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Delay differential equations (DDEs) are widely used in ecology, physiology and
many other areas of applied science. Although the form of the DDE model is usually
proposed based on scientific understanding of the dynamic system, parameters in the
DDE model are often unknown. Thus it is of great interest to estimate DDE parame-
ters from noisy data. Since the DDE model does not usually have an analytic solution,
and the numeric solution requires knowing the history of the dynamic process, the tra-
ditional likelihood method cannot be directly applied. We propose a semiparametric
method to estimate DDE parameters. The key feature of the semiparametric method is
the use of a flexible nonparametric function to represent the dynamic process. The non-
parametric function is estimated by maximizing the DDE-defined penalized likelihood
function. Simulation studies show that the semiparametric method gives satisfactory es-
timates of DDE parameters. The semiparametric method is demonstrated by estimating
a DDE model from Nicholson’s blowfly population data.

Key Words: Dynamic system; Implicit function theorem; Mackey–Glass equation;
Nicholson’s data; Penalized spline smoothing.

1. INTRODUCTION

Delay differential equations (DDEs) are popular tools for applied scientists to model
their dynamic systems. The forms of the DDE models are usually proposed by investi-
gators based on their understanding of the dynamic system. However, the parameters of
DDE models are often unknown. These parameters often have important scientific inter-
pretations, therefore it is important to infer their values. It is also a good calibration of the
DDE models if the DDE solutions with certain parameter values fit the measurements of
the dynamic systems. The objective of this article is to estimate the DDE parameters from
noisy data.
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Figure 1. Blowfly population in one experiment published in Nicholson (1954b).

Nicholson (1954a, 1954b, 1957) published his classic studies on the competition
for food in laboratory populations of Australian sheep blowflies, Lucilia cuprina. The
blowflies were cultured in a room maintained at 25°C. Nicholson measured the population
of blowflies every day for approximately one year. Figure 1 displays the blowfly popula-
tion measured in one such experiment. Nicholson’s classic work stimulated wide interest
in ecology, and the dynamic system of the blowfly population was investigated intensively
thereafter (Hassell 1978; Readshaw and Cuff 1980; Gurney, Blythe, and Nisbet 1980;
Kendall et al. 1999).

In the dynamic system of the blowfly population, resource limitation acts with a time
delay, roughly equal to the time for a larva to grow up to an adult. Thus May (1976)
proposed to model the population dynamics of blowflies with a DDE

dX(t)

dt
= rX(t)

[
1 − X(t − τ)/(1000 · K)

]
, (1.1)

where X(t) is the blowfly population, r is the rate of increase of the blowfly population,
K is a resource limitation parameter set by the supply of food, and τ is the time delay,
roughly equal to the time for a larva to grow up to an adult. One goal of this article is to
estimate the three parameters r,K, and τ from the noisy Nicholson’s blowfly data.

In addition to the above DDE model, many other DDE models have been widely used
in physiology (Mackey and Glass 1977), ecology (Gurney, Blythe, and Nisbet 1980), and
many other areas. A typical DDE model may be expressed as

dX(t)

dt
= f

(
X(t),X(t − τ)|β)

, (1.2)

where X(t) is the dynamic process on [t1, tn], τ is a constant delay parameter, and β is
a p-dimensional vector of parameters describing the system. The above DDE usually has



ESTIMATING PARAMETERS IN DELAY DIFFERENTIAL EQUATION MODELS

no analytic solutions and can only be solved numerically. The DDE solutions will not only
depend on the parameters β and τ , but will also rely on the history of the dynamic process
Hτ = {X(t), t ∈ [t1 − τ, t1]} which is an infinite-dimensional set.

The form of the DDE model is usually proposed based on the scientific understanding
of the dynamic system, in other words, the parametric form of f (·) in (1.2) is often known.
However, the parameters β and τ in the DDE model are typically unknown. These DDE
parameters often have scientific interpretations. Therefore, it is of great interest to estimate
the DDE parameters from noisy real measurements or observations on the dynamic system.
Moreover, obtaining estimates of DDE parameters can help us to show whether a particular
DDE model is able to produce the observed dynamic system by checking the fit of the DDE
numeric solution to the observed data. After a suitable DDE model is calibrated with the
real data, it will then be reliable to make predictions.

