Supplementary Document for the Manuscript entitled "Two-Dimensional Functional Principal Component Analysis for Image Feature Extraction"

Proofs of Theorems 1 and 2

Since $\Psi^0 := \{ \psi_m^0 : m = 1, 2, \dots, \infty \}$ is a complete orthonormal system in $L^2(\mathcal{T})$, we represent $\psi_1(\mathbf{t})$ as $\psi_1(\mathbf{t}) = \boldsymbol{\gamma}^\top \Psi^0$ for coefficient vector $\boldsymbol{\gamma} = (\gamma_m)$.

The following assumptions are required to complete the proof.

- (A1) The $\widehat{\mu}(\mathbf{t})$ is a consistent estimator of $\mu(\mathbf{t})$.
- (A2) There exists an M > 0 s.t. $\psi_m^0(\mathbf{t}) < M$ for all $\mathbf{t} \in \mathcal{T}$ and each $m = 1, 2, \dots, \infty$. The sum $\sum_{m=1}^{\infty} E(\xi_m^4)$ is bounded.
- (A3) The set $\Theta = \{((\alpha_{i1}), (\gamma_m)) \in \mathcal{C}_{00} \oplus \mathcal{B}_{\ell_2}\}$ is manageable (Pollard, 1989), where $\mathcal{C}_{00} = \{(c_i) : |c_i| < C \text{ for some constant } C \text{ and } c_i = 0 \text{ for } i \ge l \text{ for some } l\}$ and $\mathcal{B}_{\ell_2} = \{(c_i) : \sum_{i=1}^{\infty} c_i^2 \le 1\}$.

We rely upon Pollard's uniform law of large number to complete the proofs of the theorems, which is given below (Pollard, 1989).

Theorem A.1. (Pollard's Uniform Law of Large Number). Let $\{f_i(\omega, \theta) : \theta \in \Theta\}$ be a sequence of independent processes that are manageable for their envelopes $\{F_i(\omega) = \sup_{\theta \in \Theta} |f_i(\omega, \theta)|\}$. If

$$\sum_{i} \frac{E\{F_i(\omega)\}}{i^2} < \infty,$$

then

$$\frac{1}{n} \sup_{\theta \in \Theta} |S_n(w, \theta) - E\{S_n(w, \theta)\}| \to 0 \quad almost \ surely.$$

Proof of Theorem 1.

Denote the loss function as $L_n(\boldsymbol{\alpha}_1, \psi_1)$ and without loss of generality, assume $\mathcal{T} = [0, 1]^2$.

Since $y_{ij}^* = \sum_{m=1}^{\infty} \xi_m \psi_m^0(\mathbf{t}_{ij}) + \epsilon_{ij}$ and $\psi_1(\mathbf{t}_{ij}) = \sum_{m=1}^{\infty} \gamma_m \psi_m^0(\mathbf{t}_{ij})$, we have

$$L_{n}(\boldsymbol{\alpha}_{1}, \psi_{1}) \leq \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} 2 \left[\left\{ y_{ij}^{*} - \alpha_{i1} \psi_{1}(\mathbf{t}_{ij}) \right\}^{2} + \left\{ \widehat{\mu}(\mathbf{t}_{ij}) - \mu(\mathbf{t}_{ij}) \right\}^{2} \right]$$

$$= 2 \left[\frac{1}{n} \sum_{i=1}^{n} \sum_{m=1}^{\infty} (\xi_{im} - \alpha_{i} \gamma_{m})^{2} \rho_{imm} + \sum_{m \neq l} (\xi_{im} - \alpha_{i} \gamma_{m}) (\xi_{il} - \alpha_{i} \gamma_{l}) \rho_{iml} \right]$$

$$- \frac{2}{n} \sum_{i=1}^{n} \sum_{m=1}^{\infty} (\xi_{im} - \alpha_{i} \gamma_{m}) \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} \epsilon_{ij} \psi_{m}^{0}(\mathbf{t}_{ij})$$

$$+ \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n_{i}} \sum_{i=1}^{n_{i}} \epsilon_{ij}^{2} + \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n_{i}} \sum_{i=1}^{n_{i}} \left\{ \widehat{\mu}(\mathbf{t}_{ij}) - \mu(\mathbf{t}_{ij}) \right\}^{2} ,$$

where $\rho_{iml} = \frac{1}{n_i} \sum_{j=1}^{n_i} \psi_m^0(\mathbf{t}_{ij}) \psi_l^0(\mathbf{t}_{ij})$. Since \mathbf{t}_{ij} are uniformly drawn from \mathcal{T} , we have

$$E(\rho_{iml}) = \frac{1}{n_i} \sum_{j=1}^{n_i} \int_0^1 \{ \psi_m^0(\mathbf{t}_{ij}) \psi_l^0(\mathbf{t}_{ij}) \} d\mathbf{t}_{ij} = \delta_{ml}.$$

We will show that

$$L_n(\boldsymbol{\alpha}_1, \psi_1) = \frac{2}{n} \sum_{i=1}^n \sum_{m=1}^\infty (\xi_{im} - \alpha_i \gamma_m)^2 + o_p(1) + \sigma^2,$$

where $o_p(1)$ is some random quantity uniformly small over the parameter set Θ in probability.

