- About Us
- People
- Undergrad
- Graduate
- Research
- News & Events
-
News by Year
- 2022
- Physics Professors named Canada Research Chairs
- Physics Faculty and Graduate Student Win Teaching Awards
- SFU Physics Professor wins 2021 Buchalter Cosmology Prize
- Dr. Hayden's Research in SFU Scholarly Impact
- Karen Kavanagh selected as a Fellow of the MRS
- Applied Physics undergrad wins AMPP Poster Competition
- Physics BSc Grad Gives Convocation Address
- Dr. Simmons Appointed to Quantum Tech Expert Panel
- Physics Undergrad wins SFU Service Award
- Meet the Canada Research Chair in Silicon Quantum Tech
- Dr. Sivak's Research Featured on NSERC Impact Story
- Physics Grad Wins Dean's Convocation Medal
- First-year Physics major wins John Pearson Prize
- Higgs Boson turns 10!
- SFU Physics BSc graduate wins 2nd prize in the CAP Congress Competition
- Physics members win ATLAS Outstanding Achievement Award
- SFU Physics Research featured in Quanta Magazine
- Silicon Quantum Lab Publishes Major Breakthrough
- Biophysics Research Featured on Scholarly Impact
- Levon Pogosian wins BC Sugar Achievement Award
- Dr. Simmons on SFU's Quantum Computing Breakthrough
- John Bechhoefer named Distinguished SFU Professor
- 2021
- Simmons wins Women of Distinction Award
- Pogosian's Research in SFU Scholarly Impact
- PhD Graduate Awarded Convocation Medal
- Convocation Speaker Aidan Wright
- Nancy Forde Elected BSC President
- Bechhoefer named Royal Society of Canada Fellow
- Jeff Sonier Named American Physical Society Fellow
- SFU undergrads receive quantum grant award
- 2020
- 2019
- 2018
- 2022
- Events by Year
- Events By Category
-
News by Year
- Outreach
- _how-to
- Congratulations to our Class of 2021
- Archive
- Atlas Tier 1 Data Centre
Biophysics and Soft Matter Seminar
Acidosis, temperature, and calcium: arrhythmogenic triggers in Long QT3 and Brugada Syndromes
Peter Ruben
Department of Kinesiology, SFU
Acidosis, temperature, and calcium: arrhythmogenic triggers in Long QT3 and Brugada Syndromes
Feb 01, 2017 at 12PM
Synopsis
Despite substantive advances in the understanding of underlying molecular mechanisms, inherited arrhythmias remain a major cause of morbidity and mortality, including sudden cardiac death. Long QT and Brugada Syndromes (LQTS and BrS), in particular, contribute to these statistics and often go undetected until a catastrophic event occurs. Many of the cardiac voltage-gated sodium channel (NaV1.5) mutations underlying LQTS and BrS have been characterized biophysically. Although the defective channel properties account, in most cases, for the possibility of arrhythmogenesis, the events that trigger these pathophysiological behaviors remain unknown. Using a combination of experimental approaches to study ionic and gating currents, and computer modeling, we studied three NaV1.5 mutations and found that one associated with LQT3 and BrS, E1784K, is acutely sensitive to changes in extracellular pH, temperature, and cytosolic calcium.