Several methods have been proposed to estimate parameters in DDE models when the
data are assumed to be collected with little or no errors. Fowler and Kember (1993) esti-
mated the derivative X′(t) using the finite difference X(t) − X(t − δ), where δ is a suffi-
ciently small delay. Then, they identified the delay parameter by embedding the dynamic
process in the low-dimensional space (X(t),X(t − δ),X(t − �)), where � is selected as
the location having a sharp change of the volume of the low-dimensional space. Kaplan
and Glass (1993) estimated the time lag parameter by studying when trajectories passing
through a small region of an embedding space are parallel. Bunner et al. (1996) studied the
special DDE model f (X(t),X(t − τ)|β) = −X(t) + g(X(t − τ)). They take advantage
of the fact that at the time point ti when X′(ti) = 0, we have X(ti) = g(X(ti − τ)). Next,
they infer the time delay using the value that gives the smoothest graph of X(ti) versus
X(ti − τ). Ellner et al. (1997) unified the above methods and extended them to more re-
alistic cases, in which the data have measurement errors. They first estimate the derivative
X′(t) from the noisy data using nonparametric smoothing methods (Hastie and Tibshirani
1990), and then inferred f (·) in the framework of the generalized additive model. In this
article, this approach is called the two-step method. It is not difficult to implement and
the computation is efficient. However, the estimates for X′(t) from noisy data with clas-
sic nonparametric methods are often inaccurate. As a result, the estimation for the DDE
parameters are obtained with large errors. Wood (2001) fitted the DDE models to several
real noisy data sets by minimizing the distance of the DDE numeric solutions to the noisy
data. This is a very difficult optimization problem since the DDE numeric solutions not
only depend on the parameter values, but also on the history of the dynamic process Hτ ,
which is essentially an infinite-dimensional optimization problem. This problem is more
difficult than estimating parameters in ordinary differential equations (ODEs), which is
only a finite-dimensional optimization problem because the ODEs solutions only depend
on the parameter values and a finite-dimensional set of initial conditions. Bihorel (2011)
developed an R package, “scaRabee", which estimated DDE parameters by maximizing
the likelihood function of the observed data. This R package requires users to provide the
history of the dynamic process and solve DDEs numerically to calculate the likelihood
function. Calderhead, Girolami, and Lawrence (2009) proposed a Bayesian approach to
estimate DDE parameters via the novel use of Gaussian processes, which also requires
repeatedly solving DDEs numerically when sampling for values of DDE parameters.



L. WANG AND J. CAO

We propose the semiparametric method to estimate DDE parameters from noisy data.
Our method avoids using DDE numeric solutions, releasing us from specifying the history
of the dynamic process Hτ , which greatly decreases the difficulty of the optimization prob-
lem. The optimization procedure is easy to converge and the computation load is greatly
decreased. In the semiparametric method, a flexible nonparametric function is estimated
to approximate the dynamic process by maximizing the penalized likelihood function. The
penalty term is defined with the model, and penalizes the infidelity of the nonparametric
function to the DDE model. This DDE-defined penalized likelihood criterion fully uses
both the information obtained from the data and the structure of the DDE models. There-
fore, this semiparametric method is able to obtain more accurate parameter estimates than
the two-step method of Ellner et al. (1997), because the latter ignores information from the
structure of the DDE model when estimating X′(t) in the first step.

The remainder of this article is organized as follows. Section 2 introduces the semipara-
metric method for estimating parameters in the DDE model from noisy data. The semipara-
metric method is demonstrated in Section 3 by estimating three parameters in DDE (1.1)
from real data of the blowfly population. Simulation studies are presented in Section 4 to
evaluate the finite sample performance of the semiparametric method, which is compared
with some alternative approaches. Conclusions are given in Section 5.

2. METHOD

2.1. THE LIKELIHOOD FUNCTION

The dynamic process X(t) is often measured or observed at multiple time points. Let
yi denote the observation or measurement for the dynamic process at the time point ti , i =
1, . . . , n. Suppose the dynamic process is modeled with the DDE (1.2). Denote the vector
of DDE parameters by θ = (βT , τ )T , and the DDE solution by X(t |θ). The noisy data
yi are assumed to follow some probability distribution with the log likelihood function,
logL(yi |X(ti |θ)). For example, it is often assumed that the noisy data yi are distributed as
Normal(X(ti |θ), σ 2), then the log likelihood function is equivalent to (yi − X(ti |θ))2 up
to a constant. Our objective is to estimate the parameter θ in the DDE model (1.2) from
the noisy data.

