

Ferroelectrics and the Curie–Weiss law

Matthew Trainer

Kelvin Building, Department of Physics and Astronomy, University of Glasgow, Glasgow
G12 8QQ, UK

Received 9 March 2000, in final form 7 July 2000

Abstract. The electrical properties of ferroelectric substances are investigated and related to the Curie–Weiss law. A cryogenic experiment suitable for students measures the electrical susceptibility of strontium titanate in the 90–300 K temperature range. By measuring the electrical susceptibility of a modified barium titanate ceramic between 273 K and 343 K a phase transition is clearly observed at 304 K.

1. Electrical properties of ferroelectrics

Ferromagnetic substances lose their spontaneous magnetization at temperatures above the Curie temperature, T_C , and become paramagnetic [1]. This involves a phase transition in the crystal structure. Similarly, ferroelectrics lose their intrinsic polarization at temperatures above a transition temperature and become paraelectric. Above the transition temperature the electrical susceptibility, χ , of the substance follows the law

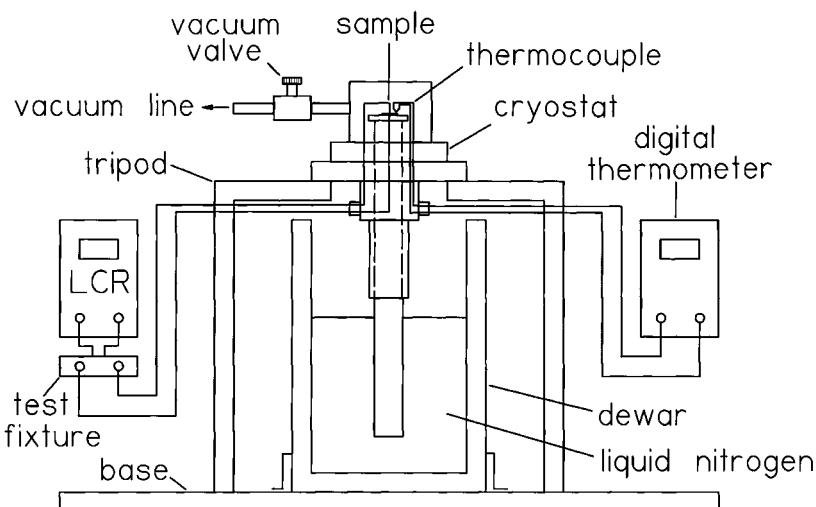
$$\chi = \frac{A}{T - T_C} \quad (1)$$

where A is a constant [2]. This is the same form of expression as the Curie–Weiss law of magnetic susceptibility. For ferroelectrics, expression (1) is no more than a mean-field approximation applied to the fluctuating local electric fields in the crystal structure.

A simple method of determining electrical susceptibility is to measure the capacitance of a parallel plate capacitor containing the ferroelectric substance as a dielectric [3]. Capacitance, C , is related to susceptibility through the expression

$$C = C_0(1 + \chi) \quad (2)$$

where C_0 is the capacitance without a dielectric and is determined from


$$C_0 = \frac{\varepsilon_0 A}{d} \quad (3)$$

where A is the area of the capacitor plate, d is the distance between the plates and $\varepsilon_0 = 8.85 \times 10^{-12} \text{ F m}^{-1}$ [4].

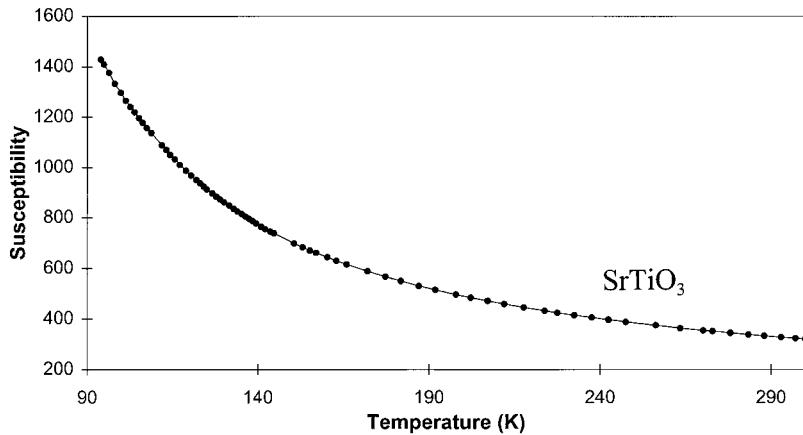
2. Electrical susceptibility of strontium titanate

