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Ferroelectrics and the Curie—Weiss law
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Abstract. The electrical properties of ferroelectric substances are investigated and related
to the Curie—-Weiss law. A cryogenic experiment suitable for students measures the electrical
susceptibility of strontium titanate in the 90-300 K temperature range. By measuring the electrical
susceptibility of a modified barium titanate ceramic between 273 K and 343 K a phase transition
is clearly observed at 304 K.

1. Electrical properties of ferroelectrics

Ferromagnetic substances lose their spontaneous magnetization at temperatures above the
Curie temperature, 7¢, and become paramagnetic [1]. This involves a phase transition in
the crystal structure. Similarly, ferroelectrics lose their intrinsic polarization at temperatures
above a transition temperature and become paraelectric. Above the transition temperature the
electrical susceptibility, x, of the substance follows the law
A

ST -Tc
where A is a constant [2]. This is the same form of expression as the Curie—Weiss law
of magnetic susceptibility. For ferroelectrics, expression (1) is no more than a mean-field
approximation applied to the fluctuating local electric fields in the crystal structure.

A simple method of determining electrical susceptibility is to measure the capacitance of

aparallel plate capacitor containing the ferroelectric substance as a dielectric [3]. Capacitance,
C, is related to susceptibility through the expression

X ey

C=Co(1+x) (2)
where Cj is the capacitance without a dielectric and is determined from
€0A
Co=— 3
0= (3)

where A is the area of the capacitor plate, d is the distance between the plates and gy =
8.85 x 1072 Fm™' [4].

2. Electrical susceptibility of strontium titanate

2.1. Interesting properties of strontium titanate

The aim of this experiment is to measure the variation of the electrical susceptibility of
the ferroelectric, strontium titanate (SrTiO3) at low temperature. Much research has been
carried out into the interesting and unusual properties of SrTiO3 at low temperature including
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Figure 1. Set-up for measurement of the susceptibility of SrTiO3 at low temperature.

superconductivity with a transition temperature of 0.3 K [5], quantum paraelectric behaviour
below 4 K [6], a high level of piezoelectricity at 1.6 K [7] and a structural phase transition at
~ 105 K [8].

Cryogenic apparatus is required to measure the electrical properties of ferroelectric
substances at low temperature, and certain precautions have to be taken for the safe handling
of cryogenic liquids. In this instance, liquid nitrogen, having a boiling point of 77.4 K, is used.
Safety goggles, thermal protective gloves and high-density polystyrene dewars are required by
students for handling this liquid.

2.2. Measurement of electrical susceptibility at low temperature

In this experiment the SrTiO3; sample (Crystal GmbH, Berlin) was in the form of a (100)-
orientated slice (10 mm x 10 mm x 0.27 mm) of a single crystal. Gold electrodes of 6.8 mm
diameter were vacuum evaporated on both sides of the slice to form a capacitor. This sample
was positioned on a copper platform inside the vacuum container of a cryostat [9] as shown
in figure 1. A T-type thermocouple was glued to the edge of the sample. A digital LCR meter
(AVO Megger B131) set at 1 kHz was used to measure the capacitance of the sample. A test
fixture [10] interfaced the sample leads with the LCR meter. To measure the temperature of
the sample, the thermocouple was connected to a digital thermometer (Digitron T208). After
evacuating the vacuum container, the copper cold-finger of the cryostat was immersed in liquid
nitrogen to bring the temperature down to ~ 90 K. In the interest of safety, the 4-litre high-
density polystyrene dewar was clamped securely with an aluminium collar attached to a wide
base. After temperature stabilization, the cryostat was removed from the liquid nitrogen and
allowed to warm up while readings of capacitance and temperature were taken up to ~ 300 K.

To measure the total stray capacitance of the leads and test fixture, a 270 pF (£1%
tolerance) silvered mica capacitor was substituted for the sample. In the 90-300 K temperature
range the average value of the stray capacitance was 80 pF. This was subtracted from the
measured capacitance value of the SrTiO; sample to give the corrected value.

The errors specified for the LCR meter and digital thermometer were £0.7% and £0.5%
respectively.
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Figure 2. Temperature dependence of the electrical susceptibility of SrTiO3.
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Figure 3. Plot of susceptibility versus 1/(T — Tp) for SrTiOs.

2.3. Strontium titanate and the Curie—Weiss law

From equation (3) and the dimensions of the capacitor quoted in the last section, Cy was
determined as ~ 1 pF. Using this and the measured capacitance value at each temperature,
the electrical susceptibility was calculated from equation (2). Figure 2 shows the change of
electrical susceptibility with temperature for the SrTiO3 sample. A plot of susceptibility versus
1/(T — Tp) is presented in figure 3, where Ty is the critical temperature in the Curie—Weiss
law expression. A least-squares method [11] was used to calculate the line that best fitted the
data. It was necessary to initially estimate 7y and then adjust it until the best straight line was
obtained. This occurs when the residual sum of squares [12] is minimized. An easy way of
doing this was to set up a Microsoft Excel spreadsheet and use the Linest or Polyfit function
to obtain the best fit. The experimental expression for the total susceptibility was
6.48 x 10*

