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MATHEMATICS EDUCATION DOCTORAL STUDENT 
CONFERENCE 2009 – PROGRAM 

8:45 – 9:15 Welcome and coffee  

9:20 – 9:40 
The psychology and physiology of 
structure in geometry: a study in 
educational neuroscience 

Kerry 
Handscomb 

9:45 – 10:05 Anatomy of an “AHA” moment Olga Shipulina 

10:10 – 10:30 Systemic outreach  activities: providing 
tools of empowerment 

Melania 
Alvarez 

10:35 – 10:55 The designing braid: teachers' interactions 
while designing learning artefacts 

Armando 
Paulino 
Preciado Babb 

11:00 – 11:20 A critique of Ethnomathematics O. Arda Cimen 

11:25 – 11:45 Students reducing abstraction: the case of 
logarithms Krishna Subedi 

11:50 – 12:10 
Sanding the lens: the narrative of a task 
from the initial planning to the undergrad 
students’ conceptions of inequalities 

Elena 
Halmaghi 

12:15 – 12:35 
Tensions related to course content in 
teaching Math for Teachers:  the case of 
Alice 

Susan Oesterle 

1:00 – 2:00 Lunch: Himalayan Peak Restaurant  

2:15 – 3:00  Plenary: The Accidental Professor Tom O’Shea 

3:00 – 3:30 Plenary Q&A  

3:30 – 3:45 Some useful elements from a survey Christian J. 
Bernèche 

3:50 – 4:05 Identification of habits of mind inherent 
in mathematical exploration Sean Chorney 

4:10 – 4:30 Use of DGS to promote kinaesthetic 
thinking: a case of linear transformation 

Shiva Gol 
Tabaghi 

4:35 – 4:55 Technology and modeling as agents of 
inquiry George Ekol 

5:00 – 5:20 Teachers connecting mathematics through 
a lesson study on similarity Natasa Sirotic 

5:25 – 5:55 Reflection and vision for the future of 
MEDS All 
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PLENARY SESSION: THE ACCIDENTAL PROFESSOR 
Dr. Thomas O’Shea (ret) 

Faculty of Education 
Simon Fraser University 

oshea@sfu.ca 
 
 
I assume that PhD programs in mathematics education are designed primarily to 
prepare individuals to take over when the professors in those programs retire, die, or 
otherwise cease to function.  I have observed that doctoral programs, to this end, 
tend to focus on courses, theses, disputations, and managing political crises, with the 
guidance of their professors.  Students may come to believe that such professors, 
from their early years, single-mindedly mapped out their future and followed a grand 
plan to achieving their current academic status.   In this session, I will present a case 
study (myself) to show how fallacious this assumption may be.  In fact, I will argue 
that Brownian motion1 provides a model that may best explain one’s progress (?) 
through the academic world. 

  

THE PSYCHOLOGY AND PHYSIOLOGY OF STRUCTURE IN 
GEOMETRY: A STUDY IN EDUCATIONAL NEUROSCIENCE 

Kerry Handscomb 
Simon Fraser University 

khandsco@sfu.ca 
 

                                           
1 Various definitions are available on the web.  Some examples follow.  Choose one.  

 “A zero-mean continuous-time stochastic process with independent increments 
(also known as a Wiener process)” 
www.mathworks.com/access/helpdesk/help/toolbox/econ/f6-1001427.html 

 “The random movement of tiny particles, for example of dust or pollen, that 
results from collisions with the molecules of the gas or liquid in which they are 
suspended.” 
bscw.cs.ncl.ac.uk/pub/bscw.cgi/S4926fa70/d56519/book%20glossary-final.doc 

 “The movement of microscopic particles caused by Brownies.” 
 www.besse.at/sms/glossary.html 
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This paper is a synopsis of a doctoral dissertation in mathematics educational 
neuroscience. It presents a psychological model for geometrical thinking and 
learning and its correlative physiological model. With respect to the latter, 
geometrical concept formation belongs to the parietal lobe of the cerebral cortex. 
The cerebellum has a functional role in directing attention to those aspects of a 
geometrical percept that are essential to the concept under consideration. The 
theoretical framework is embodied cognition, as informed by Spinoza, which allows 
coherent integration of psychological and physiological aspects of geometrical 
reasoning. A conclusion of the research is that decontextualization of geometrical 
concepts may facilitate student learning of these concepts. 

 
ANATOMY OF AN “AHA” MOMENT 

Olga Shipulina 
Simon Fraser University 

oshipuli@sfu.ca 
 
Specific details regarding students’ understanding and learning, and how to identify 
and observe these details is a most challenging empirical aspect in support of any 
viable cognitive theory in mathematics education research. This especially pertains 
to research in mathematical problem solving and, in particular, to capturing and 
exploring the nature of “AHA” moments. In this paper, ways in which such studies 
can provide better empirical ground for developing more accurate theories of mental 
processes during mathematical thinking and learning are introduced and 
demonstrated using “state-of-the-art” methodologies that go well beyond the 
traditional dependencies on video-tape recordings – specifically, computer screen 
capture, eye tracking, and electroencephalography (EEG) for analysis of an “AHA” 
moment.  
 
 

SYSTEMIC OUTREACH ACTIVITIES: PROVIDING TOOLS OF 
EMPOWERMENT 

Melania Alvarez 
Simon Fraser University 
melania@pims.math.ca 

 
How we act and relate to the world depends on the knowledge and skills  
that our parents and community share with us, how effective they are at  
teaching those skills and knowledge in order to understand and deal with  
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the world around us, and how we personally interpret and act on that  
knowledge. This relationship between interpretation and action is what  
Bourdieu tried to encapsulate in the idea of habitus, which he describes  
as a system of interchangeable dispositions that bridges the gap between  
structure and agency. The main goal of the outreach programs we are  
developing is to empower aboriginal students to be able to overcome the  
obstacles they encountered as they try to get a high school education.  We  
are working under the hypothesis that when students feel that their  
mathematical knowledge is adequate they can use this as a tool of  
empowerment in their school work. 

 

THE DESIGNING BRAID: TEACHERS' INTERACTIONS WHILE 
DESIGNING LEARNING ARTEFACTS 

Armando Paulino Preciado Babb 
Simon Fraser University 

apreciad@sfu.ca 
 
In this report I propose a theoretical framework that serves to understand   
conversations and interactions that teachers and educators undertake when engaged 
in the collaborative design of mathematics learning artefacts—such as a lesson, a 
class projects, or an assessment instrument. A constructivist grounded theory 
approach was used in order to develop such a framework. Three theoretical concepts 
describe the participants' conversations when designing a lesson in this context: (1) 
anticipating possible students' approaches and struggles; (2) pursuing coherence 
within the context of the classroom where the artefact will be implemented; and (3) 
approaching previously selected goals for the artefact. Comparison with other 
theories of mathematics teachers' development is made in the concluding section, 
stressing the focus on teachers and educators' interactions of the proposed 
theoretical concepts in this paper. 

 

SOME USEFUL ELEMENTS FROM A SURVEY 
Christian J. Bernèche 

Simon Fraser University 
cbernech@sfu.ca 

This paper presents pre- and post-surveys on attitudes held by Mexican high school 
teachers, involved in a one-year lesson study project, as a means to understand the 
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limitations and possible usefulness of this specific survey. Items that are brought to 
the fore during the analysis will be discussed and may inform research neophytes as 
they consider various instruments for their own imminent data collection. 
 

STUDENTS REDUCING ABSTRACTION: THE CASE OF 
LOGARITHMS 

Krishna Subedi  
Simon Fraser University 

kps4@sfu.ca 
Reducing abstraction is one of the theoretical frameworks that examine the learners’ 
behaviour while coping with abstraction level. It refers to the tendency of the 
learners to unconsciously reduce the level of abstraction while learning new concepts 
to make it mentally accessible for them.  Analysing the work of three students through 
the lens of reducing abstraction, the aim of this paper is to investigate and exemplify 
some misconceptions and instances of error in students’ understanding of logarithms. 

 

SANDING THE LENS: THE NARRATIVE OF A TASK FROM THE 
INITIAL PLANNING TO THE UNDERGRAD STUDENTS’ 

CONCEPTIONS OF INEQUALITIES  
Elena Halmaghi 

Simon Fraser University 
halmaghi@sfu.ca 

 
This report comes from a broader study that investigates undergraduate students’ 
conceptions of inequalities. It comprises the design and refinement of a task with the 
purpose of making it more engaging for students and of getting results that are more 
transparent for author’s interpretation. The narrative follows one task that has been 
developed, implemented, interpreted, refined, implemented again and used in the 
process of deriving university students’ conceptions of inequalities. The 
interpretation of student’s work is framed as an emergence of the lens 
CONCEPTIONS OF INEQUALITIES. The lens is intended to magnify students’ work 
on inequalities for the researcher to better spot the various conceptions and interpret 
understanding of inequalities. 
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TENSIONS RELATED TO COURSE CONTENT IN TEACHING 
MATH FOR TEACHERS:  THE CASE OF ALICE 

Susan Oesterle 
Simon Fraser University 
oesterles@douglas.bc.ca 

 
Instructors of mathematics content courses for prospective elementary teachers are 
influenced by many (sometimes) competing factors as they strive to meet their goals 
for their students.  Via an analysis of three episodes that occurred during an 
interview with one such instructor, this report seeks to illustrate some of the tensions 
that these instructors operate under as they make decisions related to course content. 
 

TECHNOLOGY AND MODELING AS AGENTS OF INQUIRY 
George Ekol 

Simon Fraser University 
gle1@sfu.ca 

I first state Confrey and Maloney‘s (2007) four distinct but related approaches to 
technology use in mathematics instruction, one of which centrally involves modeling. 
My focus in this paper is on how students use technology in modeling, in light of the 
Deweyian definition of inquiry. Data from undergraduate students engaged in a 
modeling task are analyzed and discussed. Based on the results, I concur with 
Confrey & Maloney that modelling, through the process of inquiry, provides 
opportunity for the inquirer to progress from an indeterminate to a more determinate 
situation. However, I refine the definition of mathematical modelling proposed by 
Confrey & Maloney(2007) and submit that the end product of a modeling process is a 
description of the determinate situation with respect to the original task. 

 

USE OF DGS TO PROMOTE KINESTHETIC THINKING: A CASE 
OF LINEAR TRANSFORMATION 

Shiva Gol Tabaghi 
Simon Fraser University 

Sga31@sfu.ca 
A neuroscience theory suggests that kinesthetic thinking is the very basis of thought. 
Similarly, Lakoff and Núñez (2000) suggest that dynamism plays an important role in 
conceptual development.  Furthermore, Núñez (2006) argues that mathematical ideas 
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and concepts are ultimately embodied in the nature of human bodies, language and 
cognition. In this paper, we examine the role that dynamic interactive representations 
of mathematical concepts plays in promoting kinesthetic thinking. In particular, we 
report evidence of students’ kinesthetic thinking while they interact with a dynamic 
interactive sketch of the concept of linear transformation. 
 

A CRITIQUE OF ETHNOMATHEMATICS 
O. Arda Cimen 

Simon Fraser University 
arda_cimen@sfu.ca 

 
Starting with its presentation by Ubiritan D’Ambrosio at the International Congress 
in Mathematics in 1984 and his following paper in the next year entitled 
“Ethnomathematics and Its Place in the History and Pedagogy of Mathematics”, the 
concept of ethnomathematics, as a new field of study, has been taking a wide place in 
mathematics educational research. In this paper, I will first focus on how different 
researchers, who study ethnomathematics, define it. Based on their definitions, firstly 
I will start with the points in those their positions and descriptions of 
ethnomathematics differ. Then I will continue with a concluding part to summarize 
the ideas, philosophies and stances ethnomathematicians share. In addition, I will 
critique the thesis that ethnomathematicians share, which is taking a position that 
mathematics is culturally dependent. I will call this thesis as Culturally Relativity 
Thesis (CRT). And for the following part of the article, I will manifest my own 
counter epistemological view of mathematics which I will call as Culturally 
Independence Thesis (CIT) and I will support my thesis in four aspects: etymological, 
socio-pedagogical, historical-anthropological and with regarding applied 
mathematics. 

IDENTIFICATION OF HABITS OF MIND INHERENT IN 
MATHEMATICAL EXPLORATION 

Sean Chorney 
Simon Fraser University 

schorney@vsb.bc.ca 
 
In this study students were given an opportunity of posing problems after being 
presented with a “rich” mathematical object.  Students’ problems were commented 
on in the hope of revealing to the researcher a possible framework. 
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TEACHERS CONNECTING MATHEMATICS THROUGH A 
LESSON STUDY ON SIMILARITY 

Natasa Sirotic 
Simon Fraser University 

natasa@pims.math.ca 
 
Scaling and similarity, a topic from elementary mathematics, is one where the 
concepts of number and shape interplay. The concept of similarity was already 
known the ancient Greeks, and it remains an important topic of study to this day. 
More importantly, it could be fruitfully employed to the development of the concepts 
of number and number operations, and for the learning of proportional reasoning. 
The ideas presented here stem from a lesson study on similarity, but have a wide 
range of applicability for school mathematics, as they address the connections 
between magnitudes, quantities, and numbers. In particular, we present the use of 
geometric representations as a way to uncover the multiplicative relations between 
quantities and their relative sizes. The report presented here is taken from an 
ongoing study situated in a school-based community of practicing teachers, who 
harness the potential of community and workplace to develop their practice of 
teaching mathematics. 
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SYSTEMIC OUTREACH ACTIVITIES: PROVIDING TOOLS OF 
EMPOWERMENT 

Melania Alvarez 
Simon Fraser University 

 
 How we act and relate to the world depends on the knowledge and skills that our parents 
and community share with us, how effective they are at teaching those skills and knowledge 
in order to understand and deal with the world around us, and how we personally interpret 
and act on that knowledge. This relationship between interpretation and action is what 
Bourdieu tried to encapsulate in the idea of habitus, which he describes as a system of 
interchangeable dispositions that bridges the gap between structure and agency. The main 
goal of the outreach programs we are developing is to empower aboriginal students to be 
able to overcome the obstacles they encountered as they try to get a high school education.  
We are working under the hypothesis that when students feel that their mathematical 
knowledge is adequate they can use this as a tool of empowerment in their school work. 

“The future isn’t something hidden in a corner. The future is something we build in the 
present”—Paulo Freire. 

INTRODUCTION: 
My research problem consists in developing, implementing and assessing outreach 
activities that could help aboriginal students to improve their mathematical 
knowledge and access to a higher education and a better job. The main goal in the 
development of these academic outreach activities has been to find mechanisms of 
empowerment that will allow students to overcome the obstacles they encounter in 
school in order to continue and graduate from high school. However, as Freire (1998) 
warns us, real empowerment does not come from the educator to the educand, this is 
a paternalistic view which only provides a benevolent form of oppression, where the 
educator assumes to know what the educand needs in order to succeed and sees 
himself/herself as the one who is able to provide this change for the educand (Freire 
1998:6). Real empowerment comes from within, and this change from within does 
not happen in one day, it is a long process where the educator can only provide the 
educand with opportunities and tools to deal with those opportunities, but only until 
the students take them as their own can change happen. 
The hypothesis that guides these outreach programs is that if we are able to teach 
students and provide them with a stronger academic background they will feel more 
confident in school, and this confidence will empower them to feel better about 
themselves.  They will have more and better choices to access, and they will act upon 
those choices, given that they will have better academic tools to face the school 
system and the possibilities that this system provides.   
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However in order to be able to present opportunities that could be of value we need to 
understand the habitus of the students. How do they perceive their world? How do 
they act according to their perceptions? How are they able to overcome or not the 
obstacles presented to them given the knowledge and resources they have? 
The dispositions or tendencies to act in a particular way under certain circumstances 
can be classified as categories of perception and assessment that subsequently will 
inform principles of action, what Bourdieu called habitus. The habitus gives the 
individual a “feel for the game” (Bourdieu 1990: 9), and provides the individual with 
potentials and possibilities of actions according to his/her knowledge of the world 
(1990: 9). The habitus very much depends on the individual’s personal history, but 
also the collective history of the community with which the individual interacts 
throughout his/her life. 

THE IMPACT OF STRUCTURE AND AGENCY AND HOW THEY 
RELATE: 
The obstacles Aboriginal children face have a deep impact in their psyche and reality, 
and  in order for change to happen in their lives there needs to be a transformation at 
both levels which in most cases cannot happen overnight.  In Learning to Labour,  
Willis’ (1977) claims that a way one can bring change into the school realities and 
choices of marginalized students is by moving away from just looking at students’ 
discontent and resentfulness especially against authority, and at deterministic views 
of cultural and social reproduction. We should instead pay more attention to the 
mutual relations and interactions between structure and agency ‘habitus’.  
Willis (1977, 1983) states that there is a ‘moment’  at the end of the line of many 
moments of reflection and action when individuals make sense of their conditions of 
existence, and it is at this moment than a pivotal choice and a transition is made.  
In Learning to Labour, Willis (1977) describes the lives of working class boys living 
in Birmingham England (they self identify as “the Lads”), and how when the moment 
comes when they are finally able to enter the world of manual labour, they reject 
what any further schooling has to offer, and they make the choice of allowing 
themselves to get working-class jobs. These choices are what make cultural 
production and in most cases reproduction to occur. Willis defines cultural 
production as “the process of the collective creative use of discourses, meanings, 
materials, practices and group processes to explore, understand and creatively occupy 
particular positions, relations and sets of material possibilities” (Willis 1983:114). 
As one can see there are two main elements to this definition: the social structure that 
the individual has to face, and the understanding and response of individuals to this 
structure. Willis proposes that in between structure and anticipated/predictable 
actions made as life choices, there is a crucial moment where creativity is a 
possibility and change is possible.  In the case of Willis’ ‘Lads’, they made a free 
choice of becoming un-free by electing to be part of the system of working-class 
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exploitation and oppression ‘it is the future in the present which hammers freedom to 
inequality’ (Willis 1977: 120). Willis sees this moment of choice as the end of the 
line position for students, a last moment of many moments of a continuum of 
resistance gathered around a final stance when the student finally makes the choice to 
drop out of school.  
An example were one can see the same point that Willis makes about his ‘Lads’ but 
applied to an Aboriginal population is the case of the Koori in Greytown Australia. 
The study by Munns & McFadden (2000) shows that these conditions of rejection in 
the Koori Population start as early as primary education, and that later on these 
aboriginal students drop out of high school once they are legally able to.  
Munns & McFadden (2000: 62) identified the following conditions as the lead causes 
for students to take up resistant positions about school: Powerlessness (Much of the 
suffering is directly caused by endemic institutional and personal racism directed 
against them); Feeling powerless (They feel that their lives are a constant battle 
against a system that does not work for them); A sense that school was not working 
them (As students get older they become aware that most of them spend many years 
at school for few academic rewards); They reject what feels like an unequal 
educational experience since  teachers usually have low expectations about them and 
this is translated in their practice; Lack of cultural support (students become aware 
that the community expects that they will fail and quit school. They sense from the 
community that as a group they are not able to succeed academically)  
Munns & McFadden (2000) point out that if these conditions are not appropriately 
dealt with in the earlier years, we will see their effect along the continuum of 
schooling years and beyond. 
These conditions are very similar to the ones that many aboriginal students 
experience in the schooling system in Canada. The aboriginal population has been 
subjected to this systemic racism for a long time.  Many researchers show that being 
subjected to racism brings feelings of low self-esteem, and it has a deep 
psychological and emotional effect on individuals (Clarke, 1994). Sellars (1992:85) 
points out that “When you’ve been programmed to believe you are worth nothing, 
you unconsciously act out the role and it’s difficult to change that view of yourself”.  
The First Nations Education Steering Committee Society Report (1997:16) stated, 
“when a person is told over and over again that they are a ‘lazy Indian’ or a ‘stupid 
Indian’, eventually they believe it”. In order to change these conditions, given the 
obstacles presented by the system there needs to be a continuous intervention for 
change on behalf of the educator. We need to provide the students with the tools that 
will empower them to make positive choices for their future. 

OBTACLES TO EDUCATION FOR ABORIGINAL STUDENTS IN CANADA 
Historically Aboriginal peoples have long endured a host of unfair social, economic, 
and geographical barriers. Like the Kooris in Australia, aboriginal people in Canada 
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usually have to overcome multiple obstacles in order to acquire an education and/or a 
job. A substantial percentage of them face poverty, unemployment, and poor health 
(Friesen & Friesen, 2005).  Within the reserve and aboriginal communities we find 
that housing conditions are usually sub-standard (Preston 2008:59), and when they 
attempt to come to cities looking for better jobs or an education they still find that it 
is difficult for many of them to find a reasonable place to live (Friesen and Friesen, 
2005).    
Evidence shows that young aboriginal people are most likely to withdraw from high 
school between grades 9 and 10 (Government of Canada Background paper, 2004). 
We find that by this time many at risk aboriginal students have collectively 
experienced various problems: academic failure, truancy, difficult school/home 
environment (family breakdown, domestic violence), frequent relocation from one 
school district to another, problems with police and possible criminal involvement, 
teen pregnancies, and alcohol and drug abuse. However many aboriginal students 
who drop out, have not faced these problems but still feel that school is not the place 
for them.  
The following are in my experience and according to research some of the main 
obstacles that aboriginal students face at school and lead them to abandon it. 

• Lack of study skills, course requirements, and academic knowledge, 
especially in the areas of mathematics and science (Hardes 2006). 

• Lack of counselling, lack of mentors and educational role models.   
• Low expectations and racism (Richardson and Blanchet-Cohen 2000).  
•  Schools consistently ignore the Aboriginal perspective, and thus do                

not prepare students for the world they intend to function in.  
• Poverty: there is nothing teachers and staff can do to change the immediate 

realities of poverty that some children face, however school can help by 
giving good schooling to children and building connections between parents 
and community. Neufeld (1990) notes that by seeing school processes as 
holistic where affective links between school’s staff and students are 
developed, poor children can bring and find some solace from their burdens, 
which can make a big difference in their overall outlook. Any community 
programs that the school might develop can be a useful intervention (Nettles 
1991). 

• Student’s mobility and absenteeism. Aboriginal students are among those 
who are more often absent and more likely to change schools.  

• Teenage pregnancy/taking care of siblings or the children of 
siblings/daycare. I was surprised to learn that many aboriginal students were 
used as babysitters by their older siblings, which resulted in going late to 
sleep and many times arriving late and tired to school.  

• Low self-esteem 
• Alcoholism/Drug Abuse/Sexual Abuse 
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Of the points above, the third one is the one that according to Richardson, and 
Blanchet-Cohen (2000), and I concurred, is the greatest obstacle of all.  The study by 
Schissel & Witherspoon (2003), The Legacy of School for Aboriginal People, reveals 
that more than 35% of high school students rated racism as the main barrier to 
learning. According to Henry, Tator, Mattis, and Rees (2000) racism exists at many 
levels, from individual to cultural, and the effects are equally harmful regardless of 
the level. 
Systemic racism is usually more difficult to point out given that it includes laws and 
norms rooted in a social system with unequal distribution of social, political and 
economic resources among various racial groups (Henry et al 2000:6).  When one 
confronts systemic racism the “inequality is built into institutions in a way which is 
often  invisible both to those who dominate and those who are dominated” is an 
action “which has the result rather than the intent of disadvantaging persons or 
privileging them…” (Vickers 2002:197).  
Since the teacher is the representative from the school that most directly deals with 
students, their perception and interaction with students has the greatest impact in 
them. A study into dropout prevention conducted across four countries --India, 
Nigeria, United Kingdom and the United States – discovered that reversing the 
teachers’ negative perception about minority children was one of the main factors for 
maintaining at risk students in the education system (Woolman 2002).  
Wotherspoon’s (2006) study show that Aboriginal students are highly sensitive to the 
fact that a teacher’s actions and orientation can sometimes make a substantial 
difference to the specific education and life pathways they follow. In the literature it 
is widely acknowledged that teachers’ perception of students will have an impact on 
the teaching, learning and assessment outcomes that students receive. Wilson (1991) 
identified several examples of unfair treatment of Aboriginal students by teachers like 
rigid and unfair implementation of attendance policies; behaviours that show 
disrespect towards the students; and inadequate teacher assistance. Other studies 
show that in general aboriginal students cannot rely on the teachers’ support and they 
feel unwanted at school (Laroque 1991). 
 There is extensive literature which point out the importance of the need for teachers 
to acknowledge racism at school and that they should refrain from judgments about 
their students based on the ethnic background (Lund 2006).The reality is that in 
schools the existence of racism is usually ignored or denied and the repercussions of 
low expectation and racism spill on and feed the other obstacles.   

