

onic V	Vaves Frequency	
• The fi	requency range of hu eximately 20Hz to 20,0	iman hearing is 000Hz
 Below 	v, it is subsonic (or ir	ifrasonic) and
ADOVE Anim Table 1-1. Fre		
• Anim Table 1-1. Fre Name	quency range of common animals Lowest Approximate Frequency	Hinbest Approximate
ADOVE Anim Table 1-1. Free Name	quency range of common animals Lowest Approximate Frequency	Highest Approximate Frequency
ADOVE Anim Table 1-1. Fre Name	quency range of common animals Lowest Approximate Frequency 20 Hz	Highest Approximate Frequency 20,000 Hz
ADOVE Anim Table 1-1. Fre Name Human Cat	quency range of common animals Lowest Approximate Frequency 20 Hz 45 Hz	Highest Approximate Frequency 20,000 Hz 85.000 Hz
ADOVE Anim Table 1-1. Fre Name Human Cat Dog	quency range of common animals Lowest Approximate Frequency 20 Hz 45 Hz 50 Hz	Highest Approximate Frequency 20,000 Hz 85,000 Hz 45,000 Hz
ADOVE Anim Table 1-1. Fre Name Human Cat Dog Elephant	quency range of common animals Lowest Approximate Frequency 20 Hz 45 Hz 50 Hz 5 Hz	Highest Approximate Frequency 20,000 Hz 85,000 Hz 45,000 Hz 10,000 Hz
ADOVE Anim Table 1-1. Fre Name Human Cat Dog Elephant Bat	quency range of common animals Lowest Approximate Frequency 20 Hz 45 Hz 50 Hz 5 Hz 10,000 Hz	Highest Approximate Frequency 20,000 Hz 85,000 Hz 45,000 Hz 10,000 Hz

Sonic Waves Frequency

•Conversely, objects can produce sonic waves in various frequency ranges:

Brass	Top		
Soprano saxophone	225 Hz-1 kHz		
Alto saxophone	125 Hz900 Hz		
Tenor Saxophone	110 Hz-630 Hz		
Baritone saxophone	70 Hz-450 Hz		
Bass saxophone	55 Hz315 Hz	Vocal	Approximate Frequency Range
Trumpet (C)	170 Hz—1 kHz	Soprano	250 Hz1 kHz
Trumpet (F)	300 Hz-1 kHz	Contralto	200 Hz700 Hz
Alto trombone	110 Hz630 Hz	Contrato	110 Hz 425 Hz
Tenor Trombone	80Hz600Hz	Baritone	110 Hz-425 Hz
Bass Trombone	63Hz400Hz	Bass	80 Hz350 Hz
Tuba	45Hz375Hz	Woodwind	Тор
Valve Horn	63Hz700Hz	Piccolo	630 Hz5 kHz
Strings		Flute	250 Hz2 5 kHz
Violin	200Hz-3.5K	Ohee	360 Hz 1 E HJz
Viola	125Hz—1K	Ubbe	230 H2-1.3 KH2
Cello	63Hz—630Hz	Clarinet (B flat or A)	125 Hz2 kHz
Vouble Bass	40Hz-200Hz	Clarinet (E flat)	200 Hz2 kHz
Guitar	80Hz630Hz	Bass clarinet	75 Hz800 Hz
Keyboards		Basset horn	90 Hz1 kHz
Piano	28Hz-4.1K	Car Applain	160 Hz 1 kHz
Organ	20Hz—7K	Cor Anglais	100 H2 1 KH2
Percussion		- Rassoon	55 HZ5/5 HZ
Celeste	260Hz-3.5K	 Double bassoon 	25 Hz200 Hz
Timpani	90Hz180Hz		
Glockenspiel	63Hz180Hz		
Xylophone	700Hz3.5K		
IAT-380 Sound Design		13	Philippe Pasquier September 2008
IAI-300 Sound Design		15	

	Sound	Decibel (dB)	Description
	Threshold of hearing	0	The quietest audible sound
	Quiet whisper	10	Just audible
Amplitude	Quiet recording studio		×
	Bedroom		
	Public library	30	Room ambience, very quiet
	Very, very soft music		
	Normal suburban outdoors	40	Quiet but clearly audible
	A small office	50	Low-level speech
	Very soft music		
	Low radio volume		
	Noisy business office		
	Conversational speech between	60	Very noticeable, intrusive
	two people 3 to 5 feet apart		
	Ringing telephones		
	Normal practice piano		
	Very noisy, large office	70	Hard to talk on the telephone
The desibel	Road traffic		
I ne decipei	Noisy restaurant		
	Very loud singer 3'		
scale (Loud busy traffic corner		
	Average factory	80	Agitating and annoying
(is more reasonable	Heavy truck	90	Level at which hearing loss will occur if sustained for more
then a linear			than 8 hours a day
than a linear	New York subway		
intensity scale)	Inside large orchestra	100	Hearing loss will occur if sustained for more than
			2 hours per day
	Power tools	110	Hearing loss will occur if sustained for more than
	~		15 minutes per day
	Planes on a runway	120	Hearing loss will occur if sustained for more than a short
			period of time
	Artillery 100 yards	130	Pain threshold
	Pneumatic (jack) hammer		Brief exposure can cause hearing damage
	Jet engines 25 meters	140	Danger levels
	Physical pain	150	Extreme danger levels
	Chest vibrates		
	Choking		Permanent, instantaneous hearing damage
	crose proximity explosion	160-180	Death of hearing tissue
			Perforation of ear drum
LAT 280 Sound Decign	<u>.</u>	10	Dhilippo Dasquior, Sontombor 2009
TAT-360 Souria Design		19	Fillippe Fasquiel, September 2008

