

Theories

- Place Principle
 traveling wave
 tonotopic organization
- Frequency Principle
 □ refractory period limitation
 □ volley principle

Which theory is correct?

- Both?
- Place Principle (500 20,000Hz)
- Frequency Principle (< 4,000Hz)</p>

Music Perception

- height perceived pitch
- chroma identity within octave

Speech Recognition

computers

5.B

- □ filtering signal from noise
- □ sloppy pronounciation
- □accents
- □gender
- □age
- $\Box \, \text{speed}$
- how far have we come?
 - □Friends, Romans, countryman, lend me your ears □Friends, Romans, countryman, linear years

Units of Speech

- sentence?
- Ietter?

1 - 10

- phoneme?
 - □ shortest segment of speech that if changed, changes the meaning of a word □/b/, /i/, /t/
 - □approx. 47 in English

Analyzing Speech

- patterns of pressure changes
- shape of vocal tract
- articulators tongue, lips, jaw, teeth, soft palate
- two main types of phonemes □vowels and consonants

Vowels

- vibrations of vocal chords
- shape of vocal tract > different resonant frequencies

Vowels

. . . .

- vibrations of vocal chords
- shape of vocal tract > different resonant frequencies
- frequency peaks called formants
- first formant lowest frequency, etc.

Consonants

- formant transitions
- rapid shifts in frequency preceding or following formants

Oscillogram

Pressure

≪ॐ स्वत्रे ते व

Pitch Analysis

- fundamental (dominant) frequency (f₀)
- Males : 80 -200Hz
- Females: 150-350Hz

2	
Spectrum	
e (dB)	
mplitud	
< <	
	Frequency (Hz)

Segmentation Problem

how do we segment sound into words?
□look for breaks in sound stimulus?

1000

Coarticulation

- when we say the word "happy"
- before you say anything tongue has moved into position to make the "a" sound
- "h" will sound a little like an "a"
- while saying "a" closing lips for "pp"
- spreads out vowel and consonant information to aid understanding
- allows us to communicate at a rate of about 5 syllables/second

Acoustic-Phonetic Invariance

there must be some constant set of acoustic features associated with each perceived phoneme

Categorical Perception

- creates two categories of sounds from a wide range of acoustic signals
- Voice Onset Time (VOT) /da/ (17 ms) vs. /ta/ (91 ms) □ phonemic boundary 35-40 ms

Multimodal Information

- McGurk effect
 - □ information from visual domain is integrated with information from auditory domain to assist speech perception

Top-Down Influences

- Read the following sentences: M*R* H*D * L*TTL* L*MB I*S FL**C* W*S WH*T* *S SN*W
 - S*M* W**DS *R* EA*I*R T* U*D*R*T*N* T*A* *T*E*S

Meaning and Segmentation

What do you hear?

Meaning and Phoneme Perception

- What do you hear?
- phonemic restoration effect
- "There was time to *ave...
- rave? save? wave? shave?

Knowledge of Language

- if things are hard to make out (noise, accents) meaningful grammatical sentences >
- non-meaningful grammatical sentences > ungrammatical strings of words
 - non-permissible word structures (e.g., TQN)

Theories of Speech Perception

 passive (data-driven) vs. active (conceptually-driven)

- passive feature detectors/template matching (Pandemonium-like models)
- active cohort theory passive used to establish cohort, fit with meaning, etc. used to eliminate possibilities

□ trace theory – nodes activate all nodes connected higher and lower in network