The DDE parameter θ can be estimated by maximizing the log likelihood function

H ∗(θ) =
n∑

i=1

logL
(
yi |X(ti |θ)

)
. (2.1)

Unfortunately, the above maximum likelihood method is difficult to directly implement in
this context, because the DDE solution X(t |θ) is an implicit function of θ , as the DDE
(1.2) usually does not have an analytic solution. The DDE can only be solved with some
numeric methods. In addition to the high computation load associated with the numeric
solver, the log likelihood function H(θ) typically has many local optima because the DDE
solution X(t |θ) is usually not a smooth function of θ . Moreover, the history of the dynamic
process Hτ has to be specified in order to solve the DDE numerically, but Hτ is usually
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unknown. Given that Hτ is an infinite-dimensional set, it is hard to guess by grid searching
methods.

2.2. DDE-DEFINED PENALIZED MAXIMUM LIKELIHOOD

To overcome the above mentioned difficulties associated with directly using numeric
DDE solutions, we use a flexible nonparametric function to approximate the DDE solution
at any given value of the DDE parameter θ . The nonparametric function is expressed as a
linear combination of basis functions,

x(t) =
K∑

k=1

φk(t)ck = φT (t)c, (2.2)

where φ(t) = (φ1(t), . . . , φK(t))T is the vector of basis functions at time t , and c =
(c1, . . . , cK)T is the corresponding vector of basis coefficients. We choose cubic B-splines
as the basis functions, since cubic B-splines are non-zero only in short subintervals, a fea-
ture called the compact support property, which is of the great importance for efficient
computation (de Boor 2001).

The number of basis functions must be large enough to adequately approximate the
dynamic process and the derivatives appearing in the ODEs. A rule of thumb is to put
one knot at each observation point, so users do not have to select the number of knots
and their locations. However, when the data are sparse with just a few observations for
the dynamic process, it is recommended to use a larger number of knots than the number
of observations. When the dynamic process has sharp features such as peaks, valleys, and
high-frequency oscillations, a more dense set of knots in these areas will be required. When
the dynamic process or its derivatives exhibits discontinuities, the dynamic process can be
approximated by B-splines through putting multiple coincident knots in the discontinuity
locations (Ramsay and Silverman 2005).

The vector of basis coefficients, c, is estimated, given the value of θ , by maximizing the
penalized log likelihood function

J (c|θ) =
n∑

i=1

logL
(
yi |x(ti)

) − λ

∫ tn

t1+τ

{
dx(t)

dt
− f

(
x(t), x(t − τ)|β)}2

dt, (2.3)

where the first term quantifies the fit of the nonparametric function x(t) to the data, and
the second term defines the infidelity of the nonparametric function x(t) to the DDE model
(1.2). The smoothing parameter λ controls the trade-off between fit to the data and fidelity
to the DDE model. Since the nonparametric function x(t) is forced to satisfy the DDE
model as well as possible, it must be sufficiently smooth; otherwise, the derivative x′(t)
would be too large and far away from f (x(t), x(t − τ)|β). In other words, the second term
also serves as the roughness penalty on the nonparametric function x(t). In fact, in the
special case when f (x(t), x(t − τ)|β) ≡ 0, the above penalized log likelihood function
J (c|θ) is exactly the standard criterion used in the penalized nonparametric smoothing
method, where the roughness penalty term is defined with the first derivative x′(t).

The integral in (2.3) does not usually have a closed form expression and needs to be eval-
uated using numerical quadrature. We use the composite Simpson’s rule, which provides a



L. WANG AND J. CAO

good approximation to the exact integral (Burden and Douglas 2000). For a function g(t),
the composite Simpson’s rule is

∫ tn

t1+τ

g(t) dt ≈ h

3

{

g(s0) + 2
Q/2−1∑

q=1

g(s2q) + 4
Q/2∑

q=1

g(s2q−1) + g(sQ)

}

,

with the quadrature points sq = t1 + τ + qh, q = 0, . . . ,Q, Q is an even integer, and
h = (tn − t1 − τ)/Q. To make the approximation accurate, Q needs to be reasonably large
such as Q = 5K , where K is the number of basis functions used in (2.2) for approximating
the DDE solution.

2.3. THE APPROXIMATED LIKELIHOOD FUNCTION

Given any value of θ , we obtain the estimate ĉ by maximizing the penalized log like-
lihood function. Therefore, ĉ may be treated as a function of θ , which is denoted as ĉ(θ).
Then, the estimate for the nonparametric function is also a function of θ :

x̂(t |θ) = φT (t )̂c(θ).

