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Carbonate Diagenesis: Pore Types

- Carbonates capable of ~ syndepositional cement (not predictable
properties during burial compaction)!

- Carbonates are extremely prone to diagenetic modification: reactions are
also commonly reversible!!

Recent, Marine Cemented Foreshore Strata - “Beachrock”, Grand Cayman Island
Inden & Moore, 1983 (AAPG Memoir 33)
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- Carbonates may show early recrystallization, generally of the fine grained
elements first (e.g., micrite)

- The change of one mineral into another form of the same mineral (or one of
a similar composition) is referred to as neomorphism - a type of
replacement

- Where this change is accompanied by an increase in crystal size, this is
called Aggrading Neomorphism (e.g., micrite to microspar 4-15 micron size)

Carbonate Pore Types

Philip W. Choquette and Lloyd C. Pray
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Carbonate Pore Types
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Carbonate Pore Types
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Pore types

Primary
- Between (Inter) Particle (BP)
- Within (Intra) Particle (WP)
- Intercrystal

- Fenestral

- Shelter

- Growth Framework

Secondary
- Moldic (macro- and micro- Mo)
- Vuggy (V): Cavern or Breccia
- Fracture (F)

- Between Crystal (BC)

- Solution Enhanced...

Pore Types
Interparticle
(Between Particle) (BP)

- Reflects Primary Fabric

- Best developed in well-
sorted carbonate sands

- Commonly cemented
early

- Predictable degradation
with burial, if not
cemented

- Most akin to siliciclastic
sandstones
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Pore Types
Interparticle (Between Particle) (BP)
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Pore Types: Intraparticle

(Within Particle-Skeletal) (WP)

- Primary pore type

- Can be excellent, but needs a
mechanism to connect the
pores (e.g., solution
enhancement)

- Best when there are
abundant, large allochems
with similar pore structure

- Pores tend to be isolated in
mud-dominated units
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Pore Types: Intraparticle i
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Pore Types: Intercrystal

(Between Crystal) (BC)

- Similar character as BP, but
generally secondary origin
(esp. fine sucrosic dolomite)

on crystal size

burial

Lucia Class Plots
1000 2

- Properties strongly dependent

- Important pore type with deep
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Pore Types
Moldic (Mo) Pores

- Secondary pore type,
fabric selective

- Dissolution of unstable
grains/allochems
(esp. aragonitic)

- May have high porosity, e
but generally poor ‘
permeability

- Excellent reservoir
character when pores
connected

Pore Types

Moldic (Mo) Pores
- Dissolution of unstable grains / allochems

- May have high porosity, but poor permeability

- Excellent reservoir when pores connected
(effective porosity)

Lucia Class Plots
1000 . u

7
100 / L e
g /" 7
E [ 1/ P
z 1 P
= 7 F
3 1
5 [ 7
£ —
5 =
o 77
01 L/ /
s A
11/
0.01 /
0 10 20 30 40

Percent Porosity

Typical case:
High ineffective P
Low K




EASC 302: Carbonate Diagenesis Il

Moldic porosity is not
diagnostic of any one
particular diagenetic
environment.

Oomoldic and
Skelmoldic
Porosity

Pore Types
Fenestral (FE) Pores

- Fenestral Pores: cavities
from trapped gas bubbles,
commonly associated with
organic-rich, lagoonal muds

- Primary pore type and fabric
selective

- Pores lens-shaped, poorly
connected, but commonly
associated with dolomitization
and intercrystal porosity

- May be filled early on by
gypsum or calcite
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Pore Types
Vug (V) - Cavern

- Secondary pore type, not
fabric selective

- Commonly begins as a mold,
then enlarges due to
carbonate dissolution

- Allochem-sized to arena-sized
uporesn B

- If large, generally collapse
with progressive burial
(forming fracture /breccia

porosity)
- Commonly connect other pore

types!
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Pore Types
Microporosity (LM)

- Not visible in core, possibly &%
visible in thin section

13 &+
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High P

Very low K

- Both primary and
secondary; may be fabric
selective or not selective

1000

- Includes micro-BP and
micromoldic

- Excellent porosity, but
generally low
permeability (bound H,0)

Permeability (mD)

- Chalks/‘chalky’ porosity
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Pore Types
Fracture (F)

- Secondary Pore Type

- Generally non-fabric
selective

- Typically associated with
burial / compaction or
tectonic stress

- Commonly multiple
generations, some filled with
cement

- Important influence on flow
properties of reservoir
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Pore Types
Fracture (F)

- Difficult to verify in core/cuttings/seismic
- need high-end wireline logs
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Pore Types: Any may be
Solution Enhanced!

