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Transverse magnetization of spins diffusing in a bounded region in the presence of a constant field
gradient is studied. We investigate the breakdown at short times of the much used formula for the
Hahn echo amplitude in a constant gradient in unbounded space: . (27)/.#(0)=exp(~2Dg*7/3).
Here Dy is the diffusion constant in unbounded space and g is the field gradient multiplied by the
gyromagnetic ratio. We'  find that this formula  is replaced by
A7) A5(0)=exp[—2D qg*7/3+ADF*g* 732§/ V)] with an effective diffusion coefficient
Do(27) = Dy[1 — a\/I_)F(S/ V) + ---], where « is a constant and S/V is the surface to volume
ratio of the bounded region. Breakdown is complex but we find that the interplay between a natural
length scale .= (g/Do)~/* and the geometry of the region governs the problem. The long-time
behavior of the free induction decay and echo amplitude are then considered where pure
exp[—const ¢] decay is expected. We consider some simple geometries and find in addition to the
well-known result, In|M(z,£)| ~ —D0g2R4t valid for R,</, (where R,, is the size of the confining
space) that in the regime R,>1, the decay becomes lnIM (z,0)]|~—g¥*DY3t. We then argue
that this latter result should apply to more general geometries. We dlSCUSS implications for realistic
experimental echo measurements and conclude that the g%/ 3DL/® decay regime is hard to measure.

Implications for the effect of edge enhancement in NMR microscopy are also discussed.

I. INTRODUCTION

The purpose of this paper is to study some of the com-
plex range of phenomena resulting from the combined ef-
fects of diffusion, field gradients, and restricted geometries
on NMR measurements. '

Microscopic field gradients arise in practically all ex-
perimental situations due to variation in susceptibility within
the sample.! This can arise through the contrast between pore
space and grain in rocks or typically in biological systems
the contrast between tissue and fluid. In many rocks dephas-
ing of spins due to their diffusive motion in these gradients is
the dominant process resulting in attenuation of the Hahn
echo amplitude. Understanding such effects of microscopic
field inhomogeneity is important because they cannot always
be removed by appropriate pulse sequences and in any case
contain potentially useful information about the sample.

Macroscopic gradients also occur in a variety of experi-
ments. In nuclear magnetic resonance imaging NMRI spatial
encoding is performed through application of magnetic field
gradients. The effects of restricted diffusion in these gradi-
ents have recently received more attention both in so-called
diffusion weighted imaging and in NMR microscopy as reso-
lution is pushed down to the micron region and thus diffusive
length scales. One particularly interesting phenomenon is the
diffusive enhancement of images near the boundaries of the
system which are perpendicular to the gradient direction.
This edge enhancement opens the way to resolution of re-
strictions to diffusion of arbitrary thickness as has been dem-
onstrated in the experiments of Callaghan et al.”

Pulsed field gradient spin echo (PFGSE), experiments

also involve application of macroscopic field gradient pulses.
Diffusion during these gradient pulses needs to be accounted
for in explaining results even at relatively small k values.> At
large k values diffusion generally dominates since to obtain
large k values long pulses are required. Even inhomogeneity
in the dc background field of the magnet is an important
issue which is not easily circumvented by pulse sequences.

Previous work on restricted diffusion in inhomogeneous
fields has mostly relied on the Gaussian phase
approximation.*~® This is shown below only to be valid in
either in the limit of short times or in the limit of fast diffu-
sion at long times. Le Doussal and Sen’ have studied the
exact solution of diffusion of spins in field gradients which
feel a harmonic restoring force, however, this can only be a
crude model of the abrupt barriers present in experimental
situations. Stoller et al.® have discussed in detail the case of
spins confined in the one-dimensional slab geometry with a
uniform field gradient. This work forms the basis for under-
standing the non-Gaussian regime in more complicated ge-
ometries.

In this paper we concentrateé on the Hahn echo experi-
ment for spins diffusing in systems of the following type.
The applied field has a constédnt gradient, the spins are free to
diffuse in some bounded region (not necessarily connected)
to be known as the pore space from the walls of which they
are reflected, and the initial concentratlon of spins is taken to
be uniform.

In Sec. II we discuss the well-known formula® valid for
unbounded space:

A(27)] A5(0) =exp(—2Dog>7/3). (1)
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gions in the hope that at short enough times the spins do not
see the boundaries. (See, e.g., Ref. 10). An important issue is
the range of validity of this result. By expanding around the
Gaussian phase approximation we find under general condi-
tions that at short echo times the Hahn echo amplitude

227
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In[ (2 7) AEg]= —3g* T Do 1~ a(§/V) VD g7+ FHDy1)]
+@(Dg/2g4713/2S/V)
where
a=32(2v2—1)/105m,g=yVB,,

Dy, is the bulk diffusion coefficient, 2 is the echo time, and
S/V is the pore space surface to volume ratio. We argue that
the unbounded space result is valid until spins diffuse across
the pore or over the intrinsic length scale of the field gradient
1.=(g/D¢) "1/, whichever occurs sooner. /, may be thought
of as the typical length scale over which a spin must travel to
dephase by 2 radians.

