract subject. When teachers plan, one of their most 

important challenges is to figure out ways of translating abstract concepts into 

understandable ideas. This paper explores the notion of mathematical abstraction 

from teaching view point and proposes a theoretical framework of Reducing 

Abstraction in Teaching (RAT). By analysing mathematics classroom practices 

from the public release video lessons of TIMMS 1999, this paper illustrates various 

tendencies of teachers dealing with mathematical abstraction. It also exemplifies 

some instances where ‘reducing abstraction’ seems to be an  effective teaching 

strategy while in other cases it may go unsupportive for the development of 

student’s mathematical understanding.  

INTRODUCTION 

Abstraction is often seen as the fundamental characteristic of mathematics; and it 

“has been recognized as one of the most important features of mathematics from a 

cognitive viewpoint as well as one of the main reasons for failure in mathematics 

learning” (Ferrari, 2003, p. 1225). As such, in the recent years, abstraction has 

received a growing interest in research community among psychologists and 

mathematics educators. In fact, when teachers plan, one of their most important 

challenges is to figure out ways of translating abstract concepts into understandable 

ideas. If teachers understand more clearly what mental process their students go 

through while coping with mathematical abstraction they are attempting to teach, 

they may be able to teach more effectively.  

Reducing Abstraction (Hazzan, 1999) is one of the theoretical frameworks that 

examine the mental process of learners while coping with abstraction of new 

mathematical concepts. It has been used to examine the mental process of learners 

in different areas of mathematics and computer science (Hazzan & Zazkis, 2005). I 

am however, not aware of any study that specifically looked at how teachers deal 

with mathematical abstraction in teaching. Hence, this paper aims to examine the 

teacher’s behaviours in regard to dealing with abstraction in teaching. Because of 

the space limitation, detailed discussion of the study is not possible here.  I, 

however, provide a brief overview of the study and the theoretical framework 

followed by the methodology. Finally the results and discussion followed by some 

concluding remarks. 
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THEORETICAL FRAMEWORK 

Hazzan’s (1999) research on how undergraduate students learn abstract algebra is 

an important work that provides a window to look at the mental process of students 

while learning new mathematical concepts. Her finding is that learners usually do 

not have the mental construct or resources ‘to hang on to’ to the same level of 

abstraction as introduced by the authorities (textbook, teachers etc.) and hence they 

tend to reduce the level of abstraction in order to make the concept mentally 

accessible. This usually happens unconsciously. In other words, when a student 

sees a mathematical object, he or she will try to make sense of it based on his or 

her past experiences with other mathematical objects.  

What does this tell us about teaching? This clearly points to the idea that while 

introducing new mathematical concept (often abstract), teachers should make an 

effort to ‘concretize’ them by using students previously acquired knowledge, 

experience and level of thinking as well as their familiar contexts.  In so doing, a 

“right relationship” in the sense of Wilensky (1991) can be established between the 

learners and the new mathematical concept so that the abstractness of the concept 

may be reduced. According to Wilensky:  

“Concreteness is not a property of an object but rather a property of a person's 

relationship to an object. Concepts that were hopelessly abstract at one time can 

become concrete for us if we get into the "right relationship" with them. …” (p.198). 

Along the same lines, Cornu (1991) states, “for most mathematical concepts, 

teaching does not begin on virgin territory” (p.154), all students come with certain 

ideas, intuition, and knowledge already formed in their mind on the basis of their 

previous experience. Therefore, he says, it is important for teachers to become 

explicitly aware of this difficulty of their students and attempt to reconstruct their 

knowledge structure to accommodate the new concepts. Safuanov (2004) suggests:  

“Strict and abstract reasoning should be preceded by intuitive or heuristic 

considerations; construction of theories and concepts of a high level of abstraction can 

be properly carried out only after accumulation of sufficient supply of examples and 

facts at a lower level of abstraction” (p.154).   

This idea is in line with many other psychologists and educators (see Piaget, 1970; 

Vygotsky, 1996; Hershkowitz, Schwarz, and Dreyfus, 2001). For example, 

Piaget’s idea of developmental psychology and genetic epistemology tells that 

children develop abstract thinking slowly, starting as concrete thinkers with little 

ability to create or understand abstractions. Based on this idea, genetic approach to 

teaching mathematics is widespread.  

From this perspective, effective teaching should involve with the process of 

introducing new abstractions; concretising or semi-concretising them; then 
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repeating at a slightly higher level. That is, the concept are concretized and 

presented to the students in a lower level of abstraction temporarily. The goal is 

however to go to the higher level of abstraction using the lower level as stepping 

stone. This activity, I argue, is an attempt to reduce the level of abstraction of the 

concept on the teachers’ part in order to make the concept mentally accessible to 

the students. Hence, the notion of Reducing Abstraction in Teaching (RAT) comes 

into play.  

METHOD 

The initial questions that guided this work are: how do teachers deal with 

abstraction in teaching? Do teacher reduce abstraction? If so, what is nature of 

reducing abstraction?  

Hazzan’s (1999) Reducing Abstraction framework examines how learner’s deal 

with mathematical abstraction while learning new mathematical concept. My aim 

in this study however, is to look at how teacher deal with abstraction in teaching. 

This is a shift in perspectives because a learner’s goal is to learn mathematics for 

themselves whereas teachers are the mediators and their goals are to help their 

students to learn mathematics. This shift in perspective necessitates a modified 

version of reducing abstraction framework. To this ends, a comprehensive 

literature review was conducted and categorised the findings according to themes. 

With the refinement of the themes, three interpretation of reducing abstraction 

have been identified and presented in three categories. In so doing, a new 

theoretical framework, which I call Reducing Abstraction in Teaching (RAT), has 

emerged. I used TIMSS 1999 public release video lessons in order to gather 

empirical data.   

TIMMS 1999 video lessons were already analysed by TIMMS videos study team 

itself and others using different theoretical frameworks (Hiebert et al., 2003) with a 

focus on various aspects of teaching and learning. I am however, not aware of any 

study with its focus on teachers’ dealing with abstraction in teaching. Hence, my 

present study took place. My analysis is based on transcripts of the public release 

video lessons that have been translated into English by TIMMS 1999 video study 

team. Keeping the three interpretations of reducing abstraction in mind, I read the 

transcripts repeatedly with an eye towards identifying key teachers’ actions and 

searching and developing the meaning for each of their action. For lessons from 

English speaking countries, I also watched videos repeatedly.  