OUTREACH ACTIVITIES: SOME PRELIMINARY RESULTS 
The Pacific Institute for the Mathematical Sciences (PIMS) has been implementing 
various outreach activities in several First Nation schools and public schools with 
significant aboriginal population in British Columbia. Two years ago it started 
working with Britannia Secondary in Vancouver, looking for ways to improve the 
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high school graduation rate of aboriginal students, as well as to increase the level of 
math preparation among these students. More than 30% of the students attending 
Britannia Secondary are aboriginal.  
I have been working with PIMS in the development and implementation of various 
programs to improve academic achievement at Britannia Secondary. These outreach 
programs focus mainly on acquisition of mathematical knowledge and understanding. 
It is especially important that students take rigorous math courses in high school, 
given that this is one of the greatest predictors of successful college completion 
(Adelman 1999). By leaving behind the philosophy of reduced expectations,  
introducing new interesting and challenging programs and exciting ways to learn 
mathematics, PIMS hopes to be able to provide aboriginal students with the tools 
they need to be able to make a career decision of their choice, including a career in 
science.  
PIMS started offering a Math camp in the summer of 2007 for students attending 
Britannia Secondary who had failed their grade 10 Math.  Five aboriginal students 
attended this camp and at the end of the summer four of these students were tested by 
the school and were placed in principles of math 11.   
In general researchers recommend that the type of outreach programs, which PIMS is 
implementing, should begin by eighth grade or earlier and not later than ninth grade 
(Corwin et al., 2005). Conversations I had while working with aboriginal students at 
Britannia Secondary seemed to confirm these findings. I realized that many of their 
“delinquent behaviours” in class or skipping class altogether started in 8th grade due 
to feelings of not being able to cope with the courses from the beginning, and not 
being able to foresee any possibilities of going to university and getting an education 
which could provide them with a better future. In general the transition from seventh 
to eighth grade is a difficult one for many children, however for aboriginal students it 
seems to be particularly harsh. For the first time children are streamed and in the case 
of most aboriginal students, they are placed in courses with the lowest academic 
expectations.  
For this reason I developed and implemented a six-week summer camp for aboriginal 
children transitioning from elementary school to high school. We were able to 
organize these camps during the summers of 2008 and 2009 at Britannia Secondary 
in Vancouver. The goal of these camps was to provide students with a more solid 
knowledge of mathematics and English when they enter high school. We also invited 
Aboriginal adults who are successful in a variety of fields to participate in these 
camps. They talked to the kids about possibilities and how it was possible to deal 
with the system to be able to realize personal dreams and the importance of 
education. These role models have been an important part of our program as well. 
PIMS has also continued to offer a summer camp for students entering grades 9 to 12 
who have been part of our programs.   
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In addition to the summer camps, mentorship programs are being implemented to 
help these students with their math courses throughout their high school years and 
PIMS also provides scholarships throughout the year to students who attend school 
regularly and have a good work ethic. Not all the students in our programs get these 
scholarships, they have to earn them. 
The result has been that this year for the first time in recent history 2 aboriginal 
students graduated with principles of math 12 and three with principles of math 11 
from Britannia Secondary, and for the next year we expect they will be three more 
students graduating at this level of math. The two students who graduated with 
principles of math 12 obtained scholarships to attend college.  
When the trustees of the Vancouver School Board asked these students what had 
made the difference, one of them answered that it was important for them to know 
that they have people behind them supporting them at school and at PIMS, and that 
learning and understanding mathematics gave them the confidence and tools to 
continue their studies. Our long term commitment to their learning and graduating 
from high school had an impact in their own commitment to continue until the end.  
In conclusion, if we want some of these at risk students to succeed we need to 
provide long term continual assistance with a variety of programs. We need to 
present opportunities and positive interventions to provide students with more 
positive outlooks for life, and the tools to deal with the opportunities  so that when 
the moment comes to make a pivotal choice, the students will act in a way that will 
further their  horizons.  
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SOME USEFUL ELEMENTS FROM A SURVEY 
Christian J. Berneche 

Simon Fraser University 
This paper presents pre- and post-surveys on attitudes held by Mexican high school 
teachers, involved in a lesson study project, as a means to understand the limitations 
and possible usefulness of this specific survey. Items that are brought to the fore 
during the analysis will be discussed and may inform research neophytes as they 
consider various instruments for their own imminent data collection. 

BACKGROUND 
Surveys are commonly used in research work for a variety of purposes; some of 
which are to gather data to identify trends, to determine opinions on issues and to 
identify beliefs and attitudes of individuals (Creswell, 2008). The latter is important 
in Education where one may be interested in accounting for attitudes of research 
participants before and after interventions or to indicate change over a period of time, 
etc. Surveys are popular data gathering tools because they are typically administered 
quickly and results can be rapidly tallied. There remains an important question 
though as to their relevance and usefulness for a given research project. For this very 
reason, surveys in education are often employed in conjunction with other 
instruments such as interviews, narratives, artefacts, etc. This paper, therefore, aims 
at analysing a specific survey to identify some of its limitations and possible 
usefulness. 

RESEARCH CONTEXT AND PARTICIPANTS 
The surveys that are analysed in this report are part of a research project that was 
conducted in three different high schools in the state of Morelos in central Mexico. 
Paulino Preciado, an SFU Mathematics Education PhD candidate , used a Lesson 
Study (Stigler & Hiebert, 1999) format for collaborative work sessions with over 
twelve teachers in the 2008 fall semester, nine of which are included in the present 
survey analysis. The Morelos schools received one to two sessions per week over the 
term, with the exception of one school that had much fewer sessions. Mexico is 
presently going through educational reforms and Lesson Study represents an 
alternative for teachers' professional growth towards progressive teaching practices 
(Preciado & Liljedahl, 2008). This research project focused on teacher experiences 
over the duration of the Lesson Study Project and the survey was but one of the 
instruments used. For the purpose of this paper, I wish to regard the survey as 
possible evidence of change. Teachers answered 15 questions on attitudes before and 
after the project. This information was transferred to a spreadsheet for further 
analysis which is entirely new for the project. 
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METHODOLOGY 
The fifteen-question survey offered five rating levels, which were given a numerical 
value as follows: 
 Strongly Agree:  4 points 
 Somewhat Agree:  3 points 
 Somewhat Disagree: 2 points 
 Strongly Disagree:  1 point 
 N/A:    0 point 
Schools where treated separately for data analysis. The sample size is not sufficient to 
reach any compelling conclusion but may still provide some feedback on the study. 
The standard deviations for every question were calculated separately so that the 
different ratings would be more evident. Again, I stress the fact that changes between 
individual teachers from the pre- and post surveys are preserved in this manner. 
Standard deviations for pre- and post-surveys were calculated, cumulated and 
grouped per school.The total change is calculated as the absolute values of each 
changed answer from pre- to post-surveys, they are then added and averaged. This is 
meant to compare the level of change between schools in either direction on the scale 
to simply indicate dissatisfaction with existing conceptions (Posner et al.,1982). The 
tables below are ordered to reflect the amount of time spent at the different schools; 
the school that was visited the most is School A at the top of the list and so on. Again 
the intend of this analysis is to explore the use of a survey to measure change and to 
identify limitations and usefulness of such a survey.  

RESULTS 
School A 
Standard 
Deviation Pre-
S 

Standard 
Deviation Post-
S 

Total Change 
School A 

Direction of 
Change (+) 

Direction of 
Change (-) 

8.5 7 8.5 5 -3.5 
 
 
School B 
Standard 
Deviation Pre-
S 

Standard 
Deviation Post-
S 

Total Change 
School A 

Direction of 
Change (+) 

Direction of 
Change (-) 

8.6 8.1 9 3.3 -5.8 
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School C 
Standard 
Deviation Pre-
S 

Standard 
Deviation Post-
S 

Total Change 
School A 

Direction of 
Change (+) 

Direction of 
Change (-) 

3.5 2 1.5 0 -1.5 
 

DISCUSSION 
Firstly, it is important to recognise that none of the observations have been validated 
anywhere other than in this set of data and require further investigation with a  larger 
sample size to carry weight. A quick glance at the values in the tables, draws my 
attention to a correlation between the frequency of the visits and the value of the 
Total Change. School A, the most visited, has a Total Change of 8.5, School B, 9 and 
School C, the least visited of the three, has a Total Change of 1.5. It would seem to 
indicate a direct repercussion of the amount of time spent at a school and the amount 
of change that occurred within that school.  
Again the intent is to consider possible correlations presented here, more analyses of 
interviews, that are connected to the pre- and post-surveys, would have to be 
conducted to further support this possibility. It is nonetheless encouraging to see that 
interventions may have some effects on attitudes held by teachers, even if attributed 
to a repositioning of the teachers' introspections. 
Another interesting observation is that the standard deviations of all schools get 
smaller in the post-survey. School A goes from 8.5 to 7, School B, from 8.6 to 8.1 
and School C, from 3.5 to 2. Of course it's easy to become overly exsited with these 
reductions which are indicative of the proximity of teacher scores. School A has 19% 
more compactness after the project, School B has 6% and School C, 43%. The    data 
support a tightening of the group maybe due to a joint enterprise and a shared 
repertoire as in Wenger (1998). I'm not, however, overly confident that the numbers 
can justified such a claim. School C, for example had the least amount of contact and 
seem to have more group unity after the activity but the post- and pre-surveys for this 
school are almost identical i.e. hardly any change is noticeable. The sample is so 
small that any conclusion would be premature. The other two schools had three and 
four teachers each and did spend significantly more time working together. Both 
school had greatest change and question ratings were tighter post project.  
Additionally, positive and negative values are not directly indicative of desirable and 
undesirable changes. For more clarity, it is to be noticed that there are 2 orientations 
to the rating scale, and to strongly agree or to strongly disagree may be equivalent 
depending on the question posed. Using Schulman (1986) as a frame of reference, 
five questions could be viewed as valued attributes for a teacher and would be 
indicated by a higher score on the survey, 6 questions would have a reversed scale i.e. 
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a low score would indicate a positive attribute for a teacher, and lastly 4 questions did 
not fit into these categories.  
In conclusion, numbers can easily lead us to brash claims. Analysing a survey can 
inform us on its validity and limitations. It may also point to areas requiring further 
investigation and refinement, and further can reaffirm the imperative for several data 
gathering instruments in research. 
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IDENTIFICATION OF HABITS OF MIND INHERENT IN 
MATHEMATICAL EXPLORATION 

Sean Chorney 
Simon Fraser University 

 
In this study students were given an opportunity of posing problems after being 
presented with a “rich” mathematical object.  Students’ problems were commented 
on in the hope of revealing to the researcher a possible framework. 
 
INTRODUCTION 
 
The activity of exploration, although it has obvious manifestations in the “real” 
world, is not a common activity in a school environment. The act of exploring 
might require a search for an unknown feature of an object, or it might entail the 
pursuit of an answer to a question, or, it may solely involve “looking around”.  I 
adopt Hawkins (2001) perspective of exploration.  His view is that exploration, in 
and of itself, is a novel activity whether or not it leads anywhere.  He describes 
exploration as “…a mode of behavior in which the distinction between ends and 
means collapses; it is its own end and it is its own reinforcement” (p. 116).  It is 
valuable because of what is found along the pathways.  This is in stark contrast to 
current trends of mathematics teaching that Brown and Walter (1983) describe as 
the “right way” syndrome.  Current learning theories can only exist when a goal is 
defined (Hawkins, 2001).  Exploration breaks that tradition.  Hawkins continues to 
indicate what it means to explore, exploration “…makes it plain that goals in 
problem solving cannot be imposed by external input, but must be evolved, 
fabricated, set out of the antecedent, ongoing activity of the learner” (p. 116).  
This directs the focus to problem posing.  I suggest that exploration provides a 
context in which to participate in problem posing. If in fact a student is looking 
for, searching for, wanting to discover something, then they most likely will be 
constructing problems.  
 
I believe that in the act of exploration certain mathematical modes of thinking are 
developed.  I have chosen problem posing as a way to identify these mathematical 
modes.  These modes are still in need of articulation but for now I refer to Kobiela 
et al.’s (2008) use of Goldenburg’s habits-of-mind perspective.  In one of their 
studies they identify generalization, relations referred, invariance and scope as 
actions that reflect mathematical modes of thought. My interest lies in observing 
what kinds of modes of thought will reveal themselves when students are in the 
act of exploration, and more specifically, for this study, problem posing.  I 
recognize this is a vague focus; there is still need for refinement as I am still in the 
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process of determining a framework in which to organize the observations or 
interpret any results.  What I have attempted to do in this paper is to outline my 
thoughts and present a cursory data collection and brief analysis to help me 
articulate my perspective.  
 
DATA COLLECTION AND ANALYSIS 
 
This presentation is only an initial attempt to notice features and to furnish the 
occasion of “seeing” something. Students in a grade 9 enriched class were 
presented with a “rich” mathematical object and were given no other instructions 
except that of posing problems. The first five rows of Pascal’s triangle were 
posted on the front board and students were requested to pose 5 problems based on 
the patterns they noticed. Students worked in pairs, were given a period of 10-15 
minutes to work together and each pair of students were then asked to post their 
“best” problem on the front board. The results were interesting. By creating an 
environment of exploration and by considering a perspective of habits of mind, 
my interest was to see what might occur with an activity of this sort and to ask 
myself if there was potential in the posing of problems.  
Although there were a fair number of trivial problems posed there were also a 
good number of non-trivial problems.  These non-trivial problems satisfied a 
variety of dimensions.  Currently I am unable to articulate exactly how I will 
categorize these problems, but for the time being, I will note the ones that 
appealed, for whatever reason, to me.   
Problem posed 
 
1) What pattern do you see in 
the number of digits in each 
row? 
 
2) Why does the third diagonal 
column form an arithmetic 
sequence that goes up by 1? 
 
3) What is the 2nd number in 
the 46th row? 
 
 
4) Are there any geometric 

Comments 
 
A non-trivial, non-conventional question.  This 
could end up being a very rich mathematical 
problem. 
 
Although mathematically trivial, there is still a 
recognition of a pattern, a connection to previously 
learned material and proper use of terminology 
 
A trivial response satisfies this problem but the 
problem is non trivial.  Its extensions are wide 
reaching.   
 
An unconventional and interesting problem.   
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patterns?  If so, explain. 
 
5) Which level will the first 
three-digit number appear? 

 
 
Another a-typical, unconventional problem 
associated with Pascal’s triangle.  This problem 
could lead to a generalization of growth 

 
One problem, not stated in the table above, was a more traditional problem 
associated with Pascal’s triangle and referred to the pattern inherent in the sum of 
each its row.  What was interesting to me was that a student who read that 
question expressed verbally that it was a good question because it pointed out to 
him, in reading it, that there was a pattern that he had not originally noticed. It is 
not surprising to me that one needs to understand underlying features of the math 
environment to formulate these types of problems.  It is quite exciting to see the 
potential in both the problems and the enthusiasm of the kids.   
 
CONCLUSION 
 
Although this study has no properly defined framework or methodology I believe 
that it is of interest to reflect on the results.  I found the overall activity to be 
extremely engaging for students, and I feel there is potential to identify habits of 
mind. Although trivial problems were posed, there was also evidence of problems 
that were thoughtful and sophisticated.  After the activity, I asked the students 
what they thought of exploration. One comment stood out, inspiring me to 
continue to pursue the idea of problem formulation in an exploratory situation.  I 
will conclude with the quotation: “Since we don’t know everything about anything 
(e.g. Pascal’s Triangle), the lack of knowledge would most likely arouse more 
curiosity/questions”. 
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A CRITIQUE OF ETHNOMATHEMATICS 
Arda Cimen 

Simon Fraser University 
 
Starting with its presentation by Ubiritan D’Ambrosio, the concept of 
ethnomathematics, as a new field of study, has been taking a wide place in 
mathematics educational research. In this paper, I will first focus on how different 
researchers, who study ethnomathematics, define it. Based on their definitions, firstly 
I will start with the points in those their positions and descriptions of 
ethnomathematics differ. Then I will continue with a concluding part to summarize 
the ideas, philosophies and stances ethnomathematicians share. In addition, I will 
critique the thesis that ethnomathematicians share, which is taking a position that 
mathematics is culturally dependent. My critique will be detailed in four aspects: 
etymological, socio-pedagogical, historical-anthropological and metaphor of applied 
mathematics. 

