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Abstract

Fisheries management of North Pacific salmon stocks greatly relies on the
understanding of changes in spawning and survival over time and across habi-
tats. Underlying the yearly observed number of surviving salmon is a produc-
tivity parameter that cannot be directly measured and, moreover, is masked by
short-term changes in the observed population. We model the unobserved pro-
ductivity of chum, sockeye, and two broodlines of pink salmon along the Pacific
Coast of North America as a smoothly-varying function of time and spatial lo-
cation based on the Ricker spawner-recruit model of salmon reproduction. The
candidate models belong to the class of Gaussian additive models and require
the selection of smoothing parameters that control the trade-off between fit to
the data and smoothness of the estimated functions. We select the smoothing
parameters by optimizing the pseudo BIC criterion, which incorporates prior
knowledge about the degree of smoothness of the estimated functions and is
well-suited for detecting low-frequency oscillations in the data, such as those
due to long term climate effects. Comparing the candidate models based on
fit and model parsimony via the AIC criterion, we find that the productivity
components of time and spatial location may be related nonlinearly. We find
evidence of an increase in productivity in the mid-1970s for chum and sock-
eye populations and a North-South inverse relationship in productivity among
sockeye and odd-year pink salmon stocks.
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1 Introduction

The understanding of ecological processes that effect changes in the salmon population
is important for fisheries management and conservation initiatives. Our interest lies
in modeling spatial and temporal trends in the underlying productivity that drives
the observed patterns of salmon spawning off the Pacific Coast of North America.
Defined as the ratio of recruits to spawners at low spawner abundance, productivity
is an ecologically important variable that describes changes in the stock that are
not explained by changes in the abundance of spawners. Observational studies of
productivity are restricted by the fact that this quantity cannot directly be measured
and that yearly variability in salmon survival rates masks important patterns in this
variable (Dorner et al. 2008).

One well-known model describing the productivity of a salmon population, or
stock, was developed by Ricker (1975). The Ricker spawner-recruit model relates
productivity of a salmon stock to the log ratio of recruits to spawners by the Ricker

equation,

Y(t)=a+dX(t)+e(t), (1)

where Y (t) denotes the log ratio of recruits to spawners, and X (¢) denotes the
abundance of spawners, or parental stock in brood year t. The term a € R represents
productivity of the population at low spawner abundance, § € R represents the
density-dependent effect, and € is a normally distributed error term with mean zero
and unknown variance o?.

It is now recognized that the productivity parameter, a, varies over time and with

the spatial location of the spawning site. For example, Adkison et al. (1996) iden-



tify an increase in productivity in the middle of the 1970s for Bristol Bay sockeye
stocks that appears to coincide with the large-scale physical change in ocean temper-
atures which occurred around this time (see, for example, Graham 1994). Mantua
et al. (1999) find evidence for five species of Pacific salmon examined of an inverse
relationship in the catch of stocks from Alaska and stocks from the US West Coast.
They assume that catch numbers are a reflection of productivity and attribute this
spatial relationship to climatic changes associated with the Pacific Decadal Oscilla-
tion which occurs in cycles and in turn creates conditions that are favorable for stock
productivity in the North and less favourable further South, and vice versa.

The basic Ricker equation shown in (1) describes the spawning-recruitment re-
lationship for a particular stock with constant productivity, a, and the density-
dependent effect, §. This has been adapted in the literature to incorporate assump-
tions about temporal and spatial dependence of the model components. Single-stock
models are concerned with changes in the parameters for individual stocks over time
and include the Ricker equation itself and variations such as the inclusion of a time-
dependent productivity parameter. One example of a single-stock model is proposed
in Peterman et al. (2000) and models productivity as an autoregressive process of
order 1. Multi-stock versions model several stocks of one species simultaneously. Si-
multaneous modeling relies on the reasonable assumption that parameters governing
the reproductive process at one site contain information about those at a distinct
site. Examples include the Ricker equation variant proposed in Su et al. (2004) with
productivity and the density-dependent effect that vary with stock location. A list of
these models can be found in Dorner et al. (2009).