After the unbounded space result breaks down the echo
amplitude should eventually cross over to a pure exponential
decay. For simplicity we first consider the related long-time
behavior of the free induction decay. In simple geometries
with a well defined size “R,,” there are two clear regimes in
which the long-time decay rate takes a simple form. In Sec.
III A we briefly consider the previously studied®!'? fast dif-
fusion regime where [ >R, and describe how it can also be
understood through the Gaussian phase approximation. Al-
though the fast diffusion regime has received more
attention'? in the analysis of experiment, the asymptotic limit
[, <R, is also relevant—it is certainly the domain of edge
enhancement in images. In a typical rock this reglme will be
realized for some of the pores since /. due to the mlCl‘OSCOplC
gradients alone is of the order microns.

In Sec. Il B we discuss the case [, <R, in the one-
dimensional slab geometry which is treated exactly in Ref. 8.
In Sec. III C we build on this first to consider the regime
I,<R, in cylindrical and spherical geometries and then to
argue that the results should be generalizable to more com-
plex pore spaces. In particular, in the small /. limit we expect
a universal decay rate In|M(z,t)|~ —El g% 3D(1,/ 3t where E,
is a constant ~0.5094. :

In Sec. IV we consider how the results of Sec. III deter-
mine the behavior of the Hahn echo experiment at long
times. We find that in the small [, limit the pure exponential
decay region occurs at increasingly weak signal so that the
universal result may never be measured outside rather artifi-
cial geometries. We make qualitative arguments to suggest
that [, sets a limit on the effective pote size in the gradient
direction. -

In Sec. V we discuss the phenomenon of edge enhance-
ment that occurs in imaging experiments where the resolu-
tion is of the order /. and [, <R, . This is a subject which has
been understood untll now only in a heuristic fashion.>'%*°
We are able to clarify the physics and make some quantita-
tive statements about previous numerical and experimental
results. :
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i, SHORT-TIME BEHAVIOR OF THE HAHN ECHO AND
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THE GAUSSIAN PHASE APPROXIMATION

In this section we show how the Gaussian phase ap-
proximation can be used to find the behavior of the Hahn
echo amplitude at short times in a general confined space.
We then discuss the range of validity of Eq. (1). This result is
only strictly correct in unbounded space and is perhaps the

- most used result for the behavior of the Hahn echo envelope

" in the presence of a field gradient. Note that this method
cannot be used to find the form of the free induction decay
which is sensitive to details of the geometry even at the
shortest times.

The free induction decay or measured transverse magne-
tization in an NMR experiment after a 7/2 pulse may be
written, in the presence of a field gradient, as

M) =M P($)e d, @
where M =M .+iM, and M(0) is the signal directly after the
7/2 pulse. The effect of the bulk T, has not been explicitly
displayed since it simply has the effect of multiplying M (z)
by exp(—¢/T,). P(¢) is the probability density of a spin hav-
ing acquired a velative phase ¢ due to its Brownian path in
the inhomogeneous field. The relative phase of a spin in a
uniform field gradient is given by ¢(¢)=—gfix,(f)dt,
where x;(t) is the Cartesian coordinate of the spin in the
direction of the field gradient and g=19|VB,|. Note that only
the gradient of the large component of magnetic field con-
tributes. Gradients, if any, of the small transverse compo-
nents are rapidly fluctuating in the rotating frame of the spin.
It can be seen immediately that if we are to know P(¢) we
must know the distribution of x coordinates P(x;) which is
clearly dependent on the geometrical details of the bounded
space at all times.

Now in the Hahn echo experiment we apply a 7 pulse at
t=7 which has the effect of negating the phase accumulated
up until that time so that at time ¢t =27 the accumulated phase
is  2D=gfix(t)dt—g[%x(t)dt or equivalently
$20=g[ilx(t)—x(0)1dt— g [ [x,(t)~x(0)]dt. We are
now concerned with x;(¢)-x;(0) which is well known to
have a Gaussian distribution in unbounded space. At short
times only a small fraction of spins have encountered the
walls so, although we can say very little about the distribu-
tion of x(¢) in an arbitrary confined geometry, the distribu-
tion of x;(£) ~x;(0) or of displacements must be Gaussian at
short enough times. By a general theorem if x;(#) —x;(0) is a
Gaussian stochastic process any linear transformation also
yields a Gaussian process. We therefore expect that precisely
at the echo time 27 that the distribution of phases P(¢) will
be Gaussian for small 7. . .

