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SUMMARY

People prefer to move in ways that minimize their
energetic cost [1–9]. For example, people tend to
walk at a speed that minimizes energy use per unit
distance [5–8] and, for that speed, they select a
step frequency that makes walking less costly [3, 4,
6, 10–12]. Although aspects of this preference appear
to be established over both evolutionary [9, 13–15]
and developmental [16] timescales, it remains un-
clear whether people can also optimize energetic
cost in real time. Here we show that during walking,
people readily adapt established motor programs
to minimize energy use. To accomplish this, we
used robotic exoskeletons to shift people’s energet-
ically optimal step frequency to frequencies higher
and lower than normally preferred. In response, we
found that subjects adapted their step frequency
to converge on the new energetic optima within
minutes and in response to relatively small savings
in cost (<5%). When transiently perturbed from
their new optimal gait, subjects relied on an updated
prediction to rapidly re-converge within seconds.
Our collective findings indicate that energetic cost
is not just an outcome of movement, but also plays
a central role in continuously shaping it.

RESULTS

That people prefer to move in energetically optimal ways has

been established for decades and now represents a central

principle of movement science [1, 17, 18]. But the processes

by which people discover their optimal patterns are not clear.

Much theorizing has focused on optima being established over

evolutionary timescales, through changes to body shape, mus-

cle action, and the hardwiring of neural circuitry [9, 13–15].

Energy optimization may also occur over the course of a lifetime,

as years of experience could allow people to learn the optimal

way tomove in familiar situations and allow training to tune phys-

iology to be more economical [16]. An additional hypothesis—

one that underpins many modern theories of motor control—is

that people can adjust their movements to continuously optimize

energetic cost [15, 19–23]. Only recently has energetic cost been

assessed during standard adaptation paradigms, and it was

indeed found that cost was lower after adaptation than before

in both reaching and walking tasks [23, 24]. These studies, while
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tantalizingly suggestive, were not designed to test whether ener-

getic cost minimization was a control objective of the central ner-

vous system, leaving the possibility that the measured reduc-

tions in energetic cost were correlated with alternative nervous

system goals, such as stability, accuracy, or force minimization

[25–28].

Here we directly address the continuous optimization hypoth-

esis using robotic exoskeletons to create novel energetic land-

scapes and then test whether walking subjects adopt the

necessary gait adaptions to find new optima. Of all possible en-

ergetic landscapes, we chose to manipulate the relationship be-

tween step frequency and energetic cost because step fre-

quency is a fundamental characteristic of gait, people have

strong preferences for particular step frequencies, and these

preferred frequencies are energetically optimal [10, 11]. We

manipulated the relationship using lightweight robotic exoskel-

etons to apply torques that resisted the motion of the knee joints

(Figures 1A and 1B). To shift the energetic optimum to lower

step frequencies, we had the exoskeleton controller use a

‘‘penalize-high’’ control function that applied a resistive torque,

and therefore an added energetic penalty, that was minimal at

low step frequencies and increased as step frequency

increased (Figures 1C, 1D and S1). To shift the energetic opti-

mum to higher step frequencies, we used a ‘‘penalize-low’’ con-

trol function, in which the slope of the penalty was reversed (Fig-

ures 1C, 1D and S1). The control functions were designed to

create a clear energetic gradient for step frequencies in the

neighborhood of subjects’ initial preferred step frequency, yet

keep all resistive torques low enough to allow relatively natural

gaits. To distinguish between energetic cost optimization and

simply minimizing the resistive torque applied to the limb, we

also strived to design the control functions such that the ener-

getic cost optima occurred at step frequencies distinct from

those that minimized exoskeleton resistive torque. It is not

possible to design control functions that specifically rule out

all alternative objectives to energetic cost minimization. But to

be indistinguishable from energy minimization, optimization of

these alternative objectives would need to yield step-frequency

adaptations in the same directions, and by about the same

magnitudes, as those predicted by our novel energetic

landscapes.

