

Tunnel Channels of the Greater Toronto and Oak Ridges Moraine Areas, Southern Ontario

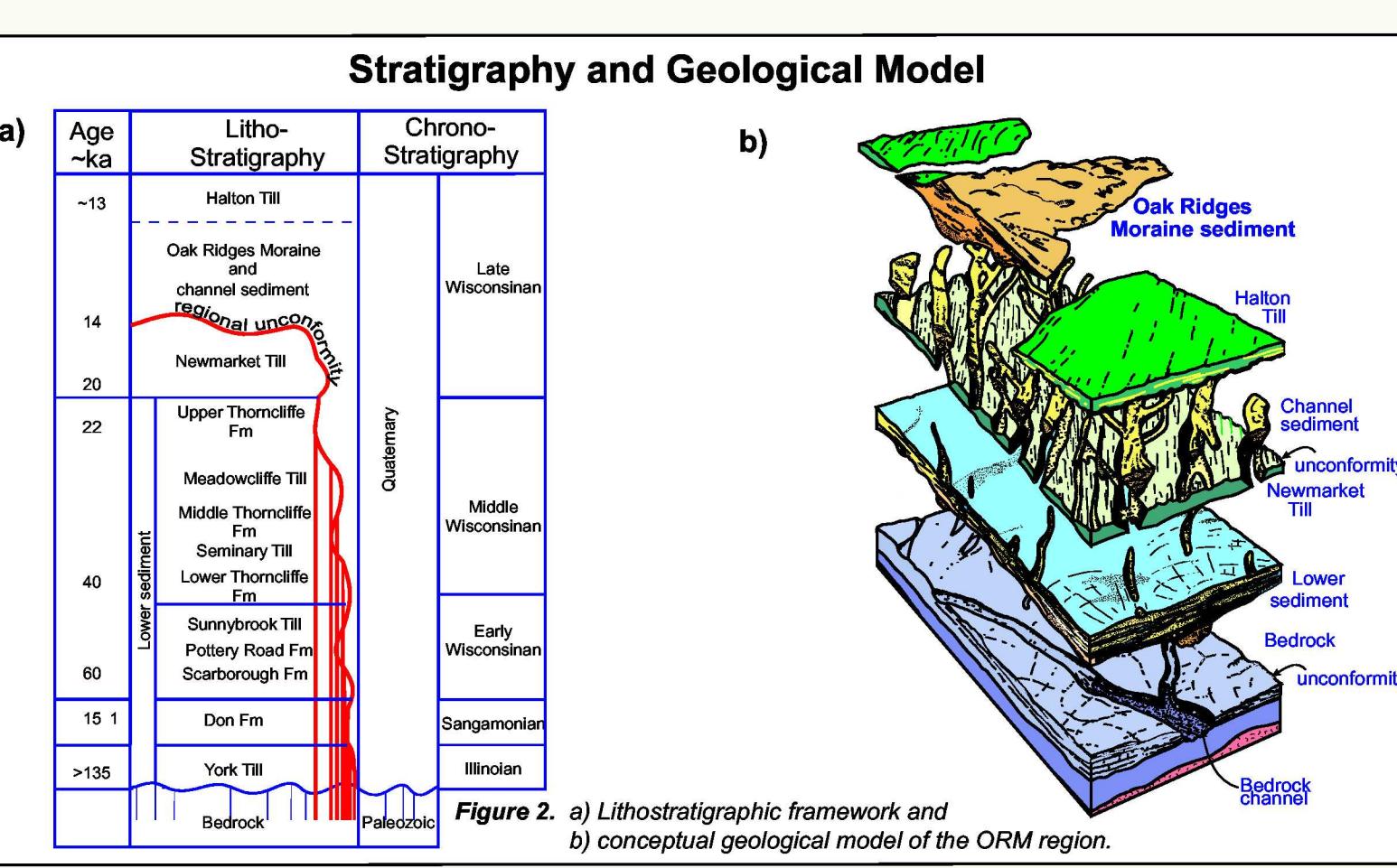
Recommended citation:
Russell, H.A.J., Sharpe, D.R., Brennan, T.A., Barnett, H.J., and Logan, C., 2003: Tunnel Channels of the Greater Toronto and Oak Ridges Moraine Areas, Southern Ontario: Geologic Survey of Canada, Open File 4465, 1:250,000 scale.