RESULTS AND DISCUSSION 

Building on the work of Hazzan (1999), Wilensky (1991) and Sfard (1991), three 

interpretations for abstraction level have been identified, all of which interpret 

teacher’s action as some way of reducing abstraction of the concept. From the 
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analysis of the empirical data, various tendencies of teachers reducing abstraction 

have been emerged in each category and listed them as subcategory. Because of 

the space limitation, only few examples have been presented here. 

Category 1: Abstraction Level as the Quality of the Relationships between the 

Mathematical Concept and the Learner 

It is based on the Wilensky‘s (1991) assertion that whether something is abstract or 

concrete is not an inherent property of the thing, “but rather a property of a 

person’s relationship to an object “(p.198).  On the basis of this perspective, the 

level of abstraction is measured by the relationship between the learners and the 

concept (mathematical object). Reducing abstraction in this category was coded if 

there is a situation where an attempt has been made to make unfamiliar (therefore 

abstract) concept more familiar (therefore concrete) to the students by any of the 

following ways:  

1.1. FamRw :  Reducing abstraction by connecting mathematical concept to real-

world situations 

1.1. FamLang: Reducing abstraction by using familiar but informal language 

rather than formal mathematical language 

 

00:04:33  T  We know that the edges of a triangle- or any figure- are 

called "sides". 

00:04:38  T  In a right-angled triangle, this side is attached to a right angle. So 

 what should we call this side? A right-angled side. 

00:04:47  T  Yes? Because this side is attached to a right angle so you call that a 

 right-angled side. 

00:05:00  T  Do we have any other right-angled side in there? 

00:05:02  SN  Yes. 

00:05:03  T  Yes, all the way on the other side. That one is attached to the right 

 angle as well, therefore you call that a right-angled side as well. 

00:05:19  T  Then I still have one side left. It isn't so obvious because it is 

 lying flat. But if you see this triangle, what can we call that side? 

00:05:28  SN  The long side. 

00:05:29  T  The long side. That is correct. Or in a different way? 

00:05:33  SN  The right side? 

00:05:34  T  It is actually at an angle. If you see it in such an- like a diagonal- 

 so you call this the sloped side or the hypotenuse, is what you call  
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this one. 

00:05:45  T  These are just names, you know, you may also keep calling this 

 "the long side", no problem.   (NL 02) 

1.1. FamRep: Reducing abstraction by connecting new mathematical concept to 

familiar representations (that includes use of pedagogical tools such as 

graphs, diagrams, tables, metaphors, gestures, manipulative etc.) 

00:38:57 T what do we have that's tricky? We have four X is equal to four X... 
minus one. So how are we going to see that? 

00:39:04 SS It's not possible! 

00:39:09 T It's impossible. Valentine?  

00:39:11 SN Because it need a place, for example four X is equal to three X minus 
one. Otherwise we can't take away the X's. We can't take away one. 

00:39:21 T  Let's try to take it away, let's try to be as methodical as we can, then 
let's see what happens. Let's see, what do we find, so- 

Dialogue continues… 

00:39:35 T Therefore 0 = -1 . Is that possible? 

00:39:42 SS No! 

At this stage, some of the students seem to be struggling to make sense of what it 

means when they get 0 = -1 while solving the equation. At this time, the teacher 

refers to the graphical method in which case students saw clearly that the lines are 

parallel and so there is no point of intersection. That is, there is no solution. The 

dialogue continues: 

00:41:33 S It is parallel. 

00:41:33 T It is, well, parallel. Therefore when do they meet  each other, lines? 

00:41:37 SS Never. 

00:41:37 T Never. Therefore the- what we're looking for as a  solution, it's the 
points that meet each other. Therefore there's none.  

Category 2: Abstraction Level as Reflection of the Process-Object Duality 

Reducing abstraction in this category is based on Sfard (1991) theory of ‘process-

object duality’ which states, “abstract notation such as a number, function etc. can 

be conceived in two fundamentally different ways: structurally- as objects and 

operationally- as processes” (p 1). According to this theory, the process conception 

is less abstract than an object conception. The following tendencies of teacher 

presenting the mathematics task have been identified under this category.   
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2.1.  DuProc: Teacher reducing abstraction by shifting the focus on procedure 

even though the problem or discussion implies a focus on concepts, meaning, 

or understanding 

Example :  

Earlier in the lesson, students worked on finding volumes of beams (rectangular 

prism) and cylinders and the solid formed by combining them. They also worked 

on problems that required students to find the volume of such solids when one or 

two dimensions had been doubled. This problem consists of situation where 

students are to find how the volume is changed when all the three dimensions are 

doubled.   

17:32 T Well, what do you think will happen then? 

17:34 SN But...but how is that possible - or can the height be done also? 

17:36 T Yes, yes, so and the length, and the width and the height. 

17:40 SN Yes, but it doesn't say (in the book). 

17:41 T No, but we will just add those together. Because then we have all the possibilities together. 

Well, 

 what happens then? 

17:48 SN You get two times two times two. 

17:49 T Yes, two times two times two. You have - this is not new to you, right? 

17:52 SN That is twelve... 

17:55 SN (...) 

17:56 T This is for a beam. And this is actually also what they mean for assignment thirty-nine.  

(in Birky, 2007) 

Although there were mathematically important opportunities to lead the discussion 

of how doubling three dimension will results the solid equivalent to eight of the 

original solid with a diagram and reference to the solid, the teacher shifted the 

focus on arithmetical calculation ( procedural knowledge) rather than conceptual 

understanding (Birky, 2007).  According to Skemp and Sfard, procedural 

knowledge (process conception) is less abstract than conceptual knowledge (object 

conception). Hence this act can be interpreted as reducing abstraction in this level.   

2.2.  DuAns: Reducing abstraction by shifting the focus on answer (end-

product) even though the problem or discussion implies a focus on 

concepts, meaning, or understanding 
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Category 3: Degree of Complexity of Mathematical Concepts 

In this category, abstraction level is determined by the degree of complexity. The 

working assumption here is that “the more complex a problem or concept is the 

more abstract it is” (Hazzan, 1999). Reducing abstraction in this category involves 

the following situation.   