INTRODUCTION 
Before detailing my paper, I would like to shade light on some points to provide the 
background to the reader to better understand following sections. Firstly I will direct 
my thoughts towards all scholars who deal with the field of ethnomathematics, 
because apart from their slight differences in understanding of the implications of the 
field, as I will detail in the following part of the article, they generally share the same 
philosophical, historical, anthropological, educational and political stances. That’s the 
reason why in his article about ethnomathematics, which is known as the first article 
in which the term of ethnomathematics was introduced for the first time; D’Ambrosio 
(1985) uses pronoun ‘we’ instead of ‘I’ to address the scholars who are studying 
ethnomathematics and I will use the term ethnomathematician which is also used by 
Gerdes (1994) to address these scholars. I also would like the stress that, because 
linguistically the plural and singular forms of mathematics are the same word, the 
idea of having many mathematicses or argument of having the mathematics as a 
single is not available to be expressed and to be used to emphasize the difference 
between viewpoints of CRT and CIT in English grammar. Therefore readers should 
pay attention to that the word ‘mathematics’ is used sometimes in plural by CRT 
standpoint while it is always used in singular by CIT standpoint. 
According to its first definition by D’Ambrosio (1985), ethnomathematics is the 
mathematics which is practiced among identifiable cultural groups such as national-
tribe societies, labor groups, children of certain age brackets and professional classes. 
So this practiced mathematics of cultural groups can be different from its well-known 
and recognized form, which is defined by ethnomathematicians as Eurocentric 
mathematics (Powell & Frankenstein, 1997). While these cultural groups can be 
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thought of based on their ethnicity, also in his definition, D’Ambrosio (1985) uses the 
term of ‘cultural group’ in an expanded form that also covers different social groups 
within a society (such as carpenters, street sellers etc.) those use mathematics in its 
uniquely developed forms. So ethnomathematics can be summarized as the 
mathematics which is practiced with members of a cultural group who share similar 
experiences and practices with mathematics which can be in a unique form. All these 
different cultural groups have their own language and specific ways of obtaining their 
practical mathematics and ethnomathematicians study their techniques (Gilmer, 
1995). In their chapter in the book which is entitled ‘Ethnomathematics: Challenging 
Eurocentrism in Mathematics Education’, Powell and Frankenstein (1997) emphasize 
the existence of different definitions of ethnomathematics associated with different 
perspectives. For example while Gerdes’s (1988) definition of ethnomathematics is 
quite compact, it has no specific emphasis on culture: "The mathematics implicit in 
each practice". Ascher’s (1986) definition of ethnomathematics is less inclusive and 
more focused on non-literate cultures: "The study of mathematical ideas of a non-
literate culture". In his second attempt, D’Ambrosio (1987), includes the term of 
codification as a difference and he expands ‘mathematics’ and instead uses ‘reality’. 
This definition has an emphasis on the systematization of ethnomathematical ideas of 
cultural groups and manifesting reality through their own system of codification: 
"The codification which allows a cultural group to describe, manage and understand 
reality". In his definition of ethnomathematics, rather than focusing on the term 
ethnomathematics for some specific cultural groups, Bishop (1988) is defining 
mathematics itself as a cultural product: "Mathematics…is conceived as a cultural 
product which has developed as a result of various activities". In her later definition, 
Asher (1991) introduces two additional components in expressing her description of 
ethnomathematics. Firstly she adds the word of ‘presentation’ to (possibly) 
emphasize her new position, which evokes that ethnomathematics is not only at the 
implicit level or just a composition of ideas, but also it was explicitly practiced in 
reality, presented and still being presented by different cultural groups. Secondly she 
switches her use of the term ‘non-literate culture’ to ‘traditional people’. The reason 
for her change of definition is possibly because of her wish to include other cultural 
groups that have presented or being presenting their mathematics literally: "The study 
and presentation of mathematical ideas of traditional peoples". In his definition, 
Pompeu (1994) points out the requisite of recognition of ethnomathematics by 
Western anthropologists for its manifestation, therefore his definition evokes its 
continuing Western dependency: "Any form of cultural knowledge or social activity 
characteristic of a social group and/or cultural group that can be recognized by other 
groups such as Western anthropologists, but not necessarily by the group of origin, as 
mathematical knowledge or mathematical activity". And lastly Knijnik’s (1998) 
definition of ethnomathematics has more socio-cultural emphasis and she does not 
use either the word ‘culture’ or any other word may address ethnicity of social 
groups. However by the use of the term ‘subordinated’, her definition of 
ethnomathematics can be thought of as having a more political emphasis than the 
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other definitions above: "The investigation of the traditions, practices and 
mathematical concepts of a subordinated social group". 
In spite of their slight differences of definitions for ethnomathematics, 
ethnomathematicians share four common assumptions. The first of these assumptions 
is regarding with their epistemological view of mathematics. They share the 
argument that mathematics is the creation of human, regardless of their theoretical 
positions of cognition and learning, they expose their common position by expressing 
that mathematics is not universal as traditionally believed (D’Ambrosio, 1985) and 
expressing that, it is human creation (Bishop, 1988). This assumption not only gives 
ethnomathematicians the philosophical ground on which they can rely and establish 
their theory, but also flexibility and comfort to be able to assert the cultural relativity 
of mathematics. Based on an assumption of universality of mathematics, mathematics 
would not be a creation of human beings, therefore there would not have any 
possibility to claim the relativity of mathematics among cultures. Therefore it can be 
inferred that under only this epistemological assumption, it can be argued that every 
culture has its own mathematics, because the members of this specific culture create 
their own specific mathematics. The second assumption of ethnomathematicians is 
their attributions towards the anthropological and historical findings of mathematics 
(Ascher & Ascher, 1981; Ascher & D’Ambrosio 1994; Kats, 1994; Zazlavsky, 1994; 
Gerdes; 1994). They use these findings as empirical evidence to support cultural 
relativity of mathematics, that is, along the history of human being, different cultural 
groups created their own special mathematics. However there are some exceptional 
views, like Bishop's, that all humans engage in the same basic activities, which lead 
to mathematics. Thirdly, almost all ethnomathematicians emphasize that Western 
mathematics is imposed to the other cultural groups by colonization, and share the 
emergent need of searching the derivations of the mathematics of Third World 
countries. In other words, they have a common political attitude and reaction against 
imperialism and Westernization and a supporting position for Third World countries 
(D’Ambrosio, 1985; Bishop, 1988, 1994; Ascher & D’Ambrosio ; 1994, Gerdes, 
1994, Vithal & Skovsmose, 1997). And fourthly, because almost all 
ethnomathematicians are also mathematics educators, the last common assumption 
that ethnomathematicians share is the implacability of their findings to mathematical 
education research. They connect their positions with mathematics education, 
addressing some contemporary issues in mathematics educational research and offer 
solutions and implications relying on their ethnomathematical point of view 
(D’Ambrossio, 1985; Bishop, 1988, 1994; Bassanezi, 1994). 
For sure all of these components are interconnected; therefore it may not be possible 
to not touch other assumptions while attempting to discuss only one. Nevertheless, in 
this article, my focus specifically will be on cultural relativity of mathematics which 
ethnomathematicians hold. Here I also want to clarify that epistemology of 
mathematics is quite connected with the view of its cultural dependency. However 
my discussion will not be on this, in other words, my intention is not to argue if 
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mathematics is a creation of God or of human beings. My argument is whether it is 
embedded in universe. Therefore I want to clarify that arguing if mathematics is a 
universal fact or not, does not necessarily mean the same thing as, although it is 
connected to, arguing its foundation, which is not my focus in this paper. Also I will 
not argue that whether teaching techniques developed or can be developed based on 
ethnomathematical point of view or are effective in cognition of mathematics. 
To systematize the rest of my article, based on the view I critique and the view I hold, 
I feel the need of naming and clearly describing what these two views are. The thesis 
supported by ethnomathematicians is that mathematics can be relative among cultural 
perspectives and social groups, so it can be developed as a result of various activities 
based on practices and experiences of these cultural groups, therefore it is a cultural 
product rather than being cultural-free and universal (Bishop, 1988; Gerdes, 1994). I 
will name this thesis as the Cultural Relativity Thesis (CRT) about mathematics. My 
counter thesis to CRT is basically based on the idea of cultural independency and 
universality of mathematics. I will name this thesis as Culturally Independence 
Thesis (CIT). According to this thesis, independent from its symbolizations, 
understandings, processes of development and the ways of practices, applications or 
implications used by different cultural groups, mathematics as it is today is a 
universal value of all humanity, in other words, it is not Eurocentric. For the 
following section of my paper, I will discuss these two theses in four grounds: 
etymological, socio-pedagogical, historical and regarding with applied mathematics. 
1. Etymological:  
When deriving a term for a new interdisciplinary field, it is required to pay attention 
to each sub terms, with respect to their etymological consistency.  The word 
"mathematics" comes from the Greek term μάθημα (máthēma), which means 
learning, study, science (Wikipedia) and τικός (tikos) means art. All these three 
components of its original meaning; learning, study and science are shared values of 
all humanity, in other words, they are universal, because all humans learn, study to 
learn and develop techniques or to discipline their knowledge to improve its 
applicability to their lives. This etymologically manifests that mathematics itself is 
universal. On the other hand the Greek prefix ethnos stands for a group of people 
living together. This can be interpreted as something belongs to a specific social or 
ethnical group. Therefore the ethno-mathematics etymologically refers to ethnical (or 
‘socially different from others’) mathematics. In my opinion the word 
ethnomathematics can be an oxymoron because etymologically it is contradictory to 
use ethno (having a meaning of relativity) combining with mathematics (having a 
meaning of universality). Some researchers sharing the need to distinguish 
mathematics from the ways of doing it feel the need of deriving new terms to critique 
cultural dependency of mathematics. One of them, Robert Thomas (1996) defines the 
term ‘real mathematics’ to be able to distinguish what ethnomathematicians mean by 
mathematics from what he thinks mathematics is. However I do not feel a need to 
derive or refer to new terms to describe what mathematics is. I think that it is not 
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necessary to derive new terms to address this phenomenon here, because it is the 
mathematics itself. Therefore because the mathematics is universal and real itself, 
using adjectives like ‘universal’ or ‘real’ for mathematics is pleonasm. 
2. Socio-Pedagogical:  
Beyond its etymological construction, the word ethnomathematics sometimes can be 
problematic in its use in society and education. Even if from the literature on 
ethnomathematics it is clear that ethnomathematics is based on a broad interpretation 
of the notion ethno including different cultural groups, not necessarily ethnically; the 
prefix still evokes race or ethnicity (Vithal & Skovsmose, 1997). Consequently, 
although researchers who study ethnomathematics emphasize that ethno should not 
be thought of as ethnically (D’Ambrosio, 1985, 1987; Gerdes, 1994), some studies 
show that it can be taken in this account, contradicting with the intention of 
derivation of ethnomathematics and political position of ethnomathematicians. A 
study addressing this issue is conducted in South Africa by Vithal and Skovsmose 
(1997). In some societies with sensitive historical relations among different races 
within, mainly due to colonization, ethnomathematics can be associated with 
meanings to relate to the racism (ibid). As a result, due to the prefix ethno can carry 
strong divisive and negative connotations in these kinds of societies, with regard to 
its educational implications; its practical use in schools can be problematic as taken 
anthropologically (ibid). As a socio-political aspect, I also would like to critique 
Eurocentric mathematics (Powell & Frankenstein, 1997) or Western mathematics 
(Bishop, 1988). Even if we assume that CRT is true and mathematics is a cultural 
product, we still would not argue that the currently used mathematics is purely 
Western. Some historical findings show that the mathematics we are using was not 
only derived by Greeks. Before Greeks, in China, India, Anatolia, Mesopotamia and 
Africa math was used in similar ways of Greek’s and affected Greek mathematics. 
Even if their ways, symbols and language they were using to communicate 
mathematically were different, the phenomenon they were dealing with was the same 
mathematics as we do. Along the dark age of Western world, Islamic civilizations 
took it over, for instance the word ‘Algebra’ is derived from the name of book ‘Al-
Jabr’ of a Muslim mathematician named Al-Kharezmi.  Therefore, even under the 
assumption of cultural dependency of current mathematics, currently used 
mathematics is still not Eurocentric, rather could be said it is multicultural 
mathematics and therefore is still a shared value of all cultures. 
3. Historically-Anthropological:  
Along history, all cultures from all over the world shared the same concerns to deal 
with the same problems they are faced with in their practices. Their ways or 
interpretations to express and practice these problems can be different. Their levels of 
depth on exposition of these problems can be relative based on the appearance of 
these problems in the environment or sociality they were situated. However this does 
not mean that these problems or realities themselves were different. In other words, 
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different cultures developed similar solutions to similar problems, just in different 
representations. We can give numbers and counting as the example. Along their 
practices, different cultures used different symbolizations and ways to express 
counting, numbers and arithmetic. For instance in ancient times Quipus were used by 
Incas, knotted cords were used by Chinese, many other ancient societies like 
Babylonians, Indians found their own ways to express numbers and to solve their 
problems require counting and arithmetic. This is also an argument which is 
supported by CRT however it attributes relativity to the problems that are shared by 
all cultures, instead of attributing it to the ways, expressions or symbolizations used 
by these cultures. This point of view held by CRT misses that while many cultures 
were dealing with mathematics in different shapes; the phenomenon these cultures 
were dealing with was the same thing. That’s actually why we can clearly understand 
these anthropological findings even today, by connecting our ways of doing 
mathematics with their ways. After translating their language to English and their 
own expressions to currently used mathematical symbolization, we clearly 
understand this fact. For example, Babylonians were dealing with algebraic formulas 
and theorems such as Pythagorean Theorem, and we are currently using the exactly 
same mathematics currently. Likewise after translating their texts and understanding 
the tools they were using to speak mathematically, we are able to conclude that not 
only Babylonians, but also Greeks, Egyptians, Indians, Chinese and maybe many 
others, for those we could not find anthropological and archaeological evidences yet, 
were expressing the same thing in their own languages. This shared thing they were 
all dealing with was the mathematics itself that we are dealing with. 
I would like to express some analogies by telling a story to clarify what I’m trying to 
distinguish from what. Let’s think about two different societies living in ancient 
times. One is living just near a coast to an ocean; another is near lake. Both cultures 
are trying to find a way to go over along the surface of the water (for nourishment or 
exploration). Both cultures are trying to use swimming as a way to achieve their 
goals, but they both realize that swimming is an individual practice and it is tiring to 
swim each time for fishing or exploration.  Seeing the activity of ‘swimming’ as a 
bridge leading a better idea, they realize that they do not sink into water immediately. 
So they both get conscious of the universal law of Hydrodynamics. This 
manifestation is directing them to construct a tool which can swim, can transport 
more than one person and requires less or no power to be moved. After some 
brainstorming within each context, both come with a vehicle which makes them able 
to deal with the problem. Because of the geographical conditions they are in, after 
some unsuccessful trials, the one close to ocean may need to construct a wider and 
stronger ship which is more resistant to storms and waves of the ocean. On the other 
hand for the other society it can be enough to construct a smaller boat which works 
on the lake. Maybe while designing their ships, they will be affected by the 
environment they are living in, such as the shapes of animals they are used to see. 
Maybe the materials they will be using to construct their ships can be different, such 
as if one is living near a forest; this society may try to use woods. If the other society 
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is more familiar with reed beds, they may try to use reeds to build their boats. In this 
story, my analogies were between hydrodynamics as a physical rule (universal and 
culturally independent) and the counting or arithmetic, between trading and water, 
between wooden ships or reed boats and quipus or tablets. Maybe different societies 
used different ways, materials to deal with the problems they faced in practice but, 
what their problems were about was the same thing, which is mathematics.  
4. Applications and Applied Mathematics (AP):  
The final aspect I want to discuss is about applied mathematics and applicability of 
mathematics to the non-human universe. Bishop (1998) mentions six universal 
activities of mathematics as counting, locating, measuring, designing, playing, and 
explaining, He argues that even if these activities are universal, the rest of 
mathematics is culturally dependent. However, according to CIT, these components 
are just first applications of mathematics, in other words, we can call as foundations 
of AP. Nevertheless these activities are not all applied mathematics, based on these 
six roots; AP has been developing. These developments of AP found their places in 
other disciplines like physics, cosmology, chemistry, medicine, technology, biology, 
and so on. As a result, all cultural groups from all over the world using these benefits 
of AP. So if the rest of AP was Western, it wouldn’t be applicable to many other 
disciplines and also its products would not be useful for all humans. For example 
through the use of mathematics, we can successfully send satellites to the space and 
they are working in a good harmony; can derive statistics which is used also in many 
disciplines, such as medicine, so helpful to save many people’s lives, all having 
‘human body’; can build constructions comfortable, compact and resistant to 
earthquakes. The golden ratio is another example which is can be introduced as an 
evidence for how mathematics is embedded in the universe. It is not only embedded 
in human body but also in plants, solar system and so on. Many other examples as the 
evidences for CIT can be given to explain based on its applicability to the universe, 
how mathematics in its current shape is in a harmony with universal facts and how it 
is useful and important for all humans independently from their cultural origin. 
CONCLUSION 
Ethnomathematics is relatively a new field of study which is supported by many 
researchers in the field of math education. However researchers should evaluate this 
new theory multi dimensionally, not only basing on how ethnomathematicians 
describe it or what they hope what ethnomathematics will implicate in education. 
Although I believe that paying attention to students’ shared experiences can be 
helpful in education, some of the concerns I addressed in this paper should be 
clarified. Apart from its theoretical and anthropological aspects, for the future, more 
empirical studies are needed addressing ‘What the groups of people under the focus 
of ethnomathematics think about ethnomathematics?’, rather than assuming that this 
theory, which is created, developed and argued by Western mind, is reflecting the 
facts of these cultures and applicable to their educational system. 
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TECHNOLOGY AND MODELING AS AGENTS OF INQUIRY 
George Ekol 

Simon Fraser University 
I first describe Confrey and Maloney‘s (2007) four distinct but related approaches 
to technology use in mathematics instruction, one of which centrally involves 
modelling. My focus is on how students use technology in modelling, in light of 
the Deweyian definition of inquiry. Data from undergraduate students’ modelling 
task are analysed. The results concur with Confrey & Maloney’s (2007) that 
modelling through the process of inquiry, provides opportunity for the inquirer to 
progress from an indeterminate to a more determinate situation. However, I 
suggest a slight change in the definition of mathematical modelling proposed by 
Confrey & Maloney (2007) and submit that the modelling process is ultimately a 
communication of a solution derived from the model world to the real world. 
INTRODUCTION 
Though mathematical modelling has been used by scientists and engineers 
throughout the ages, its importance as a discipline to be studied has been realized 
only during the last three or four decades. Modelling in mathematics education has 
historical developments and connections with the demands from the work place 
for graduates with problem solving skills. (Mclone 1973; Davis, 1994; Challis, 
Gretton, Houston & Neill, 2002). 
Over the years, other perspectives to the classical approach to modeling have 
developed. The opponents of the classical  model  argue that modeling involves 
many cycles and multiple stages, which the linear model does not adequately 
address (Lesh & Doer,2000).I take the view that mathematical modeling is an 
attempt to understand an already complex problem and reduction in the number of 
variables is necessary.On the other hand, a mixed method may be considered to 
cater for any extra variables that may be of concern in the  model. 
This work is motivated by Confrey &Maloney (2007) who provide four distinct 
approaches to technology use in instruction. These are: i) teaching skills without 
technology and then providing the technological tools as resources after mastery; 
ii)introducing technology to make patterns visible more readily, and to support 
mathematical concepts iii) teaching new concepts with the necessary 
technologically enhanced environment; and iv) focusing on applications, problem 
solving and modelling, and using technology as a tool for solving such problems. 
Their results suggest that technology mediated modelling may be a good strategy 
for instruction in a single classroom with different levels of experience and skills.  
From the above, approaches, my hypothesis is that technology mediated modelling 
improves the clarity of modelling task and the communication of its results. The 
specific questions investigated are 1) how does technology relate to mathematical 
modelling in an undergraduate classroom? 2) How does mathematical modelling 
relate to Dewey’s definition of inquiry? 
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The Deweyian definition of inquiry is stated as 
“the controlled or directed transformation of an indeterminate situation into one 
that is so determinate in its constituent distinctions and relations as to convert the 
elements of the original situation into a unified whole”. (Dewey, 1938, p. 226.) 
CONCEPTUAL FRAMEWORK 
A mathematical model consists of an extra mathematical domain of interest E, and 
a mathematical domain X, and a mapping from E to X, i.e.
 XE → .Mathematical                                        inferences are 
made within X and the outcome is translated back to E, XE ← , and interpreted as 
solutions concerning that domain.  

            
Fig.1: The modelling cycle Doerr & Pratt (2008)  
 
The modelling cycle may be iterated several times on the basis of validation until 
the conclusions concerning E are satisfactory according to the initial purpose of 
the model. (Niss, Blum, & Galbraith, 2007). 
Using the above framework to analyse my data, I pay attention to students’ 
mathematical representations using technology; reasoning/arguments; how they 
arrive at their solutions and communicate the final results. Attention is also paid to 
whether or not solutions are realistic and relevant to the extra mathematical 
domain.  
METHODOLOGY 

Participants 
Participants are drawn from 37 undergraduate non mathematics majors. The group 
attended a regular semester geometry class three hours a week for ten weeks. Each 
person worked on a computer during instruction and had a weekly take home 
assignment. Although a large group received instruction as part of their semester 
credit, data from three participants are presented. Since the group was taught 
together, it is assumed that their solutions are likely to be similar in approach. The 
three cases were picked for analysis because their solutions look different.  

Materials  

Real world Model 

Real world solution Model solution 

Validate Transform 

Interpret 

Mathematize      
X

  
E
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All the work was done on the computer. Geometer’s Sketchpad was used as the main 
software for the delivery of the course. The computers in the lab are connected to the 
internet and students got their study materials delivered to them electronically. They 
in turn submitted their work to the Professor electronically. 
 
 
Caveat  
This work is based on the analysis of only one modelling assignment. It does not 
include any follow up interviews. These issues will be taken up in the on-going 
study. 
Modelling task 
You have a choice at the local pizza place: for the same price you can get either 
one large pizza or both small and medium. Determine which way you get more if 
you know the diameters of the different sizes of pizza. Describe the procedure to 
figure out the best deal to choose. Caveat: You can’t use the area formula for the 
circle. 
The mathematical model 
Let the diameters of the pizza be: DL  for the large size; DM  for the medium size, 
and DS : for the small size. Assume that the three diameters meet at the three 
vertices of a triangle. Then there are three possible scenarios, i. 222

DDD LSM =+ , ii. 
222
DDD LSM >+ , and iii.   222

DDD LSM <+ . 

 
 
 
Scenario I: Taking one large pizza, or the medium and small together, makes no 
difference (no deal); Scenario II: Taking the medium and small pizza together makes 
the best deal; Scenario III: Taking the large pizza, makes the best deal. 

RESULTS 
Three solutions from students, S1, S2, and S3 follow. A sketch accompanied by a 
description from each student are presented and briefly discussed. 
[1]         S1: 

DL  

DM  

DS
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Area AHI = 0.61 cm2

Area EFG = 1.01 cm2Area BCD = 1.79 cm2

smal l
MediumLarge

 
[2]         S1: 

             

If the diameter is known for each size o f pizza a right triangle can be made
from each pizza.  Using the  diameters, the area o f each right triangle can
be found and then compared to see which is bigger.  In this example tha t I
have drawn the areas of the medium and small  pizzas can be added
together and compared to the large pizza to see what would be the better
deal .  In this case that I have drawn, the medium and smal l pizza do not
equal  more than the large pizza and therefore, the better deal  would be to
go wi th the Large pizza.  However, this may change depending on the
exact sizes of each pizza in  reali ty.  

 
S1 models the problem in terms of similar areas of the isosceles right triangles. He 
argues that to get a better deal, one should add the small and the medium areas, 
and compare it with the large triangle. If the area of large triangle is bigger, then 
the deal is to take the large pizza. If not, then take the other two pizzas. S1 follows 
through the modelling cycle up to the validation stage, when he implies a revisit of 
his solution. From the statement, “this may change depending on the exact sizes of 
the pizza in reality”, he is aware that his solution is not final, but may require 
some iterations for it to be realistic. He makes an attempt to represent the problem 
as clearly as possible and to communicate his solution quite realistically. 
[3]         S2: 

               

Area DB = 16.02 cm2

Area EA( )+ Area FB( ) = 16.02 cm2

Area FB = 11.56 cm2

Area EA = 4.46 cm2

D

F

E

C B

A

 
[4]         S2: 

                        

Using the diameters o f large,medium and smal l  pizzas as 3 sides of
a triang le. If the triangle is a right triangle, it don't matter which deal
you choose because the area o f one large pizza is the same of one
medium pizza plus one smal l pizza. 
However, i f the triangle is acute, choose the smal l and medium
pizzas because the area on one side of an acute triangle wi ll  always
be smal ler than the sum of the areas on the other two sides.
On the other hand, it i t i s an obtuse-angle triangle, choose the large
pizza.
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S2 uses the radii of the pizza to form a triangle. By changing the shape of the 
triangle he determines the respective areas of the three pizzas. The dynamic 
property of the Geometer’s Sketchpad makes it possible to vary the diameters and 
hence change the shape of the inside triangle. Overall there is clarity in the 
communication and presentation of S2’s results. In fact he mentions all the three 
possible solutions presented earlier in the mathematical model, even if his sketch 
shows only the first scenario. 
[5]         S3: 

                                        
[6]         S3: 

          

In terms of Area, 
given that the area of a circle whose diameter is equal  to the
hypotenuse of a right triangle wi ll  equal the sum of the area 
two ci rcles formed from the base and height of the same
triangle,
and
given that in an acute triang le, the area of a circle whose
diameter is formed from the longest side wil l always be less
than the the sum of the area of ci rcles whose diameters are
formed from the remaining two sides,
and
given that in an obtuse triangle, the area of a circle formed
from the longest side wil l  always be greater than the sum of
the area of the ci rcles whose diameters are formed from teh
remaining two sides, 
Therefore
It stands to reason that should the d iameter of the three sizes
of pizza form an acute triangle, you would get more pizza by
ordering a medium and a smal l;

should the diameter of the three sizes of pizza form a right
triangle, it makes no di fference as to whether you should
order a single large, or a medium and a small ;

should the triangle formed from the three sizes form an
obtuse triangle, then you would get more pizza by ordering a
sing le large. 

                 
S3’s solution includes all the three scenarios and the results are presented in great 
detail, linking the solution with the context of the task. She does not show the 
mathematical expression in her drawing but from the written work, it is evident 
that the three scenarios in mathematical model are addressed. 
DISCUSSION AND CONCLUSION 
Even if the class received the same instruction, we see that students use different 
approaches to deal with the modelling task. However the role played by 
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technology seems to be one unifying factor in the solutions. Technology 
substantially enhanced the clarity of modelling task and the communication of its 
results by the students.  
 
Depending on their experience and skills, they all make reasonable attempts to 
solve the mathematical model and interpret the solution back to the real world. To 
that extent the, transformation of the original unknown situation to a more realistic 
one is my claim on the Deweyain definition of inquiry. This position agrees with 
Confrey and Maloney‘s (2007). 
However, with respect to the definition of modelling proposed by Confrey and 
Maloney (2007), 
Mathematical modelling is the process of encountering an indeterminate situation 
problematizing it, and bringing inquiry, reasoning, and mathematical structures to 
bear to transform the situation. The modelling produces an outcome a model-
which is a description or a representation of the situation, drawn from the 
mathematical disciplines, in relation to the person’s experience, which itself; has 
changed through the modelling experience. (2007, p.60) 
I wish to propose the following refinement: 
Mathematical modelling is the process of encountering an indeterminate situation 
problematizing it, and bringing inquiry, reasoning, and mathematical structures to 
bear, and then communicating the solution derived from the model world back to 
the real world. 
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USE OF DGS TO PROMOTE KINESTHETIC THINKING: A CASE 
OF LINEAR TRANSFORMATION 

Shiva Gol Tabaghi 
Simon Fraser University 

 A neuroscience theory suggests that kinesthetic thinking is the very basis of thought. 
Similarly, Lakoff and Núñez (2000) suggest that dynamism plays an important role in 
conceptual development.  Furthermore, Núñez (2006) argues that mathematical ideas 
and concepts are ultimately embodied in the nature of human bodies, language and 
cognition. In this paper, we examine the role that dynamic interactive representations 
of mathematical concepts plays in promoting kinesthetic thinking. In particular, we 
report evidence of students’ kinesthetic thinking while they interact with a dynamic 
interactive sketch of the concept of linear transformation.   

