

- Why does Brightness Contrast occur?
- firing rates
- lateral inhibition

Summary of factors that affect the brightness of an object:

- Brightness is affected by the current state of sensitivity of the eye.
- Brightness is affected by the wavelength of light.
- Brightness is affected by the brightness of surrounding objects.

Darkness Versus Brightness Perception

Colour Vision

Newton

- Prisms
- Wavelengths

"The Rays so to speak properly are not coloured. In them there is nothing else than a certain Power and Disposition to stir up a Sensation of this or that Colour...So Colours in the Object are nothing but a Disposition to reflect this or that sort of Rays more copiously than the rest..."

- Wavelengths and photons DO NOT have colour

Colour Mixing

- Thomas Young
- Helmholz & Maxwell
- Predicting colour

high	Brightness	high
	white	-
		-
		-
medium	\leftarrow)-	medium
		-
	black	
low	~	

Colour Mixing

- Thomas Young
- Helmholz & Maxwell
- Predicting colour
- CIE--imaginary primary colours

Theories of Colour Vision

• How do we see colour?

- Trichromatic
- Opponent Process

Trichromatic Theory

- Young-Helmholz
- only need three types of cones
 - erythrolabe
 - chlorolabe
 - cyanolabe
- What kinds of evidence?

Kinds of Colour Blindness

- Complete colour blindness
- monochromatic
- dichromatic
 - protanopia
 - deuteranopia
 - tritanopia

	Males	Females
nomalous Trichromacy	6.3	0.37
Protanomaly (L-cone defect)	1.30	.02
Deuteranomaly (M-cone defect)	5.00	.35
(S-cone defect)	0.0001	0.0001
ichromacy	2.4	0.03
Protanopia (L-cone absent)	1.30	.02
(M-cone absent)	1.20	.01
Tritanopia (S-cone absent)	0.001	0.03
(no cones)	0.00001	0.00001

Other Evidence? Physiological

• microspectrophotometeric studies

Hering

• 4 primary colours?

- red, green, blue, yellow

- Never see
 - reddish-green
 - yellowish-blue

Competing Theories

- Which is correct?
- Both--well maybe.....
- three types of cones
- bipolar/ganglion/higher -- opponent process
- Retinex Theory

Colour Perception

- Individual Differences
 - sex
 - age
- Cultural Differences
 - colour naming
 - temperature
 - memory for
- Spatial Interactions
 - Context