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Abstract

Fisheries management of North Pacific salmon stocks greatly relies on the
understanding of changes in spawning and survival over time and across habi-
tats. Underlying the yearly observed number of surviving salmon is a produc-
tivity parameter that cannot be directly measured and, moreover, is masked by
short-term changes in the observed population. We model the unobserved pro-
ductivity of chum, sockeye, and two broodlines of pink salmon along the Pacific
Coast of North America as a smoothly-varying function of time and spatial lo-
cation based on the Ricker spawner-recruit model of salmon reproduction. The
candidate models belong to the class of Gaussian additive models and require
the selection of smoothing parameters that control the trade-off between fit to
the data and smoothness of the estimated functions. We select the smoothing
parameters by optimizing the pseudo BIC criterion, which incorporates prior
knowledge about the degree of smoothness of the estimated functions and is
well-suited for detecting low-frequency oscillations in the data, such as those
due to long term climate effects. Comparing the candidate models based on
fit and model parsimony via the AIC criterion, we find that the productivity
components of time and spatial location may be related nonlinearly. We find
evidence of an increase in productivity in the mid-1970s for chum and sock-
eye populations and a North-South inverse relationship in productivity among
sockeye and odd-year pink salmon stocks.
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1 Introduction

The understanding of ecological processes that effect changes in the salmon population

is important for fisheries management and conservation initiatives. Our interest lies

in modeling spatial and temporal trends in the underlying productivity that drives

the observed patterns of salmon spawning off the Pacific Coast of North America.

Defined as the ratio of recruits to spawners at low spawner abundance, productivity

is an ecologically important variable that describes changes in the stock that are

not explained by changes in the abundance of spawners. Observational studies of

productivity are restricted by the fact that this quantity cannot directly be measured

and that yearly variability in salmon survival rates masks important patterns in this

variable (Dorner et al. 2008).

One well-known model describing the productivity of a salmon population, or

stock, was developed by Ricker (1975). The Ricker spawner-recruit model relates

productivity of a salmon stock to the log ratio of recruits to spawners by the Ricker

equation,

Y (t) = a+ δX (t) + ε (t) , (1)

where Y (t) denotes the log ratio of recruits to spawners, and X (t) denotes the

abundance of spawners, or parental stock in brood year t. The term a ∈ R represents

productivity of the population at low spawner abundance, δ ∈ R represents the

density-dependent effect, and ε is a normally distributed error term with mean zero

and unknown variance σ2.

It is now recognized that the productivity parameter, a, varies over time and with

the spatial location of the spawning site. For example, Adkison et al. (1996) iden-
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tify an increase in productivity in the middle of the 1970s for Bristol Bay sockeye

stocks that appears to coincide with the large-scale physical change in ocean temper-

atures which occurred around this time (see, for example, Graham 1994). Mantua

et al. (1999) find evidence for five species of Pacific salmon examined of an inverse

relationship in the catch of stocks from Alaska and stocks from the US West Coast.

They assume that catch numbers are a reflection of productivity and attribute this

spatial relationship to climatic changes associated with the Pacific Decadal Oscilla-

tion which occurs in cycles and in turn creates conditions that are favorable for stock

productivity in the North and less favourable further South, and vice versa.

The basic Ricker equation shown in (1) describes the spawning-recruitment re-

lationship for a particular stock with constant productivity, a, and the density-

dependent effect, δ. This has been adapted in the literature to incorporate assump-

tions about temporal and spatial dependence of the model components. Single-stock

models are concerned with changes in the parameters for individual stocks over time

and include the Ricker equation itself and variations such as the inclusion of a time-

dependent productivity parameter. One example of a single-stock model is proposed

in Peterman et al. (2000) and models productivity as an autoregressive process of

order 1. Multi-stock versions model several stocks of one species simultaneously. Si-

multaneous modeling relies on the reasonable assumption that parameters governing

the reproductive process at one site contain information about those at a distinct

site. Examples include the Ricker equation variant proposed in Su et al. (2004) with

productivity and the density-dependent effect that vary with stock location. A list of

these models can be found in Dorner et al. (2009).