INTRODUCTION 
The impact of technology in teaching and learning mathematics has become a 
focus since the late 1980s. Technologies such as Dynamic Geometry Software 
(DGS) enable the designing of models to represent the relationships between 
symbolic and geometric representations of concepts. The dynamic and interactive 
features of DGS provide grounds for students to explore these relationships, 
perform multiple actions, and generate a large number of examples effortlessly 
(Hollebrands, 2007; Mariotti, 2000). The majority of research in this area has 
focused on the design of tasks and milieu, learners’ use of technological tools and 
its relationship to construction of knowledge , and the role of representations 
(symbolic and geometric) of concepts (Hollebrands, Laborde & Straber, 2008). 
Given that representations are fundamentally dynamic, representing relationships 
and behaviours over time, and the importance of the role of time and motion in 
mathematical thinking (Thurston, 1994) we have become interested in 
investigating the effect of dynamic mathematical representations on students’ 
modes of thinking. We assume that the dynamic representations will change 
students’ ways of thinking about concepts and hypothesise that this change can 
facilitate conceptualization.   
THEORITICAL BACKGROUND 
More recent research, drawing on neuroscience theories, suggests that kinesthetic 
thinking is the very basis of thought. According to Seitz, “we think 
kinesthetically” (p.24) and there exist three central cognitive abilities for the 
bodily basis of thought (Seitz, 2000). The first is motor logic and organization that 
deals with the articulation and ordering of movements. The second is kinesthetic 
memory that enables human to think in terms of movement by mentally 
reconstructing objects and imposing motion on and positioning them in space. The 
last, kinesthetic awareness is having information about our body and objects 
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coming in contact with our body (Seitz, 2000). These theories challenge the 
inattention to (and sometimes ignorance of) the role of time and motion in 
mathematical thinking: not only does mathematics tend to detemporalise 
mathematical processes (Balacheff, 1988), but several mathematicians have 
expressed discomfort at the idea of moving objects (see Frege, 1970).  
Similarly, Lakoff and Núñez (2000) suggest that dynamism plays an important 
role in conceptual development (Lakoff and Núñez, 2000). Furthermore, Núñez 
(2006) argues that mathematical ideas and concepts are ultimately embodied in the 
nature of human bodies, language and cognition. He has also shown that static 
objects can be unconsciously conceived in dynamic terms through imposing real 
or fictive motion; as he illustrates cases of the concepts of limits, curves and 
continuity. However, ways of understanding concepts and objectification that 
come through a range of multimodal sensations and experiences vary from 
individual to individual and may not necessarily include motion modality, 
specifically school mathematical concepts. But, research on university students’ 
and mathematicians’ ways of thinking reveal that their thinking involve a dynamic 
nature (Zazkis et al., 1996; Burton, 2004). Furthermore, a recent study shows the 
evidence of kinesthetic memory in mathematicians’ thinking about mathematical 
concepts (Sinclair and Gol Tabaghi, 2009).  These studies motivated us to further 
probe university students’ modes of thinking in the presence of dynamic 
representations of concepts. More precisely, we want to investigate whether 
dynamic representations of concepts affect students’ ways of thinking and 
promote kinesthetic thinking.   
In order to probe their ways of thinking, we study students’ linguistic expressions 
and their use of affordances of technology. We also refer to McNeill’s gesture 
classification to analyse their hand and arm movements. Recent research, 
however, has shown that speech and gesture are two facets of the same cognitive 
linguistic reality. In particular, research claims that gestures provide 
complementary content to speech content (Kendon, 2000) and that gestures are co-
produced with abstract metaphorical thinking (McNeill, 1992). From a 
mathematics education perspective, gestures play an important role in cognition 
and can contribute to creating mathematical ideas (Arzarello et al., 2005, 2007; 
ESM special issue 2009).  Therefore, gestures might be another way of seeing 
evidence of kinesthetic thinking (Núñez, 2006).  In particular, given the motion 
aspect of gesturing, we hypothesis that analysing gestures will provide more 
insight into the kinesthetic thinking processes.   
RESEARCH CONTEXT AND PARTICIPANTS 
In our larger study, we asked students to interact with sketches designed on a 
variety of linear algebra concepts such as vectors, spans, linear transformations 
and eigenvectors.  We designed our interviews using a set of tasks aimed at 
eliciting students’ ways of thinking while they were interacting with sketches.  We 
interviewed five students who enrolled in a linear algebra course at the time of 
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interviews.  Each interview lasted between 30 and 40 minutes. Interviews were 
videotaped and transcribed. In this paper, we only present the analysis of two 
interviews focusing on the concept of linear transformation. Our participants, Julia 
and Mary, were second year university students who volunteered their time to 
participate in our study. Excerpts from their speeches and snapshots of their 
gestures are presented to reveal the evidence of kinesthetic thinking.  
ANALYSIS OF STUDY 
We refer to Seitz’s theory of kinaesthetic thinking and the three central cognitive 
abilities for bodily basis of thought to analyse the participants’ linguistic and non-
linguistic expressions. We also use McNeill’s gesture classification and 
transcription to analyse participants’ hand and/or arm movements as they interact 
with sketches.  
INTERVIEW SKETCH AND TASKS 
First, participants were asked to describe linear transformation. Second, they 
interacted with the linear transformation sketch (see figure 1) that presents a linear 
transformation of a non-symmetrical object (blue-coloured F) under the matrix of 
transformation T to describe their observations.  

Figure1. linear transformation 
sketch 

They were also asked to predict the image of F under different transformations 

such as ⎥
⎦

⎤
⎢
⎣

⎡
=

30
03

T , ⎥
⎦

⎤
⎢
⎣

⎡
=

20
12

T , and ⎥
⎦

⎤
⎢
⎣

⎡
=

24
12

T . After they described their thoughts, 

they were able to change the components of transformation matrix and visualize 
the image of F, so that they could reflect on their initial thoughts.  
ANALYSIS OF SPEECH AND GESTURES: LINEAR TRANSFORMATION   
Julia describes linear transformation as “changing vectors into something else so 
like mapping vectors to something else so could be a matrix or anything else”. It 
seems that she recalls linear transformation in terms of matrix multiplication. She 
doesn’t have the idea that any object can be transformed, expect perhaps a vector 
or a matrix. It’s interesting that she starts with “changing of vectors”, instead of 
the change of the object to which the vectors are applied. This shows that she has 
developed a procedural understanding of the concept of linear transformation as 
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reported in the literature (see Stewart, 2008).  
After her description, she is given the sketch (see figure 1) that represents the 

transformation of an object under the transformation matrix ⎥
⎦

⎤
⎢
⎣

⎡
=

20
02

T . By looking 

at the sketch, she starts describing her observations and points out that the pre-
image F is mapped into another F that its area is four times more than the area of 
the pre-image F. It is interesting that she compares the area of image and pre-
image. She is then asked to predict transformation of pre-image F under the 

transformation matrix ⎥
⎦

⎤
⎢
⎣

⎡
=

30
03

T . She predicts that ⎥
⎦

⎤
⎢
⎣

⎡
=

30
03

T  maps the pre-image 

F into another F that would have three times expansion in its dimensions and nine 
times enlargement in its area. She is asked to interact with the sketch and change 

the values of  T  into ⎥
⎦

⎤
⎢
⎣

⎡
30
03 to experiment her predication. To find out the image of 

F under ⎥
⎦

⎤
⎢
⎣

⎡
=

20
12

T , she whispers as she does mental calculations.  She further uses 

her right index figure (see figure 2) to write up the calculation.  
Figure 2. Julia’s 
use of her right 
index figure to 
write up while 
she does mental 
calculation 

When we asked her to explain her thought processes, she said “I am just thinking 
of as, um so that would be the matrix and then say that I have my 1x and 2x  that is 
my vectors so then if I have that vector times the matrix”. She considers an 

arbitrary vector ⎥
⎦

⎤
⎢
⎣

⎡

2

1

x
x and does matrix multiplication mentally. Her right index 

finger accompanies her thought processes and her speech which could be an 
evidence of kinesthetic thinking.  She further says “so if you multiply them would 
be  two 1x and then plus one 2x [ 21 12 xx + ] and the bottom would be  zero 1x  plus two 

2x [ 21 20 xx + ]”.  She completes the matrix multiplication and says “then I do not 
know how that changes the figure but in what way.”  Her discourse shows that she 
has developed operational knowledge of linear transformation concepts and 
become fluent in computational skills, but she could not articulate on the image of 

F under the given transformation matrix, ⎥
⎦

⎤
⎢
⎣

⎡
=

20
12

T , and so the importance of 

linear transformation concept. After predicting, she was very keen to use the 
sketch to find out about the image of F. Her gesture, using her index finger to 
write up the calculation, was a dynamic gesture and could be classified as an 
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iconic or a metaphoric gesture using McNeill’s classification.  
We further asked her to predict the image of F when 12a become -1, i.e. 

⎥
⎦

⎤
⎢
⎣

⎡ −
=

20
12

T . She used the representation that the sketch presented for  ⎥
⎦

⎤
⎢
⎣

⎡
=

20
12

T to 

reason about the image of F when ⎥
⎦

⎤
⎢
⎣

⎡ −
=

20
12

T . As she says “So now it is slanted 

that way, -1 would be the slanted other way” as she gestures; moving her right 
hand from right to left (see figure 3).  This shows the benefit of using interactive 
sketches in promoting kinesthetic thinking. Furthermore, her gesture could be 
classified as an iconic gesture.    

 
Figure 3. shows Julia’s 
gesture as she describes a 
shear linear transformation 

Figure 4. shows Julia’s gesture 
as she refers to the previous 
image of F on the sketch 

Our next prompt was asking about how the image of F changes under ⎥
⎦

⎤
⎢
⎣

⎡
=

24
12

T . 

She again refers to the previous representations on the sketch and says “so two one 
zero two was like that before”. Her gesture (see figure 4) shows the direction of 
the image, that is an evidence of kinesthetic thinking.   
She hesitates and further says “it would be more fat, um, I do not know”.  We 
asked her to interact with the sketch and change the components of the 

transformation matrix into ⎥
⎦

⎤
⎢
⎣

⎡
=

24
12

T to see the image of F. She is at first surprised 

when she sees that the image is a line, however, she immediately says “oh yeah 
because they are linearly dependent”.  The sketch enables her to recall the concept 
of linear dependency so she justifies the outcome of the transformation under 

⎥
⎦

⎤
⎢
⎣

⎡
=

24
12

T . 

Mary, our second participant, describes linear transformation as “like taking one 
vector and something, and transforming it using a set of like rules so then becomes 
something else.” She recalls linear transformation in terms of transformation of a 
vector into something else. Although the use of term “something else” gives a 
sense that she is presented with the abstract idea of being able to transform 
anything, but she does not have any example of what could actually be 
transformed. While she interacts with the sketch, she points out that the 
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transformation matrix, ⎥
⎦

⎤
⎢
⎣

⎡
=

30
03

T  , maps the pre-image F into another F that is 

bigger and wider. In response to our next prompt (how would the image of F 

change under transformation ⎥
⎦

⎤
⎢
⎣

⎡
=

20
12

T ) , she changes the transformation matrix 

into ⎥
⎦

⎤
⎢
⎣

⎡
=

20
12

T and visualizes the image of F. She immediately recalls the name of 

this kind of transformation saying “oh, it is a shear transformation”. She recalls 
shear transformation, but she doesnot gesture at that time. While changing the 

components of transformation matrix, she realizes that ⎥
⎦

⎤
⎢
⎣

⎡ −
=

30
20

T  transforms F 

into a line and attempts to justify this transformation.  She goes on and says “oh, 
okay because 11a  and 21a  are zero” and gestures a line as she moves her right hand 
horizontally from right to left (see figure 5). To predict the image of F under 

⎥
⎦

⎤
⎢
⎣

⎡ −
=

20
12

T ,  she says “twice as large as now and sheared” and she  gestures the 

direction of the image of F (see figure 6). 

 
Figure 5. shows Mary’s hand as 
she gestures a line 

Figure 6. shows Mary’s gesture to 
represent the slanted image of F 

This again is an evidence of kinesthetic thinking. It seems that the use of 
interactive sketch promotes kinesthetic thinking. Although, her arm and hand 
depict a right-slanted image of F, the image would be left-slanted.  After her 
prediction, we asked her to interact with the sketch and reflect on her thinking to 
evaluate her initial prediction.    
DISCUSSION AND REFLECTIONS 
The results of our study indicate that: first, dynamic interactive representations of 
concepts promote kinesthetic thinking.  Second, students use a variety of gestures 
to express their thinking about concepts. Third, the sketch enables them to reflect 
on their operational understanding so that may possibly support structural 
understanding. It could also act as a scaffold to help them re-construct their 
understanding. In this case, the instant feedback from the sketch played a 
significant role in enabling them to reflect on their thought processes. We also 
noticed that their use of gestures is slightly different from thoes of 
mathematicians. Students’gestures are co-produced with their mathematical 



SFU—MEDS-C — 2009 1- 47 

thinking as they are engaged in prediction tasks. In contrast, mathematicians, in 
some cases, described concepts using metaphors, as they gestured same metaphors 
(see Sinclair and Gol Tabaghi, 2009). In both cases, we had difficulties 
distinguishing iconic from metaphoric gestures, but this is beyond the scope of 
this paper.  We also identified several instances of deictic gestures in students’ 
non-linguistic expressions trigered by the use of the sketch; they pointed to the 
sketch as they voiced their thinking. We suggest that the use of sketches to 
enhance gesturing and to promote kinesthetic thinking warrants further study.  
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SANDING THE LENS: THE NARRATIVE OF A TASK FROM THE 
INITIAL PLANNING TO THE UNDERGRAD STUDENTS’ 

CONCEPTIONS OF INEQUALITIES  
Elena Halmaghi 

Simon Fraser University 
 
This report comes from a broader study that investigates undergraduate students’ 
conceptions of inequalities. It comprises the design and refinement of a task with the 
purpose of making it more engaging for students and of getting results that are more 
transparent for author’s interpretation. The narrative follows one task that has been 
developed, implemented, interpreted, refined, implemented again and used in the 
process of deriving university students’ conceptions of inequalities. The 
interpretation of student’s work is framed as an emergence of the lens 
CONCEPTIONS OF INEQUALITIES. The lens is intended to magnify students’ work 
on inequalities for the researcher to better spot the various conceptions and interpret 
understanding of inequalities.  
 
The focus of this study is shaped around the conceptions of inequalities held by 
university students as evidenced in their work on one refined task: learner-generated 
worked examples of inequalities. The concept image-concept definition (Vinner and 
Tall, 1981) and the theory of variation as introduced by Marton (1981) and refined 
and adapted to mathematics by Watson and Mason (2005) postulates a framework for 
the initial design of the task and the interpretation of preliminary data. Skemp’s 
framework for understanding mathematics (Skemp, 1976) employed in the initial task 
and the unit of description in phenomenography (Marton & Pong, 2005) applied in 
the revised task provide the language for communicating the various conceptions of 
inequalities grounded in the data.  

THE WORKED-EXAMPLE TASK AND THE PREPARATION FOR 
LOOKING AT DATA 
The worked-example of an inequality task was initially given to a class of FAN 
students. After carefully looking and interpreting preliminary data, the task was 
refined and implemented again in another class of FAN and a Math 100 class. In this 
section I will introduce the initial task, the normative solution and the initial work on 
sorting, coding and interpreting data. The following sections comprise the 
preliminary results and the emergence of a framework that will potentially become 
the lens for a major study.  
The task 

a) Create a worked example that will show someone how to solve linear inequalities. 
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b) Is the one example provided in part a) sufficient for someone to learn how to solve 
inequalities by following your work? Do you think you need to create more examples to 
demonstrate the full breadth of linear inequalities? If so, how many more examples you 
think you need? 

The normative solution to item a) – constructing a worked example of an inequality – 
could be an example that incorporates, if possible, all axioms that will help transform 
a given inequality  into an equivalent inequality which are the following: 

• Suppose that a and b are (real) numbers such that ba < , and c is another 
(real) number different than zero. Then the inequality ba < is equivalent to: 
1. cbca +<+  (adding/subtracting the same amount from both sides of the 
inequality) 
2. bcac <  for 0>c  (multiplying by a positive number) 
3. bcac >  for 0<c (multiplication/division by a negative number) 

as well as the conventions related to writing the solution in interval form and 
graphing the solution on a number line. For example  7632 +<+− xx  could be a 
possible response. The worked example follows: 

3
93

2763
7632

−>
<−

+<−
+<+−

x
x
xx

xx

 

Solution: ( )∞+− ,3  

 

- Separate terms containing the variable by adding 2 and 
subtracting 6x on both sides 

- Divide by -3 and reverse the inequality symbol 

 

- Solution in interval form 

- Graphical representation of the solution 

 
For b) the normative answer could be “I think that a few more examples where less 
than as well as less than or equal to are used would benefit exemplifying the 
different types of intervals necessary for writing the solution.”  Also, a few examples 
when inequalities produce no solution or all real numbers as solution will be expected 
to be found in some papers.  
The first sorting of data followed a rubric of anticipated work, similar to a rubric for 
marking assignments. The rubric comprises five distinct categories of responses 
(examples of linear inequalities) which were labelled with numbers from 0 to 4. The 
numbering is inspired by the potential marks for the work, given that the task would 
have been collected with the purpose of testing students’ knowledge of inequalities. 
As the rubric was being created, the focus was mostly on the following questions: (1) 
Did the respondent attend to the given task? (2) If yes, what types of examples are 
presented and how is work accomplished? Table 1 comprises the anticipated 
categories of examples. I will call the table ‘the initial rubric’.   
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Category Description of anticipated work 
0 No inequality is exemplified 
1 An inequality is given. No attempt is made to solve it.  
2 A simple inequality is given. Solving follows the pattern of 

equations. Some good steps. The solution is incorrect.  
3 A simple inequality is given. Solving correctly follows the axioms 

of inequalities. The solution is correct. 
4 A pilot example is given. Solving incorporates maximum variation 

and aspects related to inequalities, including multiplication or 
division by a negative number. 

Table 1: The initial rubric 

BACKGROUND 
Examples play a key role in both the evolution of mathematics as a discipline and in 
the teaching and learning of mathematics. There is an abundance of research that 
acknowledges the pedagogical importance of examples in learning mathematics (e.g.: 
Atkinson, Derry, and Renkl, 2000, Watson and Mason, 2005; Zhu and Simon, 1987; 
Kirschner, Sweller and Clark, 2006, Bills, Dreyfus, Mason, Tsamir, Watson, & 
Zaslavsky, 2006). Zazkis and Leikin (2007) used examples as a research tool that 
enabled the researcher to gain insight about students’ understanding of mathematics. 
My study extends on that type of research that involves transferring the responsibility 
of generating examples to students and the responsibility of learning about students’ 
understanding of mathematics to researchers.  

SETTING AND METHODOLOGY 
The setting for the study on inequalities is Simon Fraser University and the 
participants are three classes of students: two FAN X99classes and a Math 100 class. 
The initial task was given to a class of FAN students. The other two classes – a FAN 
class and a Math 100 class – worked on the revised task.   
FAN X99 (Foundation of Analytical and Quantitative Reasoning) is a non credit 
mathematics course, designed for students who need to upgrade their quantitative 
background in preparation for quantitative courses. Number sense strengthening, 
mathematical reasoning, problem solving and math study skills are the main 
components of the course. This course is recommended to students who wish to 
refresh their math skills after several years away from mathematics. The group of 
students varies greatly in skills level. Math 100 (Precalculus) is a course designed to 
prepare students for first year Calculus. The course is very condensed and includes 
language and notation of mathematics; problem solving; algebraic, exponential, 
logarithmic and trigonometric functions and their graphs. The group of students 
taking Math 100 is very heterogeneous as well.  
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The Syllabus of both FAN x99 and Math 100 contain inequalities. In FAN x99, linear 
inequalities are studied as one independent topic in the second part of the course. In 
Math 100 inequalities are everywhere: Starting form recalling linear inequalities 
learned in grade 11, continuing with solving quadratic, polynomial, and fractional 
inequalities, and crowning with using inequalities to find the domain of logarithmic, 
irrational, or trigonometric functions.  
In the first iteration of the task, data was collected 8 weeks into a FAN class where 
the subjects had been exposed to problem solving, discovery and making 
connections, rather than lecturing. Generating examples, mostly in class, was a daily 
routine. A document camera, which allowed for a student to project for the entire 
class the notebook with the work, was part of the class’ equipment. Samples of 
different normative examples or various solutions to the word problems were 
presented, projected to the class, discuss and interpreted on a daily basis. The extreme 
or peculiar examples, the counter examples as well as the examples that were not 
attending to the task were not ignored: These examples, usually, created some of the 
most rewarding teachable moments. The survey was given as an open book, 
individual, half an hour, class work. In all there were 43 participants.  
When teaching-learning mathematics follows the transmission-assimilation 
metaphor, students “strive to make sense of the examples they are offered, use the 
terms their teachers use to describe generalities, and ultimately are expected to 
construct new objects and understandings that match those of their teachers” (Watson 
and Mason, 2005). When the focus is on ‘using learner’s experience’ in revealing the 
general in particular rather than the definition of a class of objects, the students were 
invited to think and make connections, which will benefit understanding. With this in 
mind, the work done with my students prior and during the collection of data was 
twofold: one was to collect data that is transparent of students’ understanding and the 
other one was to help students construct their concept of inequalities.  
The second iteration of the task was given to a FAN class, which had been exposed to 
a similar treatment as the other FAN class as well as to a Math 100 class. Math 100 is 
not a seminar as FAN x99; it is a 3-hour per week lecture format. The survey was 
implemented at the end of a lecture and the students were given 15 to 25 minutes to 
work on it. For Math 100 the preparation for the task was minimal – prior to writing 
the survey, the students had a review on inequalities and they had an assignment 
which comprised mostly of linear and rational inequalities. The students were not 
exposed to generating examples prior to the task.    
To the best of my knowledge, no published study on mathematical inequalities used 
learner generated examples as a source of data. Usually, a solve-an-inequality task 
does not provide much variation in students’ solutions. Students’ work very often 
reproduces the procedure learned from the teacher or from the examples offered by 
the textbook. Research on inequality with data coming from solving inequalities tasks 
show some variation in students’ errors, but not much variation in the example space 
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that students have to access to solve the task. For example, when given a task which 
reads “Can x=3 be a solution to an inequality?” (Tsamir and Bazzini, 2001, p.1) the 
typical answers could be (1) No, the inequality results in inequality not in equality or 
(2) Yes, inequalities of the form ≤ can result in equality (Tsamir and Bazzini, 2001). 
Asking them to generate an inequality of some sort and then to work it out such that 
someone who follows this work to be able to learn how to solve that type of 
inequality, students are invited to be creative, to search their personal example space 
of inequalities, to access different registers of presenting inequalities, to connect the 
different snapshots that create the concept image for that concept, therefore to think. 
Showing a correctly solved solution is not guaranty of students’ understanding of 
inequalities; they could have memorized procedures or followed step by step 
algorithms. I argue that this novel approach of collecting data will allow seeing more 
of the students understanding of inequalities solving inequalities tasks. Starting from 
nowhere often involves undoing, which is harder than doing since it does not start 
with a memorized step 1 and then a step 2, and so on. This very fact is reflected on 
students’ responses as well as on their reflection on the task. Here is excerpt from one 
participant’s notes which acknowledged the difficulty of a construct-an-example task:  

For me question number 1 [the “solve the following inequalities” items] was more clear 
in the sense that [an inequality] is there & we have to [solve it]. I got kind of lost with 
questions 2 & 3 because we’re not used to coming up with questions [examples] so 
question 3’s instruction wasn’t something we’ve seen in the past. I was more successful 
in answering question 1 because I was used to seeing that kind of question… 

The student acknowledged the fact that generating examples require more than 
solving a problem by analogy with a previous work. Seeing something in the past, 
retrieval from studied examples makes a task more approachable than constructing 
one’s own example. This could be evidence that the task under discussion here is 
complex and the results will give enough variation to capture respondents’ thinking.  

RESULTS AND DISCUSSION 
As mentioned earlier, the first sorting of data followed ‘the initial rubric’. The 
following two questions guided the rubric creation: Did the respondent attend to the 
given task? If yes, what type of example is presented and how the work on it is 
carried? Table 2 comprises the anticipated categories of examples as well as the 
percentage of respondents falling in each category:  
Category Description of anticipated work 
0 38% No inequality is exemplified 
1 0% A simple inequality is given. No attempt to solve it.  
2 16% A simple inequality is given. Solving follows the pattern 

of equations. Some good steps. The solution in wrong.  
3 36% A simple inequality is given. Solving follows the axioms 

of inequalities. The solution in good. 
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4 
Table 
2 

10% A pilot example is given. Solving incorporates maximum 
variation and aspects related to inequalities. 

