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Introduction

The forestry sector in British Columbia is undergoing a fundamental change in policy as it
moves to letting market forces set stumpage prices. As of May 2005 approximately 30% of the
Province’s AAC is priced using the Market Pricing System (MPS). The MPS has two parts. BS
Timber Sales auctions stumpage on an open market and then market evidence is used to estimate
the market price of stumpage not sold on the open market. All of the Coastal Region of B.C. is
under the MPS and B.C. Timber Sales is operating in the Interior. Comparative value pricing,
(CVP) still in use for most long term tenure and lease holders in the Interior, is being phased out
(B. Howard (BC MOF, personnel communication, 2005)).

Auctions are a popular way to sell a wide variety of things and have been used to sell timber for
many years. They are expedient for the land owner because they are not required to know the
value buyers place on the timber. Bidders decide what to bid. The timber owner just has to
publicize the auction, format and rules. B.C. Timber Sales uses a first price sealed bid auction
with a reserve price (called upset rate in B.C.). The highest qualified bidder wins. The payoff (P)
for the bidder is the difference between the revenue derived from log sales and the cost of getting
the logs to market including stumpage price (S). The winning bid (B, called “bonus bid” in B.C.)
plus the reserve price is stumpage for that sale. Timber auctions have a common value, where
each bidder estimates what they think the timber is worth, and they understand that their estimate
is not exact. Estimates of timber volume by species and grade, the cost of logging and
transportation and the future price for logs all have error associated with them. Bidders appraise
the value of stumpage (V) using a derived residual value approach (figure 1).

V = [(Log price by species and grade x Log volume by species and grade) — (harvest and
transportation cost) — (legal, overhead and miscellaneous costs) — (bid preparation cost) + error]/
Total Volume — Upset rate

or
V = Payoff + bonus bid  (see figure 1)

With BC Timber Sales, the upset rate and bonus bids units are $/m’, and the valuation (V) for a
stand of timber must be reduced to $/m’. In this discussion, V is what the timber is worth to the
buyer, including upset rate but not bonus bid. The error in V comes from error in estimating
timber volume by species and grades and estimating cost of processing stumpage to the market
of highest value. Timber volume error is estimated when summarizing cruise data, but must be
converted into a $/m”’ units to be consistent with the bidding process. The white line, in figure 1,
represents the bid amount. It is in the seller’s interest to move it up and the buyer’s interest to
move it down. Its’ level is the decision which the bidder must make. The expected value for each
bidder is their estimate of V; however all they really know is that the true value is probably
greater than V about ' the time and less the other ' of the time (figure 2).

The width of the distribution (amount of error in the estimate) depends on how much the bidder
is willing to invest in the appraisal. At one end of the bid preparation spectrum, the bidder could
guess the value. This type of estimate is inexpensive, quick and depending on experience of the
bidder can be “in the ball park”. At the other end of the spectrum, the bidder could do a 100%
cruise of the timber sale using highly qualified and experienced foresters, who grade every log in
every tree, who assess the terrain, access and other pertinent cost factors and who evaluate the



data using sophisticated time tested engineering cost models. This is expensive; it does decrease
error and narrow the distribution (figure 2). But what is a narrower distribution worth?

The payoff for the bidder is the true value of the timber minus whatever they pay for the timber
if their bid is the highest, or minus bid preparation cost if not (figure 1).

The payoff (P) functionis: P=V —-B: If Bid (B) > all other bids and the upset rate
Stumpage (S) = B + upset rate
Otherwise P = cost of bid preparation.
S = highest bid + upset rate

Now, the game begins. If there is only one bidder and they estimate V greater than the upset rate
then they bid the upset rate (+ 0.01 if required to beat the upset rate). However, in B.C. you
cannot be sure who or how many bidders are planning to bid on a specific sale. To win, a bidder
must increase their bid to beat the competition. Auction theory and subsequent research have
established that for most auction designs, winning bid increases with the number of bidders
(Stark and Rothkopf (1979), Brannman and et al.(1987) and Engelbrecht-Wiggans (1980)). In
B.C. this is true’. More bidders or even the threat of more bidders produce pressure to increase
your bid. If you want to win you have to bid more than all other competitors.

