

Spatial Sound Perception

- The main cues to determine the angle of afference of a sound:
- Temporal cues:
 - The wavefront is not arriving at both hears at the same time
 - The difference in the time of arrival of the wavefront allows calculating the angle (in fact, the brain is reasoning in term of phase)
 - This is known as the Interaural Time Delay (ITD)
 - The precedence effect
- Amplitude cues:

IAT-380 Sound Design

- Extra distance travelled plus screening effect of the head.
- This is known as the Interaural Level Difference (ILD)

10

Philippe Pasquier, September 2008

Spatial Sound Perception

• Spectral cues:

- The shape of your head and your ears are filtering the sound (especially the high frequencies).
- This is known as Head related Frequency Response (HRFR)
- This is the main mechanism when ILD and ITD give ambiguous results (e.g. for signals in the median plan)
- Help for front-back positioning and azimuth
- Note that trebles are always perceived as "light" and coming from the top while the basses are "heavy" and close to the ground.
- · Head movement:

IAT-380 Sound Design

- Check if ITD and ILD are increasing or decreasing
- This is mainly how we distinguish front and back

11

Spatial Sound Perception

- Main cues for the perception of distance: – The fall of loudness with distance
 - Ratio of direct to reverberant sound
 - Pattern and directions of early delays
 - Higher frequencies drop with distance (due to the absorption of moisture by the air)
- These are all dependant on the knowledge of both the spectra and loudness of the sound source.
- This is true in general for sound spatialisation:
 Foot steps would generally be more precisely located than abstract sounds
- Visual cues: no matter what you do, the voice of a visible character will be associated to him.

IAT-380 Sound Design

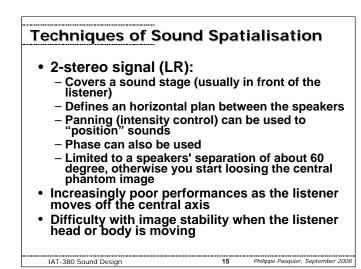
12 Philippe Pasquier, September 2008

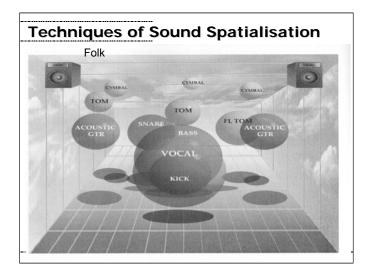
Philippe Pasquier, September 2008

 The various types of s techniques developed classified as either: Perception simulati Aim to reproduct hear in a natural 	over the ye	ears can be
 Examples: Binau stereophony, Do Sound-field simulat Aims to reproduct Examples: Beam synthesis, Ambis 	lby surroun ion: ce the actua forming, w	d, etc. Il sound field. ave field

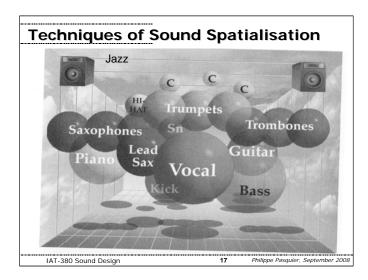
Techniques of Sound Spatialisation Monophony: _ Telephone, radio AM

• Stereophony:

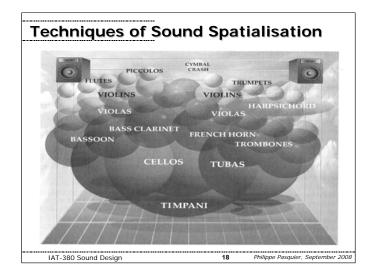

DOLBY STEREO


Philippe Pasquier, September 2008

- CD, Tv, radio FM, ...
 Dolby stereo (LR): introduced for film in 1976
- Multiphony:
 - 4.1: quadriphony (concert, ...)
 - 5.1: Home cinema, DVD
 - 7.1: DVD
 - 9.1
 - 24.2: electroacoustic concerts
 - Acousmonium: electroacoustic concerts