3.1. CompxPG: Reducing abstraction by shifting focus on particular rather 

than general (thus making the problem less complex for their students. It may 

however, provide a partial picture of the concept rather than the complete one.) 

3.2. CompxRO:  Reducing abstraction by routinizing the problems (that is, 

by taking over the challenging aspects of the problems either by telling student 

how to solve or by solving the problem for students. In so doing, the complexity of 

the concepts may be reduced, but takes away the opportunities for students from 

doing mathematics on their own.)  

3.3. CompxSC: Reducing abstraction by stating the concepts rather than 

developing it. 

3.4. CompxGA:  Reducing abstraction by giving away the answer in the 

question or provide more hints than necessary (Topaze effect- See Brousseau, 

1987)  

The name of the ‘Topaze effect’ comes from a play by Marcel Pagnol written in 

1928 in Paris.  In the play, Topaze is a school teacher. When the student cannot 

find the answer easily, the teacher gives away the answer within the question itself 

in a slightly indirect way thereby lowering the intellectual demandingness of the 

tasks (cf. Brousseau, 1997).  

Example:  

00:07:32 T What are they? What is meant by equiangular polygon? And what is 
meant by equilateral polygon? 

00:07:50 T That means- okay, I- I- I- I- I- give you some time to think. What 
does it mean by equilat- equilateral tri- polygon? 

00:07:58 T Equiangular polygon? 

00:08:00 T Do you still remember it? 

00:08:02 S? Yes. 

00:08:03 T Yes. What does it mean? For- for- for the first type. I'll give you 
some hints. All the sides...? 

00:08:10 SN Are equal. 

00:08:10 T All the sides are equal. Okay? All the sides of the polygons are 
equal. 
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00:08:16 T How about equiangular polygon? 

00:08:17 SS (inaudible) 

00:08:18 T All the sizes of the angle? 

00:08:21 SN Are equal. 

00:08:21 T Equal. Get it? 

 (HK 02) 

At 6:40, and at 7:32, teacher seems to open up the dialogue on the concept of 

concave and convex polygon, and equilateral and equiangular polygon 

respectively. He however, took over the challenging aspects of the problem by 

telling them the meaning of concave polygon (6:45) or by asking product questions 

(8:03, 8:18), rather than allowing students to discover the meaning by themselves. 

This act of teacher reduced the complexity of the problem for the students but it 

took away the opportunity for them to progress on their own.  

CONCLUSION 

One of the challenges all mathematics teachers face in teaching is to deal with 

mathematical abstraction and find ways to translate abstract (unfamiliar) concepts 

into understandable ideas. There is however no framework, I am aware of, that 

specifically looked at how teacher deal with abstraction in teaching. The 

framework of Reducing Abstraction in Teaching (RAT) is the result of this 

necessity which I may be helpful to explore the actions of teachers and sources of 

teaching activities in regard to dealing with mathematical abstraction in teaching. I 

believe that the framework has “the potential to provide insight into one of the 

central aspects of learning mathematics and inform instructional practice” (Dreyfus 

& Gray, 2002, p. 113). I have exemplified various tendencies of reducing 

abstraction in teaching - in some cases, it seems to be pedagogically effective and 

in other cases, it may be not be supportive for student mathematical knowledge 

development. Further research is needed to find the impact of each tendencies of 

reducing abstraction on students understanding of mathematics.  
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WORD PROBLEMS IN MATHEMATICS EDUCATION: IMPACT 

ON STUDENTS’ MATHEMATICAL ACHIEVEMENT 

Ike Udevi-Aruevoru 

Mathematical word problems impact students’ mathematical achievement because 

they require advanced language skills and knowledge of problem context and 

content. Each of these adds to the degree of difficulty of the problem. This paper 

investigates how these categories of difficulties may impact students’ mathematical 

achievement when they solve word problems. 

INTRODUCTION 

The use of mathematical word problems for student assessment is intended to 

promote the application of mathematical ideas and principles taught in the 

classroom to everyday problems (Reed, 1999). However, students dread word 

problems because it impacts their mathematical achievement. Factors like 

advanced language skills and knowledge of the problem context, while not directly 

part of the test, add to the degree of difficulty of the word problem as they impact a 

student’s ability to understand and correctly interpret the problem statements. 

Research on the impact of word problems on a student’s mathematical 

achievement may be classified into three categories: impact of language skills, 

knowledge of problem context, and knowledge of problem contents. 

Bernardo and Calleja (2005), Bernardo (2002), and Renninger, Ewen, and Lasher 

(2002), all show that some of the difficulties students have in relation to solving 

word problems are more intensified for foreign students than for students learning 

mathematics in their native language. Also, Renninger, Ewen, and Lasher (2002) 

show that even when a student has the language skills and vocabulary to 

understand the word problem, the arrangement and/or sequencing of the problem 

elements also add to its degree of difficulty and also impact a student’s ability to 

solve the problem. Another language factor impacting understanding and the 

solution of word problems is the complexity of the problem statements (Wheeler & 

McNutt, 1983). Other studies show that the context in which mathematical ideas 

are tested significantly determines the degree of difficulty perceived by the 

students and impacts their ability to solve the problem (Kaizer & Shore, 1995). 

Voyer (2010) reports that as the distance between a student’s knowledge/life 

experience and the problem context increases, the more difficult it is for that 

student to correctly solve the word problem. The contents of word problems may 

be divided into two types: surface content and deep content. The surface content of 

word problems includes problem events and objects used in describing the 

problem, while the deep content is the mathematical ideas and principles that are 

useful for solving the problem. Blessing and Ross (1996) show that changing the 
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surface content of a word problem with respect to its deep content changes its 

degree of difficulty even with experienced problem solvers. Also, Leon (1994) 

shows that adding extraneous information to word problems increases their degree 

of difficulty for many students, especially when the students are not sure of how to 

solve the problem.  

THEORETICAL FRAMEWORK 

To correctly translate a mathematical word problem, a student needs to understand 

and follow the mathematical statements in the text description of the problem. 