The above estimated nonparametric function is an approximation of the DDE solution
for any given value of the DDE parameter θ . The log likelihood function (2.1) can be
approximated as

H(θ) =
n∑

i=1

logL
(
yi |x̂(ti |θ)

)
. (2.4)

The DDE parameter θ is estimated by maximizing the approximated log likelihood func-
tion. The approximated log likelihood function H(θ) is much easier to maximize than the
exact log likelihood function H ∗(θ) because it does not contain the DDE numeric solution
and hence does not depend on the history of the dynamic process. Moreover, the gradient
for the optimization can be obtained analytically, as shown in the next subsection. Hence,
the optimization converges more readily with the supplied analytic gradient.

2.4. OPTIMIZATION METHODS

The spline coefficient c and the DDE parameter θ are estimated in two nested levels
of optimization. In the inner level of optimization, the spline coefficient c is estimated by
maximizing the DDE-defined penalized likelihood function J (c|θ) for any given value of
θ . In the outer level of optimization, the DDE parameter θ is estimated by maximizing the
approximated log likelihood function H(θ). Below we introduce the optimization methods
used in each level of optimization. First, we will focus on the special case that the data
follow a normal distribution, and then extend this framework to the general case in which
the data follow any distributions.

When the noisy data yi follow the normal distribution with the mean equal to the DDE
solution, then the approximated log likelihood function is

H(θ) =
n∑

i=1

logL
(
yi |x̂(ti |θ)

) ∝
n∑

i=1

(
yi − x̂(ti |θ)

)2
.
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The above criterion is expressed in the form of the sum of squared function values; hence,
the Gauss–Newton algorithm can be used to find the estimate for θ by minimizing the sum
of squared errors. As a modification of Newton’s algorithm, the Gauss–Newton algorithm
has the advantage that the Hessian matrix, which is challenging to compute, is not required,
though this method can only be used to minimize functions in the form of the sum of
squared function values. As pointed out by one reviewer of this manuscript, the above
approximated log likelihood function may be multimodal, so it is suggested to try different
initial guesses to check whether the optimization procedure converges to the same point.

Starting with the initial guess θ (0) for the DDE parameter θ , the Gauss–Newton algo-
rithm proceeds by the iterations

θ (j+1) = θ (j) −
{(

dr
dθ

)T (
dr
dθ

)}−1(
dr
dθ

)T

r,

where r is a vector of length n with the ith entry ri = yi − x̂(ti |θ (j)), and

dr
dθ

= −�
d ĉT

dθ
.

Here � is the n × K basis matrix with the ikth entry φk(ti). The function ĉ(θ) is an
implicit function and cannot be expressed in an analytic form, since one boundary point
of the integral in (2.3) is defined by the delay parameter τ . However, the derivative d ĉ/dθ

can be obtained analytically using the implicit function theorem as follows.
We take advantage of the fact that the estimate ĉ satisfies

∂J

∂cT

∣∣∣∣̂
c

≡ 0.

Taking the θ -derivative on both sides of the above identity, we obtain

d

dθ

∂J

∂cT

∣
∣∣∣̂
c

=
{

∂2J

∂cT ∂θ

∣
∣∣∣̂
c

}
+

{
∂2J

∂cT ∂c

∣
∣∣∣̂
c

}{
d ĉT

∂θ

}
≡ 0,

which yields

d ĉT

∂θ
=

{
∂2J

∂cT ∂c

∣∣∣∣̂
c

}−1{
∂2J

∂cT ∂θ

∣∣∣∣̂
c

}
,

provided that ∂2J/∂cT ∂c is non-singular at c = ĉ.
The criterion J (c) in the inner level of optimization can also be expressed in the form

of the sum of squared function values by using numerical quadrature methods to calculate
the integral. Therefore, it can also be optimized by the Gauss–Newton algorithm, which
only requires the analytic gradient.

One advantage of approximating the DDE solution with the nonparametric function
is that the log likelihood function H(θ) is a smoother function of θ than using the DDE
solution directly. As a result, the optimization procedure is less sensitive to the initial values
and is easier to converge. Nevertheless, H(θ) is not always convex so the local optimum
may not be the global optimum. The Gauss–Newton algorithm is only able to find a local
optimum. Consequently, it is advised to try different initial values when implementing the
optimization procedure.
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When the data follow any other distributions, the criterion H(θ) cannot usually be ex-
pressed in the form of a sum of squared function values. Therefore, the optimization cannot
be handled with the Gauss–Newton algorithm. Instead, we can use the Newton algorithm.
The Newton algorithm starts with the initial guess θ (0) for the DDE parameter θ , and pro-
ceeds by the iterations

θ (j+1) = θ (j) −
(

d2H

dθ dθT

)−1(
dH

dθ

)
,

where the gradient dH/dθ and the Hessian matrix d2H/dθ dθT can be derived analyti-
cally using the implicit function theorem similar to the one above.

