Supplementary Document for the Manuscript entitled "Recovering the Underlying Trajectory from Sparse and Irregular Longitudinal Data"

Theorem 1. For any given value of M

$$\{\hat{\psi}_1, \dots, \hat{\psi}_M\} = \arg\min\frac{1}{n} \sum_{i=1}^n \left(\int [x_i(t) - \sum_{m=1}^M \alpha_{mi} \psi_m(t)]^2 dt \right),$$
 (1)

subject to $\langle \psi_i, \psi_j \rangle = \delta_{ij}$. Then $\hat{\psi}_1, \dots, \hat{\psi}_M$ are the first M eigenfunctions of $\hat{K}(s,t) = \frac{1}{n} \sum_{i=1} [x_i(s)x_i(t)]$ and $\alpha_{ki} = \langle x_i, \psi_k \rangle$.

Proof. We start with M=1, then the problem above becomes

$$\hat{\psi}_1 = \arg\min\frac{1}{n}\sum_{i=1}^n \left(\int [x_i(t) - \alpha_{1i}\psi_1(t)]^2 dt\right),$$

subject to $||\psi_1||^2 = 1$. For every $x_i(t)$, we can express it as $x_i(t) = \langle x_i, \psi_1 \rangle \psi_1(t) + \eta_i(t)$, in which $\eta_i \perp \psi_1$.

$$\frac{1}{n} \sum_{i=1}^{n} \left(\int [x_i(t) - \alpha_{1i} \psi_1(t)]^2 dt \right) = \frac{1}{n} \left(\int [\langle x_i, \psi_1 \rangle \psi_1(t) + \eta_i(t) - \alpha_{1i} \psi_1(t)]^2 dt \right)
= \frac{1}{n} \sum_{i=1}^{n} \left(\int [(\langle x_i, \psi_1 \rangle - \alpha_{1i}) \psi_1(t) + \eta_i(t)]^2 dt \right)
= \frac{1}{n} \sum_{i=1}^{n} \int \left[(\langle x_i, \psi_1 \rangle - \alpha_{1i}) \psi_1(t) \right]^2 dt + \frac{1}{n} \sum_{i=1}^{n} \int \eta_i^2(t) dt$$

The first term is minimized when $\alpha_{1i} = \langle x_i, \psi_1 \rangle$ and the second term is minimized only when $\psi_1(t)$ is the first eigenfunction of $\hat{K}(s,t)$. This is because

$$\begin{split} \frac{1}{n} \sum_{i=1}^{n} \left(\int [x_{i}(t) - \langle x_{i}, \psi_{1} \rangle \psi_{1}(t)]^{2} dt \right) &= \frac{1}{n} \sum_{i=1}^{n} \left(\int x_{i}(t)^{2} dt - 2 \int \langle x_{i}, \psi_{1} \rangle x_{i}(t) \psi_{1}(t) dt + \langle x_{i}, \psi_{1} \rangle^{2} \int \psi_{1}^{2}(t) dt \right) \\ &= \frac{1}{n} \sum_{i=1}^{n} \int x_{i}^{2}(t) dt - \frac{1}{n} \sum_{i=1}^{n} \langle x_{i}, \psi_{1} \rangle^{2} \\ &= \frac{1}{n} \sum_{i=1}^{n} \int x_{i}^{2}(t) dt - \frac{1}{n} \sum_{i=1}^{n} \int x_{i}(t) \psi_{1}(t) dt \int x_{i}(s) \psi_{1}(s) ds \\ &= \frac{1}{n} \sum_{i=1}^{n} \int x_{i}^{2}(t) dt - \frac{1}{n} \sum_{i=1}^{n} \int \int x_{i}(t) \psi_{1}(t) x_{i}(s) \psi_{1}(s) ds dt \\ &= \frac{1}{n} \sum_{i=1}^{n} \int x_{i}^{2}(t) dt - \int \int \psi_{1}(t) \hat{K}(s, t) \psi_{1}(s) ds dt. \end{split}$$

We can easily see that the second term is maximized when $\psi_1(t)$ is the first eigenfunction of $\hat{K}(s,t)$.