Simultaneously estimating productivity variables over different stocks has shown

some benefits over modeling single stocks (Su et al. 2004). Therefore, we incorporate

spatial and temporal trends over multiple spawning sites to study underlying patterns
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in unobserved stock productivity, under the assumption that productivity, a, is a

smooth function of time and spatial location. In this analysis we describe salmon

spawning at different sites simultaneously by a multi-stock model. We assume that

observations from one spawning site contain information about productivity of nearby

spawning sites due to the similarities in ecology and weather conditions between

nearby regions. As these factors generally change gradually in space and with time,

it is reasonable to assume smoothly-varying productivity effects. Our contribution

is to model the productivity parameter a as a smooth function of both time and

spatial location. Our interest lies in studying changes in this unobserved productivity

parameter.

[Figure 1 about here.]

We base our analysis on observations from 43 pink, 40 chum, and 37 sockeye salmon

populations (stocks) off the west coast of Washington State, British Columbia, and

Alaska, shown in the map in Figure 1. Each stock is identified by the entry point into

the ocean of its juvenile salmon. Also available is the distance (in kilometers) along

the shore of each stock’s ocean entry point relative to the the southernmost stock.

Thus, for each species, all stock locations have an associated along-shore distance

relative to the southernmost stock of that species.

We produce separate analyses for each of chum and sockeye salmon over time and

across stocks. The data for pink salmon includes both even- and odd-year runs, in

which two distinct broodlines spawn (Dorner et al. 2008). Their two-year lifecycle

means that one population spawns only in even-numbered years, and the other in

odd-numbered years, which allows us to differentiate between the two populations

based on the available data, and produce separate analyses for each.

Our paper is organized as follows. Two spatio-temporal models are proposed
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in Section 2, which model the unobserved productivity of chum, sockeye, and pink

salmon as a smooth function of time and spatial location based on the Ricker spawner-

recruit model. The functional parameters in the four spatio-temporal models are

estimated with the penalized spline smoothing method. Smoothing parameters are

selected by minimizing the pseudo BIC criterion (Konishi, Ando, and Imoto 2004).

Section 3 compares the two spatio-temporal models, and discusses the spatial and

temporal trends in spawning patterns for pink, chum and sockeye salmon. One simu-

lation study is introduced in Section 4 to compare the pseudo BIC and GCV criteria

in smoothing parameter selection. Conclusions and discussion are given in Section 5.

2 Method

2.1 Spatio-Temporal Models

Generalized additive models (Hastie and Tibshirani 1986; Wood 2006) are a class of

flexible semiparametric models, which represent the mean response by a combination

of smooth functions of covariates and parametric terms. They have been used exten-

sively in many areas of applied science, and are especially applicable to problems in

ecology, forestry and medicine.

An extension of generalized linear models, generalized additive models allow fitting

of both nonparametric and parametric functions of covariates to the data. Under ap-

propriate assumptions, each of the nonparametric functions is represented by a linear

combination of basis functions. The model parameters are estimated by optimizing a

selected criterion designed to balance smoothness of the estimated functions with fit

of the model to the data. Typically, this criterion is taken to be the log likelihood of

the data modified to penalize lack of smoothness. The relative importance of these
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two competing considerations is determined by the choice of a smoothing parameter,

which may be selected systematically based on the available data. A detailed treat-

ment of generalized additive models can be found in Wood (2006). In this analysis,

we will work with the special case of Gaussian additive models (GAMs).

Let s denote one-dimensional location given by the distance along the shoreline

in km from the southernmost stock location, and let t denote the brood year. Two

candidate spatio-temporal models are,

M1 : Y (s, t) = a0 + a1(s) + a2(t) + δsX(s, t) + ε(s, t),

M2 : Y (s, t) = a0 + a(s, t) + δsX(s, t) + ε(s, t),

where Y (s, t) is the log ratio of the abundance of adult recruits over the abundance

of spawners, and X(s, t) is the abundance of spawners at spatial location s and brood

year t. In model M1, a1(s) and a2(t) are smooth functions of s and t representing

spatial and temporal variations in salmon productivity, respectively. In contrast,

under model M2, a(s, t) is a smooth function of both s and t representing spatio-

temporal variation in productivity simultaneously. Model M1 is more desirable in

terms of interpretability by allowing an additive separation of the spatial and temporal

processes driving productivity. However, this additivity is a strong assumption and

therefore we must consider model M2, where the spatial and temporal processes

are linked in ways that are not necessarily additive. The parameter δs represents

density-dependent effects for each stock, and a0 is the intercept. We assume normally

distributed errors ε(s, t). The existing literature models the density-dependent effect

as either constant or varying with location. Arguments for assuming that δ is constant

with respect to time include those of Peterman et al. (2000) who argue that time-

varying density-dependent effect would have to be associated with uncharacteristically
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large spawner abundance X(s, t) in order to lead to large-scale temporal variation in

survival rates such as those observed in the 1970s, and that it is more likely that

a time-varying productivity parameter is responsible. And, in fact, Adkison et al.