2.5. SMOOTHING PARAMETER SELECTION

The smoothing parameter λ in (2.3) controls the trade-off between fitting the data and
maintaining fidelity to the DDE model. The semiparametric method is appealing for its
flexibility, which allows users to try different values of the smoothing parameter λ based
on their confidence in their data or the DDE model. Nevertheless, we propose an objective
criterion, K-fold cross validation, to choose the optimal value for the smoothing parameter.

K-fold cross validation is defined as follows. The data are partitioned into K folds.
In each of the K experiments, we use K − 1 folds for training and the remaining one
for testing. Let θ (−j) denote the parameter estimates from the K − 1 folds of data after
removing the j th fold, and A(−j) denote the set of indices such that all yi , i ∈ A(−j), do
not belong to the j th fold of data. The K-fold cross validation is defined as

CV = 1

K

K∑

j=1

∑

i∈A(−j)

logL
(
yi |x̂

(
ti |θ (−j)

))
.

All simulations and applications in this paper choose K = 10, which is a common practice
in the statistics literature.

2.6. STANDARD ERROR ESTIMATION

Standard errors of the DDE parameter estimates can be estimated using the paramet-
ric bootstrap as follows. Denote θ̂ as the estimate for the DDE parameters. The DDE is
solved numerically with θ̂ as the value of the parameter, and the DDE solution is denoted
as X(t |̂θ). The DDE solution, X(t |̂θ), is plugged into the assumed probability distribution
of the noisy data, and the simulated data are drawn from the likelihood. Then, the semi-
parametric method is used to obtain the estimate for the DDE parameter, which is denoted
by θ̃

(s)
, s = 1, . . . , S, where s is the index for the simulation, and S is the total number of

simulations. The standard error of θ̂ is calculated as the experimental standard deviation of
θ̃

(s)
, s = 1, . . . , S. The standard error for the DDE solution, denoted as SE(X(t |̂θ)), is cal-

culated as the experimental standard deviation of X(t |̃θ (s)
). The 95% confidence interval

for the DDE solution is given as [X(t |̂θ)−1.96∗SE(X(t |̂θ)),X(t |̂θ)+1.96∗SE(X(t |̂θ))],
which is based on the assumption of asymptotic normality.
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3. APPLICATION

As introduced in Section 1, the population dynamics of blowflies can be modeled with

the delay differential equation (1.1). The semiparametric method is used to estimate the

three DDE parameters, r , K and τ , from the real data shown in Figure 1.

Since the real data yi , i = 1, . . . , n, are counts of blowflies, they are assumed in the log-

normal distribution, lnNormal(X(ti |θ), σ 2), where X(t |θ) is the solution of the DDE

model (1.1) with the parameter θ = (r,K, τ)T . The semiparametric method approximates

the DDE solution with cubic B-splines with 201 equally spaced knots on the whole time

interval. The estimates for the three parameters are displayed in Table 1. The DDE (1.1)

is solved numerically with the parameter estimates, and the DDE solution fits the real data

well. This suggests that the time-delayed regulatory mechanism is indeed the basic feature

of the dynamics of the blowfly population.

Table 1 also shows that the standard errors of the parameter estimates are obtained

using the parametric bootstrap method. The parametric bootstrap method is implemented

as follows. The simulated data, y∗
i , are generated as lny∗

i = lnX(ti |̂θ) + ε∗
i , where θ̂ is the

estimate for the DDE parameter from the real data, ε∗
i ∼ Normal(0, σ̂ 2), and σ̂ 2 = 1.87

is the estimate for σ 2 from the real data. Then, the DDE parameters are estimated from the

simulated data, which are denoted as θ̃ . The above procedure is implemented with 1000

replicates. The experimental standard deviation of θ̃ is the parametric bootstrap estimate

for the standard error of the parameter estimates.

Figure 2 displays the 95% two-dimensional confidence regions for the DDE parameters

using the parametric bootstrap method. They are constructed as {z : (z − μ̂)′�̂−1
(z − μ̂) ≤

χ2(2;0.95)}, where z is a 2-dimensional vector, μ̂ and �̂ is the experimental mean and

covariance matrix of the pair-wise DDE parameter estimates using the parametric boot-

strap method, and χ2(2;0.95) is the 95% quantile of the Chi-square distribution with two

degrees of freedom. Notice that the upper left panel in Figure 2 shows the negative cor-

relation between r and τ . Recall that r is the rate of increase of the blowfly population,

and τ is the time delay, roughly equal to the time for a larva to grow up to an adult. After

knowing the meanings of r and τ , we may understand the negative correlation between r

and τ : if the blowfly grows faster, it will take a larva shorter lime to grow up to an adult,

and the rate of increase of the blowfly population will also be higher.