When M > 1, we can write each $x_i(t) = \sum_{m=1}^{M} \langle x_i, \psi_m \rangle \psi_m(t) + \eta_i(t)$ and $\eta_i \perp span\{\psi_1, \dots, \psi_M\}$. Following the same strategy, we can first show that $\alpha_{mi} = \langle x_i, \psi_m \rangle$. Then the problem becomes minimizing

$$\frac{1}{n}\sum_{i=1}^{n}\left(\int\left[x_{i}(t)-\sum_{m=1}^{M}\langle x_{i},\psi_{m}\rangle\psi_{m}(t)\right]^{2}dt\right)=\frac{1}{n}\sum_{i=1}^{n}\int x_{i}^{2}(t)dt-\sum_{m=1}^{M}\int\int\psi_{m}(t)\hat{K}(s,t)\psi_{m}(s)dsdt,$$

which is equivalent to maximizing the second term. It is only when $\hat{\psi}_1, \dots, \hat{\psi}_K$ are the first K leading eigenfunctions of the sample covariance function $\hat{K}(s,t)$ that the second term is maximized.

Let the Mercer expansion with kernel K(s,t) = EX(s)X(t) of the stochastic process X(t) be $\{\lambda_k, \psi_k^0 : k = 1, 2, \cdots\}$. That is, there are r.v. a_k 's and square integrable functions ψ_k^0 's on [0,1] such that $X(t) = \sum a_k \psi_k^0(t)$. We observe that $Ea_k a_l = \lambda_k \delta_{kl}$ with the λ_i 's positive and strictly decreasing.

Assumption A0: $\sum_k \mathbb{E}a_k^4 < \infty$, $\psi_k^0(t) < M$ for all $t \in [0,1]$ and each $k = 1, 2, \cdots$. Assumption A1: The parameter set $\Theta = \{((\alpha_i), (\beta_k)) \in C_{00} \oplus B_{\ell_2}\}$ is manageable (?), where $C_{00} = \{(c_i) : |c_i| < M$ for finite many i's and other c_i 's are 0 for some constant M} and $B_{\ell_2} = \{(b_i) : \sum |b_i|^2 \le 1\}$. **Lemma 1.** Let $A = [a_{ij}]$ be an $n \times p$ matrix, $r \leq \min(n, p)$, and define $\tilde{A} = \sum_{i=1}^{r} \alpha_i \otimes \beta_i$, where α_i and β_i are the r left and r right singular eigenvectors of A, i.e., the eigenvectors of AA^{\top} and $A^{\top}A$, respectively. Then the Frobenius norm of A - B, where B is an $n \times p$ matrix of rank r, is minimized when $B = \tilde{A}$.

Proof. By singular value decomposition of A, we can write $A = \sum_{k=1}^{\min(n,p)} d_k \mathbf{u}_k \otimes \mathbf{v}_k$, where $(\mathbf{u}_k)_{k=1}^n$ and $(\mathbf{v}_k)_{k=1}^p$ are orthogonal basis in \mathbb{R}^n and \mathbb{R}^p . Hence $A - \sum_{i=1}^r \boldsymbol{\alpha}_i \otimes \boldsymbol{\beta}_i$ has minimum squared Frobenius norm $\sum_{i=r+1}^{\min(n,p)} d_i^2$ with minimizing $\boldsymbol{\alpha}_i = d_i \mathbf{u}_i$ and $\boldsymbol{\beta}_i = \mathbf{v}_i$.

Given sparse observations of functional data $y_{ij} = x_i(t_{ij}) + \epsilon_{ij}$, where the observation times $t_{ij}, j = 1, ..., n_i$, for subject i are uniformly drawn from [0, 1], recall the objective function

$$L_n(\boldsymbol{\alpha}, \psi) = \frac{1}{n} \sum_{i=1}^n \frac{1}{n_i} \sum_{j=1}^{n_i} [y_{ij} - \alpha_i \psi(t_{ij})]^2$$

where $\alpha = (\alpha_i) \in \mathbb{R}^n$ and $\psi(t)$ is a function on [0,1] with constraint $\int_0^1 \psi^2(t) dt = 1$.