Thus, while a student’s language skills are not explicitly part of the test, research 

results show that the language used for teaching mathematics affects the learning 

of mathematics for many students, and thus impacts their mathematical 

achievement. Gooding (2009) argues that student difficulties with mathematical 

word problems may be grouped into five categories, namely:  

1. Reading and understanding the mathematical word problem. 

2. Imagining and contextualizing the mathematical word problem. 

3. Correctly translating the language description of the word problem into an 

algebraic equation. 

4. Carrying out the required mathematical operations. 

5. Correctly interpreting the results. 

This study assumes that the student has good reading and comprehension skills in 

the language of instruction, and thus will focus specifically on only four of the five 

categories of student difficulties listed above (categories 2 to 5). Where any of 

these categories of difficulty is identified, this study will further investigate its 

basis and any process or method that the student employed to overcome it. 

METHOD AND DATA COLLECTION 

Five mathematical word problems were selected for this study (see Appendix 1). 

The questions were selected with the intent of investigating students’ attitudes 

when solving mathematical word problems that are cast in familiar and unfamiliar 

contexts, the types of difficulties they encounter when the problem context is 

unfamiliar to them, and what steps they take to overcome these difficulties.  

Question 1 was chosen because it has a universal and thus very familiar context 

and, like the handshake problem in Buerk (1982), every student is expected to have 

access to this problem. A student may not get the right answer to this question, but 

he/she can always take a stab at it. Also, the text narrative is substantial and may 

act as a distraction to some students, possibly affecting the method the student 

chooses for solving this problem. 
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Question 2 requires the student to make some assumptions and assume facts not 

explicitly stated in order to solve the problem. As a result, this question is expected 

to reveal students’ difficulties with the deep content of word problems and how 

they deal with them.  

Question 3 is another universal and familiar real-world problem. It is expected that 

almost every grade eleven or twelve student would relate to this problem. Also, its 

text narrative is substantial, like that of Question 1. 

Question 4 has a small text description and its solution requires that the word 

problem be reduced to a pair of simultaneous linear equations. The problem is, 

however, embedded in a chemistry context and many students, especially those not 

very comfortable with chemistry or science, may find this problem very confusing, 

and perhaps be intimidated by it.  

Question 5 is a good algebra question. It requires good thinking and good algebraic 

skills to translate the text description into the correct algebraic equation.  

RESULTS 

This study was conducted with a Grade 12 student, here referred to as IV.  She was 

presented with five word problems to solve (see Appendix 1). Also, she was asked 

to rank the five questions in terms of her perception of their degree of difficulty 

using a scale of 1 to 5 (1 = easiest; 5 = most difficult). In addition to ranking the 

questions, she was also asked to make comments, observations, statements, etc. 

about each question, including why she sees a question as easy or difficult, and any 

other thoughts she deemed useful when thinking about each problem. The table 

below shows her ranking of the questions, her performance for each question 

(marked as correct, incorrect, or incomplete) and finally, her comments on each 

question. (Her comments were hand-written comments on paper, reproduced 

verbatim below.) 
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Question# Difficulty Answer IV’s written comments on this question 

1 2 Correct This question was difficult at first but after I made 

a chart and was able to organize all the info given 

in the question, it was easy to solve. I had to reread 

the question several times because the information 

was confusing at times. 

2 4 Incomplete I didn’t really solve this question, and I don’t know 

if it was a trick question or not. I found it a little bit 

confusing because the wordings and scenarios for 

each person were similar yet different. I tried to 

visualize the problem – with no luck. 

3 1 Correct This question was easiest to solve because the 

question gave a lot of information, and was easy to 

solve. 

4 5 Incomplete This question was the hardest. I didn’t understand 

the question; the wording was kind of confusing. I 

was not able to solve it. 

5 3 Correct This question was pretty easy. At first it seems 

daunting but when I organized the info given, I was 

able to solve it by guessing and checking. I did this 

at first but then I noticed that with the numbers I 

used, a pattern started to form and when I finally 

used 7 it worked. 

IV had identified Question 4 as the hardest of the five questions. She did not 

attempt it, saying that she did not know how to begin answering the question. The 

next day, I asked her to solve the pair of simultaneous equations (below) as a 6
th
 

question. I also asked her to rate its degree of difficulty in relation to Questions 1-5 

that she had attempted the previous day.  

Question 6: 

2.45.03.0

10





yx

yx

 

She solved the simultaneous equations above in less than two minutes, and rated 

Question 6 as the easiest of all the six questions. 

DISCUSSION 

IV identified Questions 1 and 3 as the easiest questions because of her familiarity 

with the problem context. In both cases, she did not seem to care about the length 

of the text narrative of either of the problem statements.  Her familiarity with the 

problem context allowed her to focus on the important problem elements. Her 

statements during the interview, “I had all the information that I needed”, followed 

by “all I had to do”, sums up her attitude and thinking about Question 3. In fact, 
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her use of the phrase “all I had to do”, with respect to this question, almost 

trivializes the question and makes the case for the effect of familiarity with the 

problem elements. She not only understood the problem, but she was also able to 

describe her solution strategy and interpret her results. She did not have any 

difficulty with this question. 

IV rated Question 5 as the third most difficult question. Her various attempts to 

translate the problem into an algebraic equation failed (Category 3 difficulty) as 

can be seen from the following transcripts from her written work (see Figure 1): 

 

Q5: 

20 + than son 

8 yrs    5 + 2x 

20 + x = y 

5 + 2x = y 

 

 

28 = 5 + 2x 

23 = 2x 

11.5 = x 

31.5 = father 

+ 8 = 39.5 

Figure 1 

However her familiarity and understanding of the problem elements allowed her to 

“reason out” the solution, as she put it. Below is a transcript of how she did it (see 

Figure 2). 

 

Q5 continued: 

6 + 8 = 14 × 2 = 28 

7 + 8 = 15 × 2 = 30 

son = 7 

+ 8 yrs = 15 

× 2 = 30 

 

26 + 8 = 34 

27 + 8 = 35 

father = 27 

+ 8 yrs = 35 

Figure 2 

IV’s struggle with this question and her final solution demonstrate the impact of 

familiarity and knowledge of the problem elements and context in solving 

mathematical word problems. Here, her real-world knowledge of this problem 

allowed her more than one way of thinking about this problem, and thus more than 

one solution option. She was unable to correctly translate the word problem into 

the correct algebraic equation; however, her knowledge of the problem context and 
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familiarity with the mathematical ideas allowed her to improvise a solution. It is 

through this multiplicity of solution options, when the school taught algorithm is 

not accessible, that the context of a mathematical word problem impacts a 

student’s mathematical achievement. 