Table 1. Estimation for the three DDE parameters from the real blowfly data.

Parameters τ K r

Point Estimates 8.781 2.226 0.222
Standard Errors 0.039 0.085 0.003
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Figure 2. The 95% two-dimensional confidence regions for the DDE parameters using the parametric bootstrap
method. The dots are the point estimates of the DDE parameters from the real blowfly data.

4. SIMULATIONS

Some simulations are implemented to evaluate the finite sample performance of the
semiparametric method. The semiparametric method is also compared with some alterna-
tive approaches in terms of estimation precision.

4.1. HUTCHINSON’S EQUATION

Hutchinson (1948) considered a single species obeying a logistic growth law, and mod-
eled its population dynamics with a DDE model:

dX(t)

dt
= rX(t)

[
1 − X(t − τ)/(1000 · K)

]
,

where r is the growth rate of the species, 1000 · K is the maximum population sustain-
able by the environmental resources, and τ is the time lag built into the operation of this
regulatory mechanism. The properties of the above DDE have been studied extensively
in the mathematical literature. For example, the population of the species remains at a
stable equilibrium point equal to 1000K when rτ < 0.5π . When rτ > 0.5π , the popu-
lation dynamics exist as a limit cycle. The three parameters τ , r , and K are estimated
from the simulated noisy data with the semiparametric method, the two-step method,
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Figure 3. The numeric solution of the DDE dX(t)/dt = rX(t)[1 − X(t − τ)/(1000 · K)] using the estimated
parameter values. The circles are the simulated noisy data by adding noises to the DDE solutions at 61 equally
spaced time points in [0,30]. The gray band is the 95% confidence interval for the DDE solution.

and the scaRabee package (Bihorel 2011). The scaRabee package requires users to pro-

vide the history of the dynamic process, and we set the history of the dynamic process

Hτ = {X(t) = y1, t ∈ [−τ,0]}, where y1 is the first data point at t = 0.

The simulated noisy data are generated as follows. First, the DDE (1.1) is first solved

numerically with the true parameter values in n equally spaced time points [0,30]. The

true values of parameters are set to τ = 3π/5, r = 1.0, and K = 2, and the initial history

is set to X(t) = 1000 when t ≤ 0. The numeric solution of the DDE is shown in Figure 3,

which displays the dynamics of a limit cycle. Then, the simulated noisy data are generated

using the log-normal distribution, lnNormal(X(ti), σ
2), i = 1, . . . , n, where X(t) is the

numeric solution of the DDE model using the true parameter values. The standard deviation

of the noise is set to σ = 0.088 , which is 10% of the standard deviation of the logarithm

of the DDE solution. The sample size n is set to 61, 121, 241 in three scenarios, and

the simulation is implemented with 100 replicates in each scenario. Figure 3 shows one

simulated data set when the sample size is n = 61.

The parameter estimates are summarized in Table 2. The parameter estimates with the

semiparametric method have much smaller biases, standard deviations (STDs), and root

mean squared errors (RMSEs) than the two-step method under any sample size. When the

sample size is small (n = 61), the RMSEs for τ̂ , K̂ , and r̂ using the semiparametric method

are 11%, 41%, 14% of those using the two-step method, respectively. When the sample size

increases, the gains using the semiparametric method are even larger. For example, when

the sample size is n = 241, the RMSEs for τ̂ , K̂ , and r̂ using the semiparametric method are

only 5%, 25%, 5% of those using the two-step method, respectively. Moreover, the biases

of the parameter estimates using the semiparametric method are also negligible compared

with their standard deviations. On the other hand, the parameter estimates obtained using
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Table 2. The biases, standard deviations (STDs), and root mean squared errors (RMSEs) of the parameter esti-
mates for the Hutchinson’s DDE model using the semiparametric method, the scaRabee package in R,
and the two-step method. The sample size n is set as 61, 121, 241 in three scenarios, and the simulation
is implemented with 100 replicates in each scenario. “SEMI” represents the semiparametric method.