By the law of large number, it can be shown that

$$\frac{1}{n}\sum_{i=1}^{n} \frac{1}{n_i} \sum_{j=1}^{n_i} \epsilon_{ij}^2 = \sigma^2 + o_p(1),$$

and based on assumption (A1),

$$\frac{1}{n} \sum_{i=1}^{n} \frac{1}{n_i} \sum_{i=1}^{n_i} \left\{ \widehat{\mu}(\mathbf{t}_{ij}) - \mu(\mathbf{t}_{ij}) \right\}^2 = o_p(1).$$

In order to show

$$\frac{1}{n} \sum_{i=1}^{n} \sum_{m=1}^{\infty} (\xi_{im} - \alpha_{i} \gamma_{m})^{2} \rho_{imm} - \frac{1}{n} \sum_{i=1}^{n} \sum_{m=1}^{\infty} (\xi_{im} - \alpha_{i} \gamma_{m})^{2} = o_{p}(1),$$

$$\frac{1}{n} \sum_{i=1}^{n} \sum_{m \neq l} (\xi_{im} - \alpha_{i} \gamma_{m}) (\xi_{il} - \alpha_{i} \beta_{l}) \rho_{iml} = o_{p}(1),$$

$$\frac{-2}{n} \sum_{i=1}^{n} \sum_{m=1}^{\infty} (\xi_{im} - \alpha_{i} \gamma_{m}) \frac{1}{n_{i}} \sum_{i=1}^{n_{i}} \epsilon_{ij} \psi_{m}^{0}(\mathbf{t}_{ij}) = o_{p}(1),$$

we check the conditions of Pollard's uniform law of large number, respectively,

$$\sum_{i} E \left\{ \sup_{\Theta} \sum_{m=1}^{\infty} (\xi_{im} - \alpha_{i} \gamma_{m})^{2} \rho_{imm} \right\}^{2} / i^{2} < \infty,$$

$$\sum_{i} E \left\{ \sup_{\Theta} \sum_{m \neq l} (\xi_{im} - \alpha_{i} \gamma_{m}) (\xi_{il} - \alpha_{i} \gamma_{l}) \rho_{iml} \right\}^{2} / i^{2} < \infty,$$

$$\sum_{i} E \left\{ \sup_{\Theta} \sum_{m=1}^{\infty} (\xi_{im} - \alpha_{i} \gamma_{m}) \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} \epsilon_{ij} \psi_{m}^{0}(\mathbf{t}_{ij}) \right\}^{2} / i^{2} < \infty.$$

By the boundedness of the FPC ψ_m^0 and the Cauchy–Schwartz inequality, it suffices to check

$$E\bigg\{\sup_{\Theta}\sum_{m=1}^{\infty}(\xi_{im}-\alpha_{i}\gamma_{m})^{2}\bigg\}^{2}<\infty,$$

which follows from assumptions (A2)–(A3). If we denote

$$\widetilde{\alpha}_n, \widetilde{\gamma}_n = \arg\min\frac{1}{n}\sum_{i=1}^n\sum_{m=1}^\infty (\xi_{im} - \alpha_i\gamma_m)^2,$$

$$\widehat{\alpha}_n, \widehat{\gamma}_n = \arg\min\frac{1}{n}\sum_{i=1}^n\sum_{m=1}^\infty L_n(\alpha_1, \psi_1),$$

then

$$\widehat{\boldsymbol{\alpha}}_n = \widetilde{\boldsymbol{\alpha}}_n + o_p(1), \qquad \widehat{\boldsymbol{\gamma}}_n = \widetilde{\boldsymbol{\gamma}}_n + o_p(1).$$

By the law of large number,

$$\frac{1}{n} \sum_{i=1}^{n} \xi_{im} \xi_{il} \to E(\xi_{im} \xi_{il}) = \lambda_m \delta_{ml}.$$

For fixed p, denote $A = (\frac{1}{\sqrt{n}}\xi_{im})_{i=1,\dots,n}^{m=1,\dots,p}$, we have

$$(A^{\top}A)_{ij} \to \lambda_m \delta_{ml}.$$

Consequently,

$$||A^{\top}A - \operatorname{diag}[\lambda_1, \cdots, \lambda_p]||_F \to 0.$$

Since for any two projection matrices P and Q, $\|P - Q\|_F \ge \sum_k \|u_k - v_k\|$, where (u_k) and (v_k) are eigenvectors of P and Q, the eigenvectors (u_k) of $A^{\top}A$ converges to those of $\operatorname{diag}[\lambda_1, \dots, \lambda_p]$; and the eigenvectors v_k of AA^{\top} are $v_k = A^{\top}u_k$, which will converges to the columns of A in the space \mathcal{C}_{00} of sequences with finitely support equipped with the ℓ_2 norm. Hence the estimate $(\widetilde{\alpha}_i)$, the first eigenvector of AA^{\top} , will converges to the first column of A in ℓ_2 norm: $(\frac{1}{\sqrt{n}}\widetilde{\alpha}_i) - (\frac{1}{\sqrt{n}}\xi_{i1})$ converges to 0 in ℓ_2 . Also, $\widetilde{\gamma}$ converges to \mathbf{e}_1 , the first unit vector. Hence $\widehat{\psi}_1(t) := \widehat{\gamma}_n \Psi^0(t)$ converges to $\psi_1^0(t)$ in $L^2(\mathcal{T})$.

Proof of Theorem 2.

Without loss of generality, consider the case where M=2. Since the estimates $\widehat{\alpha}_{i1}$ and $\widehat{\psi}_1$ are such that

$$\frac{1}{n} \sum_{i=1}^{n} \frac{1}{n_i} \sum_{i=1}^{n_i} \left\{ \alpha_{i1} \psi_1^0(\mathbf{t}_{ij}) - \widehat{\alpha}_{i1} \widehat{\psi}_1(\mathbf{t}_{ij}) \right\}^2 = o_p(1),$$

hence we can rewrite the model as

$$y_{ij}^* - \widehat{\alpha}_i \widehat{\psi}_1(\mathbf{t}_{ij}) = \sum_{m=2}^{\infty} a_{im} \psi_m^0(\mathbf{t}_{ij}) + o_p(1).$$

By the same argument as in the proof of Theorem 1, the proof is complete.