Table 2: The initial results 
As visible in the percentages that accompany the categories of data, even though the 
task was open book and the class was prepared for the type of work required to 
accomplish it, 38% of the respondents did not give any example of an inequality. 
Some of them exemplified a linear equation in one variable; others exemplified linear 
equations in two variables.  
The second sorting of the data was done with other two questions in mind: (1) What 
are the recurrent themes present in the data? and (2) Is the individual’s understanding 
of inequalities visible in the data?  
At the second scanning of data, five different categories emerged again, the same 
number of categories as in the anticipated answers. Pondering further each category, I 
was able to identify the recurring idea that helped the classification and thereby 
decided that 5 is the number of visible variations in the data. My next step was to 
look if there is a one to one correspondence between the categories of the first 
scanning and the classifications that emerged at the second round. For the categories 
with scores 3 and 4, I could make a one to one correspondence between the first and 
second stage of interpretation, but some papers from category 1 moved to a different 
pile labelled ‘contextual understanding of inequalities’.  
Skemp’s (1976) classification of mathematical understanding provides the language 
to describe the five levels of understanding emerging from data. Table 3 comprises 
the emergent themes and qualifies the level of understanding, from misunderstanding 
to the higher level of relational understanding.  
Category Level of  

understanding 
What the example was telling about 
inequality

0 
32% 

Misunderstanding - 
A different concept, 
such as a linear 
equation with two 
variables 
exemplified 

Inequalities have foreign representations - 
images of other concepts, such as linear 
equations in two variables incorporated in 
the concept image of inequalities 

1    16% Traces of 
procedural 
understanding of 
equations 

Inequality is perceived as some sort of 
equation, thus the  <  sign is replaced by  
the = when solving the example 

2 
      6% 

Contextual 
understanding of 
inequalities 

Inequalities describe real life situations, 
thus their examples focus more on the 
context rather than the concept of 
inequality 
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3 
     36% 

Procedural 
understanding of 
inequalities 
Traces of relational 
understanding of 
inequalities 

Inequalities have special behaviour when 
multiplied or divided by a negative quantity 
- focus on different representations of 
inequalities as well as on the particular 
aspects that separates equations from 
inequalities. The axioms of transforming 
inequalities into equivalent one are 
correctly used. 

4 
    10% 

Table 3 

Relational 
understanding of 
inequalities 

Inequality is a mathematical concept that 
must be learned in connection with 
recognizing the symbols, understanding 
intervals and some axiomatic preparation - 
focus on pilot examples that will 
incorporate maximum variation and aspects 
related to inequalities. 

Table 3: Levels of understanding 
Phenomenography sees learning “as a change in learners’ capability of experiencing 
a phenomenon”, and understanding as the capability of spotting and following a 
pattern of variation (Åkerlind, 2005). ‘Conception’ is the unit of description in 
phenomenography (Marton & Pong, 2005). A third sorting is completed in which the 
focus of the lens shifted from students’ understanding of inequalities to conceptions 
of inequalities. The new scanning of data followed the questions: (1) What are 
students’ conceptions of inequalities? and (2) What can the conception of inequality 
tell us about an individual’s understanding of inequalities?   
The third scanning of data validated the five different categories of understanding 
that emerged previously and attempted to see the portrayed concept images of 
inequalities. The framework CONCEPTIONS OF INEQUALITIES was emerging. 
The descriptions of concepts were firm. However, the conceptions ‘names were not 
yet selected. Possible options for the names were listed.    
The second iteration of the task 
Liljedahl et al (2007) observed that very often our own approach to the task obscures 
important aspects of solutions. My focus on learner generated worked example 
influenced the creation of the task. A worked example on inequalities was seen as a 
step-by-step demonstration of how to solve inequalities. The normative solutions – 
aka my own approach to the task – contained not only all the steps for solving it but 
also some peculiar examples that show that inequalities cannot be easily put in 
patterns for solving them. However, no respondent addressed this in the initial task.  
Adjustments to the task seemed to be necessary. Learning from a worked example 
seems more meaningful that creating a worked example just like that. As such, in the 
first part of the second iteration of the task, I introduced Jamie, who is taking 
Principles of Math 11, who needs help with inequalities, and who is going to learn 
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from the example. What do Jamie knows about inequalities at this moment? 
Scaffolding for Jamie could inform about the concept image of the respondent. Part 
two of the initial task invites the participants to think if their example covered the 
whole complexity of linear inequalities and if not to say how many examples would 
serve that purpose. As mentioned previously, nobody attended to the idea that an 
inequality can produce an empty set as a solution, for example. All the provided 
examples ended in intervals. Therefore, I also decided to create a cognitive conflict in 
part two of the task, to force the respondents to rethink their example to incorporate 
that aspect of inequalities in their response. The limitations imposed by this paper 
will not allow a discussion about the understanding informed by part b) of the task. 
Also, the new task comprised three items, from whom only the third one is the one 
which is referred to as the second iteration of the task. The other two parts of the 
survey will be included in the major study.   
The refined task: 

3) You know that the best way to learn something is to teach somebody; therefore you 
have agreed to tutor your cousin Jamie who is taking Principles of Math 11 this year. 
You are available for him any time and through any means.  
a) You’ve got a text message from Jamie that reads: “Missed the class on linear 
inequalities. I have to do my homework. Don’t know how to start. Help me with the steps 
of solving a linear inequality.” E-mail him back the steps for solving linear inequalities. 
On the space below show the message as well as your preparation for sending it.  
b) Half an hour later an e-mail from Jamie arrives: “I followed your steps and solved a 
whole bunch of inequalities. Thanks. Then I attempted this one: )6(221 xx −>− . I worked 
out the algebra and got this xx 21221 −>−  and then ended up with: 110 > . Here I got 
stuck. Please help.” E-mail him back. On the space below show the message you will 
send to your cousin Jamie. The message should contain your feedback on Jamie’s work 
as well as your input to Jamie’s further understanding of inequalities.  

Having a lens to magnify the responses, reading and sorting the data from the second 
iteration were a bit less laborious than the first wave of coding. In general it was easy 
to fit data into the five categories produced by the first iteration of the task. However, 
for part a) of the task, in the data coming from Math 100, somewhat 15% of the data 
contained an aspect completely unanticipated – e-mailing the steps for solving the 
inequality without being accompanied by an example. After rethinking over this new 
aspect, the issue was easily addressed by correlating respondents’ work with another 
portion of the individuals’ surveys. Thus, those papers went either in category 1 or 3, 
depending on the clarity of the given steps for solving linear inequalities.  
CONCEPTIONS OF INEQUALITIES 
To use a metaphor, I can say that the students painted different images of inequality. 
Their images were analysed in detail. As a result, five conceptions of inequality were 
indentified:  
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• Conception 0: Inequality as an amalgam of images or symbols encountered 
in a mathematics setting 

• Conception 1: Inequality as a strange relative of an equation 
• Conception 2: Inequality as a tool used in optimization contexts  
• Conception 3: Inequality as a dynamic scale metaphor 
• Conception4: Inequality as seen by mathematicians – a complex 

mathematical concept that could be expressed in different registers – 
symbolic, interval, or graphic; and could perform different functions – 
compare quantities, express and resolve constrains or deduce equality. 

Research on inequalities tried to answer many different questions such as: What is 
typical correct and incorrect reasoning? What are common errors? What are possible 
sources of students’ incorrect solutions? What theoretical frameworks could be used 
for analysing students’ reasoning about algebraic inequalities? What is the role of the 
teacher, the context, different modes of representation, and technology in promoting 
students’ understanding? What are promising ways to teach inequalities (Bazzini and 
Tsamir, 2004)?  Studies reported mostly on students’ misconceptions on inequalities 
or on obstacles in understanding inequalities (Linchevski & Sfard, 1991; Bazzini & 
Tsamir, 2001, 2003, 2004; Tsamir, Tirosh & Tiano, 2004; Boero & Bazzini, 2004; 
Sackur, 2004). One of the main questions proposed by the Discussion Group meeting 
at the 1998 PME 22 – What are students’ conceptions of  inequalities? – is still 
waiting for an answer. A framework that permits the decomposition of the inequality 
concept into the structural features that the research participants discern and focus on 
could help a study that aims to inform about what makes some students better at 
manipulating inequalities than others. This paper is a snapshot of a process that opens 
the door to further investigation into learners’ understanding of inequalities via 
conceptions of inequalities.  
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This paper is a synopsis of a doctoral dissertation in mathematics educational 
neuroscience. It presents a psychological model for geometrical thinking and 
learning and its correlative physiological model. With respect to the latter, 
geometrical concept formation belongs to the parietal lobe of the cerebral cortex. 
The cerebellum has a functional role in directing attention to those aspects of a 
geometrical percept that are essential to the concept under consideration. The 
theoretical framework is embodied cognition, as informed by Spinoza, which allows 
coherent integration of psychological and physiological aspects of geometrical 
reasoning. A conclusion of the research is that decontextualization of geometrical 
concepts may facilitate student learning of these concepts. 

INTRODUCTION 
The aim of this paper is to present a summary of some of the main points of my 
doctoral dissertation (Handscomb, 2009). Much of the content herein is adapted 
directly from that document. According to Schoenfeld (2000), research in 
mathematics education can be pure or applied. The purpose of pure research is to 
“understand the nature of mathematical thinking, teaching, and learning” (p. 641), 
whereas applied research addresses the efficacy of particular pedagogical techniques. 
According to Schoenfeld, without a deep understanding of the pure aspect of 
mathematics education,“no sustained progress on the ‘applied front’ is possible” (p. 
641). My primary motivation has been to “understand the nature of mathematical 
thinking, teaching, and learning,” in Schoenfeld’s words, specifically with regard to 
geometry. My current research builds on Handscomb (2005), which presents a 
theoretical model for the process of geometrical reasoning. 
Initially, my objective was to utilize the methods and insights of cognitive 
neuroscience to substantiate the model in Handscomb (2005), in accord with the 
emerging research paradigm of educational neuroscience (e.g., Campbell, 2006). The 
psychological model should have implications with respect to neural activity, and if 
these implications are borne out, then the psychological model would be 
substantiated. 
It became clear, however, that the data and methods of cognitive neuroscience cannot 
be utilized without a neurophysiological model for geometrical reasoning that 
corresponds to the psychological model. If such a model can be developed, then the 
psychological and neurophysiological models can be mutually informing and 
constraining. This mutuality between the subjective, psychological approach and the 
objective, physiological approach is the research method of educational neuroscience 
(cf., Varela, 1996, 1999). 
A large part of Handscomb (2009) is an attempt to develop such a neurophysiological 
model for geometrical reasoning. Although I do present one major implication for the 
teaching of mathematics, the major thrust of my research, which is grounded in 
cognitive neuroscience, may appear distant from classroom practice. Nevertheless, I 
claim that my research is foundational with respect to understanding the nature of 
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geometrical thinking and learning. It belongs, according to Schoenfeld’s (2000) 
distinction, to the realm of pure mathematics education research. 
 
THE EMBODIED MIND 
A necessary metaphysical justification for the research framework of educational 
neuroscience is that there should be an intelligible relationship between body and 
mind—i.e., between the psychological and neurophysiological models for 
geometrical reasoning. 
The relationship between body and mind that I have adopted is the theory of 
embodied cognition, as developed in Varela, Thompson, and Rosch (1991), extended 
by Campbell (2001, 2003), and informed by Spinoza (1677/1996). The material in 
this section has been adapted from Handscomb (2007) as well as Handscomb (2009). 
A principal idea behind embodied cognition is double embodiment: we are beings 
who exist in the world; but also we are beings who perceive the world. According to 
Merleau-Ponty (1945/2005), whose phenomenology was a major inspiration for 
embodied cognition, “The world is inseparable from the subject, but from a subject 
which is nothing but a project of the world, and the subject is inseparable from the 
world, but from a world which the subject itself projects” (pp. 499-500). Campbell 
(2001) adds, “We are both embodied within the world and the world is embodied 
within us: we are the world within itself” (p. 6, author’s italics). 
Note that the “world that the subject projects” and the “world that projects the 
subject” should both be regarded as epistemic categories, mind and body, 
respectively. Idealism and realism are matters of perspective, corresponding to 
Husserl’s phenomenological and natural attitudes, respectively (Campbell, 1998; 
Campbell & Handscomb, 2007). The subjective mental world of cognitive function 
flows from the idealist stance, and the objective world of physical activity that can be 
observed and measured flows from the realist stance. 
The embodied point of view takes the body as the locus of experience. The very fact 
of being embodied and thereby embedded in the world, taking the natural attitude, 
means that the organism receives external stimuli that change the internal milieu. A 
change in the internal milieu in turn changes the way the organism acts, altering the 
subsequent stimulus it receives. Varela et al. (1991) describe this in poetic terms as 
“organism and environment enfold into each other and unfold from one another in the 
fundamental circularity that is life itself” (p. 217). Organism and world in which it is 
embodied are a single, interactive structure. 
It would be easy to generate confusion at this point. The “fundamental circularity” 
and “exchange of stimuli and responses” should be regarded as entirely within the 
objective domain. Physical activity does not cause subjective cognition, or vice versa. 
Fuster (2003) writes, “A cognitive order, no matter how it is construed, cannot be 
causally related to a brain order,” (p. viii). The naïve belief is that the physical event 
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of stubbing one’s toe “causes” the psychological event of pain. It does not—stubbing 
one’s toe does cause objective nociceptive activity in the nervous system, but that 
activity is not in itself pain. Pain is a subjective experience belonging to the epistemic 
category of mind rather than body. 
Cognition, in the natural attitude, is defined by Varela et al. (1991) as “Enaction: A 
history of structural coupling that brings forth a world” (p. 206). The history of 
structural coupling is the dance between organism and the world. They move 
together in perfect synchrony, neither taking the lead, but both moving to the same 
melody. The boundaries of the organism do not stop at the physical shell of the body, 
but include organs, blood, and nerves—the body is itself part of the world that it 
enacts—and therefore cognition arises also in the body’s interaction with itself. In 
this regard, the most characteristically human aspects of cognition, it may be 
assumed, are manifested in the neural activity of the brain. 
The view of embodied cognition, in which the subjective and objective are epistemic 
categories, is not, according to Campbell (1993), the original understanding of Varela 
et al. (1991). They appear, in fact, to endorse, albeit implicitly, a Cartesian dualism. 
Campbell (2001) suggests modifying embodied cognition with a monist ontology. 
Embodied cognition, in this modified sense, a monist ontology and dual 
epistemology, is a neutral monism. Handscomb (2007) reviews the remarkable 
similarities between Campbell’s (2001, 2003) formulation of embodied cognition and 
the classical neutral monism expounded by Spinoza (1667/1996). According to 
Spinoza, the world consists of a single substance, which can be known in two ways, 
thought and extension. These two attributes correspond, respectively, to the 
subjective and objective epistemic categories. 
According to Spinoza (1667/1996) there is a precise correlation between the domains 
of thought and extension: the “order and connection of ideas is the same as the order 
and connection of things” (E2 P7, original italics). Spinoza, in other words, argues 
that the structures of the two epistemic categories are identical. 
Spinoza’s metaphysics and theory of knowledge, I believe, is an unacknowledged 
precursor of embodied cognition. Spinoza was hundreds of years ahead of his time in 
this respect. Cognitive neuroscientists are only now beginning to acknowledge 
Spinoza’s insights (e.g., Damasio, 2003). 
In order to help situate my research within the academic discipline of mathematics 
education, it will be informative to compare my approach with the cognitive 
metaphor understanding of embodied cognition, as represented in Lakoff and Núñez 
(2000), which has attracted considerable attention in mathematics education. 
According to Lakoff and Núñez (2000), “Mathematical objects are embodied 
concepts—that is, ideas that are ultimately grounded in human experience and put 
together via normal human conceptual mechanisms, . . . [such as] conceptual 
metaphors” (p. 366). For example, a collection of physical objects, metaphorically, 



  
1- 62 SFU—MEDS-C — 2009 

may be regarded as a number. Mathematics is created by human agency on the basis 
of these conceptual metaphors; mathematics is embodied in the world in the form of 
conceptual metaphors. Embodiment is understood, therefore, in a gross, behavioural 
sense instead of embodiment in neural activity. 
Metaphysical assumptions, such as those that I make with respect to the relationship 
between mind and body, appear not to be present in Lakoff and Núñez (2000). 
Reading their work, one has the sense of a Cartesian dualism, in which mind observes 
action in the external world and uses these observations, by means of metaphor, to 
compose mathematical ideas. 

GEOMETRICAL REASONING 
Mathematics is concerned with certain structural aspects of perception. Geometry, in 
particular, is concerned with structural aspects of visual perception. There may be 
other structural aspects of visual perception, of more relevance to the artist, for 
example, than the mathematician, so that geometry does not exhaust the structure of 
visual perception. Moreover, geometry is not delimited by the structural aspects of 
perception, but entails also procedures, such as logical reasoning or arithmetical 
reasoning, which engage cognitive functions other than perception. However, 
geometry is the mathematical science of visual perception par excellence, and I am 
primarily concerned with the intersection of geometry and visual perception. 
With which structural aspects of visual perception is geometry primarily concerned? 
Euclidean objects such as points, straight lines, and circles still form the backbone of 
the high-school geometry curriculum (Handscomb, 2005). These objects and their 
combination and interaction are the focus of my discussion. 
Now, a triangle in perception will have various incidental properties, such as colour, 
size, orientation, and shape. These properties are irrelevant to its mathematical 
triangularity. On the other hand, the property of having three sides is essential As far 
as the triangle is concerned, incidental properties have nothing to do with the 
geometry of the triangle in itself. If incidental properties of the triangle remain at the 
forefront of perception, then mathematical reasoning risks confusion and inaccuracy. 
A goal of geometry education should be to enable students to attend to those 
properties of the percept that are essential. 
I refer to perception of structure, in the sense above, as schematic perception. I argue 
at length in Handscomb (2009) that the famous phrase “seeing the general in the 
particular,” from the seminal paper in mathematics education by Mason and Pimm 
(1984), may be reinterpreted as schematic perception. 
Schematic perception is a psychological idea. According to the framework of 
embodied cognition outlined in the previous section, it should have a neurological 
correlate in the activity of the brain. 
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OUTLINE OF THE THEORY 
Concepts, as understood herein, are associations of percepts, such that each particular 
percept instantiates the concept. The concept is nothing more. Geometrical reasoning 
is the main focus of the dissertation, and therefore visual concepts and percepts are 
pertinent to the discussion. Visual percepts are specific and particular in spatial terms, 
whereas visual concepts are non-specific and general in spatial terms. 
In Handscomb (2009) I investigate the neurological interpretation of visual concepts, 
visual percepts, and visual properties, according to current research in cognitive 
neuroscience. Visual properties correspond to cognitive networks of the occipital 
cortex; visual percepts to cognitive networks centred in the temporal lobe, and visual 
concepts to widely distributed cognitive networks centred in the parietal cortex. 
At any moment in cognition, concepts are resolving to percepts. Equivalently, 
percepts are being associated to concepts. There is a kind of “standing wave” of 
cognition that is simultaneously top-down and bottom-up, leading from the general to 
the particular in one direction and from the particular to the general in the other 
direction. My argument presupposes the cognitive network structure of the cerebral 
cortex (Fuster, 2003) and the philosophy of duration (Bergson, 1896/2005). 
Concepts, as associations of percepts, are fuzzy, indistinct, and inadequate for 
mathematical purposes. A further level of processing is required in order to produce 
the crisp, pure concepts that are the raw material for mathematical reasoning. Indeed, 
those aspects of the concepts, and the percepts to which they resolve, that are 
essential for the mathematical purposes must be attended to, and those aspects of 
concepts and percepts that are incidental to the mathematics must be suppressed from 
attention. I argue that this process must happen simultaneously in the concept and the 
percept to which it resolves. The resulting, pure concepts and percepts are schematic. 
Handscomb (2009) contains several interlocking arguments with respect to the 
cognitive neuroscience of the cerebellum. The conclusion is that a functional role of 
the cerebellum is to schematize those visual concepts of the parietal cortex. The 
cerebellum is a neural structure that, traditionally, is not noted for its contribution to 
higher cognitive function. In fact, textbooks on the brain emphasize the idea that the 
cerebellum is responsible for facilitating smooth, efficient motor behaviour. 
However, in the latter part of the twentieth century research evidence, and the 
accompanying explanatory theories, began to accumulate that the cerebellum was 
indeed involved in areas of cognition other than motor behaviour. The cerebellar 
schematization hypothesis belongs to this trend. 
Concept formation in the cerebral cortex may be regarded as generalization, whereas 
the action of the cerebellum may be regarded as abstraction. The theory sheds light 
on the relationship between these two terms. 
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IMPLICATIONS FOR MATHEMATICS EDUCATION 
Although my work is largely a theoretical pure mathematics education research, there 
are implications for actual classroom practice. One of these is that the 
decontextualization of geometrical concepts will facilitate student learning of these 
concepts, where decontextualization refers to representing the mathematics as starkly 
and purely as possible, without incidental distractors. 
After all, an important component of geometrical reasoning is schematic perception. 
It seems to be intuitively obvious that if a mathematical concept has already been 
“schematized” to an extent in the very manner of its presentation, then schematic 
perception is facilitated. In Handscomb (2009) I use an argument based on the 
cognitive neuroscience of the cerebellum to demonstrate that schematization by the 
cerebellum is indeed facilitated if mathematical concepts are decontextualized. 
There is substantial research in mathematics education both for and against the notion 
of decontextualization. Two big ideas in mathematics education theory are situated 
learning and constructivist learning. I argue in Handscomb (2009) that there are 
concerns with respect to the universal applicability of these ideas.  
On the other hand, some mathematics education research appears to favour 
decontextualization as a pedagogical tool. I will mention one such study here. More 
are cited in Handscomb (2009). Kaminski et al. (2008) experimented in teaching the 
concepts of group theory to students by means of concrete (i.e., contextualized) 
representations and by means of abstract (i.e., decontextualized) representations. The 
learning of their subjects was enhanced with the abstract representations. According 
to the authors, “concrete information may compete for attention with deep to-be-
learned structure (6-8). Specifically, transfer of conceptual knowledge is more likely 
to occur after learning a generic instantiation than after learning a concrete one (7)” 
(p. 454). 

CONCLUSION 
As far as possible, I have developed a rigorous, foundational approach to 
understanding geometrical thinking and learning. An application of this pure 
mathematics education research is the apparent efficacy of decontextualization. In a 
nutshell, given the metaphysical assumptions, and aspects of the cognitive 
neuroscience of the cerebral cortex and the cerebellum, decontextualization may in 
certain circumstances facilitate geometrical learning. 
On the other hand, my research does not take into account social, cultural, and 
linguistic factors. In any given situation, one or more of these factors may outweigh 
the benefits of decontextualization. According to Schoenfeld (2000), questions that 
ask whether one pedagogical technique is better than another “tend to be 
unanswerable in principle” (p. 642). 
My work so far has been theoretical in the sense that I have not conducted empirical 
research. However, I do make extensive reference to empirical studies in cognitive 
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neuroscience. Moreover, the main motivation behind this study was to develop a 
neurophysiological model for geometrical reasoning that could form the basis for 
empirical research. This has now been done, and the next step should be to 
substantiate (or falsify) the conclusions empirically. 
The theoretical framework and methods of educational neuroscience can enrich 
mathematics education research and provide additional validation for theories of 
mathematics education. 
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TENSIONS RELATED TO COURSE CONTENT IN TEACHING 
MATH FOR TEACHERS:  THE CASE OF ALICE 

Susan Oesterle 
Simon Fraser University 

 
Instructors of mathematics content courses for prospective elementary teachers are 
influenced by many (sometimes) competing factors as they strive to meet their goals 
for their students.  Via an analysis of three episodes that occurred during an 
interview with one such instructor, this report seeks to illustrate some of the tensions 
that these instructors operate under as they make decisions related to course content. 

INTRODUCTION 
Prospective elementary school teachers are often required to take a mathematics 
content course before or as part of their teacher preparation programmes.  The recent 
report of the National Mathematics Advisory Panel (2008) has recommended that 
these courses be specifically tailored to the needs of prospective teachers, and that 
they be taught by mathematics instructors in mathematics departments.  Such courses 
are already offered at many institutions, and though their course titles vary, will be 
referred to here as “Math for Teachers” (MFT) courses.   
In her 2002 plenary address to the PME-NA, Ball (2002) commented that “we have 
not put in the foreground the “who” of teacher learning as often as we might”.  This 
paper reports on a small portion of a larger project whose aim is to understand who 
teaches these Math for Teachers courses; specifically how they perceive and respond 
to their role(s).  The focus here will be on one of these instructors and the tensions 
that she operates under as she tries to make decisions on content for her course.    

