Astrophyical Applications of the Tolman-VII Solution

A Physically Realizable Solution to the Einstein Equations

Ambrish Raghoonundun, David Hobill

Department of Physics and Astronomy
University of Calgary

Exact Solutions to Einstein Equations

- Mathematical Problem: Find or Construct Solutions
- Physical Viability Problem: Apply Physically Realistic Conditions
- Physical Realization Problem: Compare with Observation

> Example: Spherically Symmetric Static Solutions

- Over 130 known exact solution (with perfect fluid sources)
- Less than 10% obey conditions for being physically realistic
- What systems do physically viable solutions describe? If any?

Spherically Symmetric Newtonian Star

(1) Hydrostatic equilibrium (Pressure gradient = gravitational force density)

$$
\frac{d P}{d r}=-G \frac{M(r) \rho}{r^{2}}
$$

Pressure is a decreasing function of radius $\left(P\left(r_{b}\right)=0\right)$
(2) Mass conservation: (mass = volume \times density)

$$
\frac{d M(r)}{d r}=4 \pi r^{2} \rho
$$

Mass is an increasing function of radius

Need an equation of state (EOS) $P=P(\rho, T, \Pi)$
Pressure depends on particle interactions

$$
P_{\text {idealgas }}=\frac{\rho k T}{\bar{m}} \quad \text { or } \quad P_{\text {radiation }}=\frac{1}{3} a T^{4}
$$

Spherically Symmetric Exact Solutions In General Relativity

A Representation of a Massive Object in General Relativity

$$
R_{i k}-\frac{1}{2} R g_{i k}=\frac{8 \pi G}{c^{4}} T_{i k}
$$

Energy - momentum Tensor $T_{i k}$ must be realistic (perfect fluid)

$$
T_{i k}= \begin{cases}(P+\rho) u_{i} u_{k}-g_{i k} P, & r \leq r_{b} \\ 0, & r>r_{b}\end{cases}
$$

Simplest solutions are spherically symmetric - match to vacuum Schwarzschild solution at fluid boundary

STATIC SPHERICALLY SYMMETRIC FIELD EQUATIONS

Line element with an areal (Schwarzschild) radial coordinate, r :

$$
d s^{2}=e^{\nu(r)} d t^{2}-e^{\lambda(r)} d r^{2}-r^{2} d \theta^{2}-r^{2} \sin ^{2} \theta d \phi^{2} .
$$

Field Equations:
Einstein equations become ($G=c=1, \kappa=8 \pi$):

$$
\begin{gather*}
\frac{\lambda_{r}}{r} e^{-\lambda}+\frac{1}{r^{2}}\left(1-e^{-\lambda}\right)=\kappa \rho \tag{1}\\
\frac{\nu_{r}}{r} e^{-\lambda}-\frac{1}{r^{2}}\left(1-e^{-\lambda}\right)=\kappa P \tag{2}\\
e^{-\lambda}\left[\frac{\nu_{r r}}{2}-\frac{\lambda_{r} \nu_{r}}{4}+\frac{\left(\nu_{r}\right)^{2}}{4}+\frac{\nu_{r}-\lambda_{r}}{2 r}\right]=\kappa P \tag{3}
\end{gather*}
$$

Three equations for 4 unknowns $[\nu(r), \lambda(r), \rho(r), P(r)$]
Add an equation of state: $P=P(\rho)$ to close system

Alternative method - Tolman, Oppenheimer-Volkoff

Bianchi identity $T_{k ; i}^{i}=0$ leads to:

$$
\frac{d P}{d r}=-\frac{1}{2}\left(P+\rho c^{2}\right)\left(\frac{d \nu}{d r}\right)
$$

define Mass aspect function:

$$
M(r)=4 \pi \int_{0}^{r} \rho r^{2} d r
$$

Elimination of λ and ν leads to

$$
\begin{equation*}
\frac{d P}{d r}=-\frac{G\left(\rho c^{2}+P\right)\left(4 \pi P r^{3} / c^{2}+M(r)\right)}{r\left(c^{2} r-2 G M(r)\right)} \tag{TOV}
\end{equation*}
$$

Relativistic equivalent to Newtonian hydrostatic equilibrium solution
Steeper pressure gradient: (extra P terms in numerator and $r^{2} \rightarrow r\left(r c^{2}-2 G M\right)$)