2.1. Interesting properties of strontium titanate

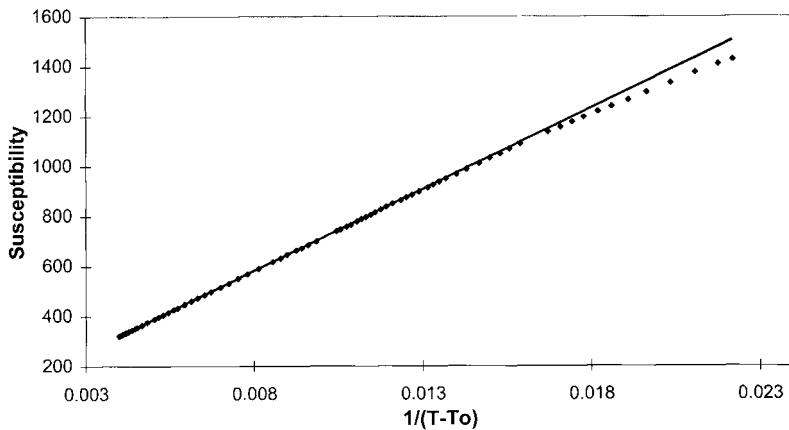
The aim of this experiment is to measure the variation of the electrical susceptibility of the ferroelectric, strontium titanate (SrTiO_3) at low temperature. Much research has been carried out into the interesting and unusual properties of SrTiO_3 at low temperature including

Figure 1. Set-up for measurement of the susceptibility of SrTiO_3 at low temperature.

superconductivity with a transition temperature of 0.3 K [5], quantum paraelectric behaviour below 4 K [6], a high level of piezoelectricity at 1.6 K [7] and a structural phase transition at ~ 105 K [8].


Cryogenic apparatus is required to measure the electrical properties of ferroelectric substances at low temperature, and certain precautions have to be taken for the safe handling of cryogenic liquids. In this instance, liquid nitrogen, having a boiling point of 77.4 K, is used. Safety goggles, thermal protective gloves and high-density polystyrene dewars are required by students for handling this liquid.

2.2. Measurement of electrical susceptibility at low temperature


In this experiment the SrTiO_3 sample (Crystal GmbH, Berlin) was in the form of a (100)-orientated slice (10 mm \times 10 mm \times 0.27 mm) of a single crystal. Gold electrodes of 6.8 mm diameter were vacuum evaporated on both sides of the slice to form a capacitor. This sample was positioned on a copper platform inside the vacuum container of a cryostat [9] as shown in figure 1. A T-type thermocouple was glued to the edge of the sample. A digital LCR meter (AVO Megger B131) set at 1 kHz was used to measure the capacitance of the sample. A test fixture [10] interfaced the sample leads with the LCR meter. To measure the temperature of the sample, the thermocouple was connected to a digital thermometer (Digitron T208). After evacuating the vacuum container, the copper cold-finger of the cryostat was immersed in liquid nitrogen to bring the temperature down to ~ 90 K. In the interest of safety, the 4-litre high-density polystyrene dewar was clamped securely with an aluminium collar attached to a wide base. After temperature stabilization, the cryostat was removed from the liquid nitrogen and allowed to warm up while readings of capacitance and temperature were taken up to ~ 300 K.

To measure the total stray capacitance of the leads and test fixture, a 270 pF ($\pm 1\%$ tolerance) silvered mica capacitor was substituted for the sample. In the 90–300 K temperature range the average value of the stray capacitance was 80 pF. This was subtracted from the measured capacitance value of the SrTiO_3 sample to give the corrected value.

