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Exact Solutions to Einstein Equations

• Mathematical Problem: Find or Construct Solutions

• Physical Viability Problem: Apply Physically Realistic Conditions

• Physical Realization Problem: Compare with Observation

Example: Spherically Symmetric Static Solutions

• Over 130 known exact solution (with perfect fluid sources)

• Less than 10% obey conditions for being physically realistic

• What systems do physically viable solutions describe? If any?
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Spherically Symmetric Newtonian Star

(1) Hydrostatic equilibrium (Pressure gradient = gravitational force density)

dP

dr
= −G

M(r)ρ

r2

Pressure is a decreasing function of radius (P (rb) = 0)

(2) Mass conservation: (mass = volume × density)

dM(r)

dr
= 4πr2ρ

Mass is an increasing function of radius

Need an equation of state (EOS) P = P (ρ, T,Π)

Pressure depends on particle interactions

Pidealgas =
ρkT

m̄
or Pradiation =

1

3
aT 4
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Spherically Symmetric Exact Solutions In General Relativi ty

A Representation of a Massive Object in General Relativity

Rik − 1

2
Rgik =

8πG

c4
Tik

Energy - momentum Tensor Tik must be realistic (perfect fluid)

Tik =

{

(P + ρ)uiuk − gikP, r ≤ rb
0, r > rb

Simplest solutions are spherically symmetric - match to vacuum Schwarzschild solution
at fluid boundary

Tik = 0

T = 0ik /

r = r
b
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STATIC SPHERICALLY SYMMETRIC FIELD EQUATIONS

Line element with an areal (Schwarzschild) radial coordinate, r:

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdφ2.

Field Equations:
Einstein equations become (G = c = 1, κ = 8π):

λr

r
e−λ +

1

r2
(1− e−λ) = κρ (1)

νr

r
e−λ − 1

r2
(1− e−λ) = κP (2)

e−λ

[

νrr

2
− λrνr

4
+

(νr)2

4
+

νr − λr

2r

]

= κP (3)

Three equations for 4 unknowns [ν(r), λ(r), ρ(r), P (r)]

Add an equation of state: P = P (ρ) to close system
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Alternative method - Tolman, Oppenheimer-Volkoff

Bianchi identity T i
k;i = 0 leads to:

dP

dr
= −1

2
(P + ρc2)

(

dν

dr

)

define Mass aspect function:

M(r) = 4π

∫ r

0
ρr2dr

Elimination of λ and ν leads to

dP

dr
= −G(ρc2 + P )(4πPr3/c2 +M(r))

r(c2r − 2GM(r))
(TOV)

Relativistic equivalent to Newtonian hydrostatic equilibrium solution

Steeper pressure gradient: (extra P terms in numerator and r2 → r(rc2 − 2GM))

Numerical integration most often required to integrate outward in r
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First Exact Analytic Solutions for a Fluid Sphere

EXAMPLE: Schwarzschild Solutions

(a) Exterior Solution (1916) (ρ = P = 0)

ds2 =

(

1− 2GM

r

)

−
(

1− 2GM

r

)

−1

dr2 − r2dθ2 − r2 sin2 θdϕ2

(b) Interior Solution (1919) (ρ = constant)

ds2 =
1

4

[

3
√

1−Ar2b −
√

1−Ar2
]2

dt2 − 1

1−Ar2
dr2 − r2dθ2 − r2 sin2 θdϕ2

A =
8π

3
Gρ

8πG

c2
P = 3A

√
1−Ar2 −

√

1−Ar2b

3
√

1−Ar2b −
√
1− Ar2
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Conditions for Physically Realistic Interior Solutions

1. The metric functions match to the exterior (Schwarzschild) metric functions at the
fluid-vacuum interface.

2. The mass density is positive and finite every where inside fluid.

3. The integrated mass increases outward. Equals Schwarzschild mass at the
boundary.

4. The pressure P is positive and finite everywhere inside the fluid.

5. The pressure vanishes at the fluid boundary with the vacuum.

6. Both the pressure and mass density are decreasing functions of r: dP/dr < 0 and
dρ/dr < 0.

7. The speed of sound vs = (dP/dρ)1/2 is causal (0 ≤ v ≤ c).

8. The speed of sound decreases monotonically from centre to outer surface.

Two sub-classes

Natural case: (ρ(rb) = 0), Self-bound case: (ρ(rb) 6= 0)
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Surveys of Known Solutions obeying Physical Conditions

Massive fluid sphere solutions (uncharged) with isotropic pressure

1 M.S.R. Delgaty and K. Lake, Comput. Phys. Commun. 115, 395, (1998)
[arXiv:gr-qc/9809013].

2 M.R. Finch and J.E.F. Skea, unpublished preprint,
www.dft.if.euerj.br/users/Jim_Skea/papers/pfrev.ps

Studies of over 130 Known Explicit Solutions using Computer Algebra

1. Using MAPLE

2. Using SHEEP

Conclusion: Only eight (8) solutions satisfy ALL physical properties.