In the past 2 years BC has had at least 833 separate bidders place 2979 separate bids on 762
timber sales. Another 121 sales did not receive a single bid. Of the 833 bidders, 417 have not
won a single contract. As shown in figure 3 only a few bidders have won multiple auctions and
the majority of winners have won only once. Figure 4, displays the number of times bidders
have placed bids. As can be seen the majority have placed only one bid. A few timber buyers are
very active, with one at 31 bids.

Auction research has also established another important outcome, charmingly called the
“Winners Curse” (Wilson (1992) and Matthews (1984)). The curse is placing a bid (B+upset
ratge > True V) so that payoff (P) for winning is negative. No one would ever do this knowingly.
So why does the Winner’s Curse happen? Look back at figure 2. If true value is out on the left
hand side of the V distribution (estimate was too high), leading to a bid higher then the true V.
On average about 2 the bidders will appraise (V) too high, the other 2 too low. The winning
bidder typically is the one who estimates (V) too high and is more likely to bid too much.
Ignorance of the winners curse results in people going out of business. Knowledge of the
winner’s curse produces pressure to decrease bid amount.

We can assume that both the winner’s curse and not winning will force some buyers out of the
game, but over the past two years new buyers have been coming into the market at a regular (but
slightly decreasing) rate (figure 5). There is no way of knowing how many leave the market, but
the total number of bidders is not showing any (statistical) trend over time, which leads to the
inference that bidders are moving in and out of the market on a regular basis.

? Roise, J.P. 2005. Observations on the stumpage Market Pricing System in British Columbia,
Journal of Forestry, (in review, June 2005).



A bidding strategy is how to win without being cursed. Bidding lower makes it less likely to win,
but reduces the odds of overpaying if you do win. The greater the number of bidders the more
likely the winners curse will occur, so you must be more cautious, and on the other hand, the
greater the number of bidders the less likely you will win for any given bid. Calculating the
optimal bid is complicated even in simple situations, and as foresters know just the appraisal of
standing timber is not simple. Bidding your estimated valuation (V) is usually not a good idea. It
guarantees your payoff will be negative about half of the time, but you will win contracts (until
you go out of business). Bidding less than your estimated valuation reduces the probability that
you win, but means you’ll have better odds of earning a positive payoff if you do win. The
solution to this tradeoff is a bidding strategy.

B.C. Timber Sales is interested in maximizing the expected revenue from each and every
auction. This is the reasons they are using a sealed bid first price auction, restrict information on
who and how many have bid, seriously penalize any bidders found to be in collusion and
establish a reserve price (upset rate) below which they will not sell the timber. Since timber has
an intrinsic value to the Province it would be irresponsible to sell it for less than this value. But a
significant element of value to the Provincial Government is a stable supply of timber. The result
is a reserve price of 70% of the estimated market value. The 70% is arbitrary, but not
unreasonable, and is used as policy in many USDA Forest Service timber auctions
(Huebschmann, and others, 2004). A reserve price is more important in auctions with few
bidders. It offsets the lack of competition among bidders. In auctions with several bidders, it
supplies information on what the seller thinks it is worth (Paarsch, 1997).

It is tacitly assumed that bidders are interested in maximizing expected revenue from each and
every auction, but not all bidders behave in the same way. Sometimes, it is useful to categorize
bidders by how they deal with risk. Some bidders are risk averse and some are risk takers. There
are two types of risk: loosing and over bidding as pictured in figure 2. Risk averse bidders prefer
less uncertainty and want to increase their chances of winning (ignore overbidding for now). For
them winning is another objective along with maximizing expected value. Risk averse bidders
typically place higher bids than risk neutral bidders. Higher bids raise the probability of winning,
but reduce the payoff from winning. Up to a point, risk averse bidders care more about
increasing the probability of winning than the lost payoff from winning. Risk takers on the other
hand will bid low, gambling for the big payoff. Risk attitude is not constant. At different times
the same bidder can be risk averse or risk taking.

A bidder’s attitude toward risk can change in relation to business and financial conditions. If a
bidder is short of work and needs to keep his company working they will be more averse to
loosing and bid more. A bidder with plenty of work in the near run can afford to gamble a little
and will bid less.