. In this situation it is natural to perform a cumulant ex-
pansion of the distribution of phases. Taking the logarithm of
Egq. (2) we obtain

1n[M('t)/M(O)]=—<,¢2>/2+<¢4>/4!—<¢2>2/s+---( |
' ‘ 3

Here we have assumed that the confining geometry has in-
version symmetry so that averages of odd powers of ¢ van-
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ish. We must now find the behavior of successive cumulants
at short times. We may calculate the second cumulant as

follows:
T 2727 721"“
ool
0J0 T JT oJ 7

X(x()x(t"))dt dt'. @)

(p*(27))=g>

Now

(e()x(2")y=—1/2{[x(2) —x(¢') )+ 1/2[(x*(£))

()] _C)

Since we assume a uniform initial concentration of spins and
we have reflecting boundary conditions {x*(#)) is indepen-
dent of time and {[x(£)—x(¢')]?) is only a function of t—¢'.,
Mitra et al.'® have shown ([x(¢) —x(0)]*) has the expansion

— 2
([x(1)=x(0)] >A=D0[ .
61

4S\Dyt

+ Dyt
9V\/_7; @(O)

©)

where S/V is the surface to volume ratio of the pore space.
Note that other length scales come in at higher orders of
\/_D—o? such as the mean curvature of the pore walls. If we
assume a pore space which is isotropic, at least on the aver-
age, {{x(¢)—x(0)]% is simply one-third of this. Puttmg this
into Egs. (5) and (4) we find

(¢%(27)) 29°¢*7°Dy
2 3

aS\Dqr

VvV +@(DOT)]’
7

where a=32(2v3—1)/105+/7.

Next we must consider the behavmr of the fourth cumu-
lant ($*(27))/24—(¢*(27))%/8. Since this is zero in unbounded
space it is clear that to lowest order in 7, (¢*(279))~D3g*#.
In fact the methods of Mitra et al. can be generalized by a
rather tedious calculation’’ to expand

([x(21) —x(0)1[x(22) —x(0) [x(23) —x(0) ][ x(24) —x(0) 1)

at short times, yielding
($*(27))124—($*(27))*/8~Dgg*
Putting Eqs. (7) and (8) into Eq. (3), the final result is

28V @)

282D aS\Dy7
[ M (27)/My]=—=2 2 | 1= a0
+é’(Dg/2g4713/2S/V). (9)

Thus the cumulant expansion becomes an expansion in g
and 7. The free space result is rigorously shown to be asymp-
totically correct at short times. The. breakdown of this for-
mula is rather complicated especially when we consider that
other length scales such as the mean curvature of the walls
come into play at the next order from the surface to volume
ratio. However, there are two clear modes of breakdown. The
first is where the Gaussian phase approximation remains
valid but terms like vDy7/R » become of order unity, where
by R, we mean some averaged geometrical length like those

1.<R,
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given by surface to volume ratio or mean curvature. The
second is when the higher cumulants become important.
Analysis of higher order terms'” suggests that, neglecting
slowly varying terms g the form In(R,/1,), this occurs when
g>7 D, becomes of order unity. Stated in terms of diffusion
length the first is when the diffusion length is of order R,,,
the second when it is of order I,=(g/Dg)” . The ﬁrst
dominates the second when R,<</, and vice versa.

lll. THE TORREY EQUATION AND THE LONG-TIME
BEHAVIOR OF THE MAGNETIZATION

In this section we discuss the long-tlme behavior of the
free induction decay.

At long times it is natural to focus on the magnetization
as evolving under a governing differential equation, rather
than as a sum over paths, due to the need to apply hard
boundary conditions at the walls of the pore space. The
transverse magnetization density M =M, +iM, , following a
7/2 pulse, obeys Bloch’s equation as modified by Torrey,'® to
include diffusion:

oM (r,t)

ot
with the initial condition that M (r,0)=const. A factor of
exp(—iwg—1/T,)¢t has been divided out of M (r,t) where

wy="YB, the average Larmor frequency. Here D, is the dif-
fusion constant g is the gyromagnetic ratio multiplied by the

=DoV2M(x,t)—ig-rM(x,t) (10)

" local gradient of the background field, g=yVB,, and T, is

the bulk decay rate.
The above equation has an intrinsic length scale:

l.=(g/Dqy)" 1. (11)

As a result in simple geometries, where there is a single
geometrical length R,,, one dimensionless parameter [./R,

characterizes the solutions. Separating out the time depen-
dence we obtain the eigenvalue equation