The errors specified for the LCR meter and digital thermometer were $\pm 0.7\%$ and $\pm 0.5\%$ respectively.

Figure 2. Temperature dependence of the electrical susceptibility of SrTiO_3 .

Figure 3. Plot of susceptibility versus $1/(T - T_0)$ for SrTiO_3 .

2.3. Strontium titanate and the Curie–Weiss law

From equation (3) and the dimensions of the capacitor quoted in the last section, C_0 was determined as ~ 1 pF. Using this and the measured capacitance value at each temperature, the electrical susceptibility was calculated from equation (2). Figure 2 shows the change of electrical susceptibility with temperature for the SrTiO_3 sample. A plot of susceptibility versus $1/(T - T_0)$ is presented in figure 3, where T_0 is the critical temperature in the Curie–Weiss law expression. A least-squares method [11] was used to calculate the line that best fitted the data. It was necessary to initially estimate T_0 and then adjust it until the best straight line was obtained. This occurs when the residual sum of squares [12] is minimized. An easy way of doing this was to set up a Microsoft Excel spreadsheet and use the Linest or Polyfit function to obtain the best fit. The experimental expression for the total susceptibility was

$$\chi = 61.7 + \frac{6.48 \times 10^4}{T - 49}. \quad (4)$$

Clearly, from (4), the electrical susceptibility has contributions from two effects

$$\chi = \chi_P + \chi_{CW}. \quad (5)$$

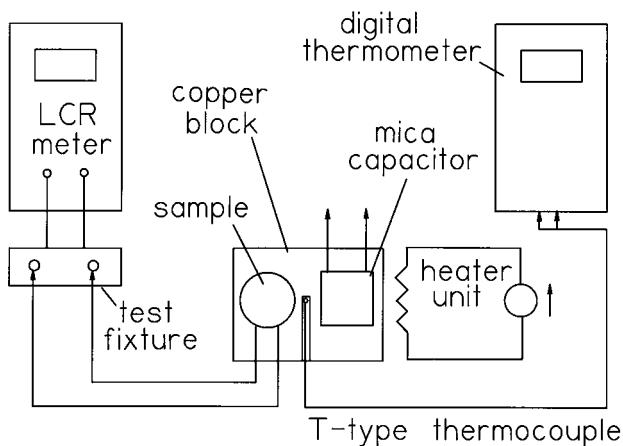
χ_P arises from the polarization of the ions themselves and is temperature independent. χ_{CW} is the contribution from the movement of the ions from their equilibrium position and is temperature dependent [13, 14]. From figure 3, χ_{CW} follows the Curie–Weiss law from ~ 300 K down to 112 K with $T_0 = 49 \pm 0.7$ K. Below 112 K, χ_{CW} departs from the law. For comparison, previous work showed that the electrical susceptibility of a similar sample of SrTiO_3 followed the law from 300 K to 105 K with $T_0 = 40 \pm 0.6$ K [15]. Below 105 K it appreciably departed from the Curie–Weiss law. A further study noted a cubic-tetragonal phase transition in SrTiO_3 at 105.5 K [16].

3. Phase transition in a modified barium titanate ceramic

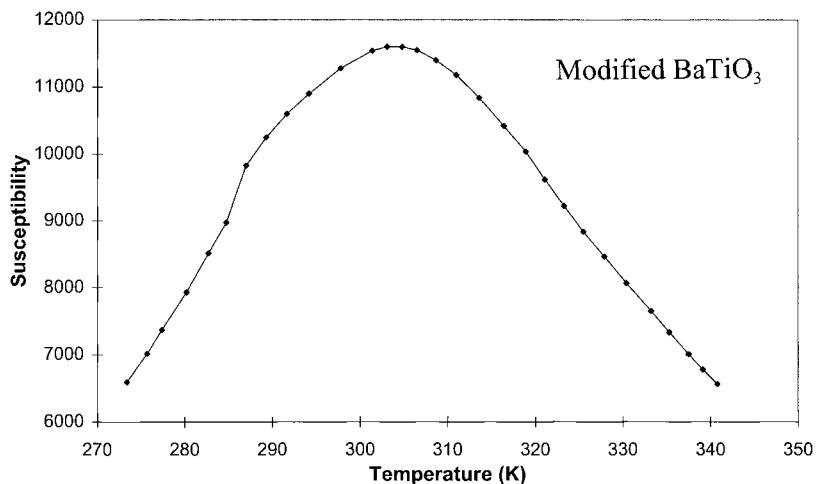
3.1. Modification of properties of barium titanate