IV rated Question 2 as the fourth most difficult question. Her attempt to solve it 

failed because she did not make any assumptions about the length of the course 

covered by both Anna and Maria, which was not given (Category 3 difficulty). Her 

difficulty here is a deep content problem, but it is masked by a surface content 

problem. Because of her lack of the mathematical knowledge required to solve this 

problem (deep content problem), she was unable to identify the missing 

information that would be necessary for solving the problem (surface content 

problem), namely the length of the course. 

The transformation of Question 4, from a word problem embedded in a chemistry 

context to a pair of simultaneous linear equations (Question 6), transformed this 

question for IV from the most difficult to the easiest of the six questions. She was 

unable to solve this problem, insisting that she had no idea of how to begin to 

attempt it (Question 4), saying that she does not know how to “make 42% with 

30% and 50%”. However, following the transformation, she solved Question 6 

easily and rated it as the easiest of the six questions. When I asked her to compare 

Questions 4 and 6, she stared at both questions for awhile and then shouted, “They 

are the same!”, as she immediately recognized all the problem elements that 

hitherto she had failed to recognize, probably because they were masked by the 

problem context. This is a Category 2 difficulty and demonstrates again the effect 

of problem context in solving word problems. 

The results of this study suggest that some of the widespread difficulties many 

students experience with mathematical word problems may not necessarily be 

because the word problems are intrinsically difficult. Some of these difficulties 

may be because many students are unable to make any connection between the text 

descriptions of the word problems with the mathematics they know. It may be for 

this reason that mathematical word problems remain a source of anxiety and 

consternation for many students.  

CONCLUSION 

Three of the five categories of difficulties identified by Gooding (2009) were 

observed in this study. The first was difficulty with translating the word problem 

into an algebraic equation. IV overcame this difficulty through her familiarity with 

the problem context. The second difficulty observed was the inability to carry out 

the required mathematical operations (deep content problem masked by surface 

content problems). IV was unable to overcome this difficulty. The third difficulty 
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observed was that of imagining and contextualizing the mathematical problem.  

This is a problem-context problem; she was unable to overcome this difficulty, but 

when the same problem was cast in a familiar context (as a pair of simultaneous 

equations), she was able to solve the problem. 

This study confirms the results of other studies that show when students have a 

good understanding of a mathematical word problem, but cannot recall the school 

taught algorithm for solving it, they usually attempt to solve the problem using 

their everyday knowledge and life experience. This is not necessarily a bad thing. 

In fact, I would argue that it is a good thing because it also shows that with good 

pedagogy, school taught algorithms may become the algorithm of choice. The 

challenge for mathematics educators is to teach these algorithms with such 

relevance and anchors that they will be remembered when needed. This study also 

shows that some of the categories of difficulties identified by Gooding (2009), 

namely difficulty with translating the word problem into an algebraic equation and 

difficulty with deep mathematical content, may sometimes be masked by difficulty 

with the problem context and also difficulty with the surface content. Thus the 

difficulty with the deep problem content might not be investigated in isolation 

from the knowledge of problem context and surface problem content. 

APPENDIX 1 

Question 1: Dylan is meeting his sister and four of her women friends for lunch. 

The five women are called Alicia, Rachel, Lani, Donna, and Casey. Three of the 

women are under 30 years old and two are over 30. Two of the women are lawyers 

and three are doctors. Alicia and Lani are in the same age group. Donna and Casey 

are in different age groups. Rachel and Casey have the same profession. Lani and 

Donna have different professions. Dylan’s sister is a lawyer and is over 30. Who is 

Dylan’s sister? 

Question 2: Anna and Maria enter a race. Anna walks half the time and jogs half 

the time. Maria walks half the course and jogs half the course. If both girls walk 

and jog at the same rate, then which girl will complete the course first? 

Question 3: Rajan, Eric, and Lucy are all sales representatives, but they are paid in 

different ways. Rajan is paid a straight commission of 5% of his total sales. Eric is 

paid a base salary of $250 a week, plus 2% commission on sales above his sales 

quota of $5000. Lucy is paid a graduated commission of 2.5% on sales up to 

$3000, plus 6% on sales in excess of $3000. If each person’s sales for one week 

are $12 000, what is each person’s gross income?  

Question 4: A chemistry teacher needs to make 10 L of 42%-sulphuric acid 

solution. The acid solutions available are 30%-sulphuric acid and 50%-sulphuric 
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acid, by volume.  How many litres of each solution must be mixed to make the 

42% solution? 

Question 5: A father is now 20 years older than his son. In 8 years, the father’s age 

will be 5 years more than twice the son’s age. Find their present ages.  

Feedback: Please rate the above questions from 1 to 5 in order of difficulty to you, 

with 1 being the easiest and 5 the most difficult, and give reasons for your 

ordering. Any comments, statements, etc. that you can think of would be very 

useful. 

References 

Bernardo, A. B. I. (2002). Language and mathematical problem solving among 

bilinguals. The Journal of Psychology, 136(3), 283-297. 

Bernardo, A. B. I., & Calleja, M. O. (2005). The effects of stating problems in bilingual 

students’ first and second languages on solving mathematical word problems. The 

Journal of Genetic Psychology, 166(1), 117-128. 

Blessing, S. B., & Ross, B., H. (1996). Content effects in problem categorization and 

problem solving. Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 22(3), 792-810. 

Buerk, D. (1982). An experience with some able women who avoid mathematics. For the 

Learning of Mathematics, 3(2), 19-24. 

Gooding, S. (2009). Children's difficulties with mathematical word problems.  

Proceedings of the British Society for Research into Learning Mathematics, 29(3), 31-

36.  

Kaizer, C., & Shore, B. M. (1995). Strategy flexibility in more and less competent 

students on mathematical word problems. Creativity Research Journal, 8(1), 77-82. 