BACKGROUND AND RELATED RESEARCH 
There is a vast amount of literature which makes recommendations for the 
knowledge, beliefs and attitudes that teachers of elementary school mathematics 
should have (e.g. Ball, Lubienski, & Mewborn, 2004; Philipp, 2007).  Although 
policy documents (e.g. Greenburg & Walsh, 2008) provide the clearest mandate for 
MFT courses, there is little advice or agreement on how to set priorities within the 
long lists of qualities they present.  Furthermore, the extent to which MFT instructors 
have contact with this literature, either directly or indirectly, is unclear. 
In fact, very little research has been done on post-secondary instructors in general, let 
alone instructors of MFT courses (Artigue, 2001).  However, understanding these 
instructors is a crucial component in understanding the role they play in teacher 
preparation.  As post-secondary instructors they enjoy considerable autonomy in their 
classrooms, and as a result MFT courses-as-delivered can vary significantly (Oesterle 
& Liljedahl, 2009).   
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This report will offer a glimpse via one case study into some of the tensions 
encountered by MFT instructors when making course content decisions.  The notion 
of tensions has been used and recommended by Berry (2007), who engaged in a self-
study project related to her own experiences in becoming a (biology) teacher 
educator.  She observed that: 

it captured well the feelings of internal turmoil experienced by teacher educators as they 
found themselves pulled in different directions by competing pedagogical demands in 
their work and the difficulties they experienced as they learnt to recognize and manage 
these demands (Berry, 2007, p. 119).   

METHODOLOGY 
Data for the larger project was gathered through semi-formal interviews conducted 
with instructors of MFT courses at post-secondary institutions in British Columbia.  
Theoretical sampling was used to select instructors who represent a range of years of 
experience teaching the MFT course, and come from a wide variety of post-
secondary institutions.  Most of the participants were previously known to me on a 
professional basis, as I am also an MFT instructor.  Member checking was employed 
to mitigate bias due to my own prior experiences. 
In the interviews, participants were asked about their educational backgrounds, their 
preparation for teaching the MFT course, their aspirations for their students, and their 
approaches.  They were also asked to reflect on how successful they were in 
achieving their goals.  Audio-taped interviews were transcribed and coded using 
constant comparative analysis (Corbin & Strauss, 2008).  Forty-eight focussed codes 
emerged from the preliminary analysis, which could be tentatively arranged under 8 
(not disjoint) themes:  instructor identity, tensions, and resources, student knowledge, 
affect (beliefs and attitudes), orientation to mathematics, orientation to teaching, and 
classroom environment.  Instances of tensions were identified through instructors’ 
expressions of ambivalence or even guilt, and through apparent contradictions 
between reported intentions and described realities. 
This report will focus on the data from the interview with Alice (a pseudonym). 

ALICE’S INTERVIEW 
During Alice’s interview she expresses feelings of ambivalence or regret several 
times, often while she is talking about issues involving course content.  In order to set 
a context for the particular tensions that arise, I will begin with a summary of Alice’s 
background and her goals for her students.  This will be followed by a description of 
three episodes that occurred during her interview which shed light on some of the 
tensions she encounters. 
Like most of the participants in the study, Alice has an advanced degree in 
mathematics, teaches in a mathematics department at a post-secondary institution, 
and has not participated in any formal education courses as part of her educational 
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background.  She was selected for this study because she is new to teaching the MFT 
course, having taught it only once, though she has been teaching mathematics for 
over 10 years. 
Early in the interview, Alice was asked about the topics she teaches in her MFT 
course.  In her list of topics she includes: problem-solving; arithmetic operations on 
whole numbers, integers, rationals and reals (including varieties of models); some 
geometry; and some probability and statistics.  (The topic list is very similar across 
different post-secondary institutions.  In the context of the BC system, this is largely 
due to the need, for community colleges in particular, to offer MFT courses that will 
be transferable to the large universities that offer teacher training programmes.)   
Further questioning revealed that Alice aspires to teach her students much more than 
simply how to do the mathematics subsumed under these topics.  Her expressed goals 
in teaching the MFT course reflect a strong concern for addressing students’ attitudes 
and beliefs.  She explains: 

For me the main thing would be that they would, kind of, not be afraid of math, and like 
math, like think it’s actually interesting, think it’s fun... So I try to make it fun, and, 
playful, because many of them, I believe, are a bit hesitant about the whole math thing.  
And they postpone it as late as they can.  So the goal was to make them feel a little bit 
improved on their confidence, for some of them...and for the others, to bring in some 
interesting, funny, questions.  Like, little fun problems to solve, that they won’t just have 
to teach the kids later on to add numbers over and over and over. 

Her main concerns are combating her students’ mathematics anxiety, building 
confidence and showing them that there is more to math than repetitive drill 
exercises.  From her responses it is unclear what emphasis she places on improving 
her students’ mathematical knowledge.  For many of the other participants, goals for 
improving students’ mathematical skills were mentioned in their goal descriptions.  It 
is notable that this did not occur in Alice’s interview.      
Episode 1:  Probability or Symmetry   
This first episode begins early in the interview, when Alice is concluding her 
description of the course topics.  She comments: 

Alice:  Probability is there too. Statistics and probability.  Statistics is basic.  Probability 
branches...one could branch off.  I guess I should not have. 

Interviewer:    You shouldn’t?  You mean you did? 
Alice:  I did.  I did a little because I like it, and I shouldn’t have. Next time maybe I’ll 

play more with the symmetries and the tessellations...but as I look at 
elementary school curriculum, the probability is not there at all!  

Alice couples her regret over having (possibly) done too much probability with the 
thought that she may not have spent enough time on symmetry. This competition 
between different topics for the limited time available in the course is a common 
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tension experienced by many teachers in many courses.  More interesting tensions 
become evident upon a closer examination of her reasons for both her regret, and for 
choosing to teach more probability and less symmetry in the first place. 
Alice uses the elementary school curriculum as a reference to inform what her 
priorities should be.  Indeed she goes on to explain that she has children in 
elementary school who have done work on symmetry, and in consequence: 

I figured maybe that [symmetry] was more important for me to cover than the actual 
probability which I enjoy much more than symmetries. 

On the other hand, her rationale for teaching probability is that she enjoys it.  There 
may be an assumption here on her part that if she enjoys it, then her students will as 
well. Teaching probabilities could facilitate her goal of helping her students see 
mathematics as fun, but she is dismayed that it is not part of the elementary 
curriculum.  There appears to be a tension here between what she wants to teach, and 
what she feels she should be teaching as indicated by the elementary curriculum. 
One other factor emerges as she elaborates on not spending time on symmetry.  She 
laments that “she cannot draw [the symmetries] clean and pretty” and as a result she 
feels uncomfortable demonstrating them. Instructor expertise (or in this case lack of 
it) contributes to the tensions in this instance.  Her aversion to teaching symmetry is 
in conflict with her belief that she should be spending more time on it.  
She resolves: 

...probability for me was a much more fun topic, but next time I’ll practice a little with 
my symmetries, and with my drawings... or use a computer. 

This pledge to practice more with symmetries before she teaches again, especially 
since she is still linking the topic of probability with symmetry, might be seen to be a 
move within the tension towards making a greater effort to spend more time on a 
topic that she sees as a significant component of the elementary curriculum, despite 
her inclinations or her aversion.   
However, at a much later point in the interview, when asked whether probability and 
statistics would still be part of the course if she taught it again, Alice responds: 

Probability...I [have] more mixed feelings [compared to Statistics], even though I like 
probability, but I guess...the quantity and quality balance in there is hard to make, so 
maybe...[long  thoughtful pause]…. I would still do it! 

The tensions remain.   Although she has determined to teach more about symmetries, 
there is no indication that she will give up on the topic she loves to teach, despite her 
acknowledgement of the “quantity and quality balance” dilemma. 
Episode 2:  Fractions or Tessellations  
The second episode arises when Alice is asked whether she does anything with her 
students specifically because they will be teachers of mathematics one day. In 
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response she describes having a discussion with her students about the elementary 
school curriculum and its neglect of the important topic of fractions: 

In the curriculum these days, from what I observe with my kids, is that fractions are 
covered at the end of a school year.  For some weird reason, fractions are in June or May.  
And then…they don’t always make it….  Fractions are VERY important! It almost 
signals to me why we have such a horrible situation with fractions.  Everybody’s so 
scared of the fractions, they push them towards the end.  So I gave them a big speech that 
they promise to me, once they get into the workforce, they will fight to move fractions 
earlier. 

The “horrible situation” she refers to is the lack of skill in working with fractions that 
she encounters regularly as a teacher of post-secondary mathematics.  It is unclear 
who the “they” are who are so afraid of the fractions that “they push them towards 
the end”, but it could be either the teachers themselves or the elementary curriculum 
designers.  From Alice’s perspective, not only are fractions neglected, but time is 
spent on less worthwhile topics:   

… it’s frustrating, you know, for there are no fractions.… There are tessellations, they’re 
done for a month, but fractions are done for a few weeks in June. And so I tried to relate 
… what I think is more important… 

She goes on to muse: 
I don’t know why I keep talking about tessellations.  I guess because it was new to me— 
tessellations were completely new to me, and, so, they’re lovely, but then again, how 
much of curriculum should be devoted to tessellations....Could [they] be maybe 
combined with art classes? 

Alice experiences no difficulties in deciding the relative merits of fractions vs. 
tessellations.  Her past experience as a mathematics teacher informs her knowledge 
that most students exhibit poor understanding of fractions, and that this creates 
difficulties for them.  At the same time the fact that tessellations are new to Alice 
may support her view that they are less important:  if she has managed well without 
them then perhaps the students will not have a great need of them.   
The tension arising here is between what she believes students need to know based on 
her own experience and what she perceives to be emphasised in the elementary 
curriculum.  This is in contrast to the first episode in which she appears to feel she 
should use the elementary curriculum to inform her priorities in the MFT course.   
Not surprisingly, much later in the interview, when asked what she would do 
differently if she teaches the course again, Alice replies:  “I would probably do less 
tessellations.”  However, this quickly gives way to an expression of guilt: 

I feel bad about it, because geometry is being so abandoned, but then again, it’s a cycle, 
a vicious cycle.  If I teach less, then they will not want to teach it... 
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Her regret in this case does not seem to be about tessellations in particular, but rather 
about her perception that geometry is not being given its due.  At the same time it 
reveals the import she attaches to her content choices.  What she chooses to teach or 
not teach sends a message to her students about the relative importance of 
mathematical topics, and will in turn have an impact on their future practice as 
teachers.  This concern contributes to the tensions around her content decisions. 
Episode 3:  Knowledge or Attitudes 
In a more philosophical discussion near the end of the interview Alice replies to a 
question about whether her students have sufficient mathematics knowledge to be 
teachers.  Her reply reveals some uncertainties: 

That’s a very good question.  That, that’s a very deep question.  Because we don’t teach 
so much math in that class, you know.  We don’t drill them on whether they can do 
those fractions.  Mmm, so we kind of believe they have the elementary math [...] but 
how much above it they should be...You see they always say that you should be 
significantly above what you want to teach, because then you have the big picture, you 
see the troubles and all that.  I don’t know that much about that.  [...] Many of them are 
[ready to teach] and many at least will not be afraid to go for it.  But I still think there 
are people who will be afraid....I still think I let people go in there being afraid. 

She goes on to comment that those who are still afraid will likely avoid the 
mathematics as much as possible in their future classrooms, though they may be 
“wonderful at some other subjects”.  She laments the fact that there are not specialist 
mathematics teachers at the elementary school level. 
A careful parsing of this passage reveals some of the different forces contributing to 
the tensions that Alice operates under. As she thinks out loud, her pronoun use 
changes from “we” to “they” to “I”. “We” likely represents her institution as she 
describes what doesn’t happen in the course:  there is not much math and no skill 
drill.  As well she seems to explain why mathematics skills are not emphasised:  “we 
kind of believe they have the elementary math”.  The hedging with “kind of believe” 
may indicate that she is in fact aware that many of her students do not have those 
presumed skills.  (This is confirmed by other comments in her interview).  In the 
phrase “they always say...” , the “they” seems to point to education experts, or at least 
to those who have an informed opinion.  She understands why having a higher level 
of mathematics knowledge might be advantageous for a teacher, but she switches to 
the pronoun “I”, and quickly disassociates herself from the “they”, asserting that she 
doesn’t know that much about these matters.  We see in this episode references to her 
institution, expectations regarding students’ prior knowledge, education lore, and her 
own feelings of inadequacy with respect to educational issues, all of which inform 
and influence her content decisions. 
Furthermore, although she appreciates the importance of the question, in the end 
Alice does not decide whether her students are prepared mathematically.  She instead 
shifts to consider whether her students “at least” will not be afraid of the 
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mathematics, even if their content knowledge is not strong.  Throughout Alice’s 
interview and in her stated goals, affective concerns are paramount and they emerge 
here again.  She expresses some satisfaction that many will have overcome their 
fears, although after a pause, she observes that this goal isn’t always successful 
either. 

DISCUSSION 
Although tensions are often described in terms of two opposing forces, those 
experienced by instructors in MFT courses cannot be described so simply.  In this 
context there is a plurality of influences which sometimes compete and sometimes 
combine in various ways to affect instructors’ choices. 
Episodes 1 and 2 show Alice making choices about particular topics.  The elementary 
school curriculum as she experiences it via her own school-aged children is an 
important consideration, but it is sometimes in conflict with her personal inclinations 
and/or aversions (episode 1), or with her knowledge and experience as a mathematics 
instructor (episode 2).  The tension created by these sometime competing influences 
is amplified by the necessity to make either/or decisions given the limited time she 
has with students in the course.   
Episode 3 alludes to tensions that operate at a more theoretical level, revolving 
around fundamental questions about what role the MFT course should play in the 
development of elementary teachers.  How important are goals for improving 
mathematical proficiency relative to goals for building positive student affect?  For 
some participants in the study, affective aims are sabotaged by an emphasis on 
building mathematical proficiency, while for others the mathematics proficiency is a 
necessary step towards improving students’ attitudes to mathematics. Alice chooses 
to emphasise affective goals, while at the same time acknowledging that others 
(education experts?) may not concur.  In her particular case, she deals with this 
tension by deferring authority for deciding these priorities to others at her institution, 
and suggesting that deficiencies may need to be addressed at the systemic level (i.e. 
with specialist teachers.)   
We see here tensions that operate among goals (e.g. mathematics proficiency, 
attitudes) and points of authority (e.g. the instructor herself, the elementary 
curriculum, her institution). Alice operates within the tensions without coming to any 
definitive resolution, rather she engages in an on-going search for balance. 
Conclusion 
The tensions described here with reference to Alice’s transcript represent only a 
glimpse into a few of the many influences that affect decisions of MFT instructors.  
Students’ prior knowledge and expectations, along with other peer and institutional 
factors are among those significant influences that could not be addressed within the 
space restrictions of this report.   Moreover, these tensions do not only arise in the 
context of content decisions, but also in choices around methodology. 



  
1- 74 SFU—MEDS-C — 2009 

Although the tensions experienced by Alice will not be identical to those experienced 
by others, a consideration of her situation can improve understanding of the possible 
tensions that instructors of MFT courses may encounter.  With this understanding, 
these instructors may become more aware of what influences their decisions, laying 
the groundwork for future research into how they might best be supported in their 
endeavours. 
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THE DESIGNING BRAID: TEACHERS' INTERACTIONS WHILE 
DESIGNING LEARNING ARTEFACTS 

A. Paulino Preciado-Babb 
Simon Fraser University 

 
In this report I propose a theoretical framework that serves to understand   
conversations and interactions that teachers and educators undertake when engaged 
in the collaborative design of mathematics learning artefacts—such as a lesson, a 
class projects, or an assessment instrument. A constructivist grounded theory 
approach was used in order to develop such a framework. Three theoretical concepts 
describe the participants' conversations when designing a lesson in this context: (1) 
anticipating possible students' approaches and struggles; (2) pursuing coherence 
within the context of the classroom where the artefact will be implemented; and (3) 
approaching previously selected goals for the artefact. Comparison with other 
theories of mathematics teachers' development is made in the concluding section, 
stressing the focus on teachers and educators' interactions of the proposed 
theoretical concepts in this paper. 

TEACHER COLLABORATIVE DESIGN 
The generation, improvement, and implementation of learning strategies for 
mathematics teachers' professional growth has been an increasing issue in the 
research of mathematics education (Linares, & Krainer 2006). Among a variety of 
programs and interventions designed to improve teachers' professional practices, the 
collective design of teaching/learning artefacts, usually lessons, by teachers and 
educators has been widely applied in different contexts and countries—e.g. lesson 
study (Stigler, & Hiebert, 1999), learning study (Marton, & Tsui 2004), and 
communities of inquiry (Jaworsky, 2009, p. 12). This study is a part of a wider 
research project named “Teacher's Professional Growth by Collaborative Lesson 
Design,” and concerns itself with understanding the process that teachers and 
educators undertake when participating in the collaborative design, implementation 
and results' debriefing of a mathematics lesson—or any other learning artefact such 
as a class project or an assessment instrument. I call this collaborative activity 
Teachers Collaborative Design (TCD), which includes the following features: (1) 
there is a specific goal for the artefacts such as teachers' interest, curricular 
requirements, or school district initiative; (2) there is a description or plan for the 
delivery of the artefact, including the roles of teachers and students; and (3) there is a 
mathematical content that includes themes, selected examples, and exercises or 
problems. 
While the benefits of TCD in mathematics education have been documented (Lewis, 
Peery, & Hurd, 2009; Minori, 2009; Goldsmith, Doerr, & Lewis, 2009; Ling, & 
Runesson, 2007), a focus on the teachers' interactions in this context barely appears 
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in the literature. Communities of practice (Wenger, 1999), as well as the “Cultural-
Historical Activity Theory” (Engeströn, 2008) have been used by researchers 
(Jaworsky, 2009; Davis, 2008; Minori, 2009) in order to study interactions among 
teachers and educators when engaged in TCD. Those theoretical frameworks are 
adapted from social theories to mathematics teachers' development, which on one 
hand, provide a general socio-cultural perspective, but on the other hand, may not 
address the particularities of mathematics teachers and educators in the context of 
TCD. In this report I present a theory aimed to understand the conversations and 
interactions within the designing process of TCD. The theory is grounded from the 
designing process of two lessons developed by a team consisting of three 
mathematics secondary teachers and me as a researcher and facilitator.  
We went through two different projects of lesson design: one in the Fall of 2008, 
where five meetings were used to design a lesson in a grade 9 classroom; and another 
during Springer of 2009, with six meetings for the design of a lesson for a grade 8 
class. Additional meetings were held with other purposes such as setting goals and 
debriefing the lessons; however, the focus in this part of the research project is on the 
designing process. 

METHODOLOGY AND THEORETICAL CONSIDERATIONS  
In order to focus on the involved interactions and processes in a team of TCD, I 
followed a constructivist grounded theory (Charmaz, 2006) approach as underlying 
methodology. Accordingly, the theoretical concepts I am presenting offer an 
interpretation of a single case. However, my intention is to generate theory that might 
be used, modified, or adapted in order to interpret other cases of TCD. 
Constructivist grounded theory is based in symbolic interactionism, “a theoretical 
perspective which assumes that people construct selves, society and reality through 
interactions” (Charmaz 2006, p.189). According to this perspective, social life is 
made of processes; meanings arise from, and influence, actions. I can have neither an 
objective perspective as an observer in this research nor do I believe that such 
perspective is possible; I constructed and shaped, jointly with participant teachers, the 
settings and trends of actions in the project. 
This study differs from common grounded theories in two aspects: (1) the use of a 
single case to generate theory, and (2) my double role as a member of the team and as 
a researcher. However, on one hand Glaser and Strauss (1967, p.153) explain that it is 
possible to generate grounded theory from a single case using the constant 
comparative analysis method. On the other hand, research related to mathematics 
teachers' professional development programs and interventions is often conducted by 
the same facilitators (Llinares, & Krainer, 2006, p. 451). 
The data used for this study was collected by recording the meetings held in order to 
design the two lessons, as well as conducting semi-structured interviews—both group 
and individual. After each meeting I conducted an open coding consisted on splitting 
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the recordings into small segments, labelling each one and writing and explanation of 
what we were doing in such segment—sometimes a transcription of the conversation 
was added, as well. The time of the segments was indicated, so I had easy access to 
them required. At the end of the Fall of 2008, I conducted a group interview in order 
to capture participants' perceptions of the process, as well as corroborate or modify 
my interpretations at that moment. Refinement of codes and categories was done 
after coding the data from the meetings in Spring 2009. More interviews, group and 
individual, were conducted in order to saturate the theoretical concepts and verify my 
conclusions with participant's meaning of the process. Writing memos was an active 
part of the methodology during all the process of data collection and analysis.  

THE DESIGNING BRAID 
The genesis of an artefact in TCD is the process of designing the teaching/learning 
artefact where teachers act and interact, not only when they meet together, but also 
outside the working sessions. The Designing Braid is made up of three theoretical 
concepts for the description of conversation and activities during the genesis of the 
artefact: (1) anticipating, (2) approaching goals, and (3) pursuing coherence. 
Additionally, there were other activities such as discussing and negotiating the 
schedule for the lessons, and distributing labours for each participant in the team; 
these interactions comprise another category which I call team organisation. 
Anticipating includes both predictions of students’ performance before, during, and 
after the implementation of the artefact, as well as proposals of teachers' actions in 
order to approach what they initially predicted. I called the former forecasting, and 
the later commitment. Participants in a TCD are involved in forecasting, for example, 
when they use either a learning theory or their own experience to predict students’ 
struggles or success in the implementation of the artefact. Forecasting also includes 
the piloting of the mathematical tasks as part of the designing process. 
Examples of commitment are: the use of tables in students’ handouts as a means of 
guiding their process; the planning of teacher's responses to some forecasted student's 
struggle during the implementation of the artefact; and exposing students to similar 
problems or activities in previous lessons in order to get them used to working in 
some specific setting. 
In the process of designing a teaching/learning artefact in TCD, participants set the 
mathematical content and students' learning in a larger context—e.g. course unit, 
grade level, or post-secondary studies—in order to make decisions about the tasks 
and format of the artefact as a part of the course. Such decisions go beyond topics in 
mathematics, including for instance the developing of a micro learning culture in the 
classroom. This is what I called pursuing coherence. 
Teachers and educators are involved in TCD are concerned with the previously 
established goals for the artefact. Achieving goals refers to the participants' 
interactions towards fulfilling such goals. Proposing mathematical tasks or activities 
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for students is a part of the achieving goals category. Interesting cases are when 
teachers discuss, and sometimes dismiss, proposed activities for the artefact—an 
instance of this will be showed in the next section. Achieving goals entails critical 
reflection of the means and goals of the artefact under design. 
While anticipating, pursuing coherence, and achieving goals are interwoven actions, 
the team organization guides the direction of the project and comprise the activities 
that TCD participants do while focus on the designing an artefact. In Figure 1 the 
three interwoven concepts are presented as forming parts of a braid that is directed by 
team organization. 

 

A CASE OF TEACHERS COLLABORATIVE DESIGN 
In order to elucidate the dynamic of the genesis of the artefact process, I present some 
excerpts from the first lesson—Fall 2008—that we designed in the TCD project. The 
participating teachers' pseudonymous are Arnold, Brad, and Sofia. The goal of the 
lesson was to get students translating word problems into algebraic expressions, and 
we decided to use patterns in order to achieve this goal. 
After reviewing some problems in a textbook and discussing which ones could be 
used in the lesson we were designing, Brad wondered about the students' possible 
approaches and Sofia forecasted a students' way of starting those problems: 

Brad:   What kind of ideas can we expect kids to come up with in place of 5n 
or 3n+2n? What might they say is the pattern? 

Sofia:   Well, I think that they will start with the recursive thing. 