Simultaneously estimating productivity variables over different stocks has shown
some benefits over modeling single stocks (Su et al. 2004). Therefore, we incorporate

spatial and temporal trends over multiple spawning sites to study underlying patterns



in unobserved stock productivity, under the assumption that productivity, a, is a
smooth function of time and spatial location. In this analysis we describe salmon
spawning at different sites simultaneously by a multi-stock model. We assume that
observations from one spawning site contain information about productivity of nearby
spawning sites due to the similarities in ecology and weather conditions between
nearby regions. As these factors generally change gradually in space and with time,
it is reasonable to assume smoothly-varying productivity effects. Our contribution
is to model the productivity parameter a as a smooth function of both time and
spatial location. Our interest lies in studying changes in this unobserved productivity

parameter.
[Figure 1 about here.]

We base our analysis on observations from 43 pink, 40 chum, and 37 sockeye salmon
populations (stocks) off the west coast of Washington State, British Columbia, and
Alaska, shown in the map in Figure 1. Each stock is identified by the entry point into
the ocean of its juvenile salmon. Also available is the distance (in kilometers) along
the shore of each stock’s ocean entry point relative to the the southernmost stock.
Thus, for each species, all stock locations have an associated along-shore distance
relative to the southernmost stock of that species.

We produce separate analyses for each of chum and sockeye salmon over time and
across stocks. The data for pink salmon includes both even- and odd-year runs, in
which two distinct broodlines spawn (Dorner et al. 2008). Their two-year lifecycle
means that one population spawns only in even-numbered years, and the other in
odd-numbered years, which allows us to differentiate between the two populations
based on the available data, and produce separate analyses for each.

Our paper is organized as follows. Two spatio-temporal models are proposed



in Section 2, which model the unobserved productivity of chum, sockeye, and pink
salmon as a smooth function of time and spatial location based on the Ricker spawner-
recruit model. The functional parameters in the four spatio-temporal models are
estimated with the penalized spline smoothing method. Smoothing parameters are
selected by minimizing the pseudo BIC criterion (Konishi, Ando, and Imoto 2004).
Section 3 compares the two spatio-temporal models, and discusses the spatial and
temporal trends in spawning patterns for pink, chum and sockeye salmon. One simu-
lation study is introduced in Section 4 to compare the pseudo BIC and GCV criteria

in smoothing parameter selection. Conclusions and discussion are given in Section 5.

2 Method

2.1 Spatio-Temporal Models

Generalized additive models (Hastie and Tibshirani 1986; Wood 2006) are a class of
flexible semiparametric models, which represent the mean response by a combination
of smooth functions of covariates and parametric terms. They have been used exten-
sively in many areas of applied science, and are especially applicable to problems in
ecology, forestry and medicine.

An extension of generalized linear models, generalized additive models allow fitting
of both nonparametric and parametric functions of covariates to the data. Under ap-
propriate assumptions, each of the nonparametric functions is represented by a linear
combination of basis functions. The model parameters are estimated by optimizing a
selected criterion designed to balance smoothness of the estimated functions with fit
of the model to the data. Typically, this criterion is taken to be the log likelihood of

the data modified to penalize lack of smoothness. The relative importance of these



two competing considerations is determined by the choice of a smoothing parameter,
which may be selected systematically based on the available data. A detailed treat-
ment of generalized additive models can be found in Wood (2006). In this analysis,
we will work with the special case of Gaussian additive models (GAMs).

Let s denote one-dimensional location given by the distance along the shoreline
in km from the southernmost stock location, and let ¢ denote the brood year. Two

candidate spatio-temporal models are,

M1: Y(s,t) =ag+ai(s) + az(t) + 0, X(s,t) + €(s, 1),

M2: Y(s,t) =ag+a(s,t)+ X (s,t)+€(s,t),

where Y (s,t) is the log ratio of the abundance of adult recruits over the abundance
of spawners, and X (s, t) is the abundance of spawners at spatial location s and brood
year t. In model M1, a;(s) and ay(t) are smooth functions of s and ¢ representing
spatial and temporal variations in salmon productivity, respectively. In contrast,
under model M2, a(s,t) is a smooth function of both s and t representing spatio-
temporal variation in productivity simultaneously. Model M1 is more desirable in
terms of interpretability by allowing an additive separation of the spatial and temporal
processes driving productivity. However, this additivity is a strong assumption and
therefore we must consider model M2, where the spatial and temporal processes
are linked in ways that are not necessarily additive. The parameter d, represents
density-dependent effects for each stock, and ag is the intercept. We assume normally
distributed errors €(s,t). The existing literature models the density-dependent effect
as either constant or varying with location. Arguments for assuming that ¢ is constant
with respect to time include those of Peterman et al. (2000) who argue that time-