Web Publication:
Products of the Oak Ridges Moraine Project are also available on the project website: <http://geocan.gc.ca/mgta/index.asp>

Viewing Only:
Ontario Geological Survey Publications: <http://www.ontario.ca/ontario-geological-survey-publications>

Introduction
Large valleys north of the Oak Ridges Moraine (ORM) are occupied by misfit streams and extensive wetlands. Mapping of these valleys beneath the ORM indicated that the tunnel channel network of the area (Brennan et al., 1990; Pugh et al., 1999) is a key element in understanding the origin and geometry of these tunnel channels, have significant implications for the regional stratigraphy (Logan et al., 2002) and understanding groundwater resources of the area (Sharpe et al., 1996). This poster documents the surface extent of the channel network using a map overlay on a digital elevation model (DEM). The channels are ranked by size, likelihood of breaching Newmarket Till, and probable depth of erosion. Channel geometry and setting are explained for each channel class using clips from the DEM, geologic cross-sections, seismic profiles and borehole data. The channel system mapped here is an input dataset for the version 2 of the ORM stratigraphic model (Logan et al., in press).

Regional Stratigraphic Setting


The lithostratigraphic framework of the study area (Karrow, 1967; Boyce et al., 1995) has been reinterpreted using basin analysis principles and event stratigraphic concepts (Figs. 1, 2; Sharpe et al., 1996). A key result is the mapping of a regional unconformity that is defined by drummed Newmarket Till and tunnel channels (Figs. 1, 2). This framework has been simplified to five principal units. They are, stratigraphically upward: 1) Paleozoic bedrock, 2) undulating channel base along the course of the channel (can rise downflow), 3) Lower sediment, 31) Newmarket Till, 4) Oak Ridges Moraine and channel sediment, and 5) Halton Till. Lower sediment (31) Newmarket Till (3) comprises 10 poorly exposed formations representing middle Wisconsin and older sediment (Fig. 2) described mainly from Scarborough Bluffs (Karrow, 1967; Eyles et al., 1985; Sharpe et al., 1996).

Tunnel Channel Identification and Origin

Large valleys in the area are interpreted as tunnel channels eroded by subglacial meltwater. Evidence includes:

- underized nature and power of stream systems compared to their valleys,
- presence of large, deep, and narrow valleys with high gradient,
- presence of esker ridges along floors and flanks of valleys (e.g. Botham, Sunderland),
- incision of channels to elevations below present day Lake Ontario surface,
- undulating channel base along the course of the channel (can rise downflow),
- absence of delta deposits at proglacial and modern shorelines, or within modern lakes,
- regional paleogeographic reconstructions of ice margin retreat and proglacial lakes.

Similar tunnel channel networks have been mapped in the Kingston area (Shaw and Gilbert, 1990), westward toward Peterborough (Brennan and Shaw, 1994), from Rice Lake to Lake Simcoe (Sharpe et al., 1996), and in the Barrie area (Brennan, 1990). All of these investigations concluded that tunnel channels are a result of erosion by meltwater when subglacial reservoirs drained catastrophically.

Methodology

Definition of the Channel Network

Tunnel channels have been identified by using available surficial geological mapping (Sharpe et al., 1997), a 30 m grid Digital Elevation Model (Kenny et al., 1999), and field knowledge. By extracting surficial geological polygons along DEM-defined valleys, a channel map was produced (Fig. 3). The resulting channel margins were then modified based on plan view and perspective view analysis of the DEM and stratigraphic cross-sections.

Channel Ranking
Channels are ranked using a combination of DEM geometry, landscape analysis, seismic profiles, and core logging. This simple ranking accommodates the range of tunnel channel geometries that can be distinguished from the available data (Fig. 4). For channels that have been delineated on the basis of surface expression, these channels have been ranked by hierarchy as channels north of the moraine (e.g. Figs. 11, 14, 17), but they are difficult to map accurately due to overlying ORM sediment. Consequently, only buried channels that have been identified with high-quality data are shown on Figure 6.

The channel classes occur within a regional terrain

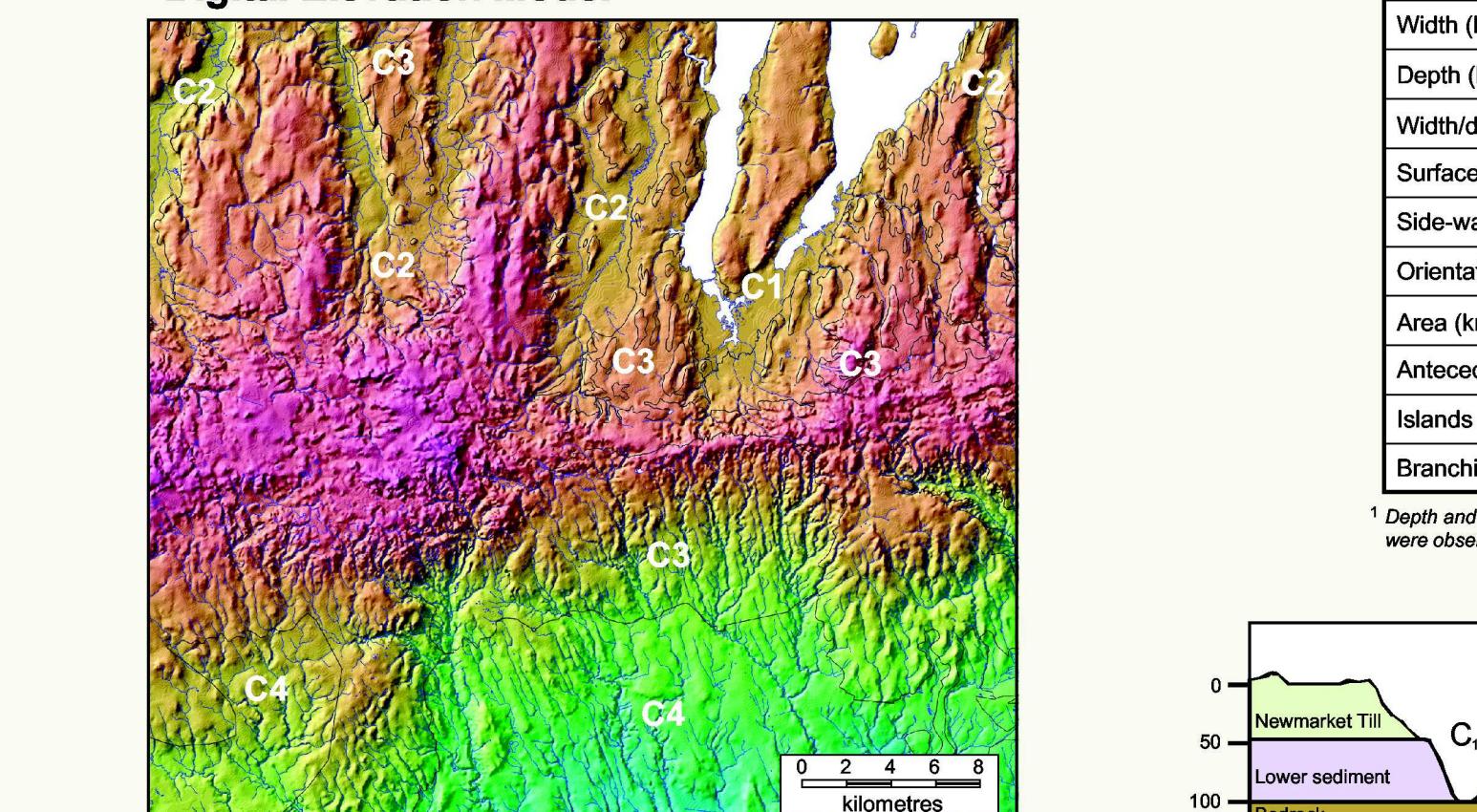


Figure 4: Schematic cross-section illustrating the scale and relationship of the four channel classes (C1-C4). Relative channel widths are provided in table 1.

Figure 5: Channel Class map draped on hillshaded DEM.

Figure 6: Channel Index Map.

Figure 7: Regional terrain framework used for channel classification. Five eroded terrains (E1-E5) have been mapped. The surface expression and channel-drumlin styles as part of the regional unconformity. In area B1 (Oak Ridges Moraine) and B2 (Halton Till) the unconformity is buried. The Niagara Escarpment forms the western edge of the mapped area.

E1 - Deep-seated Newmarket Till uplands,
E2 - Antecedent channel system,
E3 - Integrated drumlin field,
E4 - Broad shallow channelled Newmarket Till,
E5 - Newmarket Till upland.

Figure 8: Regional tunnel channel network mapped across the Paleozoic basin east of the Niagara Escarpment. The network is concentrated in areas where the surface expression of the unconformity is exposed. The network is controlled by the presence of the unconformity and the presence of the bedrock channel.

Figure 9: Perspective hillshaded DEM view of the Holland Marsh Tunnel Channel.

Figure 10: Topographic cross-section of the Holland Marsh Tunnel Channel and conceptual subsurface stratigraphy. Note the flat valley floor, step sides and asymmetry in sidewall slope and relief.

Figure 11: Seismic profile northeast of Nobleton that is transverse to buried Holland Marsh channel. Note stepped channel margin that truncates Lower sediment. Bedrock floors the main channel. Cored borehole is positioned at eastern channel margin.

Figure 12: Seismic profile across partially infilled tunnel channel east of Mount Albert. Channel is floored by Lower sediment along the axis and Newmarket Till at the margins (50-150 m wide shoulder).

Figure 13: Seismic profile across a buried Newmarket Till upland northeast of Nobleton. Note the shallow class 3 channels (highlighted by bright yellow) with Newmarket Till substrate.

Figure 14: Seismic profile across a buried Newmarket Till upland northeast of Nobleton. Note the shallow class 3 channels (highlighted by bright yellow) with Newmarket Till substrate.

Figure 15: Perspective hillshaded DEM view of class 2 channels.

Figure 16: Topographic cross-section showing the hierarchical topographic relationship of class 1, 2, and 3 channels.

Figure 17: Seismic profile across a buried Newmarket Till upland northeast of Nobleton. Note the shallow class 3 channels (highlighted by bright yellow) with Newmarket Till substrate.

Figure 18: Topographic cross-section of broad class 4 channels.

Figure 19: Topographic cross-section of broad class 4 channels.

Figure 20: Geological cross-section north of Markham showing how Newmarket Till substrate thins within a class 4 channel. Borehole data from Silub et al. (1977).

Figure 21: Channel that breach Newmarket Till may provide direct hydraulic communication to lower sediment aquifers.

Figure 22: Interpreted seismic cross-section of a buried channel with the Bala Golden Spike (continuous borehole and nested piezometers). Note the interpreted cross-channel basal gravel horizon that pumping tests indicate is a major aquifer. The cross-channel connection between the borehole and a municipal well to the north. Profile is located in the northern part of the study area, just west of the extension of a Class 2 channel into the subsurface. (Data from Sharpe et al., 2003b, and Pugh et al., 1999.)

Figure 23: Summary.

This research documents the geometry of an extensive channel network in the Oak Ridges Moraine Area. Channel geometry was classified and mapped to support a revised regional stratigraphic model for the ORM area (Logan et al., in press). The channel map aids ground-truth investigations by improving the ability to make thickness estimates for regional Newmarket Till aquitard, to estimate the buried subsurface continuation of tunnel channels and by providing a prospecting model for buried channel aquifers. Improved identification of the location, extent and scale of buried tunnel channels can only be achieved with the collection of new high quality reflection seismic surveying and continuous cored boreholes. The mapping protocol also has importance to buried channel studies in other regions.

Figure 24: References.

Barnett, P.A., 1990: Tunnel valleys: evidence of catastrophic release of subglacial meltwater, central-southern Ontario, Canada. *Abstracts with Programs, Geological Society of America, Special Paper*, 23, 1-4.

Barnett, P.A., and Boyce, J., 1990: Tunnel valleys: evidence of catastrophic release of subglacial meltwater, central-southern Ontario, Canada. *Geological Society of America, Special Paper*, 23, 1-4.

Boyce, J., and Eyles, N., 2000: Architectural element analysis applied to glacial deposits: interplay of late Paleozoic till sheet, Ontario, Canada. *Geological Society of America, Special Paper*, 337, 1-42.

Brennan, T.A., and Shaw, J., 1994: Tunnel channel and associated terrains, south-central Ontario. *Geological Society of America, Special Paper*, 271, 1-42.

Brennan, T.A., Sharpe, D.R., and Russell, H.J., in press: Tunnel channels of central southern Ontario: character, genesis, glaciology and social significance. *Geological Society of America, Special Paper*, 428, 1-42.

Eyles, N., Clark, B.M., and Eyles, N.W., 1985: The application of basin analysis to the origin of the Oak Ridges Moraine, southern Ontario. *Geological Society of America, Special Paper*, 212, 1-22.

Gibson, G.H., and Pugh, C.H., 1986: Paleogeographic reconstruction of the southern border of the Canadian Shield. *Canadian Journal of Earth Sciences*, 23, 1530-1537.

Karrow, P.F., 1967: Paleogeographic significance of the Oak Ridges Moraine, southern Ontario. *Geological Survey of Canada, Abstracts of Programs, Geological Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP'93)*, San Antonio, Texas, April 6-10, 2003, p. 1121-1123.

Kenny, D., and Russell, H.J., 1990: A digital terrain model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 1999: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Russell, H.J., Amstutz, H.W.C., and Sharpe, D.R., 2003a: Evidence for rapid sedimentation in a tunnel channel, Oak Ridges Moraine, southern Ontario. *Geological Survey of Canada, Open File*, 4329.

Russell, H.J., Pugh, C.H., and Sharpe, D.R., 2003b: 2000-2001 sedimentary fill of tunnel channels beneath the Oak Ridges Moraine, southern Ontario. *Geological Survey of Canada, Open File*, 4328.

Shaw, J., and Gilbert, R., 1990: Evidence for large-scale subglacial meltwater food events in southern Ontario and northern New York State. *Geology*, v. 18, p. 1169-1172.

Shub, U., Wang, K.Y., and Valley, D., 1977: Ground-water Resources of the Duffins Creek-Rouge River Drainage Basin, Toronto, Ontario Ministry of Environment, Water Resources Branch, Report 8.

Figure 25: Acknowledgements.

G. Gorrell carried out field mapping and data processing to support the revised regional stratigraphic model for the Oak Ridges Moraine area.

P. Russell, D. Sharpe, and H. Logan, contributed to the revised regional stratigraphic model for the Oak Ridges Moraine area.

H. Logan, M.J., and D. Sharpe, in press: A revised regional stratigraphic model for the Oak Ridges Moraine, southern Ontario.

J. Eyles, N., and Pugh, C.H., 1999: Evidence for large-scale subglacial meltwater food events in southern Ontario and northern New York State. *Geology*, v. 18, p. 1169-1172.

Figure 26: References.

Logan, C., Russell, H.J., and Pugh, C.H., 1999: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: Evidence for rapid sedimentation in a tunnel channel, Oak Ridges Moraine, southern Ontario. *Geological Survey of Canada, Open File*, 4329.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital Terrain Model of the Greater Toronto Area, Southern Ontario and Lake Ontario bathymetry. Ottawa, Ontario, Geological Survey of Canada, Ontario Ministry of Natural Resources, Report 40-9.

Logan, C., Russell, H.J., and Pugh, C.H., 2003: A Digital