14

IAT-380 Sound Design



Techniques of Sound Spatialisation

- 3-stereo (LCR, left, center, right):
 - The central image is not a phantom anymore (so it is more stable)
- 5.1 (Cinema surround, Dolby surround, ...):
 - The central channel is used to lock the dialogues to the screen and improve performance for off-centre listeners (it also improves intelligibility when compared to stereo presentation)
 - Surround speakers: diffuse ambient sounds and sound effects and are meant to fool perception by making the listener believe that there are sound all around her
 - Low frequency effects: many sound effects have substantial low frequency components

19

Philippe Pasquier, September 2008

Philippe Pasquier, September 2008

N-stereo: generalisation

IAT-380 Sound Design

IAT-380 Sound Design

Techniques of Sound Spatialisation

• Binaural:

- Reproduction of what the ears would hear in a natural situation
- Better with headphones but can also be done with loudspeakers
- Recordings are done with a dummy head with microphones in its ears
- Or playback is using head related transfer functions HRTF (one per ear) to simulate:
 Individuals (synthetic or natural)
 - Averaged for many listeners
 - Sometimes complemented with head
- tracking (help to correct front-back reversal errors)

Can be very convincing

Techniques of Sound Spatialisation

- Computationally intense if one want a realistic result: - With speakers it is less efficient because of:
 - Crosstalk (the too signals are not isolated as in a headset)

21

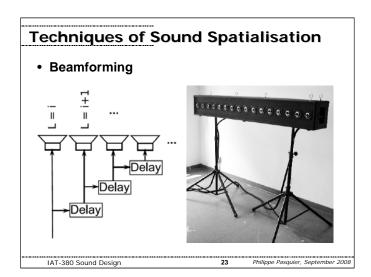
20

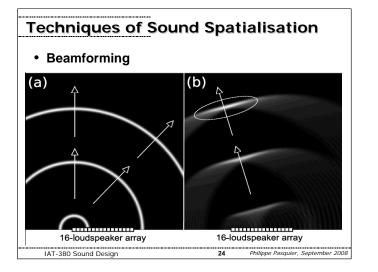
- The position of the listener is important
- Still it has been applied industrially (sound cards, ...)
 You can search the web to listen to a number of examples (with your headphones)

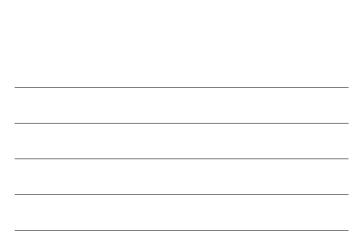
IAT-380 Sound Design

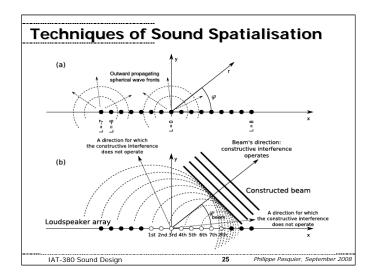
Philippe Pasquier, September 2008

Techniques of Sound Spatialisation

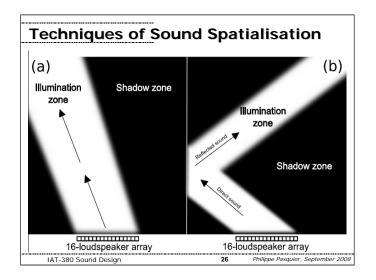

- Ambisonic surround sound:
 - Special format (quite controversial)
 - Try to simulate the sound field
 - Unlike stereo, all the speakers are working together
 - The most common configurations use either 4 (plan) or 8 (3D) speakers.
 - In the 3D, each sound is encoded/decoded as a set of:


22


Philippe Pasquier, September 2008


- Overall pressure levels
- Up-down velovity
- Front-back Velocity
- Left Right Velocity

IAT-380 Sound Design





such as stereo, the localization of virtual sources in WFS does not depend on or change with the listener's position.

	?)	
	"Music is the poetry of the air."		
		Jean P	aul Friedrich Richter
	IAT-380 Sound Design	28	Philippe Pasquier, September 2008

