- About Us
- People
- Undergrad
- Graduate
- Research
- News & Events
-
News by Year
- 2022
- Physics Professors named Canada Research Chairs
- Physics Faculty and Graduate Student Win Teaching Awards
- SFU Physics Professor wins 2021 Buchalter Cosmology Prize
- Dr. Hayden's Research in SFU Scholarly Impact
- Karen Kavanagh selected as a Fellow of the MRS
- Applied Physics undergrad wins AMPP Poster Competition
- Physics BSc Grad Gives Convocation Address
- 2021
- Simmons wins Women of Distinction Award
- Pogosian's Research in SFU Scholarly Impact
- PhD Graduate Awarded Convocation Medal
- Convocation Speaker Aidan Wright
- Nancy Forde Elected BSC President
- Bechhoefer named Royal Society of Canada Fellow
- Jeff Sonier Named American Physical Society Fellow
- SFU undergrads receive quantum grant award
- 2020
- 2019
- 2018
- 2022
- Events by Year
- Events By Category
-
News by Year
- Outreach
- _how-to
- Congratulations to our Class of 2021
- Archive
Student Seminar
Evidence for a Distant Giant Planet in the Solar System
Kai Ogasawara
SFU Physics
Evidence for a Distant Giant Planet in the Solar System
Feb 26, 2016
Synopsis
Recent analyses have shown that distant orbits within the scattered disk population of the Kuiper Belt exhibit an unexpected clustering in their respective arguments of perihelion. While several hypotheses have been put forward to explain this alignment, to date, a theoretical model that can successfully account for the observations remains elusive. In this work we show that the orbits of distant Kuiper Belt objects (KBOs) cluster not only in argument of perihelion, but also in physical space. We demonstrate that the perihelion positions and orbital planes of the objects are tightly confined and that such a clustering has only a probability of 0.007% to be due to chance, thus requiring a dynamical origin. We find that the observed orbital alignment can be maintained by a distant eccentric planet with mass ≳ 10 m_⊕ whose orbit lies in approximately the same plane as those of the distant KBOs, but whose perihelion is 180° away from the perihelia of the minor bodies. In addition to accounting for the observed orbital alignment, the existence of such a planet naturally explains the presence of high-perihelion Sedna-like objects, as well as the known collection of high semimajor axis objects with inclinations between 60° and 150° whose origin was previously unclear. Continued analysis of both distant and highly inclined outer solar system objects provides the opportunity for testing our hypothesis as well as further constraining the orbital elements and mass of the distant planet.