—DoV2my(x) +iyg-rmy(x)=Em,; (12)

with the general solution for the magnetization

ME0=3 cmre . (13)

Note that this solution will strictly break down for cer-

tain special values of I /R, due to the non-Hermiticity of the

~ ‘eigenvalue operator as shown by Stoller et al. for the one-

dimensional case.® We are interested in solution of Eq. (12)
in a confined space under reflecting boundary conditions. At

long times the magnetization is well described by the eigen-

state with the smallest real part to its eigenvalue and decays
with a pure exponential. In all but one dimension, Eq. (12)
cannot be solved exactly. In Sec. III A we discuss the decay
rate for />R, in simple geometries. In Sec. III B we discuss
, focusing on one dimension which is then extended
to hlgher dimension and more complex spaces in Sec. III C.

A. The fast diffusion limit

Much attention has been paid to the case where / /R, is
large. #1112 In this regime one can expand around the eigen-
functions and eigenvalues of the diffusion equation with a
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perturbation series in (Rp/lc)6. [Although (Rp/lc)3 is what
enters the nondimensionalized time-independent Torrey
equation odd powers do not enter the perturbation series if
we assume inversion symmetry.] Since the lowest eigenstate
of the unperturbed time-independent diffusion equation is al-
ways just a constant with zero decay rate E;, we recover that
the dimensionless long-time decay rate goes like (R,/! J%or
when we redimensionalize, g2R4/D0

Now consider when this long-time decay rate sets in. We
have only described a small perturbation around the diffusive
decay rates so that the gross separation of successive decay
rates is still given by the diffusive scale Ei—Ej~D0/RIZ,.
This separation determines the time at which the lowest
eigenstate dominates and there is crossover to the pure ex-
ponential regime; i.e., when exp[—(E;— E 1)t]<1. Recall that
t~R2/D0 is also the time scale at which the unbounded
space result for the spin echo breaks down if />R ,.

Since the eigenvalues are still real to all orders in per-
turbation theory, another way to think of this regime is as the
motional narrowing limit because the frequency spectrum is
a series of Lorentzians centered at the average frequency of
the container. Thus there is no frequency resolution of the
container.

The same form for the magnetization at long times is
also obtained by applying the Gaussian phase approximation
as in Sec. II in the limit of long times. This can be seen as
follows. Once a spin has traversed the container several

times it has clearly lost its memory of where it started. Thus

at long times we can regard the accumulated phase of an
individual spin as a sum of many small independent errors
which represent the phase accumulated over a few traversals
of the container. Under these conditions by the central limit
theorem we expect the distribution of phases to tend to a
Gaussian at long times. However, there is a set time scale
over which spin dephasing occurs which is the time required
to diffuse I, . This is equivalent to saying that we only care
about the phase modulo 27r. Thus we need the additional
requirement for the Gaussian phase approximation to hold—
that the time to diffuse /, is much greater than the traversal
time or [, >R ;. Thus the calculations of Neumann* using the
Gaussian phase approximation reproduce the theoretical re-
sults for the long-time decay rate of Robertson!? and others

valid in this regime and are in agreement with experiment.!

B. The slow diffusion limit in one dimension

We focus on the case where I /R, is small. In this situ-
ation spins do not typically diffuse across the whole con-
tainer before they are dephased. The dominant eigenstates at
long times are localized near to that portion of the wall
which is perpendicular to the gradient. It is here that there is
most restriction to diffusion along the gradient direction and
thus dephasing is minimized.

We now discuss the one-dimensional slab geometry. Al-
though the Torrey equation in one dimension has been solved
exactly by Stoller et al.,® we repeat here some of the relevant
details emphasizing the asymptotic behavior of the solutions
for small [ /R,,.

In this geometry R,
Define new variables:

is taken as the width of fhe slab.
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2=F—i%. (14)

i—(_&)l/sx E_—__&_ ,
Do ’ D2
Then in one dimension with no surface relaxation, Eq.
(12) becomes Airy’s equation
dzm i dm

i R,
—Ez—2~=ml—z; “=0 ifz=E+i-L.

e 7 (15)