(1996) find no evidence of a temporal change in these effects during the large shift

in productivity identified in the mid-1970s. On the other hand, possible dependence

of δ on spatial location is assumed by, for example, Dorner et al. (2009). Therefore,

we shall assume that density-dependent effects are not time-varying, but are stock-

specific.

2.2 Estimation of Spatio-Temporal Models

The models described above belong to the class of GAMs. We place some smoothness

assumptions on the functional parameters, a1(s), a2(t), a(s, t), and express them as

linear combinations of basis functions,

a1(s) =

q1∑
j=1

b1j (s) c1j; a2(t) =

q2∑
j=1

b2j (t) c2j;

a(s, t) =

q3∑
j=1

b3j (s, t) c3j;

Choice of the basis system depends on our assumptions about the properties of the

smooth functions that we wish to model. We select a univariate thin-plate regression

spline basis for the smooth functions a1(s) and a2(t) in model M1. Under model

M2, productivity is a bivariate function of the time t and spatial location s covari-

ates, which are measured on different scales. Thus we choose an anisotropic tensor

product basis system with thin-plate spline marginal bases, to represent the bivariate

productivity function, a(s, t). Optimal knot placement is a feature of the smoothing

problem, so that knots are selected automatically for both types of bases. In this
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analysis we choose q1 = q2 = 9 and q3 = 24, which are the reasonable defaults in

the mgcv package in R. Additional details regarding the above basis functions can be

found, for example, in Wood (2006).

In each case, we write the linear predictor ŷ = Φc as a linear combination of

vectors of covariates and basis functions. The p × 1 coefficient vector c consists of

the unknown parameters in the model, and Φ is the corresponding design matrix

with p columns of covariates and basis functions evaluated at n design points. The

model parameters are estimated by minimizing the negative log likelihood modified

to penalize lack of smoothness,

− log f (y|c) + J (ŷ|λ) . (2)

The penalty term J (ŷ|λ) is a measure of the roughness of the estimated function ŷ

and can be written in general as,

J (ŷ|λ) = c>D (λ) c.

The block-diagonal matrix D (λ) consists of qi× qi blocks corresponding to the basis

coefficients of the i-th smooth function, and rows of zeros corresponding to the para-

metric coefficients. Details on the form of the penalty for each model are provided in

the supplementary materials. The value of the smoothing parameter vector λ controls

the tradeoff between fit to the data and smoothness of the resulting functions. The

selection of the smoothing parameter vector will be discussed in the next subsection.

For our candidate models, the solution to the problem of minimizing the penalized
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criterion (2) turns out to be,

ĉ =
[
Φ>WΦ + D (λ)

]−1
Φ>Wy,

where W is the inverse covariance matrix of the data, and in this case, W = σ−2I.

Given an optimally chosen value of λ, we fit the candidate models using the mgcv

package in R. Details are available in Wood (2006).

2.3 Smoothing Parameter Selection

The value of the smoothing parameter λ which controls the tradeoff between fit to the

data and smoothness of the resulting function must be specified by the analyst. The

smoothing parameter may be chosen visually or systematically. In general, systematic

methods are based on optimization with respect to λ of a criterion measuring features

of the fitted model that we deem to be important in a particular context.

Accordingly, a commonly used method for selecting the smoothing parameter is

minimization with respect to λ of the generalized cross-validation (GCV) criterion,

GCV (λ) =
n||y − ŷ||2

[n− edf ]2
,

where

edf = tr(Φ
[
Φ>WΦ + D (λ)

]−1
Φ>W ) (3)

is the effective degrees of freedom, or the effective number of parameters, of the

model. We use the R package mgcv to estimate the minimizer λ of GCV by numerical

optimization.
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[Figure 2 about here.]

The left panel of Figure 2 shows the univariate smooth function of time a1(t) for

sockeye salmon stocks estimated under model M1 with smoothing parameter vector

chosen by GCV. The resulting estimated model appears to undersmooth the spatial

functional parameter, potentially hindering our ability to identify features of interest.

