Summer 2022 - ECON 483 D100

Selected Topics in Economics (3)

Economic Applications of Machine Learning

Class Number: 2654

Delivery Method: In Person

Overview

  • Course Times + Location:

    We 2:30 PM – 5:20 PM
    AQ 5009, Burnaby

  • Prerequisites:

    To be determined by the instructor subject to approval by the department chair.

Description

CALENDAR DESCRIPTION:

The subject matter will vary from term to term depending upon the interests of faculty and students.

COURSE DETAILS:

This course is meant to teach applications of machine learning concepts to economic problems. In particular, the focus will be on program evaluation methods and their implementation via machine learning algorithms on R.

The course will cover:

  • Standard econometric methods (OLS, GLS, IV regressions)
  • Program evaluation methods: Average Treatment effects estimation, Difference-in-differences methods, Regression discontinuity designs
  • Machine learning: Supervised and unsupervised methods
  • Implementation of the methods in R

Topics: program evaluation, machine learning, R

Grading

  • Term Paper 30%
  • one paper presentations 20%
  • Final Exam 30%
  • Midterm Exam 20%

NOTES:

Grading Guidelines: Standard letter grades will be given the following interpretation

A+, A, A-: Excellent.  Student has demonstrated knowledge of all or almost all course content and can apply this knowledge in unfamiliar or complex settings.  Students regularly earning grades in this range are well-suited for honours and/or graduate study in economics.  Students regularly earning a grade of A+ merit consideration for major undergraduate awards.

B+, B, B-: Good.  Student has demonstrated knowledge of most course content and can apply this knowledge in familiar settings.  Students regularly earning grades in this range are well-suited for the economics major or minor.

C+, C: Satisfactory. Student has demonstrated knowledge of basic course content.  Students earning a grade in this range are qualified to take any economics course for which this course is a prerequisite.

C-: Marginally satisfactory. Student has demonstrated knowledge of most of the basic course content.  Students earning this grade are marginally qualified to take any economics course for which this course is a prerequisite.

D: Marginally unsatisfactory.  Student has demonstrated knowledge of some basic course content.  Students earning this grade are not qualified to take economics courses for which this course is a prerequisite.

F: Unsatisfactory.  Student has not demonstrated adequate knowledge of basic course content.

 

 

Materials

MATERIALS + SUPPLIES:

All material will be posted on canvas, and lectures will be given in person.  

 

REQUIRED READING:

None

RECOMMENDED READING:

- “Mostly harmless Econometrics” by Joshua D. Angrist and Jorn-Steffen Picshke

- “Introduction to statistical learning with R” by Gareth James, Daniela Witten, Trevor Hastie and Rob Tibshirani (available at https://www.statlearning.com/)

- “Causal inference: the mixtape”, by Scott Cunningham (free on https://mixtape.scunning.com/index.html)

 


Department Undergraduate Notes:

Please note that, as per Policy T20.01, the course requirements (and grading scheme) outlined here are subject to change up until the end of the first week of classes.

Final exam schedules will be released during the second month of classes. If your course has a final exam, please ensure that you are available during the entire final exam period until you receive confirmation of your exam dates. 

Students requiring accommodations as a result of a disability must contact the Centre for Accessible Learning (CAL) at 778-782-3112 or caladmin@sfu.ca.

***NO TUTORIALS DURING THE FIRST WEEK OF CLASSES***

Registrar Notes:

ACADEMIC INTEGRITY: YOUR WORK, YOUR SUCCESS

SFU’s Academic Integrity web site http://www.sfu.ca/students/academicintegrity.html is filled with information on what is meant by academic dishonesty, where you can find resources to help with your studies and the consequences of cheating.  Check out the site for more information and videos that help explain the issues in plain English.

Each student is responsible for his or her conduct as it affects the University community.  Academic dishonesty, in whatever form, is ultimately destructive of the values of the University. Furthermore, it is unfair and discouraging to the majority of students who pursue their studies honestly. Scholarly integrity is required of all members of the University. http://www.sfu.ca/policies/gazette/student/s10-01.html

TEACHING AT SFU IN SUMMER 2022

Teaching at SFU in summer 2022 will involve primarily in-person instruction.  Some courses may be offered through alternative methods (remote, online, blended), and if so, this will be clearly identified in the schedule of classes. 

Enrolling in a course acknowledges that you are able to attend in whatever format is required.  You should not enroll in a course that is in-person if you are not able to return to campus, and should be aware that remote, online, or blended courses study may entail different modes of learning, interaction with your instructor, and ways of getting feedback on your work than may be the case for in-person classes.

Students with hidden or visible disabilities who may need class or exam accommodations, including in the context of remote learning, are advised to register with the SFU Centre for Accessible Learning (caladmin@sfu.ca or 778-782-3112) as early as possible in order to prepare for the summer 2022 term.