Theorem 3. Under assumptions A0-A1, if $(\hat{\psi}(t), [\hat{\alpha}_i, i = 1, ..., n])$ jointly minimize L_n , then as $n \to \infty$, $||\hat{\psi} - \psi_1^0||| \to 0$ in probability, and $n^{-1} \sum_{i=1}^n \hat{\alpha}_i \to <\psi_1^0, E(X) >$. Every theorem must be numbered by hand.

Proof. Since $\Psi^0 := \{\psi_k^0 : k = 1, 2, \dots\}$ is a complete orthonormal system in $L^2[0, 1]$, we represent $\psi(t)$ as $\psi(t) = \boldsymbol{\beta}^T \Psi^0$ for coefficient vector $\boldsymbol{\beta} = (\beta_i)$. We also represent $x_i(t) = \sum_{k=1}^{\infty} a_{ik} \psi_k^0(t)$ for $i = 1, \dots, n$, then the objection function in Equation (3) of the main manuscript becomes

$$L_{n}(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} [y_{ij} - \alpha_{i} \psi(t_{ij})]^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{\infty} (a_{ik} - \alpha_{i} \beta_{k})^{2} m_{ikk} + \sum_{k \neq l} (a_{ik} - \alpha_{i} \beta_{k}) (a_{il} - \alpha_{i} \beta_{l}) m_{ikl}$$

$$+ \frac{-2}{n} \sum_{i=1}^{n} \sum_{k=1}^{\infty} (a_{ik} - \alpha_{i} \beta_{k}) \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} \epsilon_{ij} \psi_{k}^{0}(t_{ij})$$

$$+ \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} \epsilon_{ij}^{2}$$

where $m_{ikl} = \frac{1}{n_i} \sum_{j=1}^{n_i} \psi_k^0(t_{ij}) \psi_l^0(t_{ij})$. Note that, since t_{ij} are uniformly drawn from [0,1],

$$\mathbf{E}m_{ikl} = \frac{1}{n_i} \sum_{j=1}^{n_i} \int_0^1 [\psi_k^0(t_{ij}) \psi_l^0(t_{ij})] dt_{ij} = \delta_{kl}.$$

We will show that

$$L_n(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^n \sum_{k=1}^\infty (a_{ik} - \alpha_i \beta_k)^2 + o_P(1; \Theta) + \sigma^2,$$

By LLN,

$$\frac{1}{n} \sum_{i=1}^{n} \frac{1}{n_i} \sum_{i=1}^{n_i} \epsilon_{ij}^2 = \sigma^2 + o_P(1; \Theta).$$

where $o_P(1;\Theta)$ is some random quantity uniformly small over the parameter set Θ in probability. In order to show

$$\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{\infty} (a_{ik} - \alpha_{i}\beta_{k})^{2} m_{ikk} - \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{\infty} (a_{ik} - \alpha_{i}\beta_{k})^{2} = o_{P}(1;\Theta),$$

$$\frac{1}{n} \sum_{i=1}^{n} \sum_{k\neq l} (a_{ik} - \alpha_{i}\beta_{k}) (a_{il} - \alpha_{i}\beta_{l}) m_{ikl} = o_{P}(1,\Theta),$$
and
$$\frac{-2}{n} \sum_{i=1}^{n} \sum_{k=1}^{\infty} (a_{ik} - \alpha_{i}\beta_{k}) \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} \epsilon_{ij} \psi_{k}^{0}(t_{ij}) = o_{P}(1;\Theta);$$

we check Pollard's ULLN conditions

$$\sum_{i} \mathbb{E} \{ \sup_{\Theta} \sum_{k=1}^{\infty} (a_{ik} - \alpha_{i}\beta_{k})^{2} m_{ikk} \}^{2} / i^{2} < \infty$$

$$\sum_{i} \mathbb{E} \{ \sup_{\Theta} \sum_{k\neq l} (a_{ik} - \alpha_{i}\beta_{k}) (a_{il} - \alpha_{i}\beta_{l}) m_{ikl} \} / i^{2} < \infty$$

$$\sum_{i} \mathbb{E} \{ \sup_{\Theta} \sum_{k=1}^{\infty} (a_{ik} - \alpha_{i}\beta_{k}) \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} \epsilon_{ij} \psi_{k}^{0}(t_{ij}) \}^{2} / i^{2} < \infty.$$