Toward an Optimal Bidding Strategy in British Columbia
Upon public notice of a timber auction, there are a series of three major decisions that must be
made in the development of a bid.
The first decision is whether or not to place a bid. The second decision is how much
time, effort and money to invest in developing a bid. The third decision is what to bid.



Each of these major decisions has lesser (but important) choices built in, such as: What is the
objective? What is our attitude for risk? Who are our likely competitors?

To answer the question “what to bid?”, data on all B.C. auction results published on the Ministry
of Forests’ web site will be used. A reasonable objective for timber buyers is to maximize
expected payoff (Bullard, 1985). Expected payoff acknowledges that sometimes you win and
some times you lose, but over many sales the strategy will maximize payoff.

Maximum expected payoff is:
MBax E(P) = (V(B¢) — B)Prob(B > All other bids) — B¢ [1]

Where E(P)is expected payoff as a function of bid B.
V(Bc)is the DRV of the timber (without B¢ included) but with reserve price deducted. V
is a function of B¢ in that the more you spend on appraisal the better your estimate of V.
B is the bid amount.
Prob(...) is the probability that bid B is greater than all other bids.
Bc is the cost of preparing Bid. You always pay this cost.
MBaX is the maximum over all bids.

In order to estimate Prob(B > All other bids) the BC Timber Sales’ auction results are used. This
discussion is for B.C. as a whole, which is instructive and useful. However, readers should be
aware that specific application of the following analysis would be more appropriate when
conducted for your business area, based on what you have estimated V to be and your likely
competitors.

Stumpage equals upset rate plus bonus bid. A relationship between stumpage and upset rate is
evident in the data as graphed in figure 6. Upset rate truncates the distribution. The (pink)
truncation line (figure 6) is where stumpage = upset. The regression line and truncation line are
in effect parallel (no significant difference between the slope 1.07 and 1). This observation will
be useful. A graph of the residuals of the equation (in figure 6) is shown in figure 7. Note the
truncation of bid residuals by the upset rate, starting at 9.8 above zero it increases by $7 for every
$100. There is one significant residual pattern, other than a clustering of upset prices in the $25
to $45 range. This is that the residual distribution is Nnot normally distributed around zero. The
mean of the residuals is zero, but the truncation has changed the shape of the distribution and a
central assumption when using regression is that the residuals are normally distributed. This
means that the error statistics developed using linear regression are not appropriate.

There is an alternative to estimate Prob(B > all other bids). Go back to the observation of parallel
regression and truncation lines in figure 6. The amounts over the truncation line, by definition,
are the winning bids. A graph of the upset rate versus bonus bid looks virtually indistinguishable
from figure 7, only it starts at zero and goes up from there. The distribution of bonus bids is in
figure 8. This is obviously not a normal distribution.

Since the data appears to follow an exponential decay pattern, for purposes of discussion assume
the data (figure 8) comes from an exponential distribution. Indeed, there is no statistical



difference between the observed distribution and an exponential distribution fitted to the data
(using Chi® ), but other functions may have a better fit. The exponential decay distribution is:

Prob(B) = ¢™®

Where e is the exponential function (exp)
a is the decay constant.

and the cumulative probability function is

Prob(B > all other bids) = LB Prob(x)dx = 1——

exp'®

The cumulative frequency distribution of bonus bids is shown in figure 9, along with the
cumulative exponential distribution fitted to the data. The distribution underestimates the data in
the mid ranges from a bonus of ~ $5/m” to $25/m’, which can be corrected with another
distribution function or eliminated all together by use of numerical techniques.

Given the ability to estimate Prob(Bid > All other bids) the maximum expected value can be
calculated. This is done using the equation [1], the probability function and Microsoft Excel’s
Solver ®. Figure 10 displays results of bids that maximize expected payoff, along with the
associated probability of winning, as a function of V. As you can see, the higher the value of the
stand the higher maximum expected value bonus bid, maximum expected payoff, and the
probability of winning. The Maximum Expected payoff probability of winning levels off around
0.9. For example, if appraised value is $50/m’, then the bid that maximizes expected value is
about $15/m’, and you could expect to win almost 80% of the time with this bid. The more
valuable the stumpage the more you bid to win. And given a choice between a high value stand
and a low value stand you can expect a greater return on the high value stand. (Not a major
revelation.)