Indeed, this is a common problem with GCV-based smoothing parameter selection

and in such cases, it is common to upweight the effective model degrees of freedom

in the GCV calculation by an adjustment factor (Chambers and Hastie 1992). As

this appears somewhat arbitrary, we recommend instead using a Bayes Information

Criterion (BIC, Schwarz 1978) to choose λ by including some prior knowledge about

smoothness of the functional parameters in the automatic selection of the smoothing

parameter. The BIC is the posterior probability of a model given the data, and is

widely used as a tool for model selection. However, difficulty arises in calculating

BIC when choosing among functional models indexed by a smoothing parameter

vector under partially improper prior distributions on the functional parameters. In

this case, BIC may be estimated up to a constant of proportionality (Kass 1993).

This approximation has been called the pseudo Bayes Information Criterion (pBIC,

Konishi, Ando, and Imoto 2004) in the literature and is given by,

pBIC = n log (2πn) + n log
(
σ̂2
)

+ σ̂−2 (y −Φĉ)> (y −Φĉ)

+ (p− d) log (2π)− log |D (λ) |+ + ĉ>D (λ) ĉ

− p log (2π) + p log n+ log |Hλ (ĉ) |+Op

(
n−1
)

(4)

where |D (λ) |+ is the product of the p − d non-zero eigenvalues of D (λ), and

Hλ (ĉ) = 1
nσ̂2 Φ

>Φ+ 1
2n

[
D> (λ) + D (λ)

]
. We take ĉ =

[
Φ>WΦ + D (λ)

]−1
Φ>Wy
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by following the argument of Konishi et al. (2004) for models estimated via penalized

negative log-likelihood minimization, and the maximum likelihood error term vari-

ance estimate σ̂2 = ||y − ŷ||2/n. We then evaluate and minimize pBIC with respect

to λ via grid search using the R software.

This criterion is well-suited to analyses of data with low-frequency oscillations,

such as those due to climate cycles, that may be obscured by higher-frequency year-

to-year variability. For example, a simulation study in Konishi et al. (2004) suggests

that smoothing parameters selected by minimizing the GCV score may undersmooth

the data compared to those selected by minimizing pBIC. We observe such a pattern

in our analysis. The right panel of Figure 2 shows the smooth function a1(t) estiamted

for sockeye salmon stocks under model M1 with λ chosen by minimizing pBIC over

a grid of smoothing parameter values. This function appears smoother and allows us

to observe an increase in productivity in the mid-1970s coinciding with a warming

climate in the North Pacific.

Details on the derivation of the approximation in (4) are provided in the supple-

mentary materials for Gaussian additive models with a normally distributed error.

This derivation may be more useful for practicioners than the general formula pro-

vided by Konishi et al. (2004) for the large class of radial basis function network

models under an exponential link function, which is very heavy in notation and dif-

ficult to implement for a specific case.

2.4 Estimation of Pseudo BIC

The selection of the smoothing parameter from a grid of possible values can be restated

as a problem of model selection. For a given GAM with coefficients c, we denote M (λ)

to be the model indexed by any given smoothing parameter vector λ associated with
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pdf f (y|c,λ). The posterior probability of the model given observations y (see, for

example, Raftery 1996) is,

P (M (λ) |y) =
P (M (λ)) f (y|λ)∑r

α=1 P (M (α)) f (y|λα)
, (5)

where P (M (·)) represents the prior probability of model M (·). We would like to

select among M (λ1) , . . . ,M (λr) the model with the largest posterior probability by

maximizing the numerator of (5) by choice of λ. If all models are a priori equally

probable, this is equivalent to minimizing the pseudo BIC,

pBIC ≡ −2 log f (y|λ)

for model M by choice of smoothing parameter λ. Assumptions and derivation of an

approximate expression for the logarithm of this objective function are provided in

the supplementary materials following Konishi et al. 2004. The resulting expression

is a function of the maximizer ĉ of (2) and the maximum likelihood estimate σ̂2 of the

error term variance, both of which can be obtained directly from the model fitting

procedure. Note that, although we may use this result to choose among r smoothing

parameters for a particular model, it is not possible to compare non-nested models

using the pBIC when priors are improper. This fact is discussed , for example, in

Carlin and Louis (2000).