Numerical integration most often required to integrate outward in r

First Exact Analytic Solutions for a Fluid Sphere

EXAMPLE: Schwarzschild Solutions
(a) Exterior Solution (1916) $(\rho=P=0)$

$$
d s^{2}=\left(1-\frac{2 G M}{r}\right)-\left(1-\frac{2 G M}{r}\right)^{-1} d r^{2}-r^{2} d \theta^{2}-r^{2} \sin ^{2} \theta d \varphi^{2}
$$

(b) Interior Solution (1919) ($\rho=$ constant)

$$
\begin{gathered}
d s^{2}=\frac{1}{4}\left[3 \sqrt{1-A r_{b}^{2}}-\sqrt{1-A r^{2}}\right]^{2} d t^{2}-\frac{1}{1-A r^{2}} d r^{2}-r^{2} d \theta^{2}-r^{2} \sin ^{2} \theta d \varphi^{2} \\
A=\frac{8 \pi}{3} G \rho \quad \frac{8 \pi G}{c^{2}} P=3 A \frac{\sqrt{1-A r^{2}}-\sqrt{1-A r_{b}^{2}}}{3 \sqrt{1-A r_{b}^{2}}-\sqrt{1-A r^{2}}}
\end{gathered}
$$

Conditions for Physically Realistic Interior Solutions

1. The metric functions match to the exterior (Schwarzschild) metric functions at the fluid-vacuum interface.
2. The mass density is positive and finite every where inside fluid.
3. The integrated mass increases outward. Equals Schwarzschild mass at the boundary.
4. The pressure P is positive and finite everywhere inside the fluid.
5. The pressure vanishes at the fluid boundary with the vacuum.
6. Both the pressure and mass density are decreasing functions of r : $d P / d r<0$ and $d \rho / d r<0$.
7. The speed of sound $v_{\mathrm{S}}=(d P / d \rho)^{1 / 2}$ is causal $(0 \leq v \leq c)$.
8. The speed of sound decreases monotonically from centre to outer surface.

Two sub-classes

Natural case: $\left(\rho\left(r_{b}\right)=0\right), \quad$ Self-bound case: $\left(\rho\left(r_{b}\right) \neq 0\right)$

Surveys of Known Solutions obeying Physical Conditions

Massive fluid sphere solutions (uncharged) with isotropic pressure
1 M.S.R. Delgaty and K. Lake, Comput. Phys. Commun. 115, 395, (1998) [arXiv:gr-qc/9809013].
2 M.R. Finch and J.E.F. Skea, unpublished preprint, www.dft.if.euerj.br/users/Jim_Skea/papers/pfrev.ps

Studies of over 130 Known Explicit Solutions using Computer Algebra

1. Using MAPLE
2. Using SHEEP

Conclusion: Only eight (8) solutions satisfy ALL physical properties.

Physically realistic solutions are RARE

"Physically Interesting Solutions" allow an explicit EOS $P=P(\rho)$
Finch and Skea

TOLMAN VII Solution

Give an ansatz for $g_{r r}$ solve for ρ, then $g_{t t}$ and finally P

$$
\begin{gathered}
-e^{-\lambda(r)}=1-\frac{r^{2}}{R^{2}}+\frac{4 r^{4}}{A^{4}} \\
\kappa \rho=\frac{3}{R^{2}}-\frac{20 r^{2}}{A^{4}} \\
e^{\nu(r)}=B^{2} \sin ^{2}\left[\ln \left(\frac{e^{-\lambda / 2}+2 r^{2} / A^{2}-A^{2} / 4 R^{2}}{C}\right)^{\frac{1}{2}}\right] .
\end{gathered}
$$

where A, B, C and R are constants
Match to Schwarzschild Exterior at Boundary $r=r_{b}$

$$
-e^{-\lambda}=e^{\nu}=1-\frac{2 m}{r}
$$

" The dependence of P on $r[\cdots]$ is so complicated that the solution is not a convenient one for physical considerations."
Tolman (1939)

What kind of Object does Tolman VII describe??

ToIman VII Density function

Write density as $\rho(r)=\rho_{0}\left(1-\mu r^{2} / r_{b}^{2}\right)$
$\rho_{0}=$ central density, $\quad \mu=1 \Rightarrow$ natural model $\quad \mu=0 \Rightarrow$ Schwarzschild) Densities do not need to vanish at boundary if $r_{c}>r_{b}$ (where $\rho\left(r_{c}\right)=0$)

Tolman VII density compared to many neutron star models

Lattimer and Prakash, Ap.J., 550, 426-442 (2001).