A choice for the two linearly independent solutions is
Ai(e?™z) and Ai(e2™/3z).1° These have the property of
decaying exponentially for the imaginary part of z large and
negative or large and positive, respectively, and are, indi-
vidually, the correct solutions for left and right bounded haif-
spaces. Although the solution of Eq. (15) is strictly a linear
combination of both of these terms, to a first approximation
each solves Eq. (15) separately when R, is large. This is
simply because states localized at one wall do not “see” the
other wall where they are exponentially small. The decay
rates E are then determined by the equation
Ai'[e*2™P (iR, /21, +E)]=0. The zeros {a;} of Ai’ are
real and negative (¢,=—1.0188, a,=—3.2482,
a;=—4.8201, etc.). So to this approximation the eigenfunc-
tions are a set of functions localized at the left wall,
Ai(e*?™z), with E=e"*™?q,~iR,/2l, and a set at the
right wall. From now on we w111 only calculate the left wall
states. The right wall states are simply obtained from the
symmetry of Eq. (15): For every left wall state m (%), decay
rate £ there is a right wall state m( — %), decay rate E*.
This is intuitively obvious—the left and right wall states de-
cay at the same rate but are frequency shifted by opposite
amounts from the average.

These states can be used as the basis of a perturbation
expansion with the small parameter being e=I /R, . The ex-
act decay rates are determined by

Ai'[e2™P(iR,/21,+ E)]Ai'Te 2™ (~iR 121+ E)]
=Ai'[e2™P(~iR,/21,+E)]

X Ai'[e™2™B(iR /21, +E)]. (16)

This can be solved perturbatively in the usual manner to
yield the following complex expression for left wall states:

A1'(e 4m/3a )

—i
=DiB23| 4 om2mil3y 4
E;=D g [26 € a; Al"(a,)

321 +i) ”

73 17)

X exp[ -
Note that the correction to the one wall decay rate is
“transcendentally small” so that the one wall expression
should be accurate for quite modest values of R/, . Unfor-
tunately, this rapid convergence is a one-dlmenswnal artifact
as will be shown below. Note that the leading term is purely
imaginary and thus represents oscillation as opposed to de-
cay. This simply represents the gross frequency shift of a
state localized near the wall from the average which is the
Larmor frequency at the center of the slab. The corrections to
the eigenstates are transcendentally small amounts of right
wall state mixed into the left ones and vice versa.
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FIG. 1. Coordinate system used for the Torrey equation in the cylindrical
geometry. The longest lived eigenstates are shown schematically. '

An important point is that this approximation scheme
assumes a; is of order 1. It is always possible to find delo-
calized eigenstates with a; of order 1/e for which the pertur-
bation theory breaks down. However, these of course decay
quickly and are not relevant to the long-time behavior. An-
other way to understand this is that the formula above for the
left wall states gives a sequence of states gradually frequency
shifted further and further to the right of the left wall. Clearly
this cannot go on indefinitely. In fact what is shown in the
exact calculation of Stoller ef al. is that at any finite value of
€ there is only a finite number of states which are frequency
shifted at all. The rest have purely real eigenvalues and are
thus centered at the average frequency of the box (but are
delocalized in space).

C. The slow diffusion limit in higher dimension

In two dimensions the prototypical geometry is cylindri-
cal. R, is now taken to be the radius of the cylinder. We
again look for solutions of the time-independent Torrey
equation with reflecting boundary conditions for small
I/R,. We nondimensionalize Eq. (12) by scaling all lengths
by R, and the decay rate E "=E;/R,g. Working in polar
coordinates define the variable 22 to be 1—r where r is the
scaled radial coordinate. (See Fig. 1.) We then obtain

g #*m; 1 om; &*m; o Tl — (1 p
T\ TT=h o T ger) Timdlm(1mh)cos 6],
=(E'+i)m;. (18)

We were not able to solve this equation for finite ‘e
However, for small € we expect that the long-lived eigen-
states are squashed up against the edge of the circle and
confined to values of # near 0 and 7. We will concentrate on
states with values of @ near 0—those near 7 just being com-
plex conjugates. It is natural in this situation to use the ideas
of boundary layer theory. The outer solution is clearly m;=0
which means simply that the inner solution must go to zero
for large #, |4. From experience with the one-dimensional
problem we would only expect to incur exponentially small
error from this assumption. The only possible scaling of co-

5601

ordinates within the boundary layer that leads to nontrivial
solutions is &’ =h/e and ¢ =6/e*. We then take

E+i=Ege+E e +E e+ -, - (19)

(20)

The given expansions and scalings may need to be adjusted
at higher order but are correct to obtain the lowest-order
approximation for the eigenfunction and lowest two orders
of approximation for the eigenvalue. We then obtain to
order €: -

m;=my+miet+mye*t--- .