Leon, R. E. (1994). The effects of the presence of extraneous information in 

mathematical word problems on the performance of Hispanic learning disabled 

students. New York State Association for Bilingual Education, 9, 15-26. 

Reed, S. K. (1999). Word problems, research and curriculum reform. Mahwah, NJ: 

Lawrence Erlbaum Associates. 

Renninger, K. A., Ewen, L., & Lasher, A. K. (2002). Individual interest as context in 

expository text and mathematical word problems. Learning and Instruction, 12, 467-

491. 

Voyer, D. (2010). Performance in mathematical problem solving as a function of 

comprehension and arithmetic skills. International Journal of Science and 

Mathematics Education, 9(5), 1073-1092. 



137 Proceedings, MEDSC 2011  
 

Wheeler, L. J., & McNutt, G. (1983). The effect of syntax on low–achieving students’ 

ability to solve mathematical word problems. The Journal of Special Education, 17(3), 

309-315. 

  



138 Proceedings, MEDSC 2011  
 

USING A CONVERSATIONAL APPROACH: CAN THIS 

INFORM A TEACHER ABOUT STUDENTS' 

‘UNDERSTANDING’? 

Kevin Wells 

In the classroom, students may engage in several casual conversations with their 

teacher or peers regarding mathematics. Typically, these conversations are 

informal and may not be consciously used by the teacher as a means of formative 

assessment. This paper investigates the possibility of analysing the structure of 

casual classroom conversations to question if a student’s ability to hold a 

conversation reflects on their conceptual understanding of the topic in hand.  

INTRODUCTION 

In the initial phases of learning, a student’s knowledge may support only partial 

understanding. Misconceptions that arise in earlier grades can be strongly held and 

hard to change, but can play an important role in the development of students’ 

conceptual understanding (Smith, diSessa, & Roschelle, 1993). Tapping into these 

partial understandings and misconceptions would seem to be an important starting 

point for educators in determining a course of instruction. Diagnostic tools are 

available that purport to allow the teacher to gain some insight into the students’ 

knowledge, but these are often in the form of multiple choice or short-answer 

questions, which may not be sufficient to give a clear picture of the students’ 

thinking or understanding.  Reform-based mathematics teaching encourages the 

development of questioning and eliciting student responses. A number of research 

studies focus on supporting this process by illustrating how a teacher can develop 

better questioning techniques to expose students’ thinking (e.g. Herbel-Eisenmann 

& Breyfogle, 2005). In addition, as an alternate way of probing student 

understanding, classroom discourses have also been used (e.g. Williams & Baxter, 

1996). In this paper, I examine the notion of paying more attention to the informal 

conversations held by students while discussing an idea. In particular, by 

examining the structure of the conversation, I examine the ability of a student to 

hold a conversation and ask if this reflects on their understanding of the concepts 

discussed. 

FRAMEWORK 

Rorty (1979) viewed conversation as the ultimate context within which knowledge 

is to be understood, while a basis of social constructivism is that conversation is 

central to learning (Ernest, 1998). In a classroom where group work and 

collaborative problem solving is a focus, conversation between students is central 

to the process. Such conversations could be extended beyond problem solving to 
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discussion of the concepts and ideas.  Paying attention to these conversations may 

be a productive way to gain fresh insight into a student’s thinking. While these 

conversations have been studied by researchers (e.g. Walshaw & Anthony, 2008), 

the goal has not been about individual assessment of particular concepts or the 

students’ ability to participate in the conversation. 

There are, however, inherent difficulties when working with discourse which need 

to be considered. Morgan (1998), in her discussion of the “Myth of Transparency” 

(p. 197), highlights a fundamental problem with assessment that focuses on 

students’ writing. At issue is the assumption that the thinking of a student is 

accurately reflected by what they write or say. This ‘naïve transmission’ view of 

communication is demonstrated as flawed when Morgan notes that different 

teachers interpret the same piece of student writing in different ways. Further, the 

notion of ‘understanding’ is given an objective reality during this form of 

assessment, even by teachers who may reject this positivist paradigm in their 

teaching. A postmodernist viewpoint suggests that there is an illusion of meaning 

in language and what we refer to as ‘truth’. The teacher’s own understandings of 

the mathematics, as well as the role the teacher adopts in assessment, mean that 

there is no simple correspondence between student intent and teacher 

interpretation. As such, paying attention to the content of a student’s utterances is 

subject to interpretation which, as Morgan further points out, may also be a 

reflection of the student’s poor understanding of the teacher’s expectations. Indeed, 

Morgan suggests that teachers themselves do not have an adequate explicit 

vocabulary to provide guidance to students in producing better texts. Analysing the 

casual conversation of students about a mathematical topic may be a way to help 

bridge this gap. 

Ernest (1998) develops the premise that mathematics is “inescapably 

conversational” (p. 169). This view suggests that conversation is not just a tool for 

outcomes; rather, language shapes and constrains our experiences as much (or 

more so) than it reflects them. In diagramming a model of the social construction 

of mathematical knowledge, Ernest places conversation at the centre of a cyclic 

process through which collective mathematical knowledge and personal 

knowledge of mathematics recreate each other. Leaning on the work of 

Wittgenstein, Ernest stresses that personal learning of mathematics is acquired 

through socially situated conversations. Teachers structure conversations in the 

classroom based on their own understanding but, as Ernest points out, “sustained 

two-way participation in such conversations is necessary to 

generate…mathematical knowledge and competencies, and not some partial or 

distorted version” (p. 221). If conversations form what we perceive to be a 

student’s mathematical knowledge, then paying attention to the way a student 
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participates in conversations may help inform the teacher about the structure of 

students’ understanding. However, the same concerns must be raised with the 

conversational approach as with the written text, namely the teacher’s ability to 

interpret the conversation and the students’ expectations of their role in classroom 

conversations.   