By the boundedness of the eigenfunction ψ_k^0 and Cauchy-Schwartz inequality, it suffices to check

$$\mathbb{E}\{\sup_{\Theta} \sum_{k=1}^{\infty} (a_{ik} - \alpha_i \beta_k)^2\}^2 < \infty.$$

which follows from assumptions A0-A1. If we denote

$$\tilde{\boldsymbol{\alpha}}_n, \tilde{\boldsymbol{\beta}}_n = \arg\min M_n \equiv \arg\min \frac{1}{n} \sum_{i=1}^n \sum_{k=1}^\infty (a_{ik} - \alpha_i \beta_k)^2$$

then

$$\hat{\boldsymbol{\alpha}}_n = \tilde{\boldsymbol{\alpha}}_n + o_P(1;\Theta); \hat{\boldsymbol{\beta}}_n = \tilde{\boldsymbol{\beta}}_n + o_P(1;\Theta)$$

By the law of large numbers,

$$\frac{1}{n} \sum_{i=1}^{n} a_{ik} a_{il} \to \mathbf{E} a_{ik} a_{il} = \lambda_k \delta_{kl}.$$

With $A = (\frac{1}{\sqrt{n}} a_{ik})_{i=1,\dots,n}^{k=1,\dots,\infty}$, and $(A^T A)_{ij} \to \lambda_k \delta_{kl}$,

$$||A^T A - \operatorname{diag}[\lambda_1, \cdots, \lambda_p]||_F \to 0.$$

Hence the eigenvectors (u_k) of A^TA converges to those of $\operatorname{diag}[\lambda_1, \dots, \lambda_p]$; and the eigen-vectors $\{\mathbf{v}_k\}$ of AA^T are $v_k = A^Tu_k$, which will converges to the columns of A in the space c_{00} of finitely support sequencer equipped with the ℓ_2 norm. Hence the estimate $(\tilde{\alpha}_i)$, the first eigen-vector of AA^T , will converge to the first column of A in ℓ_2 norm: $(\frac{1}{\sqrt{n}}\tilde{\alpha}_i) - (\frac{1}{\sqrt{n}}a_{i1})$ converge to 0 in ℓ_2 . Also, $\tilde{\boldsymbol{\beta}}$ converges to \mathbf{e}_1 , the first unit vector. Hence $\hat{\psi}(t) := \hat{\boldsymbol{\beta}}_n^{(R)} \Psi^0(t)$ converges to $\psi_1^0(t)$ in $L^2[0,1]$, and $\frac{1}{n} \sum_{i=1}^n \hat{\alpha}_i \to \mathbf{E} a_{i1}$.

Theorem 2. The estimators $\{\hat{\psi}_k : k = 2, 3, \dots\}$ as obtained in Section 3.2 of $\{\psi_k^0 : k = 2, 3, \dots\}$ are consistent in $L_2(0, 1)$.

Proof. Since the estimates $(\hat{\alpha}_i)$ and $(\hat{\beta}_k)$ are such that

$$\frac{1}{n} \sum_{i=1}^{n} \frac{1}{n_i} \sum_{i=1}^{n_i} [(a_{i1} \psi_1^0(t_{ij}) - \hat{\alpha}_i \hat{\psi}_1(t_{ij})]^2 = o_P(1)$$

hence we can rewrite the model as

$$y_{ij} - \hat{\alpha}_i \hat{\psi}_1(t_{ij}) = \sum_{k=2}^{\infty} a_{ik} \psi_k^0(t_{ij}) + o_P(1),$$

by the same argument as in the proof of Theorem 1, the proof is complete. \Box