Natural Gait Variability Does Not Reliably Initiate
Optimization
We first sought to determine whether our subjects would adapt

to a new energetically optimal step frequency given limited expe-

rience with the novel energetic landscape and without being

perturbed away from their natural gait. Subjects were assigned
evier Ltd All rights reserved
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Figure 1. Experimental Design

(A and B) By controlling a motor attached to the

gear train of our exoskeletons, we can apply a

resistance to the limb that is proportional to the

subject’s step frequency.

(C) Schematic design of the penalize-low (red) and

penalize-high (blue) control functions.

(D) Schematic energetic landscapes. Addition of

the energetic cost of the penalize-low control

function to the natural cost curve (gray) produces a

cost curve with the optimum shifted to higher step

frequencies (red curve). The optimum can instead

be shifted to lower step frequencies (blue curve) by

addition of the energetic cost of the penalize-high

control function to the natural cost curve.

See also Figure S1.
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to both the penalize-high and penalize-low control functions,

in random order, on two separate testing days. On each day,

during an initial baseline trial, subjects first walked for 12 min

while wearing the exoskeletons, but with the controller turned

off (Figure 2A, baseline). This allowed us to determine their ‘‘initial

preferred step frequency,’’ which we defined from the final three

minutes of walking. All walking took place on an instrumented

treadmill (FIT, Bertec Corporation) at 1.25m/s, andwemeasured

step frequency from treadmill foot contact events. All subjects

appeared to settle into a steady-state step frequency within

9 min. On average, subjects walked at 1.8 ± 0.1 Hz (mean ±

SD), and from step to step subjects’ step frequency varied about

this average by 1.1% ± 0.3% (mean ± SD). We then turned the

controller on, resulting in an applied resistive torque that was

dependent on step frequency, and the subjects walked for an

additional 12 min (Figure 2B, first adaptation). During this time,

subjects showed no adaptation in step frequency (penalize-

high: p = 4.3 3 10�1; penalize-low: p = 4.4 3 10�1; Figure 3A).

They continued to walk at their initial preferred step frequency

even though we designed the controller such that minor adjust-

ments to step frequency would result in a more economical gait.
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Figure 2. Experimental Protocol

Measured step frequency from a representative subject for a single day of

testing with the penalize-low control function. Subjects completed five testing

periods: baseline (A), first adaptation (B), exploration (C), second adaptation

(D), and cost mapping (E), with a rest period (5–10 min) between each period.

For all periods, regions of red shading illustrate the time windows during which

we assessed steady-state step frequencies and metabolic costs.
Broad Experience with the Energetic Landscape
Initiates Optimization
We next gave our subjects experience with the novel energetic

landscape across a wide range of step frequencies and then

once again looked for adaptations toward the novel energetic

minima. This was accomplished by instructing subjects to

self-explore walking with high and low step frequencies, as

well as to match their steps to different steady-state and sinu-

soidally varying metronome tempos (Figure 2C, exploration).

After this 15 min exploration period, subjects were again

allowed to self-select their step frequency (Figure 2D, second

adaptation), and we found that subjects immediately made
Current Biology 25, 2452–2456, September 21, 2015
large adaptations in step frequency to-

ward the energetic minima (Figure 3A).

To robustly determine whether this was

a new preferred step frequency, we had

subjects match a metronome tempo

for 6 min that perturbed them toward

both higher resistive torques (penalize-

high: +10%; penalize-low: �10%) and
lower resistive torques (penalize-high: �10%; penalize-

low: +10%) (Figure 2D, second adaptation). After each pertur-

bation, subjects were allowed to self-select their step frequency

for another 12 min, and we found that they returned to a step

frequency that was shifted toward the energetic optima (Fig-

ure 3). We defined the average of the final 3 min of self-selected
ª2015 Elsevier Ltd All rights reserved 2453
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Figure 3. Optimization of Energetic Cost

(A) Energetic landscapes, averaged across all

subjects, for the penalize-high (blue) and penalize-

low (red) control functions, as well as for the

controller off condition (gray). The lines are fourth-

order polynomial fits, and the shading shows their

95% confidence intervals, shown only for illustra-

tive purposes. Dashed gray arrows illustrate the

directions of adaptation from initial preferred to

final preferred step frequencies.

(B–F) Comparisons of energetic costs, averaged

across all subjects, around the initial preferred

step frequencies (C–E) and final preferred step

frequencies (B, D, and F). Error bars represent 1 SD.