varying density-dependent effect would have to be associated with uncharacteristically



large spawner abundance X (s, t) in order to lead to large-scale temporal variation in
survival rates such as those observed in the 1970s, and that it is more likely that
a time-varying productivity parameter is responsible. And, in fact, Adkison et al.
(1996) find no evidence of a temporal change in these effects during the large shift
in productivity identified in the mid-1970s. On the other hand, possible dependence
of § on spatial location is assumed by, for example, Dorner et al. (2009). Therefore,
we shall assume that density-dependent effects are not time-varying, but are stock-

specific.

2.2 Estimation of Spatio-Temporal Models

The models described above belong to the class of GAMs. We place some smoothness
assumptions on the functional parameters, a1(s), as(t), a(s,t), and express them as

linear combinations of basis functions,

q1 q2
ai(s) =Y bij(s)erss  as(t) =) oy (1) eaj;
j=1 j=1
q3
a(s,t) = Z bs; (s, 1) ¢35
j=1

Choice of the basis system depends on our assumptions about the properties of the
smooth functions that we wish to model. We select a univariate thin-plate regression
spline basis for the smooth functions a;(s) and ag(t) in model M1. Under model
M2, productivity is a bivariate function of the time ¢ and spatial location s covari-
ates, which are measured on different scales. Thus we choose an anisotropic tensor
product basis system with thin-plate spline marginal bases, to represent the bivariate
productivity function, a(s,t). Optimal knot placement is a feature of the smoothing

problem, so that knots are selected automatically for both types of bases. In this



analysis we choose ¢; = ¢2 = 9 and g3 = 24, which are the reasonable defaults in
the mgcv package in R. Additional details regarding the above basis functions can be
found, for example, in Wood (2006).

In each case, we write the linear predictor y = ®c as a linear combination of
vectors of covariates and basis functions. The p x 1 coefficient vector ¢ consists of
the unknown parameters in the model, and ® is the corresponding design matrix
with p columns of covariates and basis functions evaluated at n design points. The
model parameters are estimated by minimizing the negative log likelihood modified

to penalize lack of smoothness,

—log f (yle) + I (¥IA) - (2)

The penalty term J (y|A) is a measure of the roughness of the estimated function y

and can be written in general as,

JFA) =c'D(N)ec.

The block-diagonal matrix D (A) consists of ¢; x ¢; blocks corresponding to the basis
coefficients of the i¢-th smooth function, and rows of zeros corresponding to the para-
metric coefficients. Details on the form of the penalty for each model are provided in
the supplementary materials. The value of the smoothing parameter vector A controls
the tradeoff between fit to the data and smoothness of the resulting functions. The
selection of the smoothing parameter vector will be discussed in the next subsection.

For our candidate models, the solution to the problem of minimizing the penalized



criterion (2) turns out to be,
¢=[@"WS+D(N)] @ Wy,

where W is the inverse covariance matrix of the data, and in this case, W = ¢ 21
Given an optimally chosen value of A, we fit the candidate models using the mgcv

package in R. Details are available in Wood (2006).

2.3 Smoothing Parameter Selection

The value of the smoothing parameter A which controls the tradeoff between fit to the
data and smoothness of the resulting function must be specified by the analyst. The
smoothing parameter may be chosen visually or systematically. In general, systematic
methods are based on optimization with respect to A of a criterion measuring features
of the fitted model that we deem to be important in a particular context.
Accordingly, a commonly used method for selecting the smoothing parameter is

minimization with respect to A of the generalized cross-validation (GCV) criterion,

o2
GOV (A) = nlly }’Hz 7
[n — edf]
where
edf = tr(® [ETWS + D (A)] & W) (3)

is the effective degrees of freedom, or the effective number of parameters, of the
model. We use the R package mgcv to estimate the minimizer A of GCV by numerical

optimization.



[Figure 2 about here.]