- Secondary Pore Type

- May be associated with
exposure surfaces or Typical case: [
compaction elements | owp

High K

- Commonly associated with

vugs
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Carbonate Pore Types
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Carbonate Pore Types

LS

Carbonate Pore Types
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Carbonate Pore Types

t

.,

M1
1)

Dissolution = cement source!

Any stage of burial history

Porosity enhancement:
- moldic (<1 mm) to cavernous (100s m)

Permeability enhancement:
- dependent on vug connectivity

Early: fabric selective: more likely vugs unconnected
Late: non-fabric selective: more likely vugs connected

Moore, 2001
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Diagenetic Processes: Microporosity

Pores <10
micrometers

Microporous grains
Microporous matrix
Microporous cements

Leaching and incomplete mineral stabilization
Crystal growth contact inhibition

Rocks: Abundant bound water in micropores

2(CaC0,) + Mg?* [ CaMg(CO3), + Ca 2

Most by replacement - direct precipitation rare
Requires a source of Mg2* ions

Requires an efficient flow mechanism
Substantial kinetic barriers

Diverse range of models, environments, fluids

| ]
[ L
DOES NOT ALWAYS INCREASE POROSITY
Variable effect on rocks

Resistive to compaction (cf. limestone)

Zempolich and Hardie, 1997

15



EASC 302: Carbonate Diagenesis Il

Diagenetic Processes: Mechanical Compaction

¥ . Erg, k& /
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Beg

ins shortly after burial with dewatering
Contemporaneous with early cementation
Rotation, repacking and fracturing of grains
Negative impact on porosity of rocks

Diagenetic Processes: Chemical Compaction

(Pressure Dissolution)
Starts ~ 300 m; Stylolites ~ 600 m

Sutured grain contacts

Dissolution seams - Stylolites: Most cases
show about 25% reduction of section, but has
been estimated to reach 90%! Estimated by
concentration of insoluble material along
stylolite surface

Moore, 2001 Syntaxial and poikilotopic cement fabrics

Major Negative impact on rocks

e

Syntaxial

Moore, 2001
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Diagenetic Processes: Fracturing

Many carbonates are fractured....
Mineralogy and early cementation = brittle
Can occur throughout burial history

8l Mechanisms: Differential compaction, faulting,
solution collapse, salt movement, hydraulic fracturing

Diagenetic Processes: Fractures and “Excess” Permeability

1x10°~

reservoir

- core Core plugs used to measure
Ty matrix permeability tend to
underestimate reservoir scale

permeabilities

Hydraulic conductivity (m dJ )

] The “excess” permeability can
be many orders of magnitude
| Whitaker and Smart, 1997 greater than that of the matrix!!

T T T T T
1x1071 130" 1x10°
Scale of investigation (m)

8 orders of magnitude

Yose et al., 1999

Isolation of
Fracture Component

‘ Detailed Average ‘ I Effective "Excess" 1 Total

Matrix Component

Matrix Perm. Matrix Perm. Permeability Permeability Permeability|
A B C D=C-B E=A+D
Zone 2
Zone 1 ElF
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Diagenetic Processes: Impact on Reservoir Quality
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Siliciclastics

Carbonates

- Facies/Allochem specific

fractures (fluid conduits)

Cement Distribution Summary

- Strongly dependent on provenance/maturity of host rock

- General trends can be related to burial depth (zeolites v. early,
calcite early, silica intermediate, albite deep)

If early, commonly mainly related to eustatic processes and
water table (especially peritidal and shelf margin)

- Burial alteration commonly concentrated along faults and

18
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Hypersaline
Marine

Dolonitjzation

— ~—

— 7 MECHANICAL
COMPACTION
BURIAL
REALM

CHEMICAL COMPACTION
AUTO CEMENTATION

DISSOLUTION BASINAL CEMENTATION
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Moore, 1989

Shallow Marine Environment: Distribution of Cementation

SHELF MARGIN LAGOON-PLATFORM  STRANDLINE

SHALLOW BASIN
Sand Shoals Cementation Cementation
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Moore, 1989
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Meteoric Environment: Effect of Climate
Arid Semi-Arid Wet
Thick g;llf; TerraS cl‘;?ssa
Thin Calcrete | '
Calcrete \
N
Vadose | M- Calcite
Aragonite Calcite
Water
Table [
Phreati .
resne Calcite Ealclic
James and Choquette, 1984

Blue Hole (Sinkhole)
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Cyclicity in Carbonates

Predictive Diagenesis:
Sequence Stratigraphy,
1st Order Controls
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Cyclicity in Carbonates