First, however, if we are interested in using conversation to shed light on 

understanding, there is the question of what ‘understanding’ is. Wittgenstein 

considers that when someone appears to do something correctly then they do it “as 

we would do it” (Wittgenstein, 1967, p. 145). This places ‘understanding’ as a 

relative term, as not everyone will agree on the ‘correctness’. Wittgenstein earlier 

notes that the possibility of getting a student to ‘understand’ will depend on the 

student going on to write it down independently, while getting someone to 

understand requires changing their way of looking at things. If the student is 

capable of imagining what is being taught, then Wittgenstein considers that there is 

“a capacity to learn” (p. 144). Importantly, understanding is considered a ‘source’ 

of correct usage, not an application. As a result, understanding must be more than 

knowledge of a formula; there must also be an accomplishment, or manifestation, 

of that understanding. Wittgenstein suggests not thinking of understanding as a 

‘mental process’ at all, but as the set of circumstances in which a student is able to 

‘go on’. Mental processes are characteristic of understanding, but understanding is 

not a mental process.  If we relate this to a conversation, then understanding could 

manifest itself in terms of the ability of a student to carry on with the particular 

exchange to its conclusion. In addition, if a student demonstrates the ability to 

continue with an exchange, it may suggest they are ready to build on their 

understanding. Notwithstanding a student’s willingness to participate in a 

conversation, Halliday (2009) observes that: 

For communication to take place at all it is necessary for those who are interacting to 

be able to make intelligent and informed guesses about what kinds of meanings are 

likely to be exchanged. They do this on the basis of their interpretation of the 

meanings. (p. 2) 

Pask (1975), in taking a phenomenological stance while researching cognition, 

builds a more formal structure. He considers that if a student is able to explain a 

topic, then this is evidence for a concept. If the explanation is agreed upon by the 

interlocutor, then that is evidence for a concept equivalent to (not necessarily 

identical with) a concept entertained by the other person. If the person can further 

explain how the concept is constructed, and if the explanation is agreed upon by 

the interlocutor, then that is evidence for an equivalent (not necessarily identical) 

memory. This condition is called ‘understanding’. This is in keeping with 

Wittgenstein’s notion in that understanding is relative between interlocutors—a 
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sense of shared memory. This understanding occurs in conversation, but Pask 

(1975) notes an external observer can change the characteristics of the 

conversational environment. Understanding may now not be shared by the 

participants and the observer.  

Modern mathematics teaching characterises learning as a “generative process of 

meaning-making that is personally constructed” (Pimm, 1993). It would seem, 

therefore, important to foster dialogue as a means of both generating and observing 

understanding.  A number of researchers, including Pimm (1987) and Rowland 

(2000) have built on a linguistic framework developed by Halliday (1973, 2009). 

Halliday develops the notion of ‘acts of meaning’, communicative acts that are 

intentional and symbolic. Acts of meaning are social acts that are only meaningful 

when another party joins in to give them value (a conversational process). Wooffitt 

(2005), for example, suggests it is a mistake to think of language as a means of 

representation when it should be regarded as a medium of social action.  

Conversational Analysis, developed by Sacks (1992), takes a more detailed look at 

the structure of a conversation.  Sacks realized that, far from being just a means to 

pass on thoughts, conversation has a social structure. This is seen in conversational 

turn-taking where responses between interlocutors often occur in pairs and where 

there is an expectation of a certain response. Subsequent studies by Sacks, 

Schegloff and Jefferson (1974) indicate that all aspects of speech are significant. 

Even minor or irrelevant aspects such as ‘umm’ are important as a way of 

indicating ongoing thought. The onset of simultaneous speech, overlapping, and 

the timing of gaps between turns, also indicate important information. A feature of 

conversation is that participants understand and respond to one another in their 

turns at talk. Phrases which are an indication of conversation are adjacency pairs, 

in which a second utterance of an exchange is functionally dependent on the first. 

A conversation is also indicated when the participants attempt to engage one 

another in an informative and relevant way. An aspect of this is seen in the 

cooperative overlap in which one speaker talks at the same time as another. 

Intonation also plays a role in a conversation as it expresses both textual and 

interpersonal meanings. Intonation and rhythm, especially the pitch contour of 

speech, figure prominently in the information system (Halliday, 2009). Tone 

sequences create textual structures for the interlocutor. For example, a non-falling 

tone creates an expectation that some further information is coming. A level tone 

can be informational, while fall-rise seems determinate but is not, and rise-fall 

seems not determinate but is. 
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METHODOLOGY 

As a test case I conducted research on a class of grade 11(n = 30) students during a 

routine lesson for which I was the teacher. The students self-selected themselves 

into groups of three and were asked to record a discussion based around questions 

related to curriculum content from grade 10. One student acted as camera operator 

while the other two discussed prompts. The students could not use any reference 

source. The camera operator could also join in the conversation. After the students 

felt they had exhausted their ideas on one question they changed the camera 

operator and moved onto the next question. Specifically the students were asked: 

1) What do you think a function is? 2) What does a function do? 3) What is meant 

by the notation f(x)?  

If the students in this study possess a working concept image of the function it may 

not be coherent at this introductory stage (Tall & Vinner, 1981). The students may 

simply provide a concept definition, what Tall and Vinner refer to as “a form of 

words used to specify that concept” (p. 152), but the purpose of the prompts is to 

evoke their concept image. The videos were analysed first for the spoken word, 

and then viewed to code the rise and fall of the voices.  

ANALYSIS OF A SAMPLE OF DATA  

Note that: (.) represents a hesitation,  (..) represents a longer hesitation, (n) 

represents a pause of n seconds, and underlined text represents students talking 

over each other. 

Transcript: (Jane and Jill are sitting facing each other. Mike operates the camera.) 

1 Jane: What is a function Jill? 

2 Jill: I don’t know, you tell me Jane. 

3 Jane:  Umm, I think (..) you can write it in y = mx + b format.  

4 Mike: Yes, like in the equation for a graph, right? 

5 Jane: Yeah. Oh, another one, you put a number in and it comes out with a different 
number. 

6 Jill: Yeah, and you have to do (unintelligible) 

7 Mike: You have to leave what? 

8 Jill: Never mind.  

9 Mike: No, it’s okay, tell us what you’re thinking... 

10 Jane: Like the input is the x and the outcome, the output, is the y, right? 

11 Mike: Yeah, so you have f of x and then you have your little equation, right? 

12 Jill: And you know that f of x, you have to leave that at the ending, you have to 
leave that alone, don’t you? With the number it equals… does that make 
sense at all? 