The left panel of Figure 2 shows the univariate smooth function of time a,(t) for
sockeye salmon stocks estimated under model M1 with smoothing parameter vector
chosen by GCV. The resulting estimated model appears to undersmooth the spatial
functional parameter, potentially hindering our ability to identify features of interest.
Indeed, this is a common problem with GCV-based smoothing parameter selection
and in such cases, it is common to upweight the effective model degrees of freedom
in the GCV calculation by an adjustment factor (Chambers and Hastie 1992). As
this appears somewhat arbitrary, we recommend instead using a Bayes Information
Criterion (BIC, Schwarz 1978) to choose A by including some prior knowledge about
smoothness of the functional parameters in the automatic selection of the smoothing
parameter. The BIC is the posterior probability of a model given the data, and is
widely used as a tool for model selection. However, difficulty arises in calculating
BIC when choosing among functional models indexed by a smoothing parameter
vector under partially improper prior distributions on the functional parameters. In
this case, BIC may be estimated up to a constant of proportionality (Kass 1993).
This approximation has been called the pseudo Bayes Information Criterion (pBIC,

Konishi, Ando, and Imoto 2004) in the literature and is given by,

pBIC = nlog(2mn) 4+ nlog (6°) +67% (y — ®c)' (y — ®C)
+(p—d)log(2r) —log|D(A) |4 +¢' D(N)¢E

— plog (27) + plogn +log |Hy (€)| + O, (n™) (4)

where |D (A) |, is the product of the p — d non-zero eigenvalues of D (A), and
Hy (€)= ® @+ L [DT(A)+D(A)]. Wetake¢ = [@TWS +D(A)] & Wy
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by following the argument of Konishi et al. (2004) for models estimated via penalized
negative log-likelihood minimization, and the maximum likelihood error term vari-
ance estimate 62 = ||y — y||*/n. We then evaluate and minimize pBIC with respect
to A via grid search using the R software.

This criterion is well-suited to analyses of data with low-frequency oscillations,
such as those due to climate cycles, that may be obscured by higher-frequency year-
to-year variability. For example, a simulation study in Konishi et al. (2004) suggests
that smoothing parameters selected by minimizing the GCV score may undersmooth
the data compared to those selected by minimizing pBIC. We observe such a pattern
in our analysis. The right panel of Figure 2 shows the smooth function a,(t) estiamted
for sockeye salmon stocks under model M1 with A chosen by minimizing pBIC over
a grid of smoothing parameter values. This function appears smoother and allows us
to observe an increase in productivity in the mid-1970s coinciding with a warming
climate in the North Pacific.

Details on the derivation of the approximation in (4) are provided in the supple-
mentary materials for Gaussian additive models with a normally distributed error.
This derivation may be more useful for practicioners than the general formula pro-
vided by Konishi et al. (2004) for the large class of radial basis function network
models under an exponential link function, which is very heavy in notation and dif-

ficult to implement for a specific case.

2.4 Estimation of Pseudo BIC

The selection of the smoothing parameter from a grid of possible values can be restated
as a problem of model selection. For a given GAM with coefficients ¢, we denote M ()

to be the model indexed by any given smoothing parameter vector A associated with

11



pdf f (y|c, A). The posterior probability of the model given observations y (see, for

example, Raftery 1996) is,

PM@A) f A

P = S b () £ (y1)

(5)

where P (M (-)) represents the prior probability of model M (-). We would like to
select among M (A1), ..., M (X\;) the model with the largest posterior probability by
maximizing the numerator of (5) by choice of A. If all models are a priori equally

probable, this is equivalent to minimizing the pseudo BIC,

pBIC = —2log f (y|A)

for model M by choice of smoothing parameter A. Assumptions and derivation of an
approximate expression for the logarithm of this objective function are provided in
the supplementary materials following Konishi et al. 2004. The resulting expression
is a function of the maximizer € of (2) and the maximum likelihood estimate 62 of the
error term variance, both of which can be obtained directly from the model fitting
procedure. Note that, although we may use this result to choose among r smoothing
parameters for a particular model, it is not possible to compare non-nested models
using the pBIC when priors are improper. This fact is discussed , for example, in

Carlin and Louis (2000).
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3 Results

3.1 Model Selection

We would like to compare models M1 and M2 in terms of their fit to the data and
the effective number of parameters used in their estimation. As discussed previously,
model M1 is more easily interpretable than model M2, as it represents spatial and
temporal effects additively. But the assumption that these effects are indeed related
in an additive way is quite strong. In order to determine whether or not such an
assumption is justified, we shall use the Akaike information criterion (AIC) to compare
the models. AIC, which was first published in Akaike (1974), evaluates the fit of the
model while penalizing models with a large number of effective degrees of freedom.