Additionally, Arnold had been concerned with scaffolding students in the lesson and 
forecasted that some students wouldn't use a table to represent their data. In response, 
Brad showed a page in the textbook containing some tables and shapes for patterns 
problems and suggested: 

 
Figure 1. The designing braid. 
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Brad:   If you haven't worked on this page on functions, there are some 
patterns, tables, and shapes that might help to get started, even for the 
weaker kids. 

Brad's suggestion is a commitment to approach the possible difficulty of students 
using a table or a chart in order to represent their findings that Arnold had forecast. 
We also discussed that the use of patterns and problem solving should be general 
strategies for learning mathematics instead of isolated parts of the course: 

Sofia:   In a larger picture what I eventually want to have is a good lesson, but 
also good sequences ... the patterns: it should be something that they are 
familiar with already. ...  So at the end of the year, looking at all, they 
have seen patterns in a lot of different ways. 

Such a perspective of students being familiar with the use of patterns and problems 
solving is an attempt to make coherence in terms of learning mathematics through the 
whole course.  
After analysing different problems, we decided to use the following one for the 
lesson, the 'cube' problem: 

If you paint a solid cube formed by small cubes of the same size, how many of those 
small cubes have three faces painted? How many cubes have two faces painted? And 
how many cubes have one face painted?  

We discussed students' knowledge and abilities required for that problem. Teachers 
commented that students should be exposed to similar tasks in advance: students 
must be familiar with the use of patterns at classroom. Thus, a sequence of activities 
for prior lessons was proposed: 

Sofia:   Yesterday we looked at the problem of the cubes, ... how  we'll 
introduce it. So, in the previous lesson, we thought, we can look at a few 
patterns without necessarily coming up with the formula, but looking at 
the sequence of triangular numbers ... square numbers, cube numbers. 
But, just so that they may be ... better trained to recognise the square 
numbers when they would come up within the next lesson. 

At least three issues can be reed from previous transcription: (1) teachers are having 
discussions outside of the regular meetings for designing the lesson; (2) they are 
concerned with students' struggles in recognizing square numbers in the lesson under 
design; and thus, (3) they have the commitment of introducing a set of mathematical 
sequences in prior lessons in order to get students being able to approach the 'cube' 
problem. In this case anticipating joins with pursuing coherence, under the context of 
the team organization that included additional work outside the weekly meetings. 
By reviewing the chosen goal for the lesson we changed our mind about the task for 
the lesson. Initially, we considered the 'cube' problem interesting because it was rich 
in mathematical content, had easy entry, and was hard enough so that advanced 
students could keep working on it while others were still approaching the problem. 
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However, after comparing the context of the course and the goal of the lesson, some 
doubts arose, as we read in the following transcription: 

Sofia:   I do think it is a great problem [the cube problem], but I'm not sure that 
is what it is necessary; what we want for this lesson. 

Teachers' beliefs and perspectives about learning mathematics can become visible 
when discussing whether the lesson under design actually helps to reach the intended 
goals. For instance, Brad was questioning whether the use of patterns in the way we 
were discussing would be effective in making students translate words into algebraic 
expressions. 

Brad:   After doing all those puzzle-solving [problems] and getting their own 
solutions and writing them down and talking about it, how is that help 
with specifically this task of translating [words into algebraic 
expressions]? 

Designing a lesson in order to achieve our pursued goal was one part of the 
discussion; however, making such a lesson fit coherently into Arnold's class was 
problematic. We came up with the design of a prior lesson, consisting of a set of 
patterns, in order to create the coherence needed to have students working on the 
'cube' problem. Finally, that prior lesson became the lesson we designed, 
implemented, and debriefed, leaving the 'cube' problem for another lesson that 
teachers might use afterwards. 
Note: There were many interesting off-task moments were we deviated the 
conversation from the designing of the artefact. Such moments included: (1) general 
discussion on mathematics education; (2) participants' consults and sharing of 
teaching strategies, and (3) clarification of mathematical concepts that are part of the 
curriculum. Those off-task moments represented also an opportunity for teachers' 
learning. 

CONCLUSION 
The designing braid is a perspective to understand the interactions participants 
undertake in the process of designing a teaching/learning artefact in the context of 
TCD. Anticipating, pursuing coherence, and achieving goals are—in addition to team 
organisation—the conversation and actions that participants of TCD engage in while 
designing an artefact. Although the designing braid is a theoretical concept grounded 
in a single case, it resonates with other theories describing teachers' interactions in 
their practise. Teachers working in the context of TCD are exposed to: sharing ideas 
and knowledge, which potentially wide their repertoire of strategies; reviewing 
literature on research and other resources related to education on mathematics; 
sharing and discussing beliefs about mathematics learning; interacting with peers, 
promoting in this way the building of a community with its own knowledge; and 
reflecting about their practise as well as the means and goals of their teaching. The 
designing process offers an occasion for teachers' professional growth while engaged 
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in TCD, and resonate with the theoretical model of lesson study proposed by 
Catherine C. Lewis, Rebecca R. Perry, and Jacqueline Hurd (2009), who identify 
“three pathways through which lesson study improves instruction: changes in 
teachers’ knowledge and beliefs; changes in professional community; and changes in 
teaching–learning resources” (p. 285).  
Anticipating, as part of the designing braid, entails considering students' actions, and 
thinking, as well as their corresponding teachers' responses. By examining data from 
three empirical studies, Goldsmith, Doerr, & Lewis (2009) conclude that “attention to 
and analysis of student work is an important process within the 'black box' of teacher 
improvement that deserves principled attention in future research” (p. 103). The 
designing braid contributes to the understanding of how teachers put attention to 
students' work in the designing process of a learning artefact. 
The three concepts of the braid are not exclusive to TCD, Rowland (2008) identifies 
four categories of use of examples in teaching mathematics by novice teachers: (1) 
taking account of variables, (2) taking account of sequencing, (3) taking account of 
representation, and (4) taking account of learning objectives. While taking account of 
variables and taking account of representation are part of anticipating, taking account 
of sequencing is part of pursuing coherence, and taking account of learning 
objectives is part of achieving goals. This resonance suggests not only validity for the 
proposed theory of this paper, but also a broader scope considering cases outside 
TCD. For instance, in the “knowledge Quartet,” a theoretical framework developed 
by Rowland, Huckster, and Thwaites (2005), “connection” is a dimension of teachers' 
knowledge which describes the decision teachers make based on the sequence and 
connections of the content. In pursuing coherence teachers make decisions not only 
related to the “connection” dimension of the quartet knowledge, but also to the 
sequencing of activities that make students get used to working in a specific learning 
environment—as required for the lesson under design. The later aspect relates not 
only to the teacher's pedagogical knowledge, but also to the teaching and learning 
culture of the classroom. 
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Specific details regarding students’ understanding and learning, and how to identify 
and observe these details is the most challenging empirical aspect in support of any 
viable cognitive theory in mathematics education research. This especially pertains 
to research in mathematical problem solving and, in particular, to capturing and 
exploring the nature of “AHA” moments. In this paper, ways in which such studies 
can provide better empirical ground for developing more accurate theories of mental 
processes during mathematical thinking and learning are introduced and 
demonstrated using “state-of-the-art” methodologies that go well beyond the 
traditional dependencies on video-tape recordings – specifically, computer screen 
capture, eye tracking, and electroencephalography (EEG) for analysis of an “AHA” 
moment.  

INTRODUCTION  
Learning to think mathematically by means of mathematical problem solving is an 
effective pedagogical approach in contemporary instructional design in 
mathematics education. Detailed analysis of cognitive processes can provide a 
deeper insight into what is going in the minds of learners and eventually can serve 
as a scientific background for designing pedagogies that can lead to improvements 
in helping learners to learn more effectively. According to Mason, Burton, and 
Stacey (1982), three kinds of involvement are required when thinking on 
mathematical problems: physical, emotional and intellectual. Among the different 
states of this cognitive process the authors distinguished an ‘insight’ state, referred 
to as an ‘AHA! moment’. Liljedahl (2005) has described an ‘AHA! moment’ as   
“the moment of illumination, the AHA! experiences, that instance when the 
connection is made is a part of the culture of mathematics” (p. 231).  
 Traditionally, educational researchers engaged in empirical 
studies of cognition and learning have relied upon behavioral data gathered from 
interviews, field notes, self-reports, and audiovisual recordings. The most 
challenging aspect of any viable learning theory concerns identifying specific 
details regarding the way  in which learners’ understanding are, or can be made 
manifest, in behaviour, and how to promote, observe, identify, and objectively 
assess such manifestations (Campbell, 2003, p.72).  
One novel approach to capturing an “AHA” moment was provided by Campbell 
(2003). His dynamic tracking methodology involved simultaneous and contiguous 
real – time audiovisual recording of the learner and the learner’s computer screen.  
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Campbell demonstrated simultaneous recording of body behaviour and her 
procedural actions on the screen in the course of solving a geometrical problem 
using Geometer’s Sketchpad. These data allowed identifying some behavioral 
manifestations of learner’s cognitive shift connected with an “AHA” moment. 
According to Campbell, this research was a starting point for founding a new 
Educational Neuroscience Laboratory at the Faculty of Education at SFU, on the 
basis of which, and under the supervision of Prof. Campbell, this research was 
conducted. 
EYE MOVEMENTS AND EYE TRACKING METHODOLOGIES 
Eye - movements have been studied as an indicator of attention and memory (Kramer 
& McCarley, 2003). Eye movement and eye fixation analyses have been efficiently 
used as a method of research into strategies of successful and unsuccessful arithmetic 
word problem solvers (Hegarty, Mayer, & Monk, 1995). Pupil diameter change can 
also provide information about a cognitive state (Just, Carpenter, & Miyake, 2003). 
For example, the pupil size has been found increased in response to the complexity of 
the mathematical cognitive processing (Granholm &  Steinhauer, 2004). The pupils 
change their sizes due to many factors, including such as change in affective states 
(Barreto et al., 2007; Partala & Surakka, 2003).  In Partala and Surakka’s (2003) 
study it was shown that pupil size is significantly larger after negative and positive 
stimulation in comparison with the neutral state.   According to Liljedahl, the "AHA! 
moment is accompanied by a strong positive emotion (2005), and this should be 
reflected  in the pupil size increase (Partala & Surakka, 2003). 
 So, eye movement data should provide useful information 
about various cognitive states during mathematical problem solving and, 
particularly, in capturing and analysis of an “AHA” moment. 
Eye movement measuring techniques 
One of the world leaders in eye tracking systems today is Swedish-based Tobii 
Technology (Tobii Eye Tracker and ClearView analysis software, 2006). Tobii 
Eye Trackers use the method of tracking light reflected from the cornea and the 
lens external and internal surfaces. Monitoring the reflections provides 
measurements of eye movements and pupil dilation with an accuracy of eye 
movement measurements of 10 of visual angle. 
 A conceptually different approach for determining eye 
movements is used in electroöculographic devices. In the middle of nineteenth 
century Emil du Bois-Reymond observed that the cornea of the eye is electrically 
positive relative to the retina, situated in the back of the eye (Malmivuo & 
Plonsey, 1995).  This source behaves, as if it were a single electromagnetic dipole 
oriented from the retina to the cornea, thereby forming the so-called corneoretinal 
potential. Signals from this source are measured using electroöculography (EOG).  
The data acquisition is provided by a number of electrodes placed around the eyes. 
The accuracy of measurement is approximately 2° of visual angle (Ding, Tong, & 
Li, 2005). 
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 Both methods provide high accuracy measurements for 
educational research experiments and for mathematics education research 
experiments, in particular. 
Application of eye tracking methodologies for capturing an “AHA” moment 
The role of EOG for exploring the experience of an “AHA” moment has been 
described in more detail elsewhere (Shipulina, Campbell, & Cimen, 2009). The 
experiment in the study was based on a paradigm of Dehaene, Izard, Pica, and Spelke 
(2006). Six diagrams were presented to a participant on the computer screen. Five of 
the six diagrams were connected by a common mathematical concept, and the task of 
the participant was to identify the one diagram that does not conform. The 
participant’s uttering of "ahh" can be related to “AHA!” moment, but further  
analysis of the data set is required to explore this hypothesis. Figure 1 illustrates eye-
movements on the screen stimulus recorded by Tobii Eye Tracker during the 10 
second experiment.  

 
Figure 1. Actual eye-movements on the screen stimulus recorded by Tobii Eye 

Tracker. Blue lines correspond to eye movements. Blue circles correspond to eye 
fixations: The bigger circle, the longer fixation (after Shipulina, et. al., 2009). 

   
Using this eye- tracker screen capture a schematization of sequential eye 
movements during the experimental visual-cognitive activity was designed.  
EOG was used as an integrated part of the eye - tracking methodology. 
 Figure 2 illustrates data recorded from two EOG electrodes, 
attached just off the corners of the participant's left and right eyes, highlighting 
"gaze" regions, and "move" values (1, 2, 3, ..., 10). 
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Figure 2. Data that were recorded from two EOG electrodes, attached just off the 

corners of the participant's left and right eyes, highlighting "gaze" regions (d0, d1, ..., 
d6), and "move" values (1, 2, 3, ..., 10) (after Shipulina et. al., 2009). 

 Thus, eye tracking include two main approaches to measuring and monitoring 
these indexes of the ocularmotor activity: One approach is based on tracking the light 
reflected from the eye surfaces; another approach is based on the existence of the 
potential difference between the cornea and the back side of the eye. Integration of 
both provides a ground for analysis of the overt part of visual - cognitive activity 
during solving the described above geometrical problem, which includes capturing an 
“AHA” moment.  
The main limitation of eye tracking methodologies is that they provide 
measurements, recordings, and analysis only overt eye-related part of the visual 
system. That is, the analysis of complex visual – cognitive tasks is conducted only on 
the basis of one overt part of the whole complex visual system. To conduct detailed 
and accurate analysis of complex visual – cognitive tasks another cortical part should 
also be taken into consideration. 

BRAIN ACTIVITY AND EEG METHODOLOGIES  
A major reason for growing interest in educational neuroscience in mathematics 
education research is a need for better empirical grounds for developing theories 
of mental processes (Campbell, 2006 a, b).  
Electroencephalography (EEG) 
Electroencephalography (EEG) refers to a technique for measuring electrical 
activity produced by the brain, as recorded from electrodes placed on the scalp. 
EEG offers high temporal resolution, is non-invasive, and is the least 
uncomfortable for educational research purposes (Campbell, 2010).  
One of the main problems of EEG is that every electrode records a composite 
signal from many different electrical sources located in the brain. For extracting 
individual signals from the mixtures recorded on the scalp a signal processing 
technique known as independent component analysis (ICA) was used. After ICA 
the EEG data set is transformed into independent (unmixed) signal components 
related to unknown independent electrical sources in the brain. The problem of 
localising these electrical sources was resolved by one of the non-linear 
optimization methods (DIP FIT) available in a software package called EEGLAB 
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(Delorme, Makeig, 2004). There is also another very informative way of analysing 
brain signals available in EEGLAB, namely, instantaneous frequency 
decomposition (Figure 3d).  
Having approximate locations and time amplitude courses (signal components) of 
a number of brain activators (dipoles), the  next step of EEG data interpretation is 
extraction of components which relate to cognitive brain activity from other 
components identified as artifacts.  
INTEGRATIVE APPROACH 
Simultaneous recording EEG, Tobii eye-tracking (ET), EOG and audiovisual 
(AV) data sets constitutes an integrative approach for detailed analysis of the 
problem solving process described above. The integrative approach includes also 
the detailed analysis of every individual component obtained after EEG data have 
been decomposed by ICA. 
 Figure 3 illustrates the integrative analysis of the component 1. 
As it was shown above (see Figure 2) eye-tracking data enabled a segmenting of 
the EEG data into time windows related to “gaze” and “move” zones . This 
segmentation was used to create a ‘mask’ for time frequency analyses of signal 
components for the purposes of identifying frequencies related to “gaze,” “move,” 
and other, more subtle, saccadic events. 
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Figure 3.  An integrative analysis of component 1: a) scalp topography produced 
by the component brain source; b) location of the source; c) spectral analysis; d) 
time- frequency transformation with a ‘mask’ separating “gazing” from eye 
movement periods; e) time – amplitude course of the component; f) statistical 
analysis for identification whether the component relates to muscle artifact or to 
brain source activator. 
 
From Figure 3d it is seen that bursts of low frequencies occurs exactly during the 
eye movement periods. This is strong evidence that this component relates to an 
eye movement artifact, since such burst of frequencies are caused by the firing of 
motoneurons enervating the eye muscles. Statistical characteristics illustrated in 
Figure 3f provide more evidence that component 1 is indeed an artifact: the 
trimmed distribution curve is located too far from Gaussian distribution curve. The 
source location (Figure 3b) shows that the source is located near the eye muscles. 
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These integrative aspects of the analysis indicate that Component 1 should be 
considered as an artifact. 
CONCLUSIONS 
Integration of contemporary eye tracking and EEG methodologies provides detailed 
measurements of overt eye related behavior and covert brain related behavior of 
learner during mathematical problem solving process which includes an “AHA” 
moment. We called such analysis an ‘anatomy’ of the process. In such integration, 
eye tracking methodologies play twofold role: One is informative (recording actual 
eye movements and pupil diameter change by ET); another is bridging and 
calibrating with EEG data sets, thereby connecting brain and behavior. Data obtained 
from eye tracking recordings allow creation of a segmentation ‘mask’ for detailed 
analysis the   EEG data set, in particular, for analysis time frequency transformations 
of individual signal components after transforming EEG data with ICA.   
 As it appears from this study, the most detailed and accurate 
analysis of visual – cognitive activity during mathematical problem solving and 
capturing an “AHA” moment can be conducted when both eye-tracking and EEG 
methodologies are used in tandem.  
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TEACHERS CONNECTING MATHEMATICS THROUGH A 
LESSON STUDY ON SIMILARITY 

Natasa Sirotic 
Simon Fraser University 

 
Scaling and similarity, a topic from elementary mathematics, is one where the 
concepts of number and shape interplay. The concept of similarity was already 
known the ancient Greeks, and it remains an important topic of study to this day. 
More importantly, it could be fruitfully employed to the development of the concepts 
of number and number operations, and for the learning of proportional reasoning. 
The ideas presented here stem from a lesson study on similarity, but have a wide 
range of applicability for school mathematics, as they address the connections 
between magnitudes, quantities, and numbers. In particular, we present the use of 
geometric representations as a way to uncover the multiplicative relations between 
quantities and their relative sizes. The report presented here is taken from an 
ongoing study situated in a school-based community of practicing teachers, who 
harness the potential of community and workplace to develop their practice of 
teaching mathematics.  
 

BACKGROUND 
Lesson study is a professional development process in which teachers systematically 
examine their practice, with the goal of becoming more effective in their practice of 
teaching. The strength of the lesson study is manifold, but one that is of primary 
focus here relates to the deepening of mathematics teachers’ subject matter 
knowledge (Watanabe, 2002). The centrepiece of lesson study is the research lesson, 
developed collaboratively, taught by one team member while observed by others, and 
finally discussed and reflected upon by the whole team. It should be noted that the 
term “research” in this context means teacher-led, practice-based inquiry into the 
teaching and learning of mathematics.  

While there is a consensus that teachers’ mathematics-for-teaching (Davis & Simmt, 
206), is a complex, dynamic, and tacit body of knowledge, which is very difficult to 
assess reliably, there seems to be little agreement on what exactly this knowledge is. 
Interestingly, while what should be known to teach well is elusive, how such 
knowledge should be held has been shown quite explicitly on several specific 
domains of mathematical knowledge for teaching (Ma, 1999). From Ma’s research 
we learn that mathematical knowledge for teaching rests firmly on what has become 
known as the “profound understanding of fundamental mathematics”. With such 
understanding, teachers are seen to be able to move in their subject easily, naturally, 
and in a way that allows them to effectively plan for instruction to avoid the typical 
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student misconceptions, and to respond efficiently to a great variety of possible 
student errors.  
One of the tenets of profound subject matter knowledge is its connectedness to the 
neighbouring and more remote mathematical ideas. Historically, when two seemingly 
remote mathematical landscapes became recast as one, say by finding that one 
landscape is isomorphic to another, then this alone offered a great amount of insight 
into the less known area of mathematics. Connections are also emphasized as one of 
the process standards of school mathematics. Although the study of mathematics is 
commonly partitioned into separate units of study, there is a widespread consensus 
that instruction should be such as to allow students to experience mathematics as an 
integrated field of study and to see the interplay among mathematical ideas. The 
importance of connections is also underscored in one of the most influential 
documents ever written with a specific purpose of guiding teachers in their role of 
assisting students in the development of mathematical thinking. There it is stated that, 
“An emphasis on mathematical connections helps students recognize how ideas in 
different areas are related. Students should come both to expect and to exploit 
connections, using insights gained in one context to verify conjectures in another.” 
(NCTM, 2000).  
It is less clear how mathematics teachers are to acquire this kind of profound and 
connected knowledge, how such knowledge is to be held and used in the classroom, 
how it could be recognized, and what exactly constitutes such knowledge. Lesson 
study seems to hold some promise as a context in which mathematics teaching could 
be developed systematically, and in which such knowledge could be deepened both at 
the level of individual teacher as well as a community of teachers. It can also act as a 
window for educational research to examine and explicate teachers’ mathematics-for-
teaching, which is our aim here. In this paper we focus on the mathematical 
connections afforded by the lesson study on the topic of similarity. We report here on 
the connections uncovered by the lesson study team. The team was composed of 
several mathematics teachers, a mathematician, and a mathematics educator. The 
latter two are experts in the fields of mathematics and mathematics education 
respectively, and we shall refer to them here as the “knowledgeable others”. The role 
of the mathematician was to ensure a sound mathematical basis, point out interesting 
connections, and fill in the details where needed. The role of the mathematics 
educator was to interpret the subject from the perspective of teaching and learning, 
and point out what educational research has to say about the common difficulties 
encountered in the process of learning the particular topic.  
 

SUBJECTS AND CONTEXT 
"Lesson Studies", in various formats, have become popular in the teaching 
community as a means for professional development. Three teachers from 
Southpointe Academy, where the research lesson was implemented in an open house 
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format, and two teachers from another district comprised the “lesson study team” for 
this lesson study cycle. About 20 teachers from other schools and districts came to 
observe the lesson. All observers participated in critiquing and reflecting on the 
lesson during the post-lesson discussion. The research lesson was implemented in the 
authentic environment of a real classroom with real students. There were 24 students 
in the class of mixed mathematical ability. Students were used to working in groups 
as well as individually. In addition, whole class discussions were always part of the 
learning process, where students shared their thinking and evaluated one another’s 
approaches.  
The previous unit of study involved an introduction to geometry. Students learned a 
number of basic geometric constructions (using compass and straightedge), such as 
how to draw perpendicular and parallel lines, how to replicate an angle, how to bisect 
an angle and also a line segment, and how to construct certain angles. They studied 
and derived properties of angles on intersecting lines (angles on a line add up to 180º, 
vertically opposite angles are equal, and angles at a point add up to 360º). Using the 
fact about equality of corresponding angles on parallel lines crossed by a transversal, 
they deduced simple facts about 
relationships between angles on parallel 
lines. In addition, students deduced a 
number of facts such as, “In a triangle, 
angles add up to 180º”, “In a 
parallelogram, opposite angles are equal, 
and adjacent angles are supplementary”. 
The unit of study in which the research 
lesson was situated was a unit dealing 
with similarity of geometric figures. In 
addition to building on what was learned 
about angles on parallel lines, students 
used their knowledge of ratio and 
proportion, and also of the solving of 
equations in one unknown (solving 
proportions), studied earlier in the school 
year. The research lesson was the second 
lesson of the unit. The team decided to 
build the idea of similar figures using the 
notion of scaling factors, applied to a 
line segment, then to a triangle, then a 
quadrilateral, and finally to any shape, 
such as an outline of a the boarders of 
Canada on a map.  