82m0 R .
— iz Timoh=Eqmyq. 1)
So we find mo=Ai[e’™*(E,—ih')]f(¢) and
Ey=e~2™3g, . To order e¥? we obtain :
62m0 . 9
"39—“,2‘ +lm06 =+E1m0. b (22)

We see E,=(n+1/2)(1+i) where n is an integer =0
and f(8') = exp[ — (1 + DO'Y2IH,(N1+i6'), where H,,
are Hermite polynomials of ordet m. On redimensionalizing
we obtain for the left wall states

E;,= —ngg+gz/§D(1)/3e—zwi/3ai+ m(n,_i_ 1/2)
X(1+1)+@(g"*DFIR,). (23)

The noteworthy features of Eq. (23) are that it is only valid
for much smaller /R, than the corresponding expression
for the slab and that although the lowest decay rates are of
comparable magnitude the spacing between the decay rates
is smaller by a factor of vI,/R,,. This means that the time at
which simple e ~* behavior occurs is correspondingly longer.

The same method can be used to find the lowest eigen-
states of the Torrey equation in a sphere for small /./R,,.
They turn out to be caps at the North and South poles with
Airy functions in the radial direction but this time the polar
angular function satisfies the confluent hypergeometric equa-
tion. The lowest-order approximation to the magnetization of
the left wall states is , -

mo=Aile*>TP(E,~in")]
X( el2/2)lml/Zef'z(ifi)/4+im¢Lan][(1 +l) 012/2]
| | (24)

Here R, is the radius of the sphere, 2’ and ¢’ are defined
in exactly the samie way as for the cylinder except that r is
the radial coordinate of the sphere, and @ is the polar angle.
¢ is the azimuthal angle, m is an integer, and n is a positive
integer. L™l is the generalized Laguerre polynomial (as de-
fined in Ref. 19). The corresponding eigenvalues are

Eipm=—igR,+g*D§ e 2"+ \gDo/R,(1+1)
X(2n+1+|m|)+@(g*’DF’IR,). (25)

Unlike the [ >R, regime where the Jong-lived states are
sensitive to the whole pore the above ideas should in fact
hold for more general geometries since the magnetization at
long times will be confined to pools where there is a dimple
in the wall perpendicular to the gradient direction. R, will be
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replaced by the radii of curvature of the dimple. The result
for the cylinder is thus the correct asymptotic form for the
decay rates and eigenstates in the dimples in a general two-
dimensional pore space. The most general dimple in three
dimensions has different principal radii of curvature. We thus
expect the degeneracy for the sphere of the angular contri-
butions to the decay rates to be lifted. In the language of
quantum mechanics it is clear that, in going from the cylin-
der to the sphere, the extra angular degree of freedom has
resulted, to lowest order, in producing the eigenstates of a
two-dimensional harmonic oscillator. Thus a general dimple
in three dimensions with principal radii of curvature R, and
R, will have, to lowest order, decay rates correspondmg to
two oscillators of dlfferent frequency:

E,-,J-,k=+iRpg+g2/3D(1,/3e'2’"/3a,~+ gDo/R(j+1/2)
X(1+i)+ VgDo/Ry(k+1/2)(A+)+--+' 7 (26)

Here R, is the Cartesian distance from the extremum of the
dimple to the center of the pore space in the direction of the
gradient. Clearly the radial levels and thus the gross magni-
tude of the lowest decay rate are unaltered for a general
dimple in two or three dimensions. We therefore find inde-
pendent of pore shape the universal long-time decay. rate
In|M(z,t)|~~E g% 3D /3¢, where E is a constant ~0.5094
in the limit R,>1, . It is important to ask whether for some
general pore if we are ever in the regime where the above
results are valid. The real criterion is not that Ry >/, for
every dimple in the wall but merely for some, i.e., that there
is a separation of length scales. Roughness or dimples on
length scales much less than /, will be in the fast diffusion
limit and should not grossly affect the resuits.

IV. IMPLICATIONS FOR THE HAHN SPIN ECHO
EXPERIMENT

The above results are concerned with theoretical consid-
erations of the free induction decay following a 77/2 pulse. In
this section we focus on the implications for experimental
measurements. The experimental quantity of interest is the
Hahn spin echo, since for short times the free induction sig-
nal is not killed by the real “decay” parts of the eigenvalues
but by the rapid dephasing between states caused by their
imaginary oscillatory parts. This phenomenon, known as in-
homogeneous broadening, is nearly eliminated with the
Hahn echo. To calculate the echo amplitude we take the com-
plex conjugate of the magnetization at a time ¢=T corre-
sponding to the application of a = pulse. To see how it
evolves from there to the echo at £=27 we must use the
Greens function:®

G(r,x',t)= 2 Nym(r)m(r')e 5#, @27

where N; is a normalization factor. The resulting magnetiza-
tion must be integrated over to obtain the echo amplitude. If
we start with uniform magnetization at =0, then the echo
amplitude is

