Supplementary Document for the Manuscript entitled "Estimating Functional Single Index Models with Compact Support"

S1 Real Data Application

S1.1 Effect of the Order of the B-spline Basis

Figure S1 displays the estimated index function $\hat{\beta}(t)$ and link function $\hat{g}(\cdot)$ with different orders of B-spline. Figure S1 shows that a higher order of B-spline functions leads to a less sparse estimator of the index function $\beta(t)$ and not many differences in estimating the link function $g(\cdot)$. This is probably due to the fact that different estimates of $\beta(t)$ result in a very similar estimate of the score $\int \beta(t)X(t)dt$. In this case, we propose to use cross-validation to choose the optimal order of B-spline functions along with other parameters in the model. Table S1 shows the optimal choice of λ , γ and bandwidth given different orders of the B-spline. It shows that the mean squared prediction error (MSPE) is minimized when the order of the B-spline basis is 4. Note that given the order of the B-spline basis, the optimal values of the sparse parameter λ , smoothing parameter γ and the bandwidth h are still chosen from a three-dimensional grid: $\{10^2, 10^4, 10^6, 10^8\} \times \{10^1, 10^3, 10^5, 10^7\} \times \{0.3, 0.5, 0.8\}$ by 10-fold cross-validation. For instance, with order 4 B-spline, the optimal choice of λ , γ and h are selected to be 10^6 , 10^3 and 0.5, which gives a value of MSPE

461.61. Similarly, with order 8 B-spline, the optimal choice of λ , γ and h are selected to be 10^7 , 10^5 and 0.5, respectively.

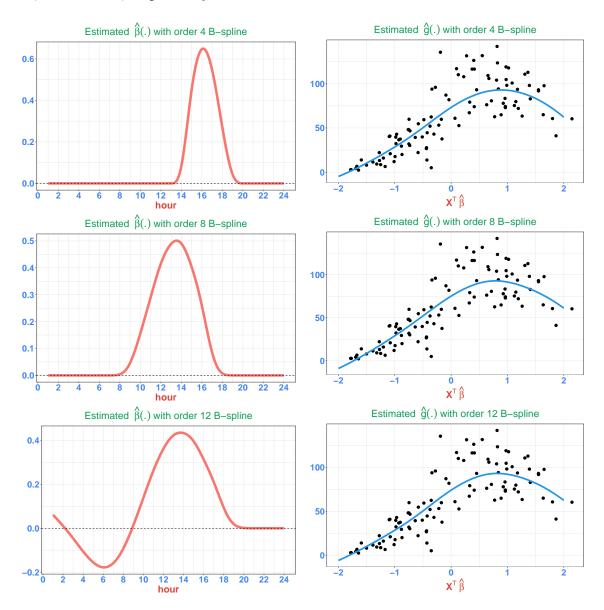


Figure S1: Estimated index function $\hat{\beta}(t)$ and link function $\hat{g}(\cdot)$ using different orders of B-spline basis functions.

Table S1: The mean squared prediction error (MSPE) using different orders of B-spline in the 10-fold cross-validation procedure. The table also displays the optimal values of the sparse parameter λ , smoothing parameter γ and the bandwidth h when using different orders of B-spline.

Order of B-spline Basis	$\log 10(\lambda)$	γ	h	MSPE
4	6	1000	0.50	461.61
8	7	10000	0.50	475.03
12	5.5	10000	0.50	520.52

S2 Simulation Results

Here we show the simulation results when the noise-to-signal ratio is set to be 20%. Details on the simulation settings can be found in Section 4 in the main manuscript.

Table S2: The prediction mean square error (PMSE), the integrated error, ISE₁ and ISE₀, defined on the nonzero subinterval and zero subintervals of the true index function $\beta(t)$ respectively on the test dataset for 100 simulation repetitions with 20% signal-to-noise ratio. Here, the true $\beta(\cdot)$ is defined in (9) in the main manuscript and the true $g(x) = \sin(4x)$. Five different methods are used: the proposed compact functional single index model(cFuSIM), the traditional functional single index model(FSIM), the locally sparsed functional linear model(Slos), the functional linear regression model(FLR) and the functional nonparametric method(NPFM).

methods	$PMSE(10^{-4})$	$ISE_1(10^{-4})$	ISE ₀ (10 ⁻⁴)
cFuSIM	49.0(13.8)	14.0(17.0)	4.3(9.2)
FSIM	58.0(13.6)	30.0(22.5)	40.0(23.1)
Slos	4003.5(517.8)	3162.2(3887.4)	1390.5(2159.6)
FLR	3964.8(500.7)	1819.3(1794.2)	4046.9(2881.7)
NPFM	3407.7(266.8)		

Table S3: The prediction mean square error (PMSE), the integrated error, ISE₁ and ISE₀, defined on the nonzero subinterval and zero subintervals of the true index function $\beta(t)$ respectively on the test dataset for 100 simulation repetitions with 20% signal-to-noise ratio. Here, the true $\beta(\cdot)$ is defined in (9) in the main manuscript and the true g(x) = x. Five different methods are used: the proposed compact functional single index model(cFuSIM), the traditional functional single index model(FSIM), the locally sparsed functional linear model(Slos), the functional linear regression model(FLR) and the functional nonparametric method(NPFM).

methods	$PMSE(10^{-4})$	$ISE_1(10^{-4})$	$ISE_0(10^{-4})$
cFuSIM	11.6(1.8)	18.0(7.7)	3.8(8.4)
FSIM	11.9(1.6)	17.1(7.7)	40.5(13.9)
Slos	11.7(1.6)	17.4(9.9)	4.5(5.6)
FLR	19.8(2.9)	180.2(8.8)	287.2(12.3)
NPFM	226.9(31.8)		

Table S4: The prediction mean square error (PMSE), the integrated error and ISE₁ defined on the nonzero subinterval [0, 1] the true index function $\beta(t)$ respectively on the test dataset for 100 simulation repetitions with 20% signal-to-noise ratio. Here, the true $\beta(\cdot)$ is defined in (10) in the main manuscript and the true $g(x) = \sin(4x)$. Five different methods are used: the proposed compact functional single index model(cFuSIM), the traditional functional single index model(FSIM), the locally sparsed functional linear model(Slos), the functional linear regression model(FLR) and the functional nonparametric method(NPFM).

methods	$ \text{PMSE}(10^{-4}) $	ISE ₁ (10 ⁻⁴)
cFuSIM	51.0(12.8)	14.9(14.8)
FSIM	48.7(13.5)	15.2(13.8)
Slos	455.0(156.6)	792.8(14.6)
FLR	574.2(139.3)	577.5(1755.8)
NPFM	911.4(250.9)	

Table S5: The prediction mean square error (PMSE), the integrated error and ISE₁ defined on the nonzero subinterval [0, 1] the true index function $\beta(t)$ respectively on the test dataset for 100 simulation repetitions with 20% signal-to-noise ratio. Here, the true $\beta(\cdot)$ is defined in (10) in the main manuscript and the true g(x) = x. Five different methods are used: the proposed compact functional single index model(cFuSIM), the traditional functional single index model(FSIM), the locally sparsed functional linear model(Slos), the functional linear regression model(FLR) and the functional nonparametric method(NPFM).

methods	$ \text{PMSE}(10^{-4}) $	$ISE_1(10^{-4})$
cFuSIM	13.6(2.1)	136.2(40.4)
FSIM	13.6(2.0)	133.6(38.2)
Slos	12.0(2.1)	805.3(137.3)
FLR	12.7(2.2)	37.7(2.5)
NPFM	231.2(39.2)	