Remember, the probability estimates presented here are for the whole of B.C. For a specific
firm’s situation the probability estimates would be more accurate if based on the local business
area and expected competitor data.

Value of Appraisal Information
The second decision is how much time, effort and money to invest in developing a bid

In the previous discussion, the cost associated with developing a bid is an integral part of the
estimate. The investment in bid development influences what you bid (equation 1). A common
complaint among bidders is, win or lose they have already invested money in developing a bid.
This is expensive particularly when they do not win and recuperate the cost. Bidders must
remember the idea behind maximizing expected value, you lose some of the time, win some of
the time, pay for your bid estimates every time, but over the long run you come out on top of the
game.



The question of how much to invest in bid preparation is relevant. In figure 2, the conceptual
diagram of a bid estimate is presented. The distribution represents error in the estimate of V. It is
generally understood that somebody who invests little in bid preparation will have a wider
distribution than somebody who invests a lot of time and effort (e.g. money). Further, it is
assumed that it is better to have less error in your estimate. In equation (1), the valuation of the
stand V(B¢) is a fixed amount and represents the expected value of stumpage. The bid that
maximizes E(P)does not change directly with the error distribution (It does change with the mean
of the distribution). Rephrasing the second decision, “How much should be invested in reducing
the error of estimate?”

One way of answering this question is by analyzing the expected value of perfect information
(EVPI) (Anderson et al. (2000), Kvanli et al (1986)) over a range of stumpage prices and
associate error. Assume estimates of V are normally distributed with a standard deviation, 0, as
diagramed in figure 11. Standard deviation (STDV) summarizes the measurement of error
around the mean and assuming a normal distribution allows us to assign probability to different
estimates of V. For example, in figure 11, the estimate of V is $50/m’ with a STDV of $5/m’.
With this information probabilities can be estimated for different regions that the actual value
might fall within.

If before we make a bid we had perfect information on the actual value of V, then we know what
to bid to maximize expected value. Table 1 summarizes what we would bid (using equation 1)
for the midpoints defined in figure 11. If we knew V was equal to 32.5$/m’ the bid should be
11.2$/m’.

Table 1: Bids for maximizing expected payoff, if we knew the actual value of the timber stand V.
Units of bids and valuations - $/m’

V with perfect ~ 32.5 37.5 42.5 47.5 52.5 57.5 62.5 67.5

foresight

Bid for Max 11.2 12.38 13.47 14.47 15.40 16.26 17.07 17.83
E(P)

Prob of V 0.0013 0.0215 0.1359 0.3413 0.3413 0.1359 0.0215 0.0013

However, we don’t have perfect information, all we have are probability estimates of what might
happen. Thus, if we did bid 11.2 then we would only have about 1:770 odds of that bid being
correct. To analyze the value of acquiring perfect information we calculate what payoffs would
occur if we bid expecting one outcome when it actually turns out to be quite different. Table 2
summarizes the payoffs for different actual values of V and different decisions on the bid. For
example, if you bid 11.20 $/m’ and it turned out that the actual value was 57.5 $/m’ then your
payoffis 31.15 $/m’, but with a higher probability of loosing the bid. With 20/20 hindsight you
know you should have bid 16.26 $/m’ to maximize expected payoff.



Table 2: Payoff table for different bid decisions and different possible outcomes for actual
value of the stand of timber. Units of bids and valuations - $/m’

Prob() 0.0013 0.0215 0.1359 0.3413 0.3413 0.1359 0.0215 0.0013

Number of standard deviation regions under curve from figure 11.
Example based on mean 50 and standard deviation 5

3< 3<<?2 2<<1 1<<0 0<<1 1<<2 2<<3 <<3
Bids 32,5 375 42.5 475 52.5 57.5 62.5 675 E(P|B)