It is defined as

AIC =2 edf — 2-log f (y¢),

where edf is the effective number of parameters in the model, which is calculated in
(3), and f (y|¢) is the maximized value of the likelihood function for the estimated
model.

AIC values for each model are provided in the supplementary materials. The
comparison reveals that, for each of the observed salmon species, time and spatial
productivity effects have an underlying nonlinear relationship. This suggests that
complex underlying mechanisms drive the observed productivity, and that additional
unmodeled variables that vary over time and location may explain some of the ob-
served variability in the log ratio of recruits to spawners. To explore this further,
model M2 residuals are plotted against spatial location and time in the supplemen-

tary materials. For all four populations, the residual mean does not appear to change
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systematically with spatial location, while the nonconstant variance is suggestive of
unmodeld changes in spatial variability of the log ratio or recrutis to spaners, Y.
Over time, the residual variance for all but the odd-year runs of pink salmon is ap-
proximatley constant and the mean does not deviate systematically from zero. For
odd-year runs of pink salmon, the residuals show some variability over time which
has not been captured by the model. In this case, the unmodeled pattern suggests an
increase in log ratio of recruits to spawners starting in the mid-1970s when the North

Pacific experienced a climatic warming event.

3.2 Spatial and Temporal Trends in Spawning Patterns of

Salmon

[Table 1 about here.]
[Figure 3 about here.]
[Figure 4 about here.]

Table 1 shows results of hypothesis tests for the significance of the functional pa-
rameters in Models M1 and M2 for chum, sockeye, and even- and odd-year runs of pink
salmon. This corresponds to testing the subset of coefficients b; of each smooth func-
tion for equality with zero. Under the null hypothesis and with unknown error term
variances, the test statistic BJA/(Z)Bl /7 has an approximate F). ,,_.4 distribution (Wood
2006, p. 194), where b, is the estimated subset of coefficients, and V(z-) is the pseudoin-
verse of 42 [(I)(i)TWQ)(i) + Dy ()\)} ! of rank r = rank ([Q(i)TWq)(i) + Dy ()\)] _1>,
and where 4% = ||y — ¥]?/(n — edf).

Under model M1, the time-dependent function of productivity, as(t), is found to be

significant for all four groups of salmon. The location-dependent smooth function of
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productivity, a;(s), is significant for sockeye stocks. Therefore, we may conclude that
along-shore distance explains a significant amount of the variation in observed log
ratio of recruits to spawners for this population. Figures 3 and 4 show the estimated
functional parameters, a;(s) and az(t) and their confidence intervals under model M1,
based on data for each group of salmon. The estimated spatial productivity function
for sockeye salmon decreases linearly from South to North. The time-dependent
function of productivity, as(t), oscillates between positive and negative values. For
the two pink salmon species, we note cyclic patterns in this estimated function with
amplitude decreasing over time. Among all four groups, the shapes of the estimated
smooth functions of time show evidence of an increase in productivity in the mid
1970s consistent with that found, for example, by Adkison et al. (1996) for Alaskan

sockeye salmon and attributed to large-scale climatic changes during that period.
[Figure 6 about here.]
[Figure 7 about here.]

Under model M2, we find that the smooth bivariate function of time and spatial
location is significant for all four populations studied. Figures 6 and 7 show the
estimated bivariate functional parameter, a(s,t) in model M2, estimated from the
data for four groups of salmon. Although interpretation of the fitted function is less
clear, some interesting patterns are observed. An increase in productivity beginning
in the mid-1970s is observed clearly for sockeye and chum stocks, the latter being
more pronounced at middle latitudes. For odd-year pink salmon, this increase is
more gradual and confined to the mid-to-northern latitudes. Productivity of odd-
year pink salmon decreases with time for middle and northern latitude stocks, but
remains steady over time for southern latitudes. It is important to note, however,

that the very sharp decrease observed in the productivity funtion for even-year pink
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salmon may be the result of endpoint inaccuracy of the nonparameteric estimator.
Only for sockeye salmon stocks do we find evidence of an inverse relationship in
productivity between northern and southern stocks, such as that observed in Mantua

et al. (1999).