Clearly, from (4), the electrical susceptibility has contributions from two effects

X = Xp+ Xcw- (5)
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xp arises from the polarization of the ions themselves and is temperature independent. xcw
is the contribution from the movement of the ions from their equilibrium position and is
temperature dependent [13, 14]. From figure 3, xcw follows the Curie-Weiss law from
~ 300 K down to 112 K with Ty = 49 + 0.7 K. Below 112 K, xcw departs from the law.
For comparison, previous work showed that the electrical susceptibility of a similar sample
of SrTiO; followed the law from 300 K to 105 K with 7Ty = 40 4+ 0.6 K [15]. Below 105 K
it appreciably departed from the Curie—Weiss law. A further study noted a cubic-tetragonal
phase transition in SrTiO3 at 105.5 K [16].

3. Phase transition in a modified barium titanate ceramic

3.1. Modification of properties of barium titanate

Using the method described here, the phase transition or Curie temperature, T¢, of a
ferroelectric ceramic, modified barium titanate (BaTiOs3), can be directly determined. This
polycrystalline form of BaTiO; is widely used as a dielectric in high-permittivity commercial
capacitors. In its pure single-crystal form, BaTiO3; has Tc ~ 393 K [17]. Above T¢ it is
paraelectric and has a cubic structure. Below T¢ it is ferroelectric with a tetragonal form. The
Tc of BaTiO5 can be easily modified by the substitution of small amounts of ions such as Pb?*,
Sr?* or Ca?* for the Ba2* ion [18]. Grain-size effects have been observed to alter T¢ [19]. Also
the susceptibility of ceramic BaTiOs is strongly dependent on the grain size, the finer the grain
the higher the dielectric constant [20].

3.2. Measurement of electrical susceptibility at moderate temperatures

Figure 4 shows the experimental layout. The sample holder was constructed from two copper
plates (50 mm x 27 mm x 5 mm) machined to a depth of 3 mm to accommodate the sample,
a T-type thermocouple and a standard 470 pF silvered mica capacitor. The sample was in the
form of a 0.1 uF ceramic disk capacitor with a modified BaTiOj dielectric (RS Components
Ltd). The dimensions of the capacitor were obtained by filing a section through a similar
capacitor and measuring the plate diameter (14 mm) and dielectric thickness (0.15 mm). A
10 2, 25 W aluminium-housed wirewound resistor directly attached to the copper block acted
as the heating element and was powered by a variable current supply (0—1 A DC). Capacitance
was measured at 1 kHz testing frequency using a LCR meter (AVO Megger B131) with a
test fixture [10]. For temperature measurements the thermocouple was connected to a digital
thermometer (Digitron T208).

Capacitance measurements were taken from 0-70 °C. Initially the sample was brought
to 0 °C by allowing some liquid nitrogen vapour to flow over the copper block and then the
heater current was adjusted to give a steady rise in temperature.

To estimate the stray capacitance of the test fixture and leads, the capacitance of a silvered
mica capacitor was measured over the temperature range and the known 470 pF subtracted
from this to give an average stray capacitance value of 35 pF. This was subtracted from the
measured capacitance of the sample to give the corrected value.

3.3. Phase transition temperature

From the dimensions taken from the ceramic capacitor, Cp was estimated as 10 pF. The
susceptibility was calculated using the capacitance value at each temperature and equation
(2). Figure 5 is a plot of electrical susceptibility versus temperature for the capacitor. T¢ for
the modified BaTiO3 was determined as 304 &+ 0.3 K from the maximum point on the curve.
The curve has the typical features of a high-permittivity ceramic capacitor with a modified
BaTiO; dielectric [21] and clearly shows the ferroelectric-to-paraelectric transition point. It is
easy to understand the very high susceptibility values attained at this transition point. The ions
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Figure 4. Measurement configuration for determination of the susceptibility of a modified BaTiO3
dielectric at moderate temperatures.
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Figure 5. Change in susceptibility versus temperature for a modified BaTiO3 ceramic capacitor.

are on the point of moving into or out of the position corresponding to spontaneous polarization
so an applied electrical field is able to produce large shifts in their movement. This motion of
the ions produces big changes in the electric dipole moment resulting in a high susceptibility.
Below T¢ an increasing degree of spontaneous saturation of polarization of the ferroelectric
corresponds to a falling susceptibility. Above 7¢ thermal agitation destroys the ordering of
the dipoles, consequently the susceptibility falls.

So in ferroelectric materials, 7¢ of the ceramic form is different from that of the single
crystal and is dependent on parameters like doping and grain size.

4. Conclusions

These experiments have proven to be popular with students. The SrTiO; experiment is an
excellent introduction to the techniques of cryogenics and vacuum systems. Also, students
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are invited to investigate the electrical properties of ferroelectrics, a class of substances with
wide applications in the electronics industry. They can relate their electrical properties to the
Curie—Weiss law and directly observe how they change with a structural phase change.
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