12



3 Results

3.1 Model Selection

We would like to compare models M1 and M2 in terms of their fit to the data and

the effective number of parameters used in their estimation. As discussed previously,

model M1 is more easily interpretable than model M2, as it represents spatial and

temporal effects additively. But the assumption that these effects are indeed related

in an additive way is quite strong. In order to determine whether or not such an

assumption is justified, we shall use the Akaike information criterion (AIC) to compare

the models. AIC, which was first published in Akaike (1974), evaluates the fit of the

model while penalizing models with a large number of effective degrees of freedom.

It is defined as

AIC = 2 · edf− 2 · log f (y|ĉ) ,

where edf is the effective number of parameters in the model, which is calculated in

(3), and f (y|ĉ) is the maximized value of the likelihood function for the estimated

model.

AIC values for each model are provided in the supplementary materials. The

comparison reveals that, for each of the observed salmon species, time and spatial

productivity effects have an underlying nonlinear relationship. This suggests that

complex underlying mechanisms drive the observed productivity, and that additional

unmodeled variables that vary over time and location may explain some of the ob-

served variability in the log ratio of recruits to spawners. To explore this further,

model M2 residuals are plotted against spatial location and time in the supplemen-

tary materials. For all four populations, the residual mean does not appear to change

13



systematically with spatial location, while the nonconstant variance is suggestive of

unmodeld changes in spatial variability of the log ratio or recrutis to spaners, Y .

Over time, the residual variance for all but the odd-year runs of pink salmon is ap-

proximatley constant and the mean does not deviate systematically from zero. For

odd-year runs of pink salmon, the residuals show some variability over time which

has not been captured by the model. In this case, the unmodeled pattern suggests an

increase in log ratio of recruits to spawners starting in the mid-1970s when the North

Pacific experienced a climatic warming event.

3.2 Spatial and Temporal Trends in Spawning Patterns of

Salmon

[Table 1 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

Table 1 shows results of hypothesis tests for the significance of the functional pa-

rameters in Models M1 and M2 for chum, sockeye, and even- and odd-year runs of pink

salmon. This corresponds to testing the subset of coefficients bi of each smooth func-

tion for equality with zero. Under the null hypothesis and with unknown error term

variances, the test statistic b̂iV̂(i)b̂i/r has an approximate Fr,n−edf distribution (Wood

2006, p. 194), where b̂i is the estimated subset of coefficients, and V̂(i) is the pseudoin-

verse of γ̂2
[
Φ(i)

>WΦ(i) + D(i) (λ)
]−1

of rank r = rank
([

Φ(i)
>WΦ(i) + D(i) (λ)

]−1)
,

and where γ̂2 = ||y − ŷ||2/(n− edf).

Under model M1, the time-dependent function of productivity, a2(t), is found to be

significant for all four groups of salmon. The location-dependent smooth function of
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productivity, a1(s), is significant for sockeye stocks. Therefore, we may conclude that

along-shore distance explains a significant amount of the variation in observed log

ratio of recruits to spawners for this population. Figures 3 and 4 show the estimated

functional parameters, a1(s) and a2(t) and their confidence intervals under model M1,

based on data for each group of salmon. The estimated spatial productivity function

for sockeye salmon decreases linearly from South to North. The time-dependent

function of productivity, a2(t), oscillates between positive and negative values. For

the two pink salmon species, we note cyclic patterns in this estimated function with

amplitude decreasing over time. Among all four groups, the shapes of the estimated

smooth functions of time show evidence of an increase in productivity in the mid

1970s consistent with that found, for example, by Adkison et al. (1996) for Alaskan

sockeye salmon and attributed to large-scale climatic changes during that period.

[Figure 6 about here.]

[Figure 7 about here.]

Under model M2, we find that the smooth bivariate function of time and spatial

location is significant for all four populations studied. Figures 6 and 7 show the

estimated bivariate functional parameter, a(s, t) in model M2, estimated from the

data for four groups of salmon. Although interpretation of the fitted function is less

clear, some interesting patterns are observed. An increase in productivity beginning

in the mid-1970s is observed clearly for sockeye and chum stocks, the latter being

more pronounced at middle latitudes. For odd-year pink salmon, this increase is

more gradual and confined to the mid-to-northern latitudes. Productivity of odd-

year pink salmon decreases with time for middle and northern latitude stocks, but

remains steady over time for southern latitudes. It is important to note, however,

that the very sharp decrease observed in the productivity funtion for even-year pink
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salmon may be the result of endpoint inaccuracy of the nonparameteric estimator.