11.2 14.33 17.69 21.05 24.42 27.78 31.15 34.51 37.87 26.1

12.38 14.24 17.782  21.32 24.86 28.40 31.94 35.48 39.02 26.63

13.47 14.02 17.71 21.39 25.08 28.76 32.45 36.14  39.824 26.93

14.47 13.73 17.53 21.34 25.14 28.95 32.76 36.56 40.37 27.05

15.4 13.36 17.27 21.18 25.09 29.00 32.91 36.82 40.73 27.05

16.26 12.97 16.97 20.96 24.96 28.96 32.96 36.95 40.95 26.96

17.07 12.56 16.63 20.70 2477 28.85 32.92 36.99 41.06 26.81

17.83 12.14 16.27 20.41 24.55 28.68 32.82 36.96 41.09 26.62

The last column in table 2 is the expected payoff given the bid decision in the first column. This
number is the sum of payoffs times the probabilities. Note that the Max E(P) is the average of
the two rows for bids of 14.47 and 15.40, and with smaller and smaller probability intervals the
two middle bid rows will approach Max E(P). With perfect foresight we would bid to achieve the
greatest payoff in each of the respective columns. If we knew it was going to be worth 67.50
$/m’, we would bid 17.83$/m’. Table 3 summarizes what we would do if we had perfect
information about what the stand was worth. The last column in table 3 is the expected value if
we could get perfect information. It is calculated as the sum of the Payoff times Prob rows.

Table 3: Expected value with perfect information. (EV with PI)

Actual 325 375 425 475 525 575 625 675 Evwith
value PI
Bid 112 1238 1347 1447 154 1626 1707 17.83

Payoff 1433 1778 2139 2514 29.00 32.96 3699 41.09 27.11
Prob 0.0013 0.0215 0.1359 03413 03413 0.1359 0.0215 0.0013

This now can be reduced down to the expected value of perfect information (EVPI). EVPI is the
difference between the expected value with perfect information (table 3) and the maximum
expected value with the original information (table 2): $27.11- $27.05 =0.06 $/m’. This 0.06
$/m’ is what we would expect to gain if we could improve information from V=50$/m’ and
STDV = 5$/m” to knowing the actual value of V with STDV = 0 (perfect information).

The above example was for a single value of V and associated error estimate. Expanding the
analysis presented above to different values of V and standard deviations results in data graphed
in figure 12. The results in figure 12 are logical, and the numbers have value. First, the more the
current standard deviation the more you can afford to pay for improving the estimate. You will
never be able to recoup the full value of perfect information, since there will always be error,
however you can move to a lower level of error and gain the difference. For example if your
preliminary estimate of V = 50$/m’ has a STDV of 20$/m” the expected value of sample



information that would give you a STDV of 10$/m’ is 1.2$/m® — 0.28%/m’ = 0.92$/m’. If you
could pay less than this to achieve the lower STDV then it would be to your benefit (over the
long run) to do so. The question of how much error reduction can be achieved for every dollar
invested in bid preparation, though important, is not answered here. Second, the lower the initial
estimate of V the more you can potentially gain from investing in error reduction. At lower
estimates for V, maximum expected value bid levels are lower along with the probability of
winning but probability of winning changes more rapidly at lower V levels (refer back to Figure
9). Making a mistake at a low V level reduces your chance of winning much more (thus your
maximum expected payoff) than at a higher initial estimate of V. The end result is the lower the
initial estimate of V the more valuable it is to reduce your error in estimating V. When blown up
for a large volume timber sale these amounts can be significant.

The results in figure 10 and 12 are general, in relation to the estimated cumulative probability
distribution in figure 9. Again, these probability estimates would be more accurate in practice
once refined for specific business areas and expected competitors.

Avoiding the Winners Curse

In practice not bidding too much is a simple procedure and is based on what you know about the
stand including the error of estimate of V, but it also contains implications for how much risk (of
overpayment) you are willing to accept. Referring back to equation (1) the value of V that you
use is the expected value of the sale. Following an objective to maximize expected value you
will bid the amount that maximizes expected value as long as Prob(B > True V) is at an
acceptable level of risk. Prob(B> True V) is the probability of a negative return and can be
estimated using information readily available from previous analysis, plus the standard normal
distribution Z statistic. First, calculate the number of standard deviations B is from V.

