- About Us
- People
- Undergrad
- Graduate
- Research
- News & Events
-
News by Year
- 2022
- Physics Professors named Canada Research Chairs
- Physics Faculty and Graduate Student Win Teaching Awards
- SFU Physics Professor wins 2021 Buchalter Cosmology Prize
- Dr. Hayden's Research in SFU Scholarly Impact
- Karen Kavanagh selected as a Fellow of the MRS
- Applied Physics undergrad wins AMPP Poster Competition
- Physics BSc Grad Gives Convocation Address
- Dr. Simmons Appointed to Quantum Tech Expert Panel
- Physics Undergrad wins SFU Service Award
- Meet the Canada Research Chair in Silicon Quantum Tech
- Dr. Sivak's Research Featured on NSERC Impact Story
- Physics Grad Wins Dean's Convocation Medal
- First-year Physics major wins John Pearson Prize
- Higgs Boson turns 10!
- SFU Physics BSc graduate wins 2nd prize in the CAP Congress Competition
- Physics members win ATLAS Outstanding Achievement Award
- SFU Physics Research featured in Quanta Magazine
- Silicon Quantum Lab Publishes Major Breakthrough
- Biophysics Research Featured on Scholarly Impact
- Levon Pogosian wins BC Sugar Achievement Award
- Dr. Simmons on SFU's Quantum Computing Breakthrough
- John Bechhoefer named Distinguished SFU Professor
- 2021
- Simmons wins Women of Distinction Award
- Pogosian's Research in SFU Scholarly Impact
- PhD Graduate Awarded Convocation Medal
- Convocation Speaker Aidan Wright
- Nancy Forde Elected BSC President
- Bechhoefer named Royal Society of Canada Fellow
- Jeff Sonier Named American Physical Society Fellow
- SFU undergrads receive quantum grant award
- 2020
- 2019
- 2018
- 2022
- Events by Year
- Events By Category
-
News by Year
- Outreach
- _how-to
- Congratulations to our Class of 2021
- Archive
- Atlas Tier 1 Data Centre
Biophysics Journal Club
Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins
Mike Kirkness
SFU Physics
Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins
Jun 14, 2017 at 12PM
Synopsis
Hao Yu, Matthew G. W. Siewny, Devin T. Edwards, Aric W. Sanders, Thomas T. Perkins
Science 355, 945-950 – Published 3 March 2017
Protein folding occurs as a set of transitions between structural states within an energy landscape. An oversimplified view of the folding process emerges when transiently populated states are undetected because of limited instrumental resolution. Using force spectroscopy optimized for 1-microsecond resolution, we reexamined the unfolding of individual bacteriorhodopsin molecules in native lipid bilayers. The experimental data reveal the unfolding pathway in unprecedented detail. Numerous newly detected intermediates—many separated by as few as two or three amino acids—exhibited complex dynamics, including frequent refolding and state occupancies of <10 ms. Equilibrium measurements between such states enabled the folding free-energy landscape to be deduced. These results sharpen the picture of the mechanical unfolding of membrane proteins and, more broadly, enable experimental access to previously obscured protein dynamics.