Physically realistic solutions are RARE

“Physically Interesting Solutions ” allow an explicit EOS P = P (ρ)

Finch and Skea
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TOLMAN VII Solution

Give an ansatz for grr solve for ρ, then gtt and finally P

−e−λ(r) = 1− r2

R2
+

4r4

A4

κρ =
3

R2
− 20r2

A4

eν(r) = B2 sin2



ln

(

e−λ/2 + 2r2/A2 −A2/4R2

C

) 1

2



 .

where A, B, C and R are constants
Match to Schwarzschild Exterior at Boundary r = rb

−e−λ = eν = 1− 2m

r

“ The dependence of P on r [· · · ] is so complicated that the solution is not a convenient
one for physical considerations.”

Tolman (1939)

What kind of Object does Tolman VII describe??
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Tolman VII Density function

Write density as ρ(r) = ρ0(1− µr2/r2b )

ρ0 = central density, µ = 1 ⇒ natural model µ = 0 ⇒ Schwarzschild)
Densities do not need to vanish at boundary if rc > rb (where ρ(rc) = 0)
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Tolman VII density compared to many neutron star models

Lattimer and Prakash, Ap.J., 550, 426-442 (2001).
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Tolman VII metric function: −gtt = exp(λ)

Computed for different values of density profile parameter µ

m
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Tolman VII metric function: grr = exp(ν)

Computed for different values of density profile parameter µ
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Tolman VII Pressure function

κP (r) = − 1

R2
+

4r2

A4
+

4

A2

√

1− r2

R2
+

4r4

A4
×







sin−2



ln

(

√

1− r2/R2 + 4r4/A4 + 2r2/A2 − A2/4R2

C

) 1

2



− 1







1

2

.

here sin−2 x = 1/(sin2 x) (not arcsin2x).
Can an explicit EOS be obtained from this function to obtain an “interesting solution” ?

setting ρ(r) = ρ0(1− µr2/r2b )

one has r =

√

ρ0 − ρ

µρ0/r2b

R =

√

3

κρ0
A = 4

√

20

κµρ0/r2b

C = C(µ, ρ0, rb) depends on matching conditions at boundary rb.
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Tolman VII Pressure function

Pressure must vanish at the boundary (this determines B and C)
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Tolman VII EOS function

Eliminate r in favor of ρ.
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Tolman VII sound speed inside fluid

Sound speed from EOS: vs =

√

dP

dρ
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Tolman VII EOS (re-visited)

Log-Log plot and comparison with polytropic equation of state P = constργ
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Tolman VII EOS (re-visited)
Compare Tolman EOS with those based upon various nuclear models
Lattimer and Prakash, Ap.J, 550, 426-442 (2001).
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Tolman VII EOS (Piecewise Polytropic EOS)

P (ρ) ≈











f(ρ) = c1ργ1 ρ ≤ 0.25

g(ρ) = c2ργ2 0.25 < ρ ≤ 0.5

h(ρ) = c3ργ3 0.5 < ρ ≤ 1.

f(ρ) c1 0.035
γ1 2.156 ± 0.004

g(ρ) c2 0.036
γ2 2.292 ± 0.004

h(ρ) c3 0.039
γ3 2.429 ± 0.002
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Stiffness of Different EOS

Compute adiabatic index γ for both natural and self bound cases

γ =
d log p

d log ρ
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Causality limits and NS masses

Assume maximum sound speed at centre cannot exceed speed of light

M = M(ρc, µ)
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Causality and Compactness

Define compactness β = M/R Interior Schwarzschild βmax = 4/9
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Comparison of Mass - Radius relation to Recent Observations
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Extensions to Tolman VII

• Einstein-Maxwell equations (q 6= 0): (add T ik
EM see e.g. Ivanov)

• Anisotropic pressure source (p⊥ 6= 0) (P and S wave seismology)

• Einstein-Born-Infeld electrodynamics (mimics S-quark EOS see e.g. H. Cuesta)

• Einstein-scalar field models (non-static interiors: Boson stars)

Use Tolman density function ρ(r)

Solve for λ and ν metric functions

Solve for pressure p(r) and find EOS

If Physically Viable then What is it?
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