. where
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M27)=2 NfNjcfc;0; expl —(T;+T )7

ij

—i(0— )], (28)
¢;=[m;xdr and the overlap 0;;
= fmf(r)m;(r)dr.T; and w; are are the real and imaginary
parts of E;. In most of the magnetic resonance systems
which have been studied the eigenstates m; are real (as is the
case in the {® R, limit) so that orthogonality then ensures
that the matrix O;; is diagonal and there are no oscillatory
terms in the echo amplitude. This is certainly not the case
when [ <R, but it should be noted that such oscillations are

of low frequency and do not contribute strongly to the decay

_of the echo amplitude. This can be seen from the fact that the

elements O ;j are small unless states i and j are physically
localized in the same region of space so that w;~ w; if we

-assume ; to be a kind of average Larmor frequency for the

eigenstate. Clearly at long enough times the echo amplitude
becomes a pure exponential decay.

- We now consider the prospects of experimentally quan-
titatively observing the decay rates calculated above. We ar-
gue that these are good in the case [ >R, but slim for the
case [, <R, outside of the one-dlmensmnal slab geometry.

Flrst the case [;>R,,. The crossover time at which pure
decay sets in is of the order Rﬁ/DO Note this is also the time
scale at which the unbounded space formula breaks down.
Inserting the decay rate R? 8 2/D,, we find the signal strength
at crossover is of order exp[— éRf,gz/D 1. The exponent is a
small parameter and so not much signal will be lost by cross-
over. In addition to this the preexponential factors will be
near unity because the lowest eigenstate is similar to the
diffusive ground state (a constant in space) which is what the
system starts in at £=0. So in conclusion as R,/I.—0 the
proportion of signal lasting to the pure decay regime tends to
unity (neglecting bulk T, etc.).

Now consider the regime /. <R, . In this case the cross-
over time depends on the d1mens1ona11ty 7~g_2/ *Dg'13 for
the one-dimensional slab, 7 ~ \/R /gDy in two dimensions
or above. Note that in one d1mens1on this is also _the time
scale at which the unbounded space formula breaks down but
in higher dimension there is an intermediate regime
g Dy < 1< R, /gD, in which decay is neither pure
cubic or pure linear. Insertmg the decay rates we find the
signal remaining at crossover is exp[—@(1)] for the slab and
exp[ — VR p/ .] for the cylinder. However, in this regime the
prefactors in front of the exponentials may be the dominant
effect. For the diagonal terms these, loosely speaking, repre-
sent the volume fraction of the pore space that is occupied by
the eigenstate. For [.<R, the longest lived states are

‘squashed into the dimples in the pore walls and represent

only a tiny volume fraction thus yielding a negligible signal.
(Although clearly the one-dimensional geometry is a special
case—we expect to be in the [ <R, regime even if I /R, is
as big as 1/5 in which case the longest lived states are quite
large.) So as [/R;—0 the proportion of signal remaining at
the pure decay regime goes to zero. We expect in general for
small but finite /;/R,, that In[.#4(27)/.7(0)] will botiom out
from the ~7 falloff but never measurably become linear
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FIG. 2. Numerical simulation of the Hahn spin-echo envelope in the one-
dimensional slab geometry. R,/[.=17.1. Also plotted are the short-time for-
mula ~2Dgg?+/3, and the long-time decay rate —0.5 094D g327. The
intercept for the latter was obtained by fit to the data.

with time. The angular decay levels never quite resolve
themselves and we get stuck in the intermediate regime.

We have investigated the [ <R, regime with random
walk simulations. Some results are shown in Figs. 2 and 3.
As expected the results in one dimension are in clear agree-
ment with the short- and long-time behavior predicted above.
For the cylindrical geometry we could pot simulate low
enough signal levels to capture the pure exponential regime.

The intermediate regime between the two limits is of
course where many experiments will be performed. In this
case we cannot say anything quantitative about the long-time
behavior. However, there is potential structural information
obtainable from the qualitative observation that if the pore is
larger than [, in the direction of the gradient it is clearly .
that will confine the packet of magnetization at long times in
that direction and not the pore wall separation. This is con-
sistent with the conclusion from Sec. II that the commonly
used e~ @/3Peg>™ regult is only valid until spins diffuse over
a length [, or R, whichever is smaller.
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FIG. 3. Numerical simulation of the Hahn spin echo for the one-dimensional
slab geometry as compared to the cylindrical one. R,/I,=17.1 in both cases
if we take R, to be the diameter of the cylinder.
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“V. IMPLICATIONS FOR THE EDGE ENHANCEMENT

OF IMAGES

4

We now discuss the 1mphcat1ons for diffusive edge en-
hancement of images. By this we mean the brightening of
frequency encoded images around obstructions to diffusion.
We discuss this from the point of view of eigenstates of the
Torrey equation which helps to clarify the theoretical picture.
" We assume for simplicity that in any one pulse sequence
there is a read frequency encoding gradient effectively per-
manently on in one direction and that imaging in the other
directions is by negligibly short slice selective gradient

- pulses, or will be effected by projection reconstruction. It is

possible to use phase encoding in the other directions if the
phase encoding gradient pulse is short enough, as in the ex-
periments of Callaghan. However, this seriously complicates
theoretical understanding. The other techniques mentioned
above are simpler because the results of any one pulse se-
quence are only concerned with 1maglng in one dimension at
a time.