(GLOBAL EUSTATIC

CURVE|
(HAQ ET AL, 1688}

TEMPORAL ORDERS OF STRATIGRAPHIC CYCLICITY QEQ HRNA
olal:
S|
SEQUENCE STRAT.  |EUSTATIC| DURATION | AMPLITUDE | RISEFALL | MECHANISMS dl |z
TERMINOLOGY CYCLES (METERS) | RATES =
(ORDERS) (CMM00 YR) 3.
FIRST | >100 MY <1 LONG-TERM PLATE 2
NEGASEQUENCE REORGANIZATION i ?
A
SUPERSEQUENCE SECOND | 10-100 MY 50-100 1.3 TECTONO-EUSTACY &l
COMPOSITE SEQUENGE CHANGES IN OCEAN VOLUME
DUE TO SEA-FLOOR SPREADING
LONG TERM-CLIMATICALLY DRIVEN EUSTACY
- E TO GREENHOUSE FLUCTUATIONS)
SEQUENCE THRD | 1-10 MY 50-100 1410
COMPOSITE SEQUENGE 9
HF SEQUENCE FOURTH | 0.1-1 MY 115 40500 | CHIMATICALLY DRIV
PARASEQUENCE SET
PARASEQUENCE FIFTH 0.01-0.1 MY 1-150 60-700 CLIMATES)
(HF SEQUENCE)

Global Trends Provide Insight into Local Sequence Stratigraw/
--- Do Not Incorporate Local Basin Controls (cf. Tectonism)
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Origins of High Frequency Cyclicity in Carbonate Rocks
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« Eccentricity (Solar Orbit Path): 410 ka,
100 ka
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* Obliquity (Tilt): 41 ka
* Precession (Wobble): 23, 19 ka

» Expression In Rock Record Dependent on Global Climate

Einsele and Ricken, 1994

GREENHOUSE

Cyclic Expression of Sea-Level Amplitude in Varied Climates

TIME .

10’s of | few
meters | meters

“— Precession
(19-23 ky)

—
4th/5th order sea-level curve
produces parasequences

1

ICEHOUSE

r
3rd ORDER SEA-LEVEL CURVE PRODUCES SEQUENCES

Eccentricity
(100- 400 ky)

PR

4th/5th ORDER SEA-LEVEL CURVE PRODUCES SEQUENCES
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Climatic Controls on Carbonates

Greenhouse Climates:

* Limited Glaciation

« Warm Global Climate / Elevated Ocean Temperature
* Calcite-Dominated Ocean Chemistry

* Elevated Sea-Levels; Common Epeiric Seas

» Low-Amplitude Eustatic Variations (<10 m)

* Precessional Cyclicity Dominant (20-40 ka)

* Aggradational Stacking Patterns

* Examples: Mid-Cambrian, Mid-Cretaceous

Greenhouse Climates

SUPRATIDAL
= SUBTIDAL

MARGINAL
(HIGH ENERGY)

SLOPE/BASIN

Limited Accommodation Space:
-> Thin, Stacked Carbonate Cycles (few m)
-> Strongly Aggradational Stacking Patterns
-> Subtle Vertical Facies Variations

-> Rare Buildups (on Slope)

23
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Greenhouse Climates

uuuuu

SUPRATIDAL
SUBTIDAL

Updip Expression: R
-> Well-Developed Tidal Flats; Thinly Bedded

->Common Localized Exposure Surfaces — Difficult to Correlate

-> Broad, Storm-Dominated Subtidal Belt

-> Minimal Exposure-Related Erosion

sLopEmASN

Greenhouse Climates

SUPRATIDAL

+| Montanez and Osleger, 1993 ] Demicco and Hardie, 1994

24
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Greenhouse Climates

MARGINAL
(HIGH ENERGY)

SLOPE/BASIN

Downdip Expression:
-> Thick, Stacked Grainy Margin

->Thick, Poorly Cyclic Slope/Basin
-> Local Bioherms (Mud Mounds) on Slope (Accommodation)

Greenhouse Climates TE=

SUPRATIDAL
S— SUBTIDAL
_— MARGINAL

SLOPE/BA

Sequence Stratigraphy:
-> Surfaces Difficult to Pick (MFS/SB)
-> Common Autocyclicity (Especially
Supratidal)

-> Non-Regional Unconformities

-> Broad-Scale Stacking Patterns Well-
Developed

-> Commonly Rely on Time-Subsidence
Plots to Correlate (Fischer Plots)

Montanez and Osleger, 1993

PO PR e ety
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Greenhouse Climates

SUPRATIDAL

SUBTIDAL
MARGINAL

(HIGH ENERGY)

SLOPE/BASIN

Reservoir Facies:
-> Strongly Stratified Reservoirs
-> Dolomitized / Karsted Supratidal
Sheets

-> Vertically Stacked Marginal
Skeletal / Ooid Sands

-> Potential Algal-Derived Source
Updip

-> Well-Developed Evaporite Seals

Climatic Controls on Carbonates

Icehouse Climates:

+ Continental Glaciations

* Cooler Global Climate / Reduced Ocean Temperature

» Aragonite-Dominated Ocean Chemistry

» High-Amplitude Eustatic Variations (50-100 m)

* Eccentricity Driven Cyclicity (100 ka, 410 ka)

 Abrupt Vertical Depositional Facies Transitions

* Progradational Stacking Patterns Common

* Major Erosional Incision / Lowstand Wedge Development
* Extensive Diagenetic Overprinting

» Upper Carboniferous (Pennsylvanian); Pleistocene
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Icehouse Climates

Eolian/Peritidal

Abundant Accommodation Space:
-> Large-Scale Eustatic Fluctuations (50-100
-> Dramatic Shifts in Facies Stacking

-> Common Backstepped, ‘Wedding Cake’ Geometry

-> Constructive Carbonate Buildups (Reefs)
-> Steep Depositional Gradients
-> Lowstand Wedges / Incision

Cyclothem Stacking Patterns Common

m)

—
Productivit

100 m

Icehouse Climates

Salt Creek Field, Tx

153 WAN AR S B8 G
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~ et Go. 8 2140
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......

Waite, 1993 Elonburger
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! N Bl Strawn
[ canyon
&[5 .5 Cisco
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Icehouse Climates

Eolian/Peritidal

Updip Facies:
-> Highly Compartmentalized Facies
-> Subtidal Grainy Interiors Common
-> Sparse, Discontinuous Peritidal
-> Aeolian Strata

-> Common Fluvial Incision

-> Intense Weathering/Dissolution

Icehouse Climates

Downdip Facies:
-> High Relief (Cemented), Constructive Margins
-> Progradational Slope (Margin-Derived)

-> Gross Upward-Fining Cyclicity

-> Siliciclastic ‘Bypass’ Wedges in Basin

-> Margin-Derived Skeletal Debris to Slope / Basin
-> Pinnacle Buildups May Occur on Slope / Margin
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SYSTEMS TRACTS

Icehouse Climates

Eolian/Peritidal

YISEQUENCES CAPPED WITH PALEGSOLS
1SIMILAR THCKNESS PARTIONING

Sequence Stratigraphy:
-> Well-Developed Flooding Surfaces
and Sequence Boundaries

-> Well-Developed Lowstand Deposits
-> Highly Compartmentalized Transgressive Strata
-> Rapid Transgression, Gradual Prograding Highstand

-> Regional Exposure / Erosion at Sequence Boundaries
-> Extensive Meteoric Diagenetic Overprinting at Sequence Boundaries

= Miocene, Southern Spain =

e

............
............

Pomar, 1993

Reservoir Facies:
-> Subtidal Interior Skeletal Sands
-> Marginal Facies (Commonly Fracture Enhanced)
-> Lowstand Sands (Carbonate/Siliciclastic)

-> Organic-Rich Flooding Facies May Form Source and Seal
-> Enhanced by Meteoric Leaching Below Sequence Boundaries

% \7
~ :
Lo

ber W ! Permian, New Mexico
* # (2 mm across)

Hovorka et al. 1993
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Climatic Controls on Carbonates

Transitional Climates:

* Minor Glaciation; Some Continental

* Variable Global Climate / Ocean Temperature

* Moderate-Amplitude Eustatic Variations (20-50 m)
* Eccentricity Driven Cyclicity (100 ka, 410 ka)

* Shingled Geometries / Lateral Shoal Migration

* Moderate Erosional Incision / Lowstand Wedges
* Regional Disconformities Cap Cycles

* Increased Meteoric Modification

Reservoir Distribution

Greenhouse Reservoirs:
» Updip, Stratified Supratidal Reservoirs (Dolomitic)

* Thick, Homogeneous Margin Sands
» Good Up-Dip Evaporite Seals

» Regional Fairways if Productive Interval Identified

Icehouse Reservoirs:

» Well-Developed Grainy Interiors

* Highly Compartmentalized Sand Shoals in TST
* Fractured Margins (Reefal)

» Downslope Clastics / Margin Debris Fans

* Flooding Surfaces Seal / Source

» Extensive Diagenetic Overprinting - Dissolution
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Summary

Greenhouse:
* Warm, Stable Global Climate

» Decreased Amplitude Sea-Level Changes
* High-Frequency Variations Driven by Precession (20-40 ka)
» Aggrading Cyclic Carbonate Deposition
Icehouse:
* Cooler, Variable Global Climate
* High Amplitude Sea-Level Changes
* Eccentricity Driven Cyclicity (100 ka, 410 ka)
* Regional Erosional / Incision During Lowstands
* Progradational Stacking Patterns

* Increased Diagenetic Modification
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