Only for sockeye salmon stocks do we find evidence of an inverse relationship in

productivity between northern and southern stocks, such as that observed in Mantua

et al. (1999).

4 Simulations

In the present analysis we select the smoothing parameter by optimization of the pBIC

criterion, in order to aid interpretability of the estimated functions. Analysis based

on the GCV criterion is also provided in the supplementary materials for comparison.

In general, smoothing parameter selection is an unresolved problem (Konishi and

Kitagawa 2008), and the relative performance of these two criteria may vary with the

smoothness of the underlying function.

We conducted one simulation study to compare the two smoothing parameter

selection criteria, pBIC and GCV, for the case when the underlying function exibits

low-frequency cyclical variation. Model M2 Y (s, t) = a0 + a(s, t) + δsX(s, t) + ε(s, t)

is selected as the true model. The true values for a0, a(s, t), and δs are set as their

corresponding estimate from the real data of odd-year runs of pink salmon stocks.

The independent and identically distributed random errors, ε(s, t), are generated from

the normal distribution with mean 0 and the same variance as estimated from the

read data. The data locations, (s, t), are set as the same with the real data. For each

simulated data set, we selected smoothing parameters by minimizing either pBIC or

GCV and estimated model M2 in each case. The simulation is implemented with 100

replicates.

The accurancy of estimated parameters for Model M2 is evaluated with two criteria:

the mean squared error (MSE) of the fitted values of the response variable to their
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true values,

MSE(λ) =
1

N

N∑
i=1

[(
â0,λ + âλ(si, ti) + δ̂sλXi

)
−
(
a0 + a(si, ti) + δsXi

)]2
,

and the median absolute deviation (MAD) of the fitted values of the response variable

to their true values,

MAD(λ) = median

∣∣∣∣(â0,λ + âλ(si, ti) + δ̂sλXi

)
−
(
a0 + a(si, ti) + δsXi

)∣∣∣∣,
calculated over a grid of equally-spaced 16 points for each of the available 40 spawning

sites (N = 40× 16). Box plots of MSE and MAD values in 100 simulaion replicates

are shown in figure (5). As expected, the two criteria perform similarly in terms of

these two measures of fit when data is generated from an underlying function with

low-frequency signal structure.

The same simulation set-up was used to study model choice via the AIC for data

simulated from model M2, as estimated for odd-year runs of pink salmon. Models M1

and M2 were estimated from the 100 simulated data sets using pBIC and their AIC

scores were compared. The result of this simulation suggestes that in this setting,

AIC selects the correct model M2 over M1 in each case.

5 Conclusions and Discussion

The goal of this work is to estimate the unobserved North Pacific salmon productivity

based on the classic framework developed by Ricker (1975). Our contribution is to

model spatial and temporal components of salmon productivity as smooth functions

of time and spatial location through Gaussian additive modeling. An inherent feature
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of this class of model is the necessity of selecting appropriate smoothing parameters,

which control the trade-off between smoothness of the estimated functions and fit

to the data. We suggest using the pseudo BIC objective function, instead of the

commonly used GCV criterion, to choose the optimal values of smoothing parameters.

In our analysis, the smoothing parameters selected by the pseduo BIC result in more

informative estimated functions that do not appear to undersmooth the data.

We study four populations of North Pacific salmon: chum, sockeye and pink salmon

from even- and odd-year runs. For each species, we fit two candidate spatio-temporal

models to the data, controlling the smoothness of functional parameters by choos-

ing smoothing parameters that minimize the pseudo BIC within each model. We

compare the two models based on their relative AIC scores, which measure the fit

of models to the data through the negative log likelihood penalized by the effective

number of parameters. Model M2 is found to have the lowest AIC scores among the

two condidates for each of the four groups of salmon being studied, indicating that

productivity is a nonlinear function of time and spatial location.

Inference from sparse data is a limitation of the present analysis. Spatial and tem-

poral distributions of observations for the four groups of salmon are summarized in

the design plots provided in the supplementary materials. We chose to include all

available data in our analysis in order to be able to estimate density parameters for

all stock-stream combinations. It is important to note, however, that systematic con-

siderations are involved in the selection and time of sampling sites in many ecological

studies. Since a reliable model of this complex sampling process is beyond the scope

of our analysis, we instead make the simplifying assumption that the measured stocks

are selected randomly from all existing stocks and that any measurments missing over

time are missing at random.