Sample Size n = 61 n = 121 n = 241

DDE Parameter τ K r τ K r τ K r

True Parameter Value 1.9 2.0 1.0 1.9 2.0 1.0 1.9 2.0 1.0

BIAS∗102
SEMI 0.1 −0.2 −0.1 0.2 −0.3 −0.1 0.1 −5e-2 −6e-4

scaRabee 0.2 0.3 −0.1 0.3 0.4 −0.1 0.1 0.2 4e-2
2-Step −0.2 0.7 −4.0 2.3 −1.7 −1.7 4.5 −4.0 −2.9

STD∗102
SEMI 0.7 2.7 0.8 0.4 1.9 0.3 0.2 1.3 0.2

scaRabee 1.3 2.9 0.9 1.2 2.7 0.7 1.1 2.2 0.3
2-Step 6.3 6.5 4.2 5.6 5.8 3.6 3.2 3.6 2.8

RMSE∗102
SEMI 0.7 2.7 0.8 0.4 1.9 0.3 0.3 1.3 0.2

scaRabee 1.3 2.9 0.9 1.2 2.7 0.7 1.1 2.2 0.3
2-Step 6.3 6.6 5.7 6.0 6.0 4.0 5.5 5.4 4.0

Table 3. The coverage probabilities of the confidence intervals for τ̂ , K̂ , r̂ , and the two-dimensional confidence
regions for (τ̂ , K̂), (K̂, r̂), (τ̂ , r̂) constructed using the parametric bootstrap method. The sample size
n is set as 61, 121, 241 in three scenarios.

τ̂ K̂ r̂ (τ̂ , K̂) (K̂, r̂) (τ̂ , r̂)

n = 61 96% 97% 97% 97% 96% 95%
n = 121 96% 96% 96% 93% 95% 95%
n = 241 95% 97% 94% 95% 93% 94%

the two-step method have large biases, which are caused by the poor estimates for the
derivative X′(t) in the first step.

The scaRabee package obtains more accurate parameter estimates than the two-step
method; however, it is not as good as the semiparametric method. In particular, the semi-
parametric method has much smaller RMSEs for the estimates of the delay parameter, τ̂ ,
than the scaRabee package. One reason for the unsatisfactory performance of the scaRabee
package is that it requires providing the history of the dynamic process, but the history of
the dynamic process is hard to estimate beforehand.

The 95% confidence interval for τ̂ is constructed as [τ̂ −1.96∗SE(τ̂ ), τ̂ +1.96∗SE(τ̂ )],
where SE(τ̂ ) is the standard error of τ̂ estimated using the parametric bootstrap method as
introduced in Subsection 2.6. The 95% confidence intervals for K̂ and r̂ are constructed
in the same way. The 95% two-dimensional confidence region for (τ̂ , K̂) is constructed as
{z : (z − μ̂)′�̂−1

(z − μ̂) ≤ χ2(2;0.95)}, where z is a 2-dimensional vector, μ̂ and �̂ is the
estimated mean and covariance matrix of (τ̂ , K̂) using the parametric bootstrap method,
and χ2(2;0.95) is the 95% quantile of the Chi-square distribution with two degrees of free-
dom. The 95% two-dimensional confidence regions for (K̂, r̂) and (τ̂ , r̂) are constructed
in the same way. Table 3 displays the coverage probabilities of the confidence intervals for
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τ̂ , K̂ , r̂ , and the two-dimensional confidence intervals for (τ̂ , K̂), (K̂, r̂), (τ̂ , r̂) when the
sample size n = 61,121,241. These coverage probabilities are all close to 95%.

4.2. MACKEY–GLASS EQUATION

Mackey and Glass (1977) proposed a delay differential equation to model the nonlinear
feedback control in physiology:

dX(t)

dt
= aX(t − τ)

1 + X(t − τ)c
− bX(t). (4.1)

The above equation displays several interesting dynamic behaviors including limit cycle
oscillations and aperiodic solutions. They showed that the Mackey–Glass equation could
reproduce the qualitative features of dynamical respiratory and hematopoietic diseases.
The semiparametric method is used to estimate the four parameters a, b, c, and τ from
the simulated noisy data, and is compared with the two-step method in terms of estimation
accuracy.

The noisy data are simulated using the normal distribution Normal(X(ti), σ
2), where

X(t) is the numeric solution of the DDE model (4.1). The true values of parameters are set
to τ = 2, a = 2, b = 1, and c = 10, and the initial history is set to X(t) = 0.5 when t ≤ 0.
The standard deviation of the noise is set to σ = 0.025 , which is 10% of the standard
deviation of the DDE solution. The sample size n is chosen to be 20, 50, 100 in three
scenarios, and the simulation is implemented with 100 replicates in each scenario. Figure 4
displays one simulated data set, along with the numeric solution of the Mackey–Glass
equation.