Digitalisin	g sou	nd	
 Anti Aliasing low-pass filter at 20KHz (cutting frequency, but attenuated signal will go through up to 22050). If we double that number we do get 44.1KHz Similarly, the bit depth is very important 			
8000Hz, 8bit	2	44.1kHz, 8bit	2
8000Hz, 16bit	2	44.1kHz, 16bi	t a
 44.1Khz, 16bits forms the Redbook Standard Why then some equipment (solid state recorder, soundboards, DAT,) do more (which uses more memory)? 			
IAT-380 Sound Design		36	Philippe Pasquier, September 2008

Digitalising sound

Sampling rates commonly used:

- 8,000 Hz: telephone and encrypted walkie-talkie, wireless intercom and wireless microphone transmission; adequate for human speech but without sibilance; ess sounds like eff
- 11,025 Hz: one quarter the sampling rate of audio CDs; used for lower-quality PCM, MPEG audio and for audio analysis of subwoofer bandpasses
- 22,050 Hz: one half the sampling rate of audio CDs; used for lower-quality PCM and MPEG audio and for audio analysis of low frequency energy. Suitable for digitizing early 20th century audio formats such as 78s[7]
- 32,000 Hz: miniDV digital video camcorder, video tapes with extra channels of audio (eg. DVCAM with 4 Channels of Audio), DAT (LP mode), Germany's Digitales Satelliterradio (German), NICAM digital audio, used alongside analogue television sound in some countries. High-quality digital wireless microphones.
- 44,056 Hz: PCM adaptor using NTSC video tapes (245 lines by 3 samples by 59.94 frames per second), sometimes misused to play back audio streams sampled at 44,100 Hz (and vice versa)
- 44,100 Hz: audio CD, also most commonly used with MPEG-1 audio (VCD, SVCD, MP3), adopted from the PCM adaptor using PAL video tapes (588 lines by 3 samples by 25 frames per second). Much pro audio gear uses (or is able to select) 44.1 kHz sampling, including mixers, EQs, compressors, reverb, crossovers, recording devices and CD-quality encrypted wireless microphones.

37

Philippe Pasquier, September 2008

IAT-380 Sound Design

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><table-container>

For next week
• Readings:
 Road, C. 'Chapter 1: Digital Audio Concepts'. The Computer Music Tutorial. US: MIT Press, 1996 ISBN: 0262680823, pp. 5 to 47, 43 of 1234 pages. Copyright: MIT Press / Access Copyright, 1996. (if not already done)
 Cancellaro, J. 'Chapter 2'. Sound Design for Interactive Media. US: Thomson Delmar Learning, 2005 ISBN: 1401881025, pp. 33 to 64, 32 of 258 pages. Copyright: Thomson Delmar Learning / Access Copyright, 2005
 Cancellaro, J. 'Chapter 3'. Sound Design for Interactive Media. US: Thomson Delmar Learning, 2005 ISBN: 1401881025, pp. 67 to 88, 22 of 258 pages. Copyright: Thomson Delmar Learning / Access Copyright, 2005
 That is a lot (97p) but that is to get you started and after there will be very few readings (sometime none).
IAT 200 Sound Docigo // Philippe Pasquiar, September 2008

Today's active listening session		
2	3	
 Musique concrète (Frenc music"), is a style of avair relies on recorded sound environmental sounds au not inherently musical, to Pierre Schaeffer (1910-1995) con concrète' to describe a music m directly with sounds, as against working with symbols for sound 	th; liter nt-garc ls, incl nd othe o creat ined the nade 'con t music i ds (as in	ally, "concrete de music that uding natural er noises that are e music. term 'musique ncretely' by working nade 'abstractly' by a musical score).
 Other famous composers include 	de:	
 Pierre Henry, 		
 – Luc Ferrari, 		
 Pierre Boulez, 		
 Karlheinz Stockhausen, 		
 Edgar Varese 		
– Iannis Xenakis		
IAT-380 Sound Design	50	Philippe Pasquier, September 2008

Cinema for the ears

Pierre Shaeffer was a French composer:

- known to be the first composer to make music using magnetic tape
- Etude aux Chemins de Fer (Railroad Study), composed by Pierre Schaeffer in 1948, is a recorded assemblage of steam engines, whistles, and other railroad sounds. It is the first recorded assemblage of sounds.

- In 1951, he organized the Groupe de Recherche de Musique Concrète, the focus of which was working with tape recorders.
- The photo shows Schaeffer in 1952 playing the phonogène à clavier, a tape recorder with its speed altered by playing any of twelve keys on a keyboard.

IAT-380 Sound Design

Philippe Pasquier, September 2008

