Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
The AUTOREG Procedure

Functional Summary

The statements and options used with the AUTOREG procedure are summarized in the following table:

Description Statement Option
Data Set Options   
specify the input data setAUTOREGDATA=
write parameter estimates to an output data setAUTOREGOUTEST=
include covariances in the OUTEST= data setAUTOREGCOVOUT
write predictions, residuals, and confidence limits to an output data setOUTPUTOUT=
   
Declaring the Role of Variables   
specify BY-group processingBY 
   
Printing Control Options   
request all printing optionsMODELALL
print transformed coefficientsMODELCOEF
print correlation matrix of the estimatesMODELCORRB
print covariance matrix of the estimatesMODELCOVB
print DW statistics up to order jMODELDW=j
print marginal probability of the generalized Durbin-Watson test statistics for large sample sizesMODELDWPROB
print the p-values for the Durbin-Watson test be computed using a linearized approximation of the design matrixMODELLDW
print inverse of Toeplitz matrixMODELGINV
print the Godfrey LM serial correlation testMODELGODFREY=
print details at each iteration stepMODELITPRINT
print the Durbin t statisticMODELLAGDEP
print the Durbin h statisticMODELLAGDEP=
print the log likelihood value of the regression modelMODELLOGLIKL
print the Jarque-Bera normality testMODELNORMAL
print tests for ARCH processMODELARCHTEST
print the Lagrange multiplier testHETEROTEST=LM
print the Chow testMODELCHOW=
print the predictive Chow testMODELPCHOW=
suppress printed outputMODELNOPRINT
print partial autocorrelationsMODELPARTIAL
print Ramsey's RESET testMODELRESET
print tests for stationarity or unit rootsMODELSTATIONARITY=(PHILLIPS=)
print tests of linear hypothesesTEST 
specify the test statistics to useTESTTYPE=
prints the uncentered regression R2MODELURSQ
   
Model Estimation Options   
specify the order of autoregressive processMODELNLAG=
center the dependent variableMODELCENTER
suppress the intercept parameterMODELNOINT
remove nonsignificant AR parametersMODELBACKSTEP
specify significance level for BACKSTEPMODELSLSTAY=
specify the convergence criterionMODELCONVERGE=
specify the type of covariance matrixMODELCOVEST=
set the initial values of parameters used by the iterative optimization algorithmMODELINITIAL=
specify iterative Yule-Walker methodMODELITER
specify maximum number of iterationsMODELMAXITER=
specify the estimation methodMODELMETHOD=
use only first sequence of nonmissing dataMODELNOMISS
specify the optimization techniqueMODELOPTMETHOD=
imposes restrictions on the regression estimatesRESTRICT 
estimate and test heteroscedasticity modelsHETERO 
   
GARCH Related Options   
specify order of GARCH processMODELGARCH=(Q=,P=)
specify type of GARCH modelMODELGARCH=(...,TYPE=)
specify various forms of the GARCH-M modelMODELGARCH=(...,MEAN=)
suppress GARCH intercept parameterMODELGARCH=(...,NOINT)
specify the trust region methodMODELGARCH=(...,TR)
estimate the GARCH model for the conditional t-distributionMODELGARCH=(...) DIST=
estimates the start-up values for the conditional variance equationMODELGARCH=(...,STARTUP=)
specify the functional form of the heteroscedasticity modelHETEROLINK=
specify that the heteroscedasticity model does not include the unit termHETERONOCONST
impose constraints on the estimated parameters the heteroscedasticity modelHETEROCOEF=
impose constraints on the estimated standard deviation of the heteroscedasticity modelHETEROSTD=
output conditional error varianceOUTPUTCEV=
output conditional prediction error varianceOUTPUTCPEV=
specify the flexible conditional variance form of the GARCH modelHETERO 
   
   
Output Control Options   
specify confidence limit sizeOUTPUTALPHACLI=
specify confidence limit size for structural predicted valuesOUTPUTALPHACLM=
specify the significance level for the upper and lower bounds of the CUSUM and CUSUMSQ statisticsOUTPUTALPHACSM=
specify the name of a variable to contain the values of the Theil's BLUS residualsOUTPUTBLUS=
output the value of the error variance { {\sigma}^2_{t}}OUTPUTCEV=
output transformed intercept variableOUTPUTCONSTANT=
specify the name of a variable to contain the CUSUM statisticsOUTPUTCUSUM=
specify the name of a variable to contain the CUSUMSQ statisticsOUTPUTCUSUMSQ=
specify the name of a variable to contain the upper confidence bound for the CUSUM statisticOUTPUTCUSUMUB=
specify the name of a variable to contain the lower confidence bound for the CUSUM statisticOUTPUTCUSUMLB=
specify the name of a variable to contain the upper confidence bound for the CUSUMSQ statisticOUTPUTCUSUMSQUB=
option specify the name of a variable to contain the lower confidence bound for the CUSUMSQ statisticOUTPUTCUSUMSQLB=
output lower confidence limitOUTPUTLCL=
output lower confidence limit for structural predicted valuesOUTPUTLCLM=
output predicted valuesOUTPUTP=
output predicted values of structural partOUTPUTPM=
output residualsOUTPUTR=
output residuals from structural predictionsOUTPUTRM=
specify the name of a variable to contain the part of the predictive error variance (vt)OUTPUTRECPEV=
specify the name of a variable to contain recursive residualsOUTPUTRECRES=
output transformed variablesOUTPUTcomp TRANSFORM=
output upper confidence limitOUTPUTUCL=
output upper confidence limit for structural predicted valuesOUTPUTUCLM=
   

Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
Top
Top

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.