4 Simulations

In the present analysis we select the smoothing parameter by optimization of the pBIC
criterion, in order to aid interpretability of the estimated functions. Analysis based
on the GCV criterion is also provided in the supplementary materials for comparison.
In general, smoothing parameter selection is an unresolved problem (Konishi and
Kitagawa 2008), and the relative performance of these two criteria may vary with the
smoothness of the underlying function.

We conducted one simulation study to compare the two smoothing parameter
selection criteria, pBIC and GCV, for the case when the underlying function exibits
low-frequency cyclical variation. Model M2 Y (s,t) = ag + a(s,t) + 6, X (s,t) + €(s, t)
is selected as the true model. The true values for ag, a(s,t), and &5 are set as their
corresponding estimate from the real data of odd-year runs of pink salmon stocks.
The independent and identically distributed random errors, €(s, t), are generated from
the normal distribution with mean 0 and the same variance as estimated from the
read data. The data locations, (s,t), are set as the same with the real data. For each
simulated data set, we selected smoothing parameters by minimizing either pBIC or
GCV and estimated model M2 in each case. The simulation is implemented with 100
replicates.

The accurancy of estimated parameters for Model M2 is evaluated with two criteria:

the mean squared error (MSE) of the fitted values of the response variable to their
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true values,

N R 2
MSE(XN) = Z [ CL())\ + ax(si, ts) + 55,\Xz‘) - (ao + a(s;, ti) +55X¢)} g

i=1

1
N

and the median absolute deviation (MAD) of the fitted values of the response variable

to their true values,

MAD(X) = median (CAL(),)\ + ay(si, ti) + (SAS,\X-) (ao +a(s;,t;) + 0 X)

calculated over a grid of equally-spaced 16 points for each of the available 40 spawning
sites (N = 40 x 16). Box plots of MSE and MAD values in 100 simulaion replicates
are shown in figure (5). As expected, the two criteria perform similarly in terms of
these two measures of fit when data is generated from an underlying function with
low-frequency signal structure.

The same simulation set-up was used to study model choice via the AIC for data
simulated from model M2, as estimated for odd-year runs of pink salmon. Models M1
and M2 were estimated from the 100 simulated data sets using pBIC and their AIC
scores were compared. The result of this simulation suggestes that in this setting,

AIC selects the correct model M2 over M1 in each case.

5 Conclusions and Discussion

The goal of this work is to estimate the unobserved North Pacific salmon productivity
based on the classic framework developed by Ricker (1975). Our contribution is to
model spatial and temporal components of salmon productivity as smooth functions

of time and spatial location through Gaussian additive modeling. An inherent feature
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of this class of model is the necessity of selecting appropriate smoothing parameters,
which control the trade-off between smoothness of the estimated functions and fit
to the data. We suggest using the pseudo BIC objective function, instead of the
commonly used GCV criterion, to choose the optimal values of smoothing parameters.
In our analysis, the smoothing parameters selected by the pseduo BIC result in more
informative estimated functions that do not appear to undersmooth the data.

We study four populations of North Pacific salmon: chum, sockeye and pink salmon
from even- and odd-year runs. For each species, we fit two candidate spatio-temporal
models to the data, controlling the smoothness of functional parameters by choos-
ing smoothing parameters that minimize the pseudo BIC within each model. We
compare the two models based on their relative AIC scores, which measure the fit
of models to the data through the negative log likelihood penalized by the effective
number of parameters. Model M2 is found to have the lowest AIC scores among the
two condidates for each of the four groups of salmon being studied, indicating that
productivity is a nonlinear function of time and spatial location.

Inference from sparse data is a limitation of the present analysis. Spatial and tem-
poral distributions of observations for the four groups of salmon are summarized in
the design plots provided in the supplementary materials. We chose to include all
available data in our analysis in order to be able to estimate density parameters for
all stock-stream combinations. It is important to note, however, that systematic con-
siderations are involved in the selection and time of sampling sites in many ecological
studies. Since a reliable model of this complex sampling process is beyond the scope
of our analysis, we instead make the simplifying assumption that the measured stocks
are selected randomly from all existing stocks and that any measurments missing over
time are missing at random.