 

Figure 1: Three cities on two maps of 
Canada form two similar triangles. “What 
about these triangles is the same and what 
is different?” must be formulated beyond, 
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Figure 1: Scaling by 

LINE SEGMENT AS A FUNDAMENTAL GEOMETRIC SHAPE UPON 
WHICH NUMBER CONCEPTS CAN BE BUILT 
In this lesson, the goal was to describe similarity more precisely, beyond sameness of 
shapes. Students were expected to observe and formulate the general properties of 

similar figures: (a) that the measures of 
corresponding angles are equal, and (b) that 
the ratios of the lengths of corresponding 
sides are equal. The intention of the 
instructional sequence was for students to 
develop a way of thinking about proportion 
geometrically (for example, breaking a 
given line segment into n equal parts and 
then taking m parts to create the scaled 
image of the original line segment). 
Students were expected to develop a sense 
for what is entailed, mathematically, with 
statements such as “scaling up” and 
“scaling down” by a given rational number 
factor, k = m/n (i.e., m greater than n, or 
less than n, respectively). 
As mentioned, the concept of similarity was 
introduced through the idea of a scaling 
factor, connected to multiplication as a 
scaling of a line segment. Students had 
previous experience with tasks such as, 
“Given a line segment AB, construct point 

B’ such that AB’ is 3 times as long as AB”. This was extended to encompass rational 
number multipliers, or scale factors, for example, “Given a line segment AB, 
construct point B’ such that AB’ is 5/7 of the length of AB”.  Using geometric 
construction of equally spaced parallel lines, students were shown that a given line 
segment AB can be cut into n equal parts. If one assigns a measure of 1 unit to AB, 
then point A corresponds to 0 and B to 1. This way we get a custom unit of 1/n from 
which all fractions with the denominator of n get their positions on the number line as 
distances from 0 to the respective point, which is at some multiple of the custom 
distance 1/n away from 0. For example, the m-th point on the number line would be 
distance m times as far as 1/n is from 0, so it is a constructed point corresponding to 
the fraction m/n. This was intended to prepare students for understanding the ideas of 
relative size, and what we refer to as “scaling multiplication”.  
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It is not obvious that a real number multiplier would also uphold the scaling 
multiplication. Essentially, this 
was the monumental work of 
Eudoxus around 400 BC, who 
reworked the theory of 
proportions to include 
irrational magnitudes, by 
which irrationality received its 
first proper treatment, as this 
appears in Euclid’s Elements 
(Eves, 1990).  In a prior study 
on preservice mathematics 
teachers’ understanding of 
irrational numbers, we 
explored participants’ 

conceptions about ways to find the exact location of a constructible irrational number 
5 , and we found that the geometric representation of irrational numbers was 

strangely absent from the concept images of many participants (Sirotic & Zazkis, 
2007). The common conception of real number line appeared to be limited to rational 
number line, or even more strictly, to decimal rational number line where only finite 
decimals receive their representations as ‘points on the number line’. This is in 
agreement with the practical experience that finite decimal approximations are both 
convenient and sufficient, which could be the source of these conflicts.   
Being aware of this, the team of teachers designed the instructional sequence so as to 
ensure that students were exposed to the construction of various fractional lengths, as 
Figure 3 suggests.  
Nonetheless, for the purpose of the learning task in the research lesson, teachers 

decided to use “friendly” 
numbers, such that would 
allow for whole number scale 
factors to be employed in the 
process of solving the 
problem. Figure 4 shows the 
task that was decided upon as 
the main learning ground for 
the concept of similarity to be 
applied to. It is based on the 
story of how Thales found a 
way to compute the distance to 
an enemy’s ship far in the 
waters of the Aegean Sea 
using indirect measurement 

Figure 3: Towards the idea of 
similarity via scaling of line
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Figure 4: The task, “How far 
is the Ship?”
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and the relations between corresponding sides in similar triangles.  
Then students looked at this more specifically for the case of similar triangles, and 
they applied their knowledge to solve a practical problem of “How far is the Ship?” 
The scope of this paper does not permit for the discussion of the various approaches 
that students took in solving the problem, and what their main challenges were. Upon 
examination of students’ solutions the lesson study team found that a variety of 
approaches were employed by the students, and that 20 out of the 32 students solved 
the problem correctly, 5 of which used more than one solution process, and one 
student used as many as 6 different solutions processes. Of the 12 that did not 
complete the task while working independently, 3 made algebraic errors in their 
computations, 3 set their proportion statements not attending to the proper ordering of 
sides, or correspondence, 1 showed no sign of even starting, and the rest made other 
types of non standard errors.  
 

MULTIPLICATION IN THE COORDINATE PLANE 
The idea of scalar multiplication, which was presented in the first part of this paper 
can be extended to include multiplication by negative numbers. The dilemma of why 
the multiplication of two negative numbers results in a positive product could be 
resolved using such representation. In a proportion statement a:b=c:d we can call the 
pair of a, c and b, d analogues. That is, when these ratios are written as fractions, the 
numerators are analogues and the denominators are analogues. The product ab can 
then be interpreted geometrically as a length of a line segment, which comes from the 
construction of similar triangles. When we have a proportion, 1:a=b:x , then the 
rectangle with sides 1, x is equal in area as the rectangle with the sides a, b (that is, 
1·x = a·b , or x=ab ). This means that the line segment of length x is constructed by 
first drawing the line segment between the two known analogue lengths of the 
proportion we are considering, and then constructing a parallel line segment through 
point at a.  
(i) 0>a  and 0>b ; 0>ab     (ii) 0>a  and 0<b ; 0<ab  
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(iii) 0<a  and 0>b ; 0<ab   (iv) 0<a  and 0<b ; 0>ab  

1

b

x

a

 
DISCUSSION 
As teachers consider and attend to the connections within mathematics, they are more 
prepared to uncover the same for their students, under the condition they had first 
uncovered these connections for themselves. We see the process of teachers’ 
uncovering of the mathematical connections and deepening of their subject matter 
knowledge as a result of three streams of influence on this professional learning 
community.  
Firstly, these connections are being uncovered through teachers’ independent study 
of the subject matter and their subsequent sharing of their findings and ideas during 
the stages of planning, preparation, and designing of instruction. During this phase, 
teachers study the historical background of the concepts they are choosing to teach in 
their research lesson. They examine other curricula and instructional materials, and 
consult the reports of other lesson studies on related topics. They consider possible 
approaches to presenting specific mathematical concepts, and a variety of ways in 
which these concepts can be represented and transformed for learning purposes. 
Jaworski speaks of “inquiry communities”, where inquiry is used as a fundamental 
theoretical principle and position for engaging critically with key questions of the 
mathematical content that is to be taught, as well as issues of practice, such as the use 
of mathematical tasks in classrooms (teachers’ practice and perspective), anticipation 
of student thinking and reactions, assessment of student emerging understandings, 
and so on. She proposes the use of “inquiry as a tool” as a strategy that can lead to 
developing “inquiry as a way of being” (Jaworski, 2006).  An inquiry community, as 
we understand it, is similar to “professional learning community” (DuFour, 2004), 
which is a means for teachers to generate knowledge about their practice, in this case 
knowledge of mathematics teaching and learning. As such, lesson study could be 
seen as a special form of inquiry community, where the inquiry is from a perspective 
of developing teaching. It is not about how teaching is now, or what it should look 
like if it were to be effective. Rather, it is a close-up look inside of the process as it is 

x

a

b

1
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changing, developing, and growing in participants’ awareness and action in the 
classroom. 
Secondly, they are uncovered by the close observation of learning as it takes place in 
real time, during the research lesson implementation. When these individual 
observations are combined, a complete picture of students’ experience of the lesson 
emerges. Students make surprising connections, often quite non standard and 
unanticipated, and sometimes entirely mathematically sound but never considered by 
the teacher, all of which plays an important role in teachers’ learning from their own 
practice. It is during this phase that teachers’ instructional designs get tested in 
practice. It is critical that observers take accurate notes of student learning, as this 
becomes the empirical evidence for the study of how the research lesson impacted 
student thinking, learning, and understanding. The quality of post lesson discussion 
very much depends on the quality of the observation data collected by the teachers, as 
well as on the focus questions that they bring to their observation.     
The third stream of influence on the uncovering of mathematical connections comes 
from the interactions with the “knowledgeable others”. This happens most notably 
during the post lesson discussion, when all participants engage in collective reflection 
on the research lesson and the ways it impacted student learning. It is during this 
phase that the connection between multiplication of real numbers in the Cartesians 
coordinate plane and similarity was made explicit by the mathematician.  
For some teachers this was an entirely new connection and a perspective they had not 
considered before, and for others it was familiar but not really useful for teaching. 
We disagree with this view, and suggest that further research is needed to establish 
how number concepts could be more effectively built upon a geometric foundation. It 
is widely accepted that mere manipulation of numbers is pointless. As we have 
shown here, and as we know from experience, most operations get their sense in 
geometric surroundings, and can be readily visualized. The role of visualization and 
visual thinking has also been emphasized as one of the important processes for the 
development of mathematical thinking and in problem solving.  
Geometric representations are widely employed in mathematics education, both as 
presentational models (used by adults in instruction) and as representational models 
(produced by students in learning). It is recognized that these models play significant 
roles in instruction and its outcomes (Lamon, 2000). A longitudinal study on five 
classes of children, each using a different interpretation of the symbol a/b that 
differed from the standard “part of the whole” conducted by Lamon, showed that the 
geometric model, which is referred to as the measure model, had the highest transfer 
rate compared to other interpretations.  
In conclusion, we once again observed how through this process teachers’ knowledge 
of mathematical content and ways in which it can be presented for learning is 
developed, shared, refined, and transformed. Teachers become scholars of the 
interaction between teaching and learning, and of the subject matter they are to teach.   
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REDUCING ABSTRACTION: THE CASE OF LOGARITHMS  
Krishna Subedi  

Simon Fraser University 
Reducing abstraction is one of the theoretical frameworks that examine the learners’ 
behaviour while coping with abstraction level. It refers to the tendency of the 
learners to unconsciously reduce the level of abstraction while learning new concepts 
to make it mentally accessible for them.  Analysing the work of three students through 
the lens of reducing abstraction, the aim of this paper is to investigate and exemplify 
some misconceptions and instances of error in students’ understanding of logarithms.  

1. INTRODUCTION  
Logarithmic function is an important concept that plays vital roles in advance 
mathematics. Unfortunately, students often find the concept difficult to understand 
which causes hindrance to their conceptual understanding of the logarithmic 
functions. Students’ understanding of the concept of function (in general) has 
achieved a lot of attention in the mathematics education research community over the 
past decades (e.g. Dubinsky & Harrell, 1992; Sfard, 1992); there has been however 
very little research done that has looked specifically at the students understanding of 
logarithms (Berezovski, 2004). Hence my purpose in this paper is to understand 
students’ understandings and their mental process of working with logarithms. I aim 
to investigate and exemplify some misconceptions and instances of errors in students’ 
conceptual understanding of logarithmic notation and rules for working with 
logarithmic equations.  
 

2. THEORETICAL FRAMEWORK 
The theoretical framework used for this study is Reducing Abstraction. The 
framework of reducing abstraction was first introduced by Hazzan (1999) to examine 
the mental process of undergraduate students’ learning of abstract algebra. According 
to Hazzan & Zazkis (2005):   

“Reducing abstraction is a theoretical framework that examines learners’ behaviour in 
terms of coping with abstraction level. It refers to situations in which learners are unable 
to manipulate concepts presented in a given problem; therefore, they unconsciously 
reduce the level of abstraction of the concepts involved to make these concepts mentally 
accessible” (p.101)  

Building on the work of Wilensky (1991) and Sfard (1991), Hazzan (1999) 
categorizes three abstraction levels, all of which interpret students’ learning as some 
way of reducing abstraction level of the concept. These three levels are: 
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a) Abstraction level as the quality of the relationships between the object of 
thought and the thinking person.  
On the basis of this perspective, the level of abstraction is measured by the 
relationship between the learners and the concept (mathematical object). It is based 
on Wilensky (1991) assertion that abstraction is not an inherent property of the entity, 
“but rather a property of a person’s relationship to an object” (p. 198). It refers to the 
tendency of the students to make unfamiliar mathematical concept to more familiar 
by reducing the level of abstraction of the concept. In other words, when a student 
sees a mathematical object, he or she will try to make sense of it based on his or her 
past experiences with mathematical objects. This idea shares much with Hershkowitz 
et al’s. (2001) model of abstraction which views abstraction process from socio-
cultural perspectives. They maintain that abstraction is a process of “…vertically 
reorganizing previously constructed mathematics into a new mathematical structure” 
(p.2). This vertical reorganization activity “…indicates that abstraction is a process 
with a history; it may capitalize on tools and other artefacts, and it occurs in a 
particular social setting” (p.2). This is in fact in line with constructivist theory which 
claims that new knowledge is constructed based on the existing knowledge. For 
example, Hazzan & Zazkis (2005) mention that when asked to add numerals such as 
12 & 14 in base 5, Sue (one of their students) avoids base 5 additions by converting 
back to base 10, performing the operation in base 10 and then calculating the result in 
base 5, thus reducing level of abstraction from unfamiliar base 5 addition to familiar 
base 10 addition.  
2) Abstraction level as reflection of the process-object duality 
It refers to the tendency of the students to work with the problem by following 
step-by-step procedure (process conception) rather than meaningful mathematical 
concept (object conception). This is based on Anna Sfard (1991) theory of 
process-object duality according to which the process conception is less abstract 
than an object conception. For example, Hazzan & Zazkis (2005) observes that 
when asked whether  33× 52× 7 is divisible by 7, Mia ( one of their students) 
calculates the products ( = 1575) and then divide by 7 ( i.e. 1575/ 7) to get the 
answer rather than analysing the object of divisibility thus by reducing the level of 
abstraction.   
3) Degree of complexity of mathematical concepts 
This refers to the idea that “the more compound mathematical entity is, the more 
abstract it is” (Hazzan, 1999, p. 82).  
Example:  

“ Int: Do you think there is a number between 12358 and 12368 that is divisible by 7? 
Nicole: I'll have to try them all, to divide them all, to make sure. Can I use my 

calculator?” ( Hazzan & Zazkis, 2005, p. 112) 

Nicole is expected to consider the interval of ten numbers and see the divisibility of 7 
but she prefers to work each number separately to check the divisibility. That is she is 



  
1- 102 SFU—MEDS-C — 2009 

reducing level of abstraction by working with a subset (a particular number), rather 
than working with the larger set (interval of numbers) itself.  
 
The theoretical framework of Reducing Abstraction has been used to examine 
students mental process on learning mathematical concepts in different areas of 
advance mathematics and computer science such as abstract algebra (Hazzan, 1999), 
differential equations (Raychaudhuri, 2001), data structure (Aharoni, 1999), 
computing science (Hazzan, 2003a & 2003b) as well as school level mathematics 
(Hazzan & Zazkis, 2005). This paper emerged in my recent attempt to understand 
student’s interpretation of logarithmic notation and how these interpretations inform 
students’ understandings of rules for working with logarithms.  
 
2. METHODOLOGY 
Based on the analysis of their written work (quiz), three students; Ali, Beth and 
Cayce (pseudo name) were selected to participate in this study. They were taking 
foundation course on Mathematics at a private college in BC, Canada. This course is 
offered to those who either do not meet the required credit hour for enrolment into 
calculus I (Differential Calculus with Applications to Commerce and Social 
Sciences) course or who were identified as lacking the required level of mathematics 
skills to enrol into Calculus I. The data comes from two sources: a) students’ written 
work (quiz) and b) informal interview with the students. The quiz was administered a 
week after the completion of the unit on Logarithms. The prescribed textbook for this 
course was “Math power 12 (Western Edition)” and the total instructional time spent 
on this unit was 4.5 hours. In order to better understand their interpretation of 
logarithmic notation and their understandings of rules for working with logarithms, I 
decided to conduct an informal interview with the students. The interview was 
conducted after a short break of the quiz (during which we briefly analysed their 
written work) and each interview was lasted about 15 minutes. The interview was 
audio-taped and analysed.   
 
3. RESULTS 
3.1 Relationships between the object of thought and the thinking person 
Ali’s Case:  
One of the questions in the quiz required students to simplify the logarithmic 
expressions.  Ali’s written work provided some interesting insights into his 
understanding of logarithms. It illustrates his tendency to change unfamiliar 
logarithmic expressions to more familiar simple algebraic expressions. Ali saw no 
meaningful relationship in the log symbols that supported mathematical activity. For 
him, log34 and 4log3 are equivalent expressions and he seemed to use this rule 
consistently throughout the quiz.   
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Evaluate:  

 
Fig. 1: Ali’s written work 

Interviewer: (pointing to his answer) how did you get that? 
Ali:  log three four and four log three (writes log3 4 and 4 log3 ) are basically 

the same, the order really doesn’t matter here.  It is just like ‘a’ times ‘b’ 
equals ‘b’ times ‘a’. But there is a word for this rule… (Tries to remember 
the rule) Oh, no … I forgot.  

Interviewer: Oh, I see. So, you are using commutative law here?  
Ali:  Yes, yes … commutative law. We have done many problems on 

commutative law in our previous math class.  
Interview:  OK. Then … 
Ali:  Then um…do the same thing to other (pointing to log35) and add them up 

because they are like terms. Then use your calculator, its easy!  
[Notice how he reads the logarithms notation] 
Interviewer: Do you remember how we solved this kind of problems in class?  
Ali:  Yes, but we did differently in class.   
Interviewer: Can you tell me how we did it?   
Ali:  (writes in a paper) you can change log3 4  to log 4/ log 3 and do the same 

thing for log3 5 and plug in those in your calculator to add. But this 
method is hard. I don’t know why we did that way in class. 

It is evident that Ali can recall the properties of logarithms and remember the 
procedures of doing it in class but was hesitant to follow as he finds his method so 
much easier. He solves many problems without any acknowledgement of his 
method violating any laws of mathematics. This supports Gray and Tall’s (1994) 
idea that due to the misunderstanding related to symbols and syntax in 
mathematics, some students develop their own technique  based on their personal 
interpretation of the symbols. It can be argued that perhaps students’ 
misconceptions may be attributed to the insufficient explicit teaching of the 
concept, but as above excerpt illustrates, it could also be that the student’s 
tendency to make unfamiliar concept more familiar somehow caused major 
problem for students preventing them from forming an appropriate mathematical 
concept. This, according to Hazzan, is an act of reducing abstraction.   
Beth’s case: 
Surprisingly, Beth has developed yet another method for the same question. For Beth, 
log3 4 + log3 5 = log3 9. As we can see in her written work which is supported by her 
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interview, Beth seemed to use the following rule consistently:  logax + logay = 
loga(x+y).  

Evaluate: 

 

Fig. 2: Beth’s written work 
 

Interviewer:  So, log 9 to the base 3 is your answer. (Pointing to the question) 
Beth:  Yes, I got log base three of nine.    
Interviewer:  How did you get that?  
Beth:  Um... It’s easy. ..like simplifying. If you had (pointing to the question) the 

log base three of four plus the log base three of five it would be the log 
base three of nine, because you just take the common thing which is log 
base 3 (writes log3  ( 4+5) ) and then add these left over numbers (4 and 
5). So, you have log base 3 of  9. It is just like distributive property…  

Beth’s written work as well as her argument during interview provides an insight on 
her understanding about the logarithmic notation and rules for working with 
logarithmic expressions and equations. Her tendency to connect this unfamiliar 
logarithmic representation to her familiar knowledge of the distributive property can 
be interpreted as an act of reducing level of abstraction.  
 
Cayce’s Case:  
Another problem on the quiz required students to solve for x given the equation 
log5(x+1) + log5 (x-3) = 1. It is interesting that Cayce used the properties of logarithm 
correctly to simplify expression such as log3 4 + log3 5, but she could not use the 
same concept to solve the equation. This may be partly because of the complexity 
involved in the problem itself. She mentions in her interview that the equation is not 
easy to solve. It involves binomials and she remembers from her previous class doing 
problems on binomials using distributive property or FOIL method. So, she takes log 
5 as a common factor and writes the remaining factors in the parenthesis as log5 (x+1 
+x-3). She consistently uses this rule whenever she encounters such scenario.   
Solve for x:  
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Figure 3: Cayce’s written work 

Her tendency to relate unfamiliar logarithmic equation to more familiar binomials 
and treat them with distributive property is another example of how students tend 
to reduce level of abstraction in learning mathematics.  
 
3.2 Process-object duality 
The notion of process –object duality of reducing abstraction is illustrated by 
Beth’s work below.   
One of the questions required students to evaluate log3 9 and find the answer as a 
single numerical value. As mentioned above, Beth’s written work as well as her 
interview demonstrated that she has some misconceptions about logarithms. But 
surprisingly, she evaluates log3 9 (and other problems of this kind) correctly.  
Therefore, we were interested to know her understanding of the concept involved 
in the task.  

 
Figure 4: Beth’s written work  

Interviewer: (pointing to Beth’s solution) what did you do here?  
Beth:  Um ……Don’t we have this formula (writes in the paper) logab = log b / 

log a?  I just converted log3 9 to   log9 / log3 using the formula.  
Interviewer: OK.  But it seems that you did something different at the beginning?  
Beth:  Um… Yes, I thought we could write log3 9 as 9 log3 but then I remember 

the formula.  
Interviewer: What base we are in now?  
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Beth:  if you convert using that formula, the base just disappears. I mean…. I 
mean you don’t have to write the base… but why so?  I don’t know… but 
the base 3 is there on the bottom any way, right?  

Interviewer:  OK. Why would you do that?  
Beth:   Um … Otherwise you can’t plug in to your calculator. How can you plug 

in the base in calculator? So… 

Beth arguments for transferring the logarithm expression (using the formula) in to a 
form so that she can use her calculator and get the answer shows that her conception 
of the logarithmic function is based on rules and memorized facts, but not a 
meaningful knowledge. She knew how to do it (process), but did not understand what 
it means (object). This behaviour can be interpreted as an act of reducing abstraction 
through Hazzan’s (1999) perspective.  
 
4. Discussion of the Results and Conclusion:  
Reducing abstraction as a theoretical framework has proved helpful in my attempt to 
understand the thought process of the learners while coping with unfamiliar (and 
complex) mathematical concept. As a way of coping with the complexity of the 
unfamiliar logarithmic function, Ali finds the rules given by the authorities (book or 
teacher) difficult and avoids using them in the quiz. Based on his previous 
experience, he develops his own faulty rules to solve the problems. This supports 
Gray and Tall’s (1994) idea that less-able students are not learning correct techniques 
more slowly, but are instead developing their own techniques.  Beth and Cacey’s 
tendency to reduce the level of abstraction seems to be mathematically inappropriate. 
Similar to the case of one of the classical examples of overgeneralization that claims 
that sin (a + b) = sin (a) + sin (b), Beth and Cacey both seemed to over-generalize the 
problem as loga x + loga y = loga (x+y). This is what Matz (1982) calls 
“misapplication of linearity" or an "overgeneralization of distributivity”. 
Furthermore, it is important to note that Beth seemed to correctly evaluate log3 9 as 
evidenced in her written work, but my conversation with her reveals that she does not 
have meaningful understanding of the concept but relies on memorization of the rules 
and facts.  
In mathematics education research some researchers such as Berezovski (2006), 
Kastberg (2001) have done some work on students’ understanding of logarithmic 
functions with in the context of different theoretical frameworks. In this paper, my 
contributions are two folds:  first, by examining students’ mental process on learning 
concept of logarithms through the lens of Reducing Abstraction, I tried to expand the 
applicability scope of this theoretical framework to logarithms. Second, I exemplified 
some misconceptions and instances of errors in students’ interpretation of logarithmic 
notation and understandings of rules for working with logarithms with in the context 
of the theoretical framework. Finally, the result suggests that we, as educators/ 
teachers, should be aware of the nature of our students’ understandings and possible 
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misconceptions in order to develop more effective teaching strategies that will 
enhance meaningful understanding on students’ part.   
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