Tolman VII metric function: $-g_{t t}=\exp (\lambda)$

Computed for different values of density profile parameter μ

Tolman VII metric function: $g_{r r}=\exp (\nu)$

Computed for different values of density profile parameter μ

Tolman VII Pressure function

$$
\begin{gathered}
\kappa P(r)=-\frac{1}{R^{2}}+\frac{4 r^{2}}{A^{4}}+\frac{4}{A^{2}} \sqrt{1-\frac{r^{2}}{R^{2}}+\frac{4 r^{4}}{A^{4}}} \times \\
\left\{\sin ^{-2}\left[\ln \left(\frac{\sqrt{1-r^{2} / R^{2}+4 r^{4} / A^{4}}+2 r^{2} / A^{2}-A^{2} / 4 R^{2}}{C}\right)^{\frac{1}{2}}\right]-1\right\}^{\frac{1}{2}} .
\end{gathered}
$$

here $\sin ^{-2} x=1 /\left(\sin ^{2} x\right)\left(\right.$ not $\left.\arcsin ^{2} x\right)$.
Can an explicit EOS be obtained from this function to obtain an "interesting solution" ?
setting $\rho(r)=\rho_{0}\left(1-\mu r^{2} / r_{b}^{2}\right)$

$$
\begin{array}{r}
\text { one has } r=\sqrt{\frac{\rho_{0}-\rho}{\mu \rho_{0} / r_{b}^{2}}} \\
R=\sqrt{\frac{3}{\kappa \rho_{0}}} \quad A=\sqrt[4]{\frac{20}{\kappa \mu \rho_{0} / r_{b}^{2}}}
\end{array}
$$

$C=C\left(\mu, \rho_{0}, r_{b}\right)$ depends on matching conditions at boundary r_{b}.

Tolman VII Pressure function

Pressure must vanish at the boundary (this determines B and C)

Pressure as a function of radial coordinate

Tolman VII EOS function

Eliminate r in favor of ρ.

Stiffer EOS for self-bound models

Tolman VII sound speed inside fluid

Sound speed from EOS: $v_{s}=\sqrt{\frac{d P}{d \rho}}$

Tolman VII EOS (re-visited)

Log-Log plot and comparison with polytropic equation of state $P=\operatorname{const} \rho^{\gamma}$

Fit the Natural solution curve to a sequence of polytropes $P=K \rho^{\gamma}$
Self-bound cases can be fit to $P=K\left(\rho-\rho_{c}\right)^{\gamma}$

Tolman VII EOS (re-visited)

Compare Tolman EOS with those based upon various nuclear models Lattimer and Prakash, Ap.J, 550, 426-442 (2001).

Tolman VII EOS (Piecewise Polytropic EOS)

$P(\rho) \approx \begin{cases}f(\rho)=c_{1} \rho^{\gamma_{1}} & \rho \leq 0.25 \\ g(\rho)=c_{2} \rho^{\gamma_{2}} & 0.25<\rho \leq 0.5 \\ h(\rho)=c_{3} \rho^{\gamma_{3}} & 0.5<\rho \leq 1\end{cases}$

$f(\rho)$	c_{1}	0.035
	γ_{1}	2.156 ± 0.004
$g(\rho)$	c_{2}	0.036
	γ_{2}	2.292 ± 0.004
$h(\rho)$	c_{3}	0.039
	γ_{3}	2.429 ± 0.002

Stiffness of Different EOS

Compute adiabatic index γ for both natural and self bound cases

$$
\gamma=\frac{d \log p}{d \log \rho}
$$

$$
r_{b}=10 \mathrm{~km}
$$

$$
\rho_{c}=10^{15} \mathrm{~g} \cdot \mathrm{~cm}^{-3}
$$

Causality limits and NS masses

Assume maximum sound speed at centre cannot exceed speed of light

$$
M=M\left(\rho_{c}, \mu\right)
$$

All configurations below the grey surface are possible stellar configurations

Causality and Compactness

Define compactness $\beta=M / R$ Interior Schwarzschild $\beta_{\max }=4 / 9$

Tolman VII solution \Rightarrow less than than maximum compactness

Comparison of Mass - Radius relation to Recent Observations

Extensions to Tolman VII

- Einstein-Maxwell equations $(q \neq 0)$: (add $T_{\mathrm{EM}}^{i k}$ see e.g. Ivanov)
- Anisotropic pressure source $\left(p_{\perp} \neq 0\right)$ (P and S wave seismology)
- Einstein-Born-Infeld electrodynamics (mimics S-quark EOS see e.g. H. Cuesta)
- Einstein-scalar field models (non-static interiors: Boson stars)

Use Tolman density function $\rho(r)$
Solve for λ and ν metric functions
Solve for pressure $p(r)$ and find EOS

If Physically Viable then What is it?