Our analysis reveals that a significant portion of the observed variability in the log
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ratio of recruits to spawners can indeed be explained by changes in productivity over
time and spatial location. A smooth function of productivity varying with time and
spatial location is found to be significant for all four populations of salmon studied.
This function is generally smooth along the spatial dimension, but shows oscillatory
patterns over time, some of which correspond to productivity-related events identified
in the literature.

In particular, our results suggest that salmon productivity for the stocks under
investigation may be related to long-term climatic changes in the North Pacific. Ex-
isting literature on salmon spawning suggests that specific environmental covariates
contain information on salmon spawning patterns above what is contained in time
and spatial location. For example, Mueter et al. (2002) find evidence of an inverse
correlation between sea surface temperatures and survival rates for the species of
salmon studied here. For this reason, a natural extension of the models considered

here would incorporate additional covariates.
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Figure 1: Sampled spawning sites for pink, chum, and sockeye salmon along the North
Pacific coast.
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Figure 2: Estimated functional parameter as(s) and its confidence intervals for model
M1: Y(s,t) = ag+ ay1(s) + ao(t) + 0s X (s,t) + €(s,t) from the data of sockeye salmon.
The smoothing parameter vector is selected by minimizing GCV (left) and pseudo
BIC (right).
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Figure 3: Estimated functional parameters, a;(s) and aq(t), and their confidence
intervals in model M1: Y (s,t) = ag + a1(s) + az(t) + 65X (s,t) + €(s,t) from the data
of chum (top), and sockeye (bottom) salmon. The smoothing parameter vector is
selected by minimizing pseudo BIC.
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Figure 4: Estimated functional parameters, a;(s) and aq(t), and their confidence
intervals in model M1: Y (s,t) = ag + a1(s) + az(t) + 65X (s,t) + €(s,t) from the data
of odd-year runs (top) and even-year runs (bottom) of pink salmon. The smoothing
parameter vector is selected by minimizing pseudo BIC.
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Figure 5: Simulation results for choice of smoothing parameter are shown on the
left and centre: the models with smoothing parameters selected via pBIC and GCV
perform similarly in terms of MSE and MAD. Simulation results for model choice via
the AIC are shown on the right: positive differences in AIC sores between models M1
and M2 determine that M2 is selected over M1 in every case.
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Figure 6: Estimated bivariate functional parameter, a(s,t), in model M2: Y (s,t) =
ap + a(s,t) + 6sX(s,t) + €(s,t) from the data of chum (top), and sockeye (bottom)
salmon. The smoothing parameter vector is selected by minimizing pseudo BIC.
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Figure 7: Estimated bivariate functional parameter, a(s,t), in model M2: Y(s,t) =
ap+a(s,t)+0,X(s,t)+€(s,t) from the data of odd-year runs (top) and even-year runs
(bottom) of pink salmon. The smoothing parameter vector is selected by minimizing
pseudo BIC.
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Table 1: Statistical tests for the significance of functional parameters in models M1:
Y(s,t) = ag + ai(s) + as(t) + 65X (s,t) + €(s,t) and M2: Y(s,t) = ag + a(s,t) +
05X (s,t) + €(s,t) from the data of chum, sockeye, odd-year pink, and even-year pink
salmon stocks. “edf” represents the effective degrees of freedom, or the effective
number of parameters, of the model, which is defined in (3).

pink pink
Parameters (odd-year) | (even-year) | chum sockeye
Model M1

edf 1.0 1.0 1.0 1.0

a(s) F statistic | 2.3 0.063 0.049 74
p-value le-1 Se-1 8e-1 3e-18
edf 5.9 6.9 8.5 4.8

a(t) F statistic | 2.4 4.4 16 4.4
p-value 2e-2 4e-5 be-24 2e-4
Estimate 1.3 1.4 1.5 1.7

" Std. Error | 0.065 0.075 0.041 0.034

0 t statistic | 20 19 35 48
p-value 1le-68 2e-61 <1e-100 | <1e-100
Model M2

edf 8.5 94 17 11

a(s,t) F statistic | 3.7 5.2 7.1 12
p-value 4e-5 4e-7 le-18 4e-26
Estimate 1.4 1.4 1.5 1.7

. Std. Error | 0.066 0.075 0.041 0.035

0 t statistic | 21 19 37 48

p-value 9e-T1 le-61 <1e-100 | <1e-100
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