Using the method described here, the phase transition or Curie temperature, T_C , of a ferroelectric ceramic, modified barium titanate (BaTiO_3), can be directly determined. This polycrystalline form of BaTiO_3 is widely used as a dielectric in high-permittivity commercial capacitors. In its pure single-crystal form, BaTiO_3 has $T_C \sim 393$ K [17]. Above T_C it is paraelectric and has a cubic structure. Below T_C it is ferroelectric with a tetragonal form. The T_C of BaTiO_3 can be easily modified by the substitution of small amounts of ions such as Pb^{2+} , Sr^{2+} or Ca^{2+} for the Ba^{2+} ion [18]. Grain-size effects have been observed to alter T_C [19]. Also the susceptibility of ceramic BaTiO_3 is strongly dependent on the grain size, the finer the grain the higher the dielectric constant [20].

3.2. Measurement of electrical susceptibility at moderate temperatures


Figure 4 shows the experimental layout. The sample holder was constructed from two copper plates (50 mm \times 27 mm \times 5 mm) machined to a depth of 3 mm to accommodate the sample, a T-type thermocouple and a standard 470 pF silvered mica capacitor. The sample was in the form of a 0.1 μF ceramic disk capacitor with a modified BaTiO_3 dielectric (RS Components Ltd). The dimensions of the capacitor were obtained by filing a section through a similar capacitor and measuring the plate diameter (14 mm) and dielectric thickness (0.15 mm). A 10 Ω , 25 W aluminium-housed wirewound resistor directly attached to the copper block acted as the heating element and was powered by a variable current supply (0–1 A DC). Capacitance was measured at 1 kHz testing frequency using a LCR meter (AVO Megger B131) with a test fixture [10]. For temperature measurements the thermocouple was connected to a digital thermometer (Digitron T208).

Capacitance measurements were taken from 0–70 °C. Initially the sample was brought to 0 °C by allowing some liquid nitrogen vapour to flow over the copper block and then the heater current was adjusted to give a steady rise in temperature.


To estimate the stray capacitance of the test fixture and leads, the capacitance of a silvered mica capacitor was measured over the temperature range and the known 470 pF subtracted from this to give an average stray capacitance value of 35 pF. This was subtracted from the measured capacitance of the sample to give the corrected value.

3.3. Phase transition temperature

From the dimensions taken from the ceramic capacitor, C_0 was estimated as 10 pF. The susceptibility was calculated using the capacitance value at each temperature and equation (2). Figure 5 is a plot of electrical susceptibility versus temperature for the capacitor. T_C for the modified BaTiO_3 was determined as 304 ± 0.3 K from the maximum point on the curve. The curve has the typical features of a high-permittivity ceramic capacitor with a modified BaTiO_3 dielectric [21] and clearly shows the ferroelectric-to-paraelectric transition point. It is easy to understand the very high susceptibility values attained at this transition point. The ions

Figure 4. Measurement configuration for determination of the susceptibility of a modified BaTiO_3 dielectric at moderate temperatures.

Figure 5. Change in susceptibility versus temperature for a modified BaTiO_3 ceramic capacitor.

are on the point of moving into or out of the position corresponding to spontaneous polarization so an applied electrical field is able to produce large shifts in their movement. This motion of the ions produces big changes in the electric dipole moment resulting in a high susceptibility. Below T_C an increasing degree of spontaneous saturation of polarization of the ferroelectric corresponds to a falling susceptibility. Above T_C thermal agitation destroys the ordering of the dipoles, consequently the susceptibility falls.