Number of STDVs =NSTDV = ﬂ
STDV

Then, look up in a Standard Normal distribution Z table (most spreadsheet and database
programs have this as a built in function) the probability of being NSTDV away from the mean
(if a one tailed distribution table you will have to add 0.5). This is the risk of not over bidding. If
you accept this level of risk you can make this bid. For example let V = 40 $/m’ with STDV = 10
$/m’. The bid which maximizes E(P)= 12.93 $/m’ using equation (1).

NSTDV = (40-12.93)/10 = 2.707. Looking this up in a Z table, Prob(12.93 > True V) = (1 -
0.9972) = 0.0028.

This level of risk (about 1 out of 360) maybe acceptable for most people, but for purposes of
example what if the desired level of risk was 0.001 (1 out of 1000). What would you bid now?
Working backward from what was done above, if Prob(B > True V) = 0.001, looking 0.001 up in
a z table gives 3.1 STDV away from mean. Then solve for bid amount: NSTDV = 3.1 = (40-
B)/10. The risk constrained bid B =9 $/m’ gives you a risk of 0.001 of overbidding, or a 0.999
probability of making a profit, if you won. Figure 13 summarizes the over bid probabilities
associated with following the maximum expected value bid. It is clearly better to have a more
precise estimate of V.



When pushing your bid to avoid risk of losing you increase the risk of overbidding. Using this
method you can check your risk exposure to overbidding. Avoiding the winners curse comes
down to making a new decision on how much of a risk of over bidding you will accept and not
bidding over that amount.

Summary

The discussion covers three important considerations in developing a bidding strategy:
Maximizing expected payoff, determining how much to invest in bid development and avoiding
the winners curse. It does not go into the important first decision of whether or not to bid in the
first place. This is determined by the bidders business and financial situation and specific sales
information published in the MOF sales notices. The presentation uses data covering the whole
province for the years of 2003 until May 2005. Potential bidders interested in using these
methods should develop estimates based on data from their specific business area and expected
competitors.

This information is not new to large companies. Applications of decision theory are in common
use. This information will add the smaller timber buyers in B.C., but it is the nature of
information to change behavior. Once this information becomes commonly used the probability
distribution will change and a new dynamic will result. It is up to the timber buyer to continue to
adapt to the competition and refine the methodology contained herein.
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Figure 3: Distribution of number of times a bidder has won. There has been only one bidder who
won 8 times, 223 bidders who have won once, and 417 who have never won.
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Figure 4: Distribution of the number of bids submitted for each of the 833 bidders. There is one

bidder at 23, 24, 27 and 31 bids.
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Figure 5: The number of new (first time) bidders each 30 day period. Broken down by how many

times they will bid. As we get closer to the present bidders have less opportunity to have repeat
bids. Number of once only bidders shows no trend. The number of first times bidders has been

declining over time. (Downward slope is significant at the alpha = 0.01 level.)
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Figure 6: British Columbia stumpage (winning bid + upset) price in relation to Upset (reserve)

price.
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Figure 7: Residuals from the equations relating stumpage value to upset rate.
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Figure 8: Frequency distribution of bonus bids. On the Bonus axis the first category (1) goes
from 0 to 0.99, each subsequent category is $1/M° wide. The mean is $11.88/M°. There is one
bid at $82.50/M’.
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Figure 9: Cumulative frequency distribution and estimated probability distribution of bonus bids
in British Columbia. F-Hat is the estimated probability based on the fitted distribution. No
statistical difference between curves using Chi*(0.005,81). The actual equation is not reproduced

for proprietary reasons, but graph is from actual equation.
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Figure 10: Maximum expected payoff, E(P), bonus bid and probability of winning in relation to
the derived residual value (V). Probability axis is on the right. The Bid and E(P)axis is on the

left.
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Figure 11: Probability of different regions under a normal distribution with mean V = $50/m’
and standard deviation 0 = $5/m’. Numbers along the bottom axis are V midpoints for each
region. At mean V = 50 the bid that maximize E(P)is 14.94, however the probability of actual V

=501s0.
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Figure 12: Value of perfect information as a function of standard deviation for three different
estimates of V (40, 50 and 60).
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Figure 13: Probability of overbidding the true value of stumpage given the estimated value of
stumpage and the standard deviation, when using the bid which maximizes expected payoft.