13 Mike: Like you have f of x right... 
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14 Jill: equals and then ... 

15 Jane: ..oh how you write it.. 

16 Jill: yeah, you do that. 

17 Mike:  So, like, but in the end what f of x equals is the same as what y would?  

18 -21 The students agree 

22 Jane: Oh! I know that in the function m is the slope and b, b is the y-intercept.  

23 Mike: Yeah, just like in, umm, y = mx +b right?.. 

24 Jane: Yeah. 

25 Jill: What are you talking about? 

26 Mike: What are the other questions? 

27 Jill: What does a function do, can you describe it in another way? 

29 Jane: Yeah, y = mx + b. 

30 Mike: And you have the standard form right? Like you have Ax + By right?  

33 Jane: It’s like a special box, you put something in and something comes out. 

34 Mike: Yeah. Didn’t we talk at the beginning of the year it’s like a machine, like you 
put in a 2 and a 4 comes out? 

35 Jane: Yeah. So I think that’s about it. 

36 Jill: It’s all we know. 

37 Mike: Isn’t, isn’t it like, the fu.. it’s like. 

38 Jane: There are many different forms of a function (.) like the linear one  (..)and the 
V one and the weird ones (.) 

39 Mike: yeah and there’s the restrictions, like there can only be one x value… 

40 Jane: oh yeah 

41 Mike: Like you can only use one x value once 

43 Mike: Like you can’t stack the points or it’s not a proper function? 

45 Jane: Oh if you put a number in (.) but you can’t have all different (.) like 
(.)outcomes. 

46 The students agree and the clip ends. (Note: missing lines were edited for space) 

Jane and Mike participate in an exchange that has clear indicators of a conversation 

as there are many adjacency pairs and overlapping interruptions. The students are 

responding to each other in a way that suggests they share a level of understanding. 

It is immediately clear that Jane is confident in her knowledge about the function. 

She faces Jill and gestures towards her. Jane’s expression is open and smiling but 

her language is firm. She begins with a personal pronoun (line 3) to establish 

agency and uses ‘you’ to generalize the concept. She may also be using a deictic 

gesture in line 3 indicating that she views her interpretation of a function as an 

object, although this gesture may also be interpreted as Jane emphasising that Jill 

could perform the action. It is noticeable that Jane is the only one of the three to 

use ‘I’ (line 3). She then uses a modal auxiliary verb ‘can’. Her tone is rise-fall 
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indicating that she is confident in her words while not wanting to assert them. She 

is being conversational.  In line 5 she uses the interjection ‘oh’, in direct access to 

attract attention. She also refers to the function as ‘it’, indicating that she thinks of 

the function as an object.  In line 10 she finishes with ‘right?’, used as a verb and 

hedged performative with the likely purpose of ensuring the others are with her 

train of thought. Jane’s gesturing in line 38 is more deictic than beat oriented, 

indicating a reference to a mental object she has formed. 

Mike, whose tone carries equal confidence, is more inclusive in his talk than Jane. 

He uses ‘we’ in line 34 and, with rising tone, uses ‘right?’ frequently, but in his 

case it seems more likely he is checking the others are understanding him and are 

included. He commonly uses a general form of ‘you’ to indicate the way a function 

would be used by other people in a wider mathematical community.  Mike is off 

camera so there is no indication of his use of gestures but he is clearly engaging 

with Jane in a conversation and also attempting to draw Jill into the conversation 

more (line 9). 

Jill offers contributions to the conversation, as in line 9, but does so tentatively, 

either withdrawing the remark immediately or seeking confirmation, as in line 12. 

In addition, her tone in line 12 is fall-rise which Halliday (2009) considers to seem 

determinate but is not. She relies on Jane and Mike to complete her thoughts (lines 

14-18). As Jane and Mike engage in a deeper conceptual conversation, Jill’s 

attention drifts away. When Mike’s comment (line 44) returns closer to her image 

of a function as a line on a graph, it renews her interest and she questions with a 

rising tone. From this brief exchange it can be suggested that Jill does not share the 

same concept image that Jane and Mike do. 

SUMMARY  

The sample case illustrates the potential for using a conversational approach to 

examine the ability of students to participate in a discourse. Two of the three 

students appear to share an understanding by agreeing on their explanations. The 

third participant is either unwilling or unable to participate on an equal footing 

with her peers. While this may be due to a less developed concept, causing her to 

be unable to produce an explanation for her peers, caution must be made in making 

this assumption. Alternative explanations may explain this lack of participation; 

she may feel socially intimidated, or simply disinterested in participating. Analysis 

of further conversations, or an alternative approach to investigating the student’s 

understanding should then be used with this student. The sample also illustrates the 

potential to use a toolkit of conversation and discourse analysis tools to study the 

form and meaning of the exchange. In further analysis of the conversations 

between other students in the class, degrees of participation in conversation could 
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be similarly identified. Participation ranged from non-existent to very involved and 

animated. Correlating the students’ performance on a post-test based on functions 

indicated a match between performance and the ability to converse on the topic in 

most cases. Of further interest was the performance of Jill in formal testing, who 

was successful in questions of a procedural nature, but less so in questions of a 

conceptual nature. A further case of interest involved a student who was able to 

converse well but whose language was vague. In the post-test the student did not 

perform well on the procedural style of questions but was able to start questions of 

a conceptual nature well before losing his way in the mechanics of the question. 

Any conclusions based on this study are premature, but it suggests a potential area 

in which to delve further. 

A suggestion to develop this process further would be to couple this process with 

gesture analysis to give the potential to examine a further dimension of the 

discourse. Studies indicate that gesturing is used to lighten the cognitive load while 

thinking (e.g. Goldin-Meadow, 2003), not only allowing the speaker to use more 

resources to access memory but also playing a role in shaping the speaker’s 

cognitive state. Goldin-Meadow suggests that by not gesturing, the student is not 

using their full cognitive capacity and does not perform as well as when they do. If, 

as Goldin-Meadow suggests, “gesture and speech form an integrated...and 

synergistic system” (p. 521) and that “gesture has the potential to display thoughts 

that are not conveyed in the speech”, then a consideration of how conversation and 

gesture interlink might prove to be an interesting further study in this area. 
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