- About Us
- People
- Undergrad
- Graduate
- Research
- News & Events
-
News by Year
- 2022
- Physics Professors named Canada Research Chairs
- Physics Faculty and Graduate Student Win Teaching Awards
- SFU Physics Professor wins 2021 Buchalter Cosmology Prize
- Dr. Hayden's Research in SFU Scholarly Impact
- Karen Kavanagh selected as a Fellow of the MRS
- Applied Physics undergrad wins AMPP Poster Competition
- Physics BSc Grad Gives Convocation Address
- Dr. Simmons Appointed to Quantum Tech Expert Panel
- Physics Undergrad wins SFU Service Award
- Meet the Canada Research Chair in Silicon Quantum Tech
- Dr. Sivak's Research Featured on NSERC Impact Story
- Physics Grad Wins Dean's Convocation Medal
- First-year Physics major wins John Pearson Prize
- Higgs Boson turns 10!
- SFU Physics BSc graduate wins 2nd prize in the CAP Congress Competition
- Physics members win ATLAS Outstanding Achievement Award
- SFU Physics Research featured in Quanta Magazine
- Silicon Quantum Lab Publishes Major Breakthrough
- Biophysics Research Featured on Scholarly Impact
- Levon Pogosian wins BC Sugar Achievement Award
- Dr. Simmons on SFU's Quantum Computing Breakthrough
- John Bechhoefer named Distinguished SFU Professor
- 2021
- Simmons wins Women of Distinction Award
- Pogosian's Research in SFU Scholarly Impact
- PhD Graduate Awarded Convocation Medal
- Convocation Speaker Aidan Wright
- Nancy Forde Elected BSC President
- Bechhoefer named Royal Society of Canada Fellow
- Jeff Sonier Named American Physical Society Fellow
- SFU undergrads receive quantum grant award
- 2020
- 2019
- 2018
- 2022
- Events by Year
- Events By Category
-
News by Year
- Outreach
- _how-to
- Congratulations to our Class of 2021
- Archive
- Atlas Tier 1 Data Centre
Biophysics and Soft Matter Seminar
Dynameomics: From Simulation of All Protein Folds to the Design of Amyloid Inhibitors and Diagnostics
Valerie Daggett
Department of Bioengineering, Washington
Dynameomics: From Simulation of All Protein Folds to the Design of Amyloid Inhibitors and Diagnostics
Mar 29, 2017 at 12PM
Synopsis
We have been involved in the development and use of realistic computer simulations of proteins to characterize the conformational changes associated with amyloid formation. In so doing we discovered a novel structure adopted by amyloidogenic proteins, but not 'normal' proteins, and we proposed that it defines the toxic soluble oligomers formed en route to the nontoxic mature fibrils. As such, this structure, which we call alpha-sheet, represents a new target for amyloid therapeutics and diagnostics. We have designed, synthesized, and tested compounds to be complementary to this 'toxic' structure and they inhibit amyloid formation of A-beta (Alzheimer's Disease), transthyretin (systemic amyloid disease and heart disease), and amylin (type 2 diabetes) by specifically binding the toxic oligomers, which in turn neutralizes the toxic species. These alpha-sheet compounds represent a novel platform for attacking these diseases and the hope of disease-modifying treatments and early diagnosis.