So in ferroelectric materials, T_C of the ceramic form is different from that of the single crystal and is dependent on parameters like doping and grain size.

4. Conclusions

These experiments have proven to be popular with students. The SrTiO_3 experiment is an excellent introduction to the techniques of cryogenics and vacuum systems. Also, students

are invited to investigate the electrical properties of ferroelectrics, a class of substances with wide applications in the electronics industry. They can relate their electrical properties to the Curie–Weiss law and directly observe how they change with a structural phase change.

Acknowledgments

I thank Professor A J Craven for the excellent laboratory facilities and the staff of the mechanical workshop for construction of the cryostat.

References

- [1] Kraftmakher Y 1997 Curie point of ferromagnets *Eur. J. Phys.* **18** 448–52
- [2] Jona F and Shirane G 1993 *Ferroelectric Crystals* (New York: Dover)
- [3] Neville R C, Hoeneisen B and Mead C A 1972 Permittivity of strontium titanate *J. Appl. Phys.* **43** 2124–31
- [4] Lorrain P, Corson D P and Lorrain F 1988 *Electromagnetic Fields and Waves* (New York: W H Freeman) p 109
- [5] Owens F J and Poole C P 1996 *The New Superconductors* (New York: Plenum)
- [6] Müller K A and Burkard H 1979 SrTiO_3 : an intrinsic quantum paraelectric below 4 K *Phys. Rev. B* **19** 3593–602
- [7] Grupp D E and Goldman A M 1997 Giant piezoelectric effect in strontium titanate at cryogenic temperatures *Science* **276** 392–4
- [8] Müller K A and Berlinger W 1974 Static critical exponents of structural phase transitions *Phys. Rev. Lett.* **26** 13–6
- [9] Rose-Innes A C 1973 *Low Temperature Laboratory Techniques* (London: English Universities Press)
- [10] Trainer M 1999 Measurement of the capacitance–low temperature performance curve of a ceramic capacitor *Cryogenics* **39** 887–9
- [11] Borchers P H and Sheth C V 1995 Least-square fitting of a straight line to a set of data points *Eur. J. Phys.* **16** 204–10
- [12] Brock R K and Krischer W 1998 *Data Analysis BriefBook* (Berlin: Springer)
- [13] Rupprecht G and Bell R O 1964 Dielectric constant in paraelectric perovskites *Phys. Rev.* **135** A748–52
- [14] Craven A J 1998 *The Curie–Weiss Law* (Glasgow: University of Glasgow)
- [15] Dec J, Kleemann W and Westwanski B 1999 Scaling behaviour of strontium titanate *J. Phys.: Condens. Matter* **11** L379–84
- [16] Salje E K H, Gallardo M C, Jiménez J, Romero F J and del Cerro J 1998 The cubic-tetragonal phase transition in strontium titanate: excess specific heat measurements and evidence for a near-tricritical, mean field type transition mechanism *J. Phys.: Condens. Matter* **10** 5535–43
- [17] Strukov B A and Levanyuk A P 1998 *Ferroelectric Phenomena in Crystals: Physical Foundations* (Berlin: Springer)
- [18] Morrison F D, Sinclair D C and West A R 1999 Electrical and structural characteristics of lanthanum-doped barium titanate ceramics *J. Appl. Phys.* **86** 6355–66
- [19] Ricinschi D, Tura V, Mitoseriu L and Okuyama M 1999 Landau theory-based analysis of grain-size dependence of ferroelectric-to-paraelectric phase transition and its thermal hysteresis in barium titanate ceramics *J. Phys.: Condens. Matter* **11** 1601–13
- [20] Arlt G, Henmings D and de With G 1985 Dielectric properties of fine-grained barium titanate ceramics *J. Appl. Phys.* **58** 1619–25
- [21] Marlson A J and Herbert J M 1993 *Electroceramics* (London: Chapman and Hall)