Our analysis reveals that a significant portion of the observed variability in the log
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ratio of recruits to spawners can indeed be explained by changes in productivity over

time and spatial location. A smooth function of productivity varying with time and

spatial location is found to be significant for all four populations of salmon studied.

This function is generally smooth along the spatial dimension, but shows oscillatory

patterns over time, some of which correspond to productivity-related events identified

in the literature.

In particular, our results suggest that salmon productivity for the stocks under

investigation may be related to long-term climatic changes in the North Pacific. Ex-

isting literature on salmon spawning suggests that specific environmental covariates

contain information on salmon spawning patterns above what is contained in time

and spatial location. For example, Mueter et al. (2002) find evidence of an inverse

correlation between sea surface temperatures and survival rates for the species of

salmon studied here. For this reason, a natural extension of the models considered

here would incorporate additional covariates.
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Figure 1: Sampled spawning sites for pink, chum, and sockeye salmon along the North
Pacific coast.
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Figure 2: Estimated functional parameter a2(s) and its confidence intervals for model
M1: Y (s, t) = a0 + a1(s) + a2(t) + δsX(s, t) + ε(s, t) from the data of sockeye salmon.
The smoothing parameter vector is selected by minimizing GCV (left) and pseudo
BIC (right).
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Figure 3: Estimated functional parameters, a1(s) and a2(t), and their confidence
intervals in model M1: Y (s, t) = a0 + a1(s) + a2(t) + δsX(s, t) + ε(s, t) from the data
of chum (top), and sockeye (bottom) salmon. The smoothing parameter vector is
selected by minimizing pseudo BIC.
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Figure 4: Estimated functional parameters, a1(s) and a2(t), and their confidence
intervals in model M1: Y (s, t) = a0 + a1(s) + a2(t) + δsX(s, t) + ε(s, t) from the data
of odd-year runs (top) and even-year runs (bottom) of pink salmon. The smoothing
parameter vector is selected by minimizing pseudo BIC.
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Figure 5: Simulation results for choice of smoothing parameter are shown on the
left and centre: the models with smoothing parameters selected via pBIC and GCV
perform similarly in terms of MSE and MAD. Simulation results for model choice via
the AIC are shown on the right: positive differences in AIC sores between models M1
and M2 determine that M2 is selected over M1 in every case.
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Figure 6: Estimated bivariate functional parameter, a(s, t), in model M2: Y (s, t) =
a0 + a(s, t) + δsX(s, t) + ε(s, t) from the data of chum (top), and sockeye (bottom)
salmon. The smoothing parameter vector is selected by minimizing pseudo BIC.
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Figure 7: Estimated bivariate functional parameter, a(s, t), in model M2: Y (s, t) =
a0+a(s, t)+δsX(s, t)+ε(s, t) from the data of odd-year runs (top) and even-year runs
(bottom) of pink salmon. The smoothing parameter vector is selected by minimizing
pseudo BIC.
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Table 1: Statistical tests for the significance of functional parameters in models M1:
Y (s, t) = a0 + a1(s) + a2(t) + δsX(s, t) + ε(s, t) and M2: Y (s, t) = a0 + a(s, t) +
δsX(s, t) + ε(s, t) from the data of chum, sockeye, odd-year pink, and even-year pink
salmon stocks. “edf” represents the effective degrees of freedom, or the effective
number of parameters, of the model, which is defined in (3).

pink pink
Parameters (odd-year) (even-year) chum sockeye

Model M1

a(s)
edf 1 .0 1.0 1.0 1.0
F statistic 2.3 0.063 0.049 74
p-value 1e-1 8e-1 8e-1 3e-18

a(t)
edf 5.9 6.9 8.5 4.8
F statistic 2.4 4.4 16 4.4
p-value 2e-2 4e-5 5e-24 2e-4

a0

Estimate 1.3 1.4 1.5 1.7
Std. Error 0.065 0.075 0.041 0.034
t statistic 20 19 35 48
p-value 1e-68 2e-61 <1e-100 <1e-100

Model M2

a(s, t)
edf 8.5 9.4 17 11
F statistic 3.7 5.2 7.1 12
p-value 4e-5 4e-7 1e-18 4e-26

a0

Estimate 1.4 1.4 1.5 1.7
Std. Error 0.066 0.075 0.041 0.035
t statistic 21 19 37 48
p-value 9e-71 1e-61 <1e-100 <1e-100
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