Table 4 compares the parameter estimates using the semiparametric method and the
two-step method. The semiparametric method obtains much smaller biases and root mean

Figure 4. One noisy data set simulated based on the Mackey–Glass equation dX(t)/dt = {aX(t − τ)}/
{1 + X(t − τ)c} − bX(t). The solid line is the numeric solution of the Mackey–Glass equation using the es-
timated parameter values. The gray band is the 95% confidence interval for the DDE solution.
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Table 4. The biases, standard deviations (STDs), and root mean squared errors (RMSEs) of the parameter es-
timates for the Mackey–Glass equation using the semiparametric method and the two-step method.
The sample size n is set as 20, 50, 100 in three scenarios, and the simulation is implemented with 100
replicates in each scenario. “SEMI” represents the semiparametric method.

BIAS∗10 STD∗10 RMSE∗10

n Parameters True SEMI 2-Step SEMI 2-Step SEMI 2-Step

20

a 2.00 −0.12 −5.85 1.23 1.07 1.24 5.95
b 1.00 −0.07 −3.19 0.62 0.58 0.63 3.24
c 10.00 3.04 12.89 4.90 7.70 5.76 15.01
τ 2.00 −0.01 −1.59 0.18 0.41 0.18 1.64

50

a 2.00 −0.03 −2.51 0.46 0.86 0.46 2.65
b 1.00 −0.05 −1.29 0.25 0.43 0.26 1.36
c 10.00 1.62 3.43 2.41 5.02 2.90 6.08
τ 2.00 0.01 −0.31 0.08 0.19 0.08 0.36

100

a 2.00 −0.02 −1.50 0.28 0.65 0.28 1.63
b 1.00 −0.03 −0.77 0.16 0.34 0.16 0.84
c 10.00 0.87 2.08 1.49 3.63 1.73 4.19
τ 2.00 0.02 −0.18 0.05 0.14 0.06 0.23

squared errors (RMSEs) of the parameter estimates for any sample size. The standard de-
viations (STDs) of the parameter estimates using the semiparametric method are mostly
smaller than those obtained using the two-step method except those of a and b with sam-
ple size n = 20. The RMSEs of the semiparametric estimates for the delay parameter τ are
only 11%, 22%, and 25% of those obtained using the two-step method when the sample
size is n = 20,50, and 100, respectively. The gains of using the semiparametric method
are also substantial for the estimation of the other three DDE parameters. For instance, the
semiparametric method has the RMSEs of the estimates for a reduced 79%, 83%, and 83%
over the two-step method when the sample size is n = 20,50, and 100, respectively.

5. CONCLUSION

Delay differential equations (DDEs) usually do not have analytic solutions and can only
be solved by some numeric methods. The numeric solutions of DDEs not only depend on
the DDE parameters, but also on the history of the dynamic system. Therefore, it is difficult
to apply the traditional likelihood method to estimate DDE parameters.

We propose the semiparametric method to address this problem. In order to avoid
solving DDEs numerically, a flexible nonparametric function is used to approximate the
dynamic process. The nonparametric function is estimated by maximizing the penalized
likelihood function. The penalty term is defined using the DDE model, which forces the
nonparametric function to satisfy the DDE model and penalizes the roughness of the non-
parametric function. Simulation studies show that the semiparametric method obtains more
accurate estimates for the DDE parameters than some alternative approaches.

As pointed out by one reviewer, the penalized log likelihood function (2.3) implies a
hierarchical model where the prior distribution for the dynamic process is defined with the



ESTIMATING PARAMETERS IN DELAY DIFFERENTIAL EQUATION MODELS

DDE model. From this point of view, our method is similar to the Bayesian hierarchical
implementations (Wikle and Hooten 2010). Lele, Dennis, and Lutscher (2007) introduced
a data cloning method to calculate maximum likelihood estimates and their standard errors
for complex statistical models in the Bayesian framework by implementing the Markov
chain Monte Carlo (MCMC) algorithm. The data cloning method is promising in estimat-
ing the DDE models, and will be investigated in our future research.

Our method can be applied to estimate DDE parameters from data in any distribution by
choosing the appropriate distribution and likelihood function for data. For example, when
data contain zeros, (Cangelosi and Hooten 2009) suggested using the truncated normal
distribution for describing the data.
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