"To obtain the one-dimensional image in the read direc-
tion one can either Fourier transform the time envelope of

" the free induction decay as in the numerical study of Putz

L% or the envelope of the Hahn echo as in the work of

Callaghan.” Consider first imaging’ via Fourier transforma-
tion of the free induction decay in the presence of a one-
dimensional read gradient. If there is no diffusion and ne-
glecting bulk decay effects the magnetization density just
rotates at the local Larmor frequency. M (r,)=M(r,0)
Xexp(—ig-rt). The integral of this over space is the ob-
served signal S(¢£). So calculating 2 Rel[f3S(2)
Xexp(+igtx)dg t] yields the function M(r,0) integrated
over the directions: perpendicular to the gradient. When there
is diffusion the signal is

S(t)=2, c;Ne~Titiedt (29)

Evaluating the above integral we obtain for the image

2¢,NTg

(Gr-w)?+T7" ©0

M(x,0)=2

. Consider the one-dimensional geometry. The image for a

large ‘value of R p/ I is a sum of many Lorentzians. From the
above results and the work of Stoller et al. it is clear that the
sum counsists of peaks becoming successively sharper as the
peaks become closer to the wall. There is an infinite number
of broad low amplitude peaks at the center of the box which
will obscure some of this structure. This description is the
theoretical basis for Fig. 3(a) in Ref. 15 and Fig. 1 of Ref.
14. The quality of these simulations is such that only the
peaks nearest to the walls were resolved. These peaks corre-
spond to the terms in Eq. (30) that come from the lowest
decay rates given by Eq. (17). It is of interest to note that the

~ shape of the peak in Fig. 3(d) of Ref. 15 which is approach-

ing the regime R, <</ is well approximated by a single term
in Eq. (30). The corresponding T'; can be read off from the
results of Neumann* to be I“1=g2R;/(120D0). The transi-
tion between these two regimes requires a full discussion of
the work of Stoller ef al.
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Now consider imaging via the Hahn echo. We define
é=t—27 where 27 is the echo time. Now if there is no dif-
fusion the Hahn echo and free induction signals are the same,
i.e., S(t)=.4(8). However, if there is diffusion and if for
simplicity we neglect the off-diagonal terms in the matrix
0,; we find from Eq. (28): ~

(D) =D PN PO e Tid e (31)

If we now calculate 2 Re[ [5.Z(8exp(+igdx)dg 8} we ob-
tain for the image

2g8|c?IN,|20e 25T,
(gx— wi)2 + Fir

We see from this result that due to the decay term e ~2!'¢” the
eigenstates with spectral weight further from the walls (and
thus larger I';) contribute less and less at increasing 7. Thus
in the limit of long echo times the image becomes two
Lorentzians localized near to the walls which are derived
from the decay rates of Eq. (17). It should be emphasized
that Eq. (32) is clearly not an image of the magnetization.
While the magnetization is given by Airy functions and is

maximum at the wall, the Lorentzian peaks in the image are
deh]n(‘Fd in from the sides of the container because of the

imaginary part of exp(—2i/3)a; in Eq. (17). This extra
edge enhancement in the Hahn echo is what was observed in
the experiments of Callaghan. In Ref. 2 the extra enhance-
ment of the Hahn echo was taken to occur by a different
mechanism than the simulations based on the FID.

M(x,0)= > (32)

Vi. CONCLUSIONS

In this paper we have identified two routes by which the
Hahn echo formula (1) for unbounded space breaks down.
There is a well defined temporal regime in a bounded space
where this formula remains valid.

T. M. de Swiet and P. N. Sen: Decay of nuclear magnetization

We have extensively drawn on the work of Stoller
et al.,® which gives rigorous results for the one-dimensional
slab geometry. We have generalized their results to higher
dimension and find in the asymptotic limit R ;> a universal
long-time decay rate. We propose that /, 11m1ts the effective

" pore size.

Daogad tha alhinea vagléc wa wxrasa .Jf.l
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simple interpretation of the diffusive edge enhancement of
NMR images which has been observed both in simulation
and experiment.
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