Asterisks indicate statistically significant differ-

ences in energetic cost when compared to the cost

at the initial or final preferred step frequency (0%).
step frequency after the last perturbation as the ‘‘final preferred

step frequency.’’ On average, when given the penalize-high

control function, subjects decreased their step frequency by

5.7% ± 3.9% (mean ± SD), whereas for the penalize-low control

function, subjects’ step frequency increased by 6.9% ± 4.3%.

These final preferred step frequencies were distinct from what

subjects initially preferred (penalize-high: p = 1.3 3 10�3;

penalize-low: p = 6.2 3 10�4), and they were distinct from

those that would minimize the resistive torque being applied

to the limb (penalize-high: p = 5.2 3 10�5; penalize-low:

p = 2.4 3 10�4).

Gait Adaptations Converge on Energetic Optima
We next sought to determine how our subjects’ final preferred

step frequency compared to the energetically optimal step fre-

quency by mapping their energetic landscape. We again turned

the controller on and had subjects walk to steady-state metro-

nome tempos for 6 min each (Figure 2E, cost mapping),

including tempos about the initial preferred step frequency

(+5%, 0%, �5%) and about the final preferred step frequency

(+5%, 0%, �5%). We measured metabolic energetic cost using

respiratory gas analysis equipment (VMax Encore Metabolic

Cart, ViaSys). As hypothesized, our subjects had indeed

increased or decreased their self-selected step frequency,

whichever was required by the new landscape, to converge

on the new energetic optima (Figure 4). These adaptations

were to achieve relatively small cost savings. The energetic

cost at the final preferred step frequency was 8.1% ± 7.0%

lower than the energetic cost at the initial preferred step fre-

quency for the penalize-high control function (p = 4.1 3 10�3)

and 4.0% ± 3.8% lower for the penalize-low control function

(p = 9.7 3 10�3). Subjects achieved most of the costs savings

immediately after the exploration period, yet they continued to

fine-tune their step frequency for vanishingly small energetic
2454 Current Biology 25, 2452–2456, September 21, 2015 ª2015 Elsevier Ltd All rights rese
savings (Figure 3). Evaluation of the ener-

getic cost at the final preferred step fre-

quencies, and at step frequencies on

either side of the final values, suggested

that subjects converged to, or at least

near, their minimum costs; no further
cost savings appear to be gained by additional adjustments to

preferred step frequency (Figures 4B and 4F).

Gait Adaptations Use Updated Predictions
of Energetically Optimal Gaits
After perturbations using the metronome tempos, our subjects

converged toward their new preferred step frequency within

seconds (Figures 3B and 3C). In cases where subjects were

held at metronome tempos that resulted in high resistive torques

(penalize-high: +10%; penalize-low: �10%) and then released,

they immediately bypassed their initial preferred step frequency,

which was now energetically suboptimal, to quickly converge

on the new preferred and energetically optimal step frequency.

All subjects bypassed the initial preferred step frequency in

less than 10 s. When held at metronome tempos that resulted

in low resistive torques (penalize-high: �10%; penalize-

low: +10%) and then released, subjects actually elected to in-

crease the resistance on their limb, again within seconds, in or-

der to reach the energetic optima. We have previously argued

that the timescale of such rapid adaptations to energetically

optimal gaits requires the prediction of energetic cost, rather

than its direct optimization [29]. That subjects rapidly converged

on new energetic minima indicates that subjects had updated

their prediction of the optimal gait for each control function.

This was also observable when the high or low penalty was

removed for a final 12 min (Figure 2D, second adaptation); sub-

jects’ step frequency remained shifted toward the control func-

tion optima for minutes despite a return to the natural energetic

landscape and its former energetically minimal gait (Figure 3).

DISCUSSION

Motor variability has traditionally been thought of as an inevi-

table, if not potentially burdensome, consequence of imperfect
rved
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Figure 4. Time Course of Step-Frequency Adaptations

(A) Steady-state step frequencies, averaged across subjects, throughout the

course of the protocol. Error bars represent 1 SD. Results for the penalize-high

control function are shown in blue, the penalize-low control function in red,

and the controller off condition in gray. Asterisks indicate average step fre-

quencies that are statistically different from 0% (the initial preferred step fre-

quency).

(B) Step-frequency time-series data, averaged across subjects, for the release

high and low from the second adaptation period. For the penalize-high

controller, the release from high and low step frequencies is shown in light and

dark blue, respectively. For the penalize-low controller, the release from low

and high step frequencies is shown in light and dark red, respectively. The

horizontal bar indicates when the controller is turned on (green fill) and off

(white fill), and the yellow lines indicate the prescribedmetronome frequencies.

(C) Average step-frequency time-series data for a 30 s window about the

metronome release (at time 0).
neural control. However, recent findings have reframed motor

variability as an asset—one that can facilitate and enhance mo-

tor learning. For example, songbirds are able to leverage small

variations in their pitch to continuously optimize their song per-

formance [30], and humans actively reshape the structure of their

motor output variability to elicit faster learning of reaching tasks

[31]. We found that natural gait variability did not initiate the opti-

mization process in our particular experiment. Instead, subjects

persevered at their initial preferred step frequency after the

controller was turned on, even though minor adjustments to

step frequency would have resulted in a more economical gait.

Only after the exploration period, which enforced large variations

in step frequency, did subjects demonstrate large adaptations

toward the new energetic optima (Figure 3A). One possible

explanation for this need for exploration is that people’s natural

variability in step frequency is not expansive enough to elucidate

a clear energetic gradient. Alternatively, people may not initiate

optimization based on energetic gradients, but may instead

require that exploration provide explicit experience with the

new optimum in order for people to adapt to it. In either case,

these may be smaller issues when walking in a real-world setting

because natural changes in speed and terrain may generate the
Current Biology 25, 2452–245
variability in gait required to either initiate optimization or provide

experience with new optimal movement patterns.

Our findings suggest that new optima are encoded in an up-

dated prediction of the energetically optimal gait and leveraged

to rapidly select preferred step frequency [29, 32]. When sub-

jects were held away from their preferred step frequency using

a metronome and then released, they returned to their new

preferred step frequency within seconds (Figures 3B and 3C).

These adjustments are likely too fast to be governed by blood

gas sensors, muscle metaboreceptors, and other known direct

sensors of energetic cost, which are known to be relatively

slow [33, 34]. Furthermore, optimization itself tends to be slow

if its algorithm requires the time consuming steps of averaging

and iterative convergence [29]. That the subjects made an up-

dated prediction of the optimal gait is also observable at the

end of the experiment, when subjects’ preferred step frequency

remained shifted toward the control function optima for minutes

despite a return to the natural energetic landscape (Figure 3B).

This aftereffect differs from the aftereffects seen in force-field

reaching or split-belt walking paradigms [35, 36], where the re-

sulting trajectories are mirror images of those observed when

initially exposed to the novel environment. When our controller

was turned off, rather than displaying this overshoot and rapid

correction, we instead found that subjects adjusted to the rapid

reduction in exoskeleton torque and persevered at the optimum

for the previous adaptation. These aftereffects appeared to last

an order of magnitude longer than those typically reported in

other walking paradigms [36–39]. This implies that sensorimotor

predictions about energetically optimal movements are particu-

larity resilient, at least without an exploratory phase to initiate

re-optimization. The slow step-frequency adjustments during

re-adaptation are not in conflict with the fast adjustments

observed when subjects are released from a metronome after

exploring their new energetic landscape. During the latter,

subjects are able to quickly predict their optimal gait within a

now-familiar energetic landscape. But the former requires opti-

mization within a new energetic landscape, or at least recogni-

tion that this new landscape is familiar.

Despite a lifetime of experience walking under natural condi-

tions, people readily adapted established motor programs to

minimize energy expenditure, and they did so for quite small en-

ergetic gains. It is sensible thatmotor programs remainmalleable

because people’s bodies, and the tasks they are presented with,

can change. Continuous energetic optimization benefits motor

adaptation bykeepingmovements close toenergetically optimal,

helping people to efficiently adapt to changing terrains, compen-

sate